JPH0539966A - Heat pump device - Google Patents

Heat pump device

Info

Publication number
JPH0539966A
JPH0539966A JP3197626A JP19762691A JPH0539966A JP H0539966 A JPH0539966 A JP H0539966A JP 3197626 A JP3197626 A JP 3197626A JP 19762691 A JP19762691 A JP 19762691A JP H0539966 A JPH0539966 A JP H0539966A
Authority
JP
Japan
Prior art keywords
heat
thermoelectric material
semiconductor
heat pump
pump device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3197626A
Other languages
Japanese (ja)
Inventor
Hisaaki Gyoten
久朗 行天
Yoshiaki Yamamoto
義明 山本
Fumitoshi Nishiwaki
文俊 西脇
Yasushi Nakagiri
康司 中桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3197626A priority Critical patent/JPH0539966A/en
Publication of JPH0539966A publication Critical patent/JPH0539966A/en
Pending legal-status Critical Current

Links

Landscapes

  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)

Abstract

PURPOSE:To greatly heighten the utility of the title device using Peltier effect by sharply improving critical efficiency settled by a performance index for a thermoelectric material used, with regard to the improvement of a heat pump. CONSTITUTION:For a definite time, an electric current is applied to a heat- radiation device composed so as to be the same as a heat-absorption device, which consists of a semiconductor 2, a copper plate 3 used as an electrode and heat-exchange fins 4, in the state in which one semiconductor end-surface 10 is electrically joined to the other. After that, the heat-radiation device is spatially separated from the end-surface 10 by a driving motor 9 and heat in these semiconductors is isolated each other before each interior of these semiconductors respectively reaches a thermally stable state.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はペルチェ効果を利用し、
特に電気的に冷房もしくは暖房を行う空調装置に使用す
るヒ−トポンプデバイスに関する。
The present invention utilizes the Peltier effect,
In particular, the present invention relates to a heat pump device used in an air conditioner for electrically cooling or heating.

【0002】[0002]

【従来の技術】従来、電気を熱に変換するヒートポンプ
デバイスの基本構成は、図4に示すように電流端子を兼
ねた金属板13、及び金属板14によって熱電材料であ
るN型半導体15、もしくはP型の半導体16を挟み込
み、電流を通ずることによりペルチェ熱によって加熱、
冷却を行うものである。
2. Description of the Related Art Conventionally, as shown in FIG. 4, a basic structure of a heat pump device for converting electricity into heat is a metal plate 13 also serving as a current terminal, and an N-type semiconductor 15 which is a thermoelectric material by a metal plate 14, or The P-type semiconductor 16 is sandwiched and heated by Peltier heat by passing an electric current,
It is for cooling.

【0003】図4の従来例はN型の半導体15とP型の
半導体16を交互に直列的に配列した熱電素子であり、
電流を通じると、金属板の一方が冷却され、他方が加熱
される。それらの金属板に配設された熱交換器17によ
って外気との熱交換を行なうことによって冷暖房用のヒ
ートポンプとして用いられてきた。
The conventional example of FIG. 4 is a thermoelectric element in which N-type semiconductors 15 and P-type semiconductors 16 are alternately arranged in series.
When an electric current is applied, one of the metal plates is cooled and the other is heated. It has been used as a heat pump for cooling and heating by exchanging heat with the outside air by a heat exchanger 17 arranged on those metal plates.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、この従
来型のヒートポンプデバイスの基本構成では、用いる熱
電材料が有するゼーベック係数(α)と電導度(σ)、
および熱伝導率(κ)から決まる性能指数(Z;Z=α
2・σ/κ)による効率の限界があり、現在最高の性能
指数を有するBi2Te3系材料においてもZ=2.5×10
-3/Kと小さく、効率が低いので、その実用化範囲は極
めて限定されていた。
However, in the basic structure of the conventional heat pump device, the Seebeck coefficient (α) and the electric conductivity (σ) of the thermoelectric material used are
And the figure of merit (Z; Z = α) determined from the thermal conductivity (κ)
2 · σ / κ) has a limit of efficiency, and Z = 2.5 × 10 even for Bi 2 Te 3 based materials that currently have the highest figure of merit.
Since it was as small as -3 / K and the efficiency was low, its practical application range was extremely limited.

【0005】[0005]

【課題を解決するための手段】本発明は電流を通じた
後、デバイスが定常状態に達する前に熱電材料の電流流
入部と流出部を空間的に分離するなどして両部を断熱す
ることによって、同じ熱電材料を用いながらヒートポン
プデバイスの効率を飛躍的に向上させる手段としたもの
である。
SUMMARY OF THE INVENTION The present invention provides thermal insulation between thermoelectric materials by spatially separating the current inflow and outflow portions of the thermoelectric material after passing a current and before the device reaches a steady state. The same thermoelectric material is used as a means for dramatically improving the efficiency of the heat pump device.

【0006】[0006]

【作用】図4のヒートポンプデバイスの基本構成部に電
流を通じると、熱電材料内の温度は時間の経過とともに
図3のように変化する。十分長時間通電を続けると最終
的に(d)の定常状態に達し、熱電材料内の温度勾配は
一定となる。この定常状態での効率の最大値は材料固有
のZによって決まり、したがって同じ熱電材料であれば
基本的に効率を向上させることができない。しかしなが
ら、図3において(a)(b)(c)の状態では、電流
流入部で発生したペルチェ熱は熱伝導によって拡散しな
がらも流入部近傍にとどまっており、熱伝導によるペル
チェ熱のロスは発生していない。一方、電流流出部の冷
却熱も同じ様な状態にある。そこで例えば(c)の状態
に達した時に通電を止め、熱電材料の高温部と低温部を
空間的に分離するなどして両部を断熱し、それぞれが熱
的平衡状態に達すると(e)のようになる。こうして熱
電材料中での熱伝導に起因する熱ロスを大幅に低減する
ことができるのでヒートポンプデバイスの効率を向上さ
せることができる。
When a current is applied to the basic components of the heat pump device shown in FIG. 4, the temperature inside the thermoelectric material changes with time as shown in FIG. When energization is continued for a sufficiently long time, the steady state of (d) is finally reached, and the temperature gradient in the thermoelectric material becomes constant. The maximum value of the efficiency in the steady state is determined by the material-specific Z, and therefore the same thermoelectric material cannot basically improve the efficiency. However, in the states of (a), (b), and (c) in FIG. 3, the Peltier heat generated in the current inflow portion remains near the inflow portion while being diffused by heat conduction, and the loss of Peltier heat due to heat conduction is small. It has not occurred. On the other hand, the cooling heat of the current outflow portion is in the same state. Therefore, for example, when the state of (c) is reached, the energization is stopped, the high temperature part and the low temperature part of the thermoelectric material are spatially separated, and both parts are thermally insulated. When each reaches a thermal equilibrium state, (e) become that way. In this way, heat loss due to heat conduction in the thermoelectric material can be significantly reduced, so that the efficiency of the heat pump device can be improved.

【0007】また、熱伝導による熱ロスを抑制できる
と、通電する時間と電流を調整することにより熱電材料
をさらに薄くできるので、ジュール熱による熱ロスも小
さくでき、さらに効率を向上することが可能である。
Further, if the heat loss due to heat conduction can be suppressed, the thermoelectric material can be made thinner by adjusting the time and current for energization, so that the heat loss due to Joule heat can be reduced and the efficiency can be further improved. Is.

【0008】[0008]

【実施例】以下に本発明による実施例を図面により説明
する。図1は本発明による最も基本的なデバイス部分の
一実施例であり、その構成を示すものである。まず吸熱
側の熱電材料として基台1上にBi2Te3−Sb2Te3
合金でできたP型半導体(厚さ3mm)2と、電極とし
て用いた銅プレート3を電気的に接続し、銅プレート上
に熱交換フィン4を構成した。また、基台上に設けた送
風ファン5によって熱交換効率を上げた。同様に放熱側
としては吸熱側と対向する形でP型半導体(厚さ3m
m)6、銅プレート7、熱交換フィン8を構成した。さ
らに基台部には駆動モーター9を取り付けることによっ
て、吸熱側半導体の端面10と放熱側半導体の端面11
の接続、切り離しが容易にできるようにした。また、そ
れぞれのP型半導体には温度モニター用の熱電対12を
電気的にP型半導体と絶縁して構成した。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an embodiment of the most basic device portion according to the present invention, and shows its configuration. First, as a thermoelectric material on the heat absorption side, Bi 2 Te 3 —Sb 2 Te 3 was placed on the base 1.
A P-type semiconductor (thickness 3 mm) 2 made of an alloy was electrically connected to the copper plate 3 used as an electrode, and the heat exchange fins 4 were formed on the copper plate. In addition, the heat exchange efficiency was increased by the blower fan 5 provided on the base. Similarly, as a heat radiation side, a P-type semiconductor (thickness 3 m
m) 6, a copper plate 7, and a heat exchange fin 8 were configured. Further, by attaching the drive motor 9 to the base, the end surface 10 of the heat absorption side semiconductor and the end surface 11 of the heat dissipation side semiconductor are attached.
It was made easy to connect and disconnect. Further, a thermocouple 12 for temperature monitoring is electrically insulated from the P-type semiconductor in each P-type semiconductor.

【0009】このデバイスに、まず端面10と端面11
を接続した状態で10A/cm2の電流を吸熱側半導体
2から放熱側半導体6の方向に流した。次に通電後1秒
経た時、駆動モーター9によって吸熱側と放熱側の半導
体を端面から切り離すことによって互いに断熱した。雰
囲気の温度を20℃にした場合、切り離し後約10秒経
て、それぞれの半導体内部で熱的に平衡状態に達した後
温度測定すると吸熱側半導体が17.5℃、放熱側半導
体が22.5℃となっており、冷却効率(C.O.P)
は約7.2であった。さらに通じる電流を100A/c
2とし、〜0.1秒程度パルス的に流し、同時に半導
体の接続、切り離しをを行なうと平衡に達した後では吸
熱側半導体が16.0℃、放熱側半導体が26.5℃と
なっており、その時の効率は約20であった。この値は
同じ熱電半導体(Z=2.5×10-3/K)を、従来の定常状
態で用いた場合と比べると10倍近く大きな値である。
切り離した吸熱側、および放熱側半導体は熱交換フィン
よって大気などの被冷却物、あるいは被加熱物と十分に
熱交換した後、再び接続、通電、切り離しを繰り返し
た。 このような一対の半導体を用いた本発明のデバイ
スを、例えばエアコン用ヒートポンプとして利用するた
めには、半導体対を複数個持つ構成にして順に冷房出力
を取り出した方が便利であった。その結果連続的な冷却
能力、あるいは加熱能力を有する高効率のヒートポンプ
を得ることができた。
First, the end face 10 and the end face 11 are added to this device.
A current of 10 A / cm 2 was made to flow from the heat absorbing side semiconductor 2 to the heat radiating side semiconductor 6 in the state of connecting. Next, 1 second after the energization, the semiconductors on the heat absorbing side and the heat radiating side were separated from the end faces by the drive motor 9 to insulate each other. When the temperature of the atmosphere is set to 20 ° C, about 10 seconds after the separation, after reaching the thermal equilibrium state inside each semiconductor, the temperature is measured and the endothermic side semiconductor is 17.5 ° C and the heat radiating side semiconductor is 22.5 ° C. ℃, cooling efficiency (COP)
Was about 7.2. Furthermore, the electric current that flows is 100 A / c
m 2 and pulsed for about 0.1 second, and when semiconductors were connected and disconnected at the same time, after reaching equilibrium, the endothermic semiconductor was 16.0 ° C. and the heat radiating semiconductor was 26.5 ° C. The efficiency at that time was about 20. This value is nearly ten times as large as that when the same thermoelectric semiconductor (Z = 2.5 × 10 −3 / K) is used in the conventional steady state.
The separated heat absorbing side and heat radiating side semiconductors were sufficiently exchanged with the object to be cooled such as the atmosphere or the object to be heated by the heat exchange fins, and then repeatedly connected, energized and disconnected. In order to use the device of the present invention using such a pair of semiconductors as a heat pump for an air conditioner, for example, it was convenient to take out the cooling output sequentially with a configuration having a plurality of semiconductor pairs. As a result, a highly efficient heat pump having continuous cooling capacity or heating capacity could be obtained.

【0010】この実施例として用いたBi2Te3−Sb
2Te3系熱電材料は熱伝導度、および電導度が比較的高
いので、通電後の定常状態に達する時間が短い。したが
ってペルチェ熱の熱伝導による熱ロスを防ぐためには、
通電、切り離し時間の正確な制御が必要で、さらには比
較的厚い熱電材料が望ましい。そこで次により熱伝導度
の低いZnSb系熱電材料を用いて本発明によるデバイ
スの試作を行なった。通電後2秒で切り離すことにより
約10℃の温度差をつけることができたが効率はやや低
下した。また、電流密度を大きくしていくと短時間で大
きな温度差が得られることも解った。このように用いる
熱電材料の物性値やヒートポンプの目的に応じて熱電材
料の厚みと通電時間、電流密度を最適に設することが可
能であった。
Bi 2 Te 3 -Sb used in this example
Since the 2 Te 3 -based thermoelectric material has relatively high thermal conductivity and electric conductivity, it takes a short time to reach a steady state after energization. Therefore, to prevent heat loss due to heat conduction of Peltier heat,
Accurate control of energization and disconnection time is required, and a relatively thick thermoelectric material is desirable. Therefore, a device according to the present invention was prototyped using a ZnSb-based thermoelectric material having a lower thermal conductivity. It was possible to make a temperature difference of about 10 ° C. by disconnecting the device 2 seconds after energization, but the efficiency slightly decreased. It was also found that a large temperature difference can be obtained in a short time as the current density is increased. It was possible to optimally set the thickness of the thermoelectric material, the energization time, and the current density according to the physical properties of the thermoelectric material used in this way and the purpose of the heat pump.

【0011】本発明の実施例では、熱電材料の電流流入
側と流出側とを断熱する最も具体的な手段として空間的
に分離した例を示したが、その他にも例えば印加する磁
場等によって熱伝導度が変わる熱電材料を吸熱側と放熱
側との間に構成することによって、同様に高効率のデバ
イスを得ることも考えられる。
In the embodiment of the present invention, an example in which the current inflow side and the outflow side of the thermoelectric material are thermally separated is shown as the most specific means. It is also conceivable to obtain a device with high efficiency by constructing a thermoelectric material whose conductivity changes between the heat absorbing side and the heat radiating side.

【0012】従来の定常状態でのペルチェ効果を用いる
ヒートポンプデバイスでは、P型半導体とN型半導体を
交互に直列につなぐことによって、デバイス駆動に必要
な総電流量を少なくし、かつそれぞれの接点での吸熱、
放熱を効率的に行なう構成になっている。本発明におい
ても図2に示したようにP型半導体とN型半導体が直列
になるように構成することによって総電流量を減らし、
電源端子を同じ側に配置することができた。
In the conventional heat pump device using the Peltier effect in the steady state, by alternately connecting P-type semiconductors and N-type semiconductors in series, the total amount of current required to drive the device is reduced, and at each contact. Endothermic,
It is configured to efficiently dissipate heat. Also in the present invention, the total amount of current is reduced by configuring the P-type semiconductor and the N-type semiconductor in series as shown in FIG.
The power terminals could be placed on the same side.

【0013】[0013]

【発明の効果】以上のように本発明によるヒートポンプ
デバイスは、従来、用いる熱電材料の性能指数で決まっ
ていた効率の限界を越える性能指数の低さの故に限定さ
れていた熱電現象の応用範囲を飛躍的に拡大するもので
ある。
INDUSTRIAL APPLICABILITY As described above, the heat pump device according to the present invention has a limited range of application of thermoelectric phenomenon because of its low performance index that exceeds the limit of efficiency conventionally determined by the performance index of the thermoelectric material used. It will expand dramatically.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のヒートポンプデバイスの基
本構成図
FIG. 1 is a basic configuration diagram of a heat pump device according to an embodiment of the present invention.

【図2】本発明の異なる総電流量を減らしたヒートポン
プデバイスの構成図
FIG. 2 is a block diagram of a heat pump device according to the present invention in which different total current amounts are reduced.

【図3】熱電材料内の温度分布の経時変化を表わす図FIG. 3 is a diagram showing changes over time in the temperature distribution in the thermoelectric material.

【図4】従来のヒートポンプデバイスの構成図FIG. 4 is a configuration diagram of a conventional heat pump device.

【符号の説明】[Explanation of symbols]

1 基台 2 P型半導体(厚さ3mm) 3 銅プレート 4 熱交換フィン 5 送風ファン 6 P型半導体(厚さ3mm) 7 銅プレート 8 熱交換フィン 9 駆動モーター 10 吸熱側半導体の端面 11 放熱側半導体の端面 12 熱電対 13 金属板 14 金属板 15 N型半導体 16 P型半導体 17 熱交換器 1 Base 2 P-type semiconductor (thickness 3 mm) 3 Copper plate 4 Heat exchange fin 5 Blower fan 6 P-type semiconductor (thickness 3 mm) 7 Copper plate 8 Heat exchange fin 9 Drive motor 10 End surface of heat absorption side 11 Heat dissipation side End face of semiconductor 12 Thermocouple 13 Metal plate 14 Metal plate 15 N-type semiconductor 16 P-type semiconductor 17 Heat exchanger

───────────────────────────────────────────────────── フロントページの続き (72)発明者 中桐 康司 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Nakagiri 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】ペルチェ効果を有する熱電材料と、それに
電流を通じる手段と、 熱電材料の電流流入側と流出側の間を断熱する手段と、
電流供給手段を有することを特徴とするヒートポンプデ
バイス。
1. A thermoelectric material having a Peltier effect, a means for passing an electric current through the thermoelectric material, and a means for insulating between a current inflow side and an outflow side of the thermoelectric material,
A heat pump device comprising an electric current supply means.
【請求項2】熱電材料の電流流入側と流出側とを断熱す
る手段が、空間的に両部を分離することである請求項1
記載のヒートポンプデバイス。
2. The means for insulating the thermoelectric material from the current inflow side and the current outflow side is to spatially separate the two parts.
The heat pump device described.
JP3197626A 1991-08-07 1991-08-07 Heat pump device Pending JPH0539966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3197626A JPH0539966A (en) 1991-08-07 1991-08-07 Heat pump device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3197626A JPH0539966A (en) 1991-08-07 1991-08-07 Heat pump device

Publications (1)

Publication Number Publication Date
JPH0539966A true JPH0539966A (en) 1993-02-19

Family

ID=16377616

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3197626A Pending JPH0539966A (en) 1991-08-07 1991-08-07 Heat pump device

Country Status (1)

Country Link
JP (1) JPH0539966A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922915A2 (en) * 1997-12-10 1999-06-16 International Business Machines Corporation Thermoelectric cooling with plural dynamic switching to isolate heat transport mechanisms
WO1999030090A1 (en) * 1997-12-10 1999-06-17 International Business Machines Corporation Thermoelectric cooling apparatus with dynamic switching to isolate heat transport mechanisms
US6384312B1 (en) 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
US6403876B1 (en) 2000-12-07 2002-06-11 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metal tips
US6467275B1 (en) 2000-12-07 2002-10-22 International Business Machines Corporation Cold point design for efficient thermoelectric coolers
US6494048B1 (en) 2002-04-11 2002-12-17 International Business Machines Corporation Assembly of quantum cold point thermoelectric coolers using magnets
US6588217B2 (en) 2000-12-11 2003-07-08 International Business Machines Corporation Thermoelectric spot coolers for RF and microwave communication integrated circuits
US6597544B2 (en) 2000-12-11 2003-07-22 International Business Machines Corporation Thermoelectric microcoolers for cooling write coils and GMR sensors in magnetic heads for disk drives
US6608250B2 (en) 2000-12-07 2003-08-19 International Business Machines Corporation Enhanced interface thermoelectric coolers using etched thermoelectric material tips
US6712258B2 (en) 2001-12-13 2004-03-30 International Business Machines Corporation Integrated quantum cold point coolers
US7842779B2 (en) 2006-05-12 2010-11-30 Sumitomo Seika Chemicals Co., Ltd. Process for producing granular carboxylated-polymer particle and granular carboxylated-polymer particle
US8304517B2 (en) 2007-06-19 2012-11-06 Sumitomo Seika Chemicals Co., Ltd. Method for producing granulated carboxyl group-containing polymer particle and granulated carboxyl group-containing polymer particle

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0922915A2 (en) * 1997-12-10 1999-06-16 International Business Machines Corporation Thermoelectric cooling with plural dynamic switching to isolate heat transport mechanisms
WO1999030090A1 (en) * 1997-12-10 1999-06-17 International Business Machines Corporation Thermoelectric cooling apparatus with dynamic switching to isolate heat transport mechanisms
EP0922915A3 (en) * 1997-12-10 2000-03-22 International Business Machines Corporation Thermoelectric cooling with plural dynamic switching to isolate heat transport mechanisms
US6608250B2 (en) 2000-12-07 2003-08-19 International Business Machines Corporation Enhanced interface thermoelectric coolers using etched thermoelectric material tips
US6403876B1 (en) 2000-12-07 2002-06-11 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metal tips
US6467275B1 (en) 2000-12-07 2002-10-22 International Business Machines Corporation Cold point design for efficient thermoelectric coolers
US6384312B1 (en) 2000-12-07 2002-05-07 International Business Machines Corporation Thermoelectric coolers with enhanced structured interfaces
US6740600B2 (en) 2000-12-07 2004-05-25 International Business Machines Corporation Enhanced interface thermoelectric coolers with all-metals tips
US6588217B2 (en) 2000-12-11 2003-07-08 International Business Machines Corporation Thermoelectric spot coolers for RF and microwave communication integrated circuits
US6597544B2 (en) 2000-12-11 2003-07-22 International Business Machines Corporation Thermoelectric microcoolers for cooling write coils and GMR sensors in magnetic heads for disk drives
US6712258B2 (en) 2001-12-13 2004-03-30 International Business Machines Corporation Integrated quantum cold point coolers
US6494048B1 (en) 2002-04-11 2002-12-17 International Business Machines Corporation Assembly of quantum cold point thermoelectric coolers using magnets
US7842779B2 (en) 2006-05-12 2010-11-30 Sumitomo Seika Chemicals Co., Ltd. Process for producing granular carboxylated-polymer particle and granular carboxylated-polymer particle
US8304517B2 (en) 2007-06-19 2012-11-06 Sumitomo Seika Chemicals Co., Ltd. Method for producing granulated carboxyl group-containing polymer particle and granulated carboxyl group-containing polymer particle

Similar Documents

Publication Publication Date Title
US2992538A (en) Thermoelectric system
JP2003533031A5 (en)
JPH04165234A (en) Thermoelectric conversion device
JPH02223393A (en) Thermoelectric energy converter
JP2004214279A (en) Cooling device of electronic component using thermoelectric conversion material
JPH0539966A (en) Heat pump device
JP2006294935A (en) High efficiency and low loss thermoelectric module
US20060289475A1 (en) Electric heating device
JP2924369B2 (en) Heat pump device
US20070084497A1 (en) Solid state direct heat to cooling converter
JPH0430586A (en) Thermoelectric device
JP4927822B2 (en) Formable Peltier heat transfer element and method for manufacturing the same
JPS6113348B2 (en)
US3110628A (en) Thermoelectric assembly
CN207379108U (en) A kind of liquid-type semiconductor heat-exchanger
US20140332048A1 (en) Thermoelectric device
JP2563524B2 (en) Thermoelectric device
JPH08121898A (en) Thermoelectric converter
JPH08306965A (en) Thermoelectric conversion module for generation
CA2910958A1 (en) Thermoelectric device
KR200404457Y1 (en) A seat using thermoelement
JPH0159748B2 (en)
KR950002256Y1 (en) Cooler used heat pump
CN221304798U (en) Integrated semiconductor cold plate
JPH02130878A (en) Thermoelectric device