JPS6113348B2 - - Google Patents

Info

Publication number
JPS6113348B2
JPS6113348B2 JP59149501A JP14950184A JPS6113348B2 JP S6113348 B2 JPS6113348 B2 JP S6113348B2 JP 59149501 A JP59149501 A JP 59149501A JP 14950184 A JP14950184 A JP 14950184A JP S6113348 B2 JPS6113348 B2 JP S6113348B2
Authority
JP
Japan
Prior art keywords
battery
heat
temperature
bimetals
fuel cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP59149501A
Other languages
Japanese (ja)
Other versions
JPS6041769A (en
Inventor
Takao Myashita
Yasuyuki Tsutsumi
Akio Matsuzawa
Izumi Kume
Katsuo Funakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP59149501A priority Critical patent/JPS6041769A/en
Publication of JPS6041769A publication Critical patent/JPS6041769A/en
Publication of JPS6113348B2 publication Critical patent/JPS6113348B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F2013/005Thermal joints
    • F28F2013/008Variable conductance materials; Thermal switches
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)

Abstract

PURPOSE:To enable the cooling performance of a fuel cell to be changed automatically without using any pumps or fans by installing a radiator plate facing a heat-collecting metallic body formed on the surface of the fuel cell body and installing bimetals between the metallic body and the radiator plate. CONSTITUTION:After a metallic body 13 is affixed to the surface of a cell body 1, the whole body is covered with a heat insulator 14. Ends of U-shaped bimetals 15 are fixed to two surfaces of the metallic body 13 by brazing. The other free ends of the bimetals 15 are located in a space 12 formed by the heat insulator 14 and a radiator plate 11. The material and the shape of the bimetals 15 are selected so that the free ends of the bimetals 15 touch the radiator plate 11 when the temperature exceeds a given level. Owing to the above constitution, temperature increase of the battery is accelerated by reducing its heat radiation when the battery is started at low temperature and the cooling performance of the battery is increased after its temperature reaches a given level, thereby achieving controlling of the temperature increase.

Description

【発明の詳細な説明】 本発明は燃料電池に係り、特にメタレールなど
の低沸点液体を燃料とする電池に好適である。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a fuel cell, and is particularly suitable for a cell using a low boiling point liquid such as metalail as fuel.

燃料電池の発電性能は電極温度によつて変わ
る。即ち、温度が低くなると、電池出力が低下す
る。燃料電池の運転状態では極間の損失のために
熱を発生する。その大きさはエネルギ変換効率が
30〜70%でるから、最大で電池出力の2倍位いと
なる。このために電池温度が上昇するが、電池温
度が過度になると、電解液が蒸発したり、液体燃
料が気化して燃料供給に支障を来たし、さらに電
池寿命を縮めるので、必要以上に温度が上らない
ように冷却手段を備えねばならない。
The power generation performance of a fuel cell varies depending on the electrode temperature. That is, as the temperature decreases, the battery output decreases. When a fuel cell is in operation, heat is generated due to loss between the electrodes. Its size is determined by energy conversion efficiency.
Since it outputs 30-70%, it is about twice the battery output at maximum. This causes the battery temperature to rise, but if the battery temperature becomes excessive, the electrolyte will evaporate and the liquid fuel will vaporize, interfering with fuel supply and shortening the battery life. Cooling means must be provided to prevent this.

従来の燃料電池の基本構成を第1図に示す。電
極すなわち燃料極2、空気極3の中間に電解液室
4があり、また燃料極2に隣接して燃料室5が、
空気極3に隣接して空気室6がある。符号7は容
器、8は端子である。このようにして単位電池本
体1が構成される。電池の冷却には従来、(1)空気
室6内に空気を矢印のように流して、空気極から
の発生熱を除去する方法が用いられている。さら
に別な方法として、(2)燃料を第2図の閉ループの
系でポンプ10により循環させ、その系に放熱板
11を設けることにより、燃料室で発生した熱を
燃料を媒体として熱交換する方法がある。符号9
は燃料循環路を示している。この場合、燃料は、
使用温度で液体のものが好ましく、メタレール、
ヒドラジンなどが用いられる。
The basic configuration of a conventional fuel cell is shown in FIG. There is an electrolyte chamber 4 between the electrodes, that is, the fuel electrode 2 and the air electrode 3, and the fuel chamber 5 is adjacent to the fuel electrode 2.
Adjacent to the air electrode 3 is an air chamber 6. Reference numeral 7 is a container, and 8 is a terminal. In this way, the unit battery main body 1 is constructed. Conventionally, a method has been used to cool the battery by (1) causing air to flow into the air chamber 6 in the direction of the arrow to remove heat generated from the air electrode. As another method, (2) the fuel is circulated by the pump 10 in the closed loop system shown in FIG. 2, and a heat sink 11 is provided in the system to exchange heat generated in the fuel chamber using the fuel as a medium. There is a way. code 9
indicates the fuel circulation path. In this case, the fuel is
It is preferable that it is liquid at the operating temperature, such as metal rail,
Hydrazine and the like are used.

これらの方法は比較的大出力のものに適するが
数W級の小形電池には強制冷却用のフアン、ポン
プなどの回転体を用いると、重量、寸法が大きく
なるだけでなく、コストが高くなるので実用的で
はない。従つて、空気の自然対流を利用した冷却
を用いることになる。
These methods are suitable for relatively high-output batteries, but for small batteries of several watts, using a rotating body such as a fan or pump for forced cooling not only increases the weight and size but also increases the cost. So it's not practical. Therefore, cooling using natural convection of air is used.

一方、前述のように、燃料電池は低温での発電
性能が悪いために、始動時は何んらかな手段によ
つて電池を、必要な温度まで加熱しておく必要が
ある。
On the other hand, as mentioned above, since fuel cells have poor power generation performance at low temperatures, it is necessary to heat the cells to a required temperature by some means at the time of startup.

ポータブル用では加熱のためのエネルギーが簡
単に得られないので、なるべく小さなエネルギー
で、短かい時間で必要な温度まで加熱出来ねばな
らない。この目的を達成するには電池本体を良く
熱絶縁して、周囲への熱放散を小さくするのが良
い。従来は電池温度を一定に保つため冷却フアン
の回転数を変化させたり、燃料の流量を調節して
いるが、回転部分がない場合にはこの方式は使え
ない。
For portable devices, it is difficult to obtain energy for heating, so it is necessary to be able to heat the device to the required temperature in the shortest possible time with as little energy as possible. To achieve this objective, it is best to insulate the battery body well to reduce heat dissipation to the surroundings. Conventionally, to keep the battery temperature constant, the rotational speed of a cooling fan is varied or the fuel flow rate is adjusted, but this method cannot be used if there are no rotating parts.

本発明の目的は、ポンプやフアンを用いずに、
電池の冷却性能を自動的に変えることのできる燃
料電池を提供するにある。
The purpose of the present invention is to
The purpose of the present invention is to provide a fuel cell that can automatically change the cooling performance of the battery.

すなわち本発明は、電池本体の表面の少なくと
も一部に集熱用金属体を設けるとともに、電池本
体の表面に熱絶縁材を設け、さらに前記金属体と
対向して前記熱絶縁材の外側に放熱板を設け、こ
の放熱板と前記金属体との間にバイメタルを設け
てそのバイメタルの一端を前記金属体に固定し、
前記バイメタルの熱変形が、電池本体が所定以上
高温となつたときに前記金属体と前記放熱板との
熱的な接続を行うようになし、所期の目的を達成
するようにしたものである。
That is, the present invention provides a metal body for collecting heat on at least a part of the surface of the battery body, a heat insulating material on the surface of the battery body, and a heat dissipating material facing the metal body and dissipating heat to the outside of the heat insulating material. a plate is provided, a bimetal is provided between the heat dissipation plate and the metal body, and one end of the bimetal is fixed to the metal body,
Thermal deformation of the bimetal causes thermal connection between the metal body and the heat sink when the battery body reaches a predetermined temperature or higher, thereby achieving the intended purpose. .

第3図は本発明の一実施例である。第3図にお
いて符号1は第1図に示すのと同じく電池本体で
ある。5aは燃料注入口、6a,6bはそれぞれ
空気吸入口及び排出口であつて、空気の採入れは
自然対流を利用している。このような電池本体は
通常プラスチツクスで出来ているのでその表面に
金属体13を貼付ける。これは電池内部の熱を集
める目的であるから銅、アルミ板が良いが、プラ
スチツクスに比べれば金属は熱伝導度が高いので
その種類は問わない。更に、図示したように電池
のすべての面に金属体13を貼付する必要はな
い。
FIG. 3 shows an embodiment of the present invention. In FIG. 3, the reference numeral 1 is the battery body as shown in FIG. 1. 5a is a fuel injection port, and 6a and 6b are air intake ports and exhaust ports, respectively, and natural convection is used to take in air. Since such a battery body is usually made of plastic, a metal body 13 is attached to its surface. Since the purpose is to collect heat inside the battery, copper or aluminum plates are good, but metal has higher thermal conductivity than plastics, so the type does not matter. Furthermore, it is not necessary to affix the metal body 13 to all sides of the battery as shown.

金属体13を含む電池本体表面を熱絶縁材14
で覆う。この材料としては紙、ポリエチレンテレ
フタレート、ポリエチレンなどのフイルムの織
布、不織布、或は薄い発泡ウレタンなどが好適で
あり、片面に粘着剤の付いた市販の材料が利用出
来る。本例では厚さが0.5mmのポリエチレン板を
ゴム系接着剤で貼付けた。
A heat insulating material 14 covers the surface of the battery body including the metal body 13.
cover with Suitable materials for this material include paper, polyethylene terephthalate, polyethylene film woven fabric, non-woven fabric, thin foamed urethane, etc., and commercially available materials with adhesive on one side can be used. In this example, a polyethylene plate with a thickness of 0.5 mm was attached using a rubber adhesive.

金属体13の2面にU字形バイメタル15の一
端をろう接により固定し、他端は熱絶縁材14と
放熱板11によつて作られる空間12に自由端に
して置く。空間12は外気との流通が起らないよ
うに、上記の熱絶縁材を用いて密閉してある。温
度が所定の値をこえればバイメタルの自由端が放
熱板に接触するようにバイメタルの材料、形状を
決める。この部分を拡大したのが第4図である。
バイメタル15の自由端の放熱板への接触面には
熱伝導の大きい銅などの金属板16が固着されて
居る。
One end of a U-shaped bimetal 15 is fixed to two sides of the metal body 13 by soldering, and the other end is placed as a free end in a space 12 formed by a heat insulating material 14 and a heat sink 11. The space 12 is sealed using the above-mentioned heat insulating material so as to prevent communication with outside air. The material and shape of the bimetal are determined so that the free end of the bimetal comes into contact with the heat sink when the temperature exceeds a predetermined value. Figure 4 shows an enlarged view of this part.
A metal plate 16 made of copper or the like having high thermal conductivity is fixed to the free end of the bimetal 15 that contacts the heat sink.

実施例ではメタレールを燃料とする燃料電池が
用いられ、設定温度を60℃とし、バイメタルによ
る接触部は2個所設けたが、必要に応じてその数
を加減すれば良い。このような構成によつて、電
池本体が60℃に達したとき、放熱性能を約5倍に
出来た。複数個のバイメタルを設ける場合、バイ
メタルの材質を変えることにより、あるいはバイ
メタルの自由端と放熱板の距離を変えることによ
つて、放熱板とバイメタルとの接触温度を変える
ことが出来るので、より細かい温度制御で可能で
ある。
In the embodiment, a fuel cell using metal rail as fuel was used, the set temperature was set at 60° C., and two bimetallic contact portions were provided, but the number may be increased or decreased as necessary. With this configuration, when the battery body reaches 60 degrees Celsius, the heat dissipation performance can be increased approximately five times. When installing multiple bimetals, the contact temperature between the heat sink and the bimetal can be changed by changing the material of the bimetal or by changing the distance between the free end of the bimetal and the heat sink. This is possible with temperature control.

本発明の効果は、電池が低温で始動するときに
は放熱性を悪くして、電池の温度上昇を促進し、
所定の温度に達したときには冷却性能を上げて、
温度上昇を一定に制御し得ることに有る。複数個
のバイメタル接点の接触温度をそれぞれ変えてお
けば、更に細かく温度制御を行なうことが出来
る。このような手段によつて低温時の冷却性能を
下げておけば外部加熱によつて電池を始動する場
合あるいは低温時の僅かな電池出力をジユール熱
に変換して、比較的短時間で定常出力の得られる
設定温度に到達せしめることが可能である。
The effect of the present invention is that when the battery is started at a low temperature, heat dissipation is deteriorated to promote the temperature rise of the battery.
When the specified temperature is reached, the cooling performance is increased,
The purpose is to be able to control the temperature rise to a constant level. By changing the contact temperature of each of the plurality of bimetal contacts, even more precise temperature control can be achieved. If the cooling performance at low temperatures is lowered by such means, the battery can be started by external heating, or the small battery output at low temperatures can be converted into Joule heat, allowing steady output in a relatively short period of time. It is possible to reach the set temperature obtained by

第5図は本発明の他の実施例である。第4図と
同じく、バイメタル接点部を拡大したものであ
る。バイメタル15の熱変形によつて金属板16
を図示しない放熱板(第3,4図の放熱板11に
相当する)に押しつけるようにしており、金属板
16は変形可能な高熱伝導板17によつて金属体
13と熱的に接続されている。この実施例では細
い銅線を編んだ帯状物を用いた。この方式の特長
は熱流が高熱伝導板17と金属板16を経由して
図示しない放熱板に流れるのでバイメタルの寸法
を小さくしても伝熱性能に影響しないことであ
る。このような熱的接点を複数個用いることによ
り、第3,4図に示す実施例と同じ効果を達成す
ることが可能である。
FIG. 5 shows another embodiment of the invention. Like FIG. 4, this is an enlarged view of the bimetal contact portion. Metal plate 16 due to thermal deformation of bimetal 15
is pressed against a heat sink (not shown) (corresponding to the heat sink 11 in FIGS. 3 and 4), and the metal plate 16 is thermally connected to the metal body 13 by a deformable high heat conduction plate 17. There is. In this example, a strip made of thin copper wires was used. The feature of this system is that the heat flow passes through the high thermal conductivity plate 17 and the metal plate 16 to a heat sink (not shown), so that even if the dimensions of the bimetal are reduced, the heat transfer performance is not affected. By using a plurality of such thermal contacts, it is possible to achieve the same effect as the embodiments shown in FIGS. 3 and 4.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は燃料電池の基本構造を示すもので、単
位セルの断面図、第2図は従来の燃料電池の冷却
方式を示す概略図、第3図は本発明の実施例の断
面図、第4図は第3図のバイメタル部分の拡大
図、第5図は本発明の他の実施例で熱的スイツチ
部分を示す概略図である。 1……電池本体、2……燃料極、3……空気
極、4……電解液室、5……燃料室、6……空気
室、7……容器、8……端子、11……放熱板、
13……金属体、15……バイメタル。
Figure 1 shows the basic structure of a fuel cell, and is a cross-sectional view of a unit cell. Figure 2 is a schematic diagram showing a conventional fuel cell cooling system. Figure 3 is a cross-sectional view of an embodiment of the present invention. FIG. 4 is an enlarged view of the bimetallic portion of FIG. 3, and FIG. 5 is a schematic diagram showing a thermal switch portion in another embodiment of the present invention. 1... Battery body, 2... Fuel electrode, 3... Air electrode, 4... Electrolyte chamber, 5... Fuel chamber, 6... Air chamber, 7... Container, 8... Terminal, 11... heat sink,
13...metal body, 15...bimetal.

Claims (1)

【特許請求の範囲】[Claims] 1 対向する一対の電極と、該電極間に配置され
た電解液室と、前記電極の反電解室側に隣接して
配置された燃料室及び空気室とからなる電池本体
を備えた燃料電池において、前記電池本体の表面
の少なくとも一部に集熱用金属体を設けるととも
に、電池本体の表面に熱絶縁材を設け、さらに前
記金属体と対向して前記熱絶縁材の外側に放熱板
を設け、該放熱板と前記金属体との間にバイメタ
ルを設けてそのバイメタルの一端を前記金属体に
固定し、前記バイメタルの熱変形が、電池本体が
所定以上高温となつたときに前記金属体と前記放
熱板との熱的な接続を行うようにしたことを特徴
とする燃料電池。
1. In a fuel cell equipped with a cell main body consisting of a pair of electrodes facing each other, an electrolyte chamber disposed between the electrodes, and a fuel chamber and an air chamber disposed adjacent to the electrodes on the side opposite to the electrolysis chamber. , a heat collecting metal body is provided on at least a part of the surface of the battery body, a heat insulating material is provided on the surface of the battery body, and a heat sink is further provided on the outside of the heat insulating material facing the metal body. , a bimetal is provided between the heat dissipation plate and the metal body, and one end of the bimetal is fixed to the metal body, and thermal deformation of the bimetal causes the metal body to change when the temperature of the battery body reaches a predetermined temperature or higher. A fuel cell characterized in that the fuel cell is thermally connected to the heat sink.
JP59149501A 1984-07-20 1984-07-20 Fuel cell Granted JPS6041769A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59149501A JPS6041769A (en) 1984-07-20 1984-07-20 Fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59149501A JPS6041769A (en) 1984-07-20 1984-07-20 Fuel cell

Publications (2)

Publication Number Publication Date
JPS6041769A JPS6041769A (en) 1985-03-05
JPS6113348B2 true JPS6113348B2 (en) 1986-04-12

Family

ID=15476530

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59149501A Granted JPS6041769A (en) 1984-07-20 1984-07-20 Fuel cell

Country Status (1)

Country Link
JP (1) JPS6041769A (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0620294Y2 (en) * 1987-04-14 1994-05-25 三菱重工業株式会社 Solid electrolyte fuel cell
FR2827427B1 (en) * 2001-07-12 2003-11-28 Commissariat Energie Atomique FUEL CELL WITH OPTIMIZED THERMAL MANAGEMENT
US6890674B2 (en) * 2002-02-19 2005-05-10 Mti Microfuel Cells, Inc. Methods and apparatuses for managing fluids in a fuel cell system
JP4551608B2 (en) * 2002-06-25 2010-09-29 キヤノン株式会社 Fuel cells and electrical equipment
DE10236998B4 (en) * 2002-08-13 2008-01-31 Daimler Ag Electrochemical cell
US20050074647A1 (en) * 2003-10-02 2005-04-07 Arthur Alan R. Variably insulated system and method of use
US20060141308A1 (en) * 2004-12-23 2006-06-29 Becerra Juan J Apparatus and method for variable conductance temperature control
WO2008035423A1 (en) * 2006-09-21 2008-03-27 Fujitsu Limited Fuel cell
WO2008041274A1 (en) * 2006-09-29 2008-04-10 Fujitsu Limited Fuel cell
JP5402346B2 (en) * 2009-07-17 2014-01-29 トヨタ自動車株式会社 Heat dissipation device
JPWO2012165097A1 (en) * 2011-06-01 2015-02-23 コニカミノルタ株式会社 Secondary battery type fuel cell system

Also Published As

Publication number Publication date
JPS6041769A (en) 1985-03-05

Similar Documents

Publication Publication Date Title
US6653002B1 (en) Quick charge battery with thermal management
JP5729306B2 (en) Molten salt battery device
US5987891A (en) Thermoelectric refrigerator/warmer using no external power, and refrigerating/warming method
CN109037726A (en) A kind of air-cooled module for fuel cell heat transfer samming
JPS6113348B2 (en)
JPH08222280A (en) Cooling structure of na-s battery module
CN116780038B (en) Lithium battery protection board and lithium battery device with same
JP2924369B2 (en) Heat pump device
CN109860951A (en) A kind of core strueture of the electric storage device of high efficiency and heat radiation
CN106299503B (en) A kind of uniform regulator control system of temperature of powered cell
JPH0539966A (en) Heat pump device
JP2002190313A (en) Polymer electrolyte fuel cell
CN217589100U (en) Battery module
CN217640037U (en) Temperature control device and chip temperature control device
JPH01186768A (en) Electrode structure of electrolyte circulation type secondary battery
CN216597749U (en) Power battery thermal management system
CN212323769U (en) Wireless charging seat
JP3493995B2 (en) Sodium sulfur battery module
KR20110006055A (en) Cooling system for low temperature fuel cell stack and control method thereof
CN210579825U (en) Solar off-grid inverter
KR20230039025A (en) Battery assembly with thermal spread and preheating functions and a battery thermal management system including the same
CN210112085U (en) Intelligent temperature control mobile phone shell
CN209401799U (en) A kind of core strueture of the electric storage device of high efficiency and heat radiation
JPH11289783A (en) Solar generator
CN219286506U (en) Storage battery heat dissipation device and control circuit thereof