JP5402346B2 - Heat dissipation device - Google Patents

Heat dissipation device Download PDF

Info

Publication number
JP5402346B2
JP5402346B2 JP2009168782A JP2009168782A JP5402346B2 JP 5402346 B2 JP5402346 B2 JP 5402346B2 JP 2009168782 A JP2009168782 A JP 2009168782A JP 2009168782 A JP2009168782 A JP 2009168782A JP 5402346 B2 JP5402346 B2 JP 5402346B2
Authority
JP
Japan
Prior art keywords
heat
heating element
transfer member
temperature
heat transfer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009168782A
Other languages
Japanese (ja)
Other versions
JP2011021568A (en
Inventor
修 弓田
浩己 田中
公志 藤
雅一 杉下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2009168782A priority Critical patent/JP5402346B2/en
Publication of JP2011021568A publication Critical patent/JP2011021568A/en
Application granted granted Critical
Publication of JP5402346B2 publication Critical patent/JP5402346B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Compressor (AREA)
  • Fuel Cell (AREA)

Description

本発明は、放熱装置に関するものである。   The present invention relates to a heat dissipation device.

セラミック基板の熱を放熱するために、セラミック基板と放熱板との間に伝熱シートを挿入した伝熱構造が知られている。   In order to radiate the heat of the ceramic substrate, a heat transfer structure in which a heat transfer sheet is inserted between the ceramic substrate and the heat radiating plate is known.

特開平3−97571号公報Japanese Patent Laid-Open No. 3-97571

ところで、燃料電池では、反応ガスを圧縮するためのポンプが用いられている。ポンプは、高温になると効率が落ちるので、放熱のために放熱板を設けることが好ましい。一方、燃料電池を動力として用いている移動車両や、寒冷地に設置された燃料電池では、ポンプが凍結するような氷点下以下の低温で燃料電池が始動される場合もある。かかる場合には、ポンプの温度を素早く上げてポンプの凍結を解消することが好ましい。ここで、従来技術のように伝熱シートを介してポンプに放熱板が接続されている構造の場合、低温であっても放熱板に熱を奪われるため、ポンプの温度を素早く上げることが困難となる。そのため、ポンプの凍結を速やかに解消することが困難である。このことは発熱体がポンプである場合に限らず、様々な発熱体においても同様である。   By the way, in the fuel cell, a pump for compressing the reaction gas is used. Since the efficiency of the pump decreases at a high temperature, it is preferable to provide a heat sink for heat dissipation. On the other hand, in a mobile vehicle using a fuel cell as power or a fuel cell installed in a cold region, the fuel cell may be started at a low temperature below freezing point where the pump freezes. In such a case, it is preferable to quickly raise the temperature of the pump to eliminate freezing of the pump. Here, when the heat sink is connected to the pump via a heat transfer sheet as in the prior art, it is difficult to quickly raise the temperature of the pump because heat is taken away by the heat sink even at low temperatures. It becomes. Therefore, it is difficult to quickly eliminate the freezing of the pump. This is not limited to the case where the heating element is a pump, and the same applies to various heating elements.

本発明は、上述の課題の少なくとも一部を解決し、発熱体が低温である場合には放熱板への伝熱を抑制して速やかに発熱体の温度を上昇させ、発熱体が高温である場合には放熱板への伝熱を促進して放熱させることができる、放熱装置を提供することを目的とする。   The present invention solves at least a part of the above-mentioned problems, and when the heating element is at a low temperature, the heat transfer to the heat radiating plate is suppressed to quickly increase the temperature of the heating element, and the heating element is at a high temperature. In this case, an object of the present invention is to provide a heat dissipation device capable of promoting heat transfer to the heat dissipation plate to dissipate heat.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態又は適用例として実現することが可能である。
本発明の一形態によれば、発熱体の熱を放熱させるための放熱装置が提供される。この放熱装置は、放熱板と、前記放熱板を前記発熱体と離間させて支持する支持部材と、前記放熱板と前記発熱体との間に配置され、前記発熱体の温度があらかじめ定められた温度よりも低い場合には前記放熱板と前記発熱体のうち少なくとも一方と離間し、前記発熱体の温度があらかじめ定められた温度よりも高い場合には前記放熱板と前記発熱体の両方と接触する伝熱部材と、前記伝熱部材と別部材として設けられ、前記伝熱部材を移動させる移動部材と、を備え、前記移動部材は、バイメタルと二方向性形状記憶合金とアクチュエータと、のうちのいずれかであり、前記放熱板は前記発熱体の表面に対して傾斜した底面を有し、前記伝熱部材は前記放熱板の底面と面で接することが出来る表面を有し、前記移動部材は、前記発熱体の温度があらかじめ定められた温度よりも高い場合には前記放熱板と前記発熱体の両方に前記伝熱部材を接触させ、前記発熱体の温度が前記あらかじめ定められた温度よりも低い場合には、前記伝熱部材を、前記放熱板と前記発熱体のうち少なくとも一方から離間させ、前記伝熱部材の線膨張係数は、前記支持部材の線膨張係数よりも大きい。この形態の放熱装置によれば、発熱体の温度が上がると、移動部材が伝熱部材を移動させて放熱板に接触させる。このとき、放熱板は発熱体の表面に対して傾斜した底面を有しており、伝熱部材は前記放熱板の底面と面で接することが出来る表面を有しているので、 放熱を促進することが可能となる。
SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.
According to one form of this invention, the thermal radiation apparatus for radiating the heat | fever of a heat generating body is provided. The heat dissipating device is disposed between a heat dissipating plate, a support member that supports the heat dissipating plate apart from the heat generating member, and between the heat dissipating plate and the heat generating member, and the temperature of the heat generating member is predetermined. When it is lower than the temperature, it is separated from at least one of the heat radiating plate and the heating element, and when the temperature of the heating element is higher than a predetermined temperature, it is in contact with both the heat radiating plate and the heating element. A heat transfer member, and a moving member that is provided as a separate member from the heat transfer member and moves the heat transfer member, wherein the moving member is a bimetal, a bidirectional shape memory alloy, and an actuator. The heat sink has a bottom surface that is inclined with respect to the surface of the heating element, and the heat transfer member has a surface that can be in contact with the bottom surface of the heat sink, and the moving member. Is the temperature of the heating element Is higher than a predetermined temperature, the heat transfer member is brought into contact with both the radiator plate and the heating element, and when the temperature of the heating element is lower than the predetermined temperature, A heat transfer member is separated from at least one of the heat radiating plate and the heating element, and the linear expansion coefficient of the heat transfer member is larger than the linear expansion coefficient of the support member. According to the heat dissipation device of this aspect, when the temperature of the heating element rises, the moving member moves the heat transfer member to contact the heat radiating plate. At this time, the heat dissipation plate has a bottom surface that is inclined with respect to the surface of the heating element, and the heat transfer member has a surface that can be in contact with the bottom surface of the heat dissipation plate. It becomes possible.

[適用例1]
発熱体の熱を放熱させるための放熱装置であって、放熱板と、前記放熱板を前記発熱体と離間させて支持する支持部材と、前記放熱板と前記発熱体との間に配置され、前記発熱体の温度があらかじめ定められた温度よりも低い場合には前記放熱板と前記発熱体のうち少なくとも一方と離間し、前記発熱体の温度があらかじめ定められた温度よりも高い場合には前記放熱板と前記発熱体の両方と接触する伝熱部材と、を備える放熱装置。
この適用例によれば、発熱体が低温である場合には放熱板への伝熱を抑制して速やかに発熱体の温度を上昇させ、発熱体が高温である場合には放熱板への伝熱を促進して放熱させることができる。
[Application Example 1]
A heat dissipating device for dissipating the heat of the heat generating element, the heat dissipating plate, a support member that supports the heat dissipating plate spaced apart from the heat generating member, and disposed between the heat dissipating plate and the heat generating member, When the temperature of the heating element is lower than a predetermined temperature, it is separated from at least one of the heat radiating plate and the heating element, and when the temperature of the heating element is higher than a predetermined temperature, the A heat dissipating device comprising: a heat dissipating plate and a heat transfer member in contact with both of the heating elements.
According to this application example, when the heating element is at a low temperature, heat transfer to the heat sink is suppressed and the temperature of the heating element is quickly increased, and when the heating element is high, the heat transfer to the heat sink is performed. Heat can be promoted and released.

[適用例2]
適用例1に記載の放熱装置において、前記伝熱部材の線膨張係数は、前記支持部材の線膨張係数よりも大きい、放熱装置。
この適用例によれば、伝熱部材の熱膨張を利用して、高温時に、伝熱部材を、発熱体及び放熱板の両方に接触させて、放熱を促進することが可能となる。
[Application Example 2]
The heat radiating device according to Application Example 1, wherein a linear expansion coefficient of the heat transfer member is larger than a linear expansion coefficient of the support member.
According to this application example, it is possible to promote heat dissipation by using the thermal expansion of the heat transfer member to bring the heat transfer member into contact with both the heating element and the heat radiating plate at a high temperature.

[適用例3]
適用例1又は適用例2に記載の放熱装置において、前記伝熱部材は、前記発熱体と接触している、放熱装置。
この適用例によれば、発熱体の熱を伝熱部材の膨張に用いることが可能となる。
[Application Example 3]
The heat radiating device according to Application Example 1 or Application Example 2, wherein the heat transfer member is in contact with the heating element.
According to this application example, the heat of the heating element can be used for expansion of the heat transfer member.

[適用例4]
適用例1から適用例3のいずれかに記載の放熱装置において、前記放熱装置は、前記発熱体の鉛直上方に配置されている、放熱装置。
この適用例によれば、重力により、放熱装置の伝熱部材を発熱体に接触させることが可能となる。
[Application Example 4]
The heat radiating device according to any one of application examples 1 to 3, wherein the heat radiating device is disposed vertically above the heating element.
According to this application example, the heat transfer member of the heat dissipation device can be brought into contact with the heating element by gravity.

[適用例5]
適用例1から適用例4のいずれか記載の放熱装置において、前記支持部材は、前記放熱板及び前記発熱体と接続されており、前記支持部材の熱伝導率は、前記伝熱部材の熱伝導率よりも小さい、放熱装置。
この適用例によれば、支持部材を介して放熱板に熱が伝導することを抑制できる。
[Application Example 5]
In the heat radiating device according to any one of Application Example 1 to Application Example 4, the support member is connected to the heat radiating plate and the heating element, and the heat conductivity of the support member is the heat conduction of the heat transfer member. Heat dissipation device smaller than the rate.
According to this application example, heat can be suppressed from being conducted to the heat sink via the support member.

[適用例6]
適用例1に記載の放熱装置において、さらに、前記発熱体の温度により変形するバイメタルを備え、前記バイメタルは、前記発熱体の温度があらかじめ定められた温度よりも低い場合には前記伝熱部材を、前記放熱板と前記発熱体のうち少なくとも一方と離間させ、前記発熱体の温度があらかじめ定められた温度よりも高い場合には前記放熱板と前記発熱体の両方に前記伝熱部材を接触させる、放熱装置。
この適用例によれば、バイメタルの反りを用いて、放熱板と発熱体の両方に伝熱部材を接触させたり、伝熱部材を、放熱板と発熱体のうち少なくとも一方と離間させたりすることが可能となる。
[Application Example 6]
The heat dissipating device according to Application Example 1 further includes a bimetal that deforms depending on the temperature of the heating element, and the bimetal is configured to dispose the heat transfer member when the temperature of the heating element is lower than a predetermined temperature. The heat transfer plate is separated from at least one of the heat radiating plate and the heat generating element, and the heat transfer member is brought into contact with both the heat radiating plate and the heat generating element when the temperature of the heat generating element is higher than a predetermined temperature. , Heat dissipation device.
According to this application example, the heat transfer member is brought into contact with both the heat radiating plate and the heating element, or the heat transfer member is separated from at least one of the heat radiating plate and the heat generating element, using a bimetal warp. Is possible.

[適用例7]
適用例1に記載の放熱装置において、さらに、前記発熱体の温度により二つの形状間で相互に変形する二方向性形状記憶合金で構成された弾性部材を有し、前記弾性部材は、前記発熱体の温度があらかじめ定められた温度よりも低い場合には前記伝熱部材を、前記放熱板と前記発熱体のうち少なくとも一方と離間させ、前記発熱体の温度があらかじめ定められた温度よりも高い場合には前記放熱板と前記発熱体の両方に前記伝熱部材を接触させる、放熱装置。
この適用例によれば、弾性部材は、二方向性形状記憶合金であるので、温度により2形態を有する。そして、その2つの形態を用いて、放熱板と発熱体の両方に伝熱部材を接触させたり、伝熱部材を、放熱板と発熱体のうち少なくとも一方と離間させたりすることが可能となる。
[Application Example 7]
In the heat dissipation device according to Application Example 1, the heat dissipation device further includes an elastic member made of a bidirectional shape memory alloy that deforms between two shapes depending on the temperature of the heating element, and the elastic member When the body temperature is lower than a predetermined temperature, the heat transfer member is separated from at least one of the heat radiating plate and the heat generating body, and the temperature of the heat generating body is higher than a predetermined temperature. In this case, the heat radiating device brings the heat transfer member into contact with both the heat radiating plate and the heating element.
According to this application example, since the elastic member is a bidirectional shape memory alloy, it has two forms depending on the temperature. And it becomes possible to make a heat-transfer member contact both a heat sink and a heat generating body using the two forms, or to separate a heat transfer member from at least one of a heat sink and a heat generating body. .

[適用例8]
適用例1から適用例7のいずれかに記載の放熱装置であって、前記放熱装置は、ポンプを用いて反応ガスを圧縮し、エンドプレートを有する燃料電池スタックに前記反応ガスを供給する燃料電池システムに用いられるものであり、前記発熱体は、前記ポンプであり、前記放熱板は、前記エンドプレートである、放熱装置。
この適用例によれば、燃料電池システムにおいて、ポンプの温度を最適に出来ると共に、エンドプレートを放熱板として用いることができるので、部品の点数を少なくすることが可能となる。
[Application Example 8]
The heat dissipation device according to any one of Application Example 1 to Application Example 7, wherein the heat dissipation device compresses a reaction gas using a pump and supplies the reaction gas to a fuel cell stack having an end plate. A heat dissipation device used in a system, wherein the heating element is the pump, and the heat dissipation plate is the end plate.
According to this application example, in the fuel cell system, the temperature of the pump can be optimized, and the end plate can be used as a heat radiating plate, so that the number of parts can be reduced.

なお、本発明は、種々の形態で実現することが可能であり、例えば、放熱装置の他、放熱構造、放熱方法等、様々な形態で実現することができる。   In addition, this invention can be implement | achieved with various forms, for example, can be implement | achieved with various forms, such as a thermal radiation structure, a thermal radiation method other than a thermal radiation apparatus.

第1の実施例を示す説明図である。It is explanatory drawing which shows a 1st Example. 放熱装置を鉛直下方、上方から見たときの説明図である。It is explanatory drawing when the heat radiating device is seen from vertically below and above. 第2の実施例を示す説明図である。It is explanatory drawing which shows a 2nd Example. 第3の実施例を示す説明図である。It is explanatory drawing which shows a 3rd Example. 第3の実施例の変形例を示す説明図である。It is explanatory drawing which shows the modification of a 3rd Example. 第4の実施例を示す説明図である。It is explanatory drawing which shows a 4th Example. 第4の実施例の変形例を示す説明図である。It is explanatory drawing which shows the modification of a 4th Example. 変形例を示す説明図である。It is explanatory drawing which shows a modification. 他の変形例を示す説明図である。It is explanatory drawing which shows another modification. 放熱板の向きを変えたときの説明図である。It is explanatory drawing when the direction of a heat sink is changed.

図1は、第1の実施例を示す説明図である。放熱装置100は、放熱板110と、支持部材120と、伝熱部材130と、を備える。放熱板110は、放熱を促進するためのフィン111を備える。但しフィン111は省略可能である。放熱板110の材料として、例えば、アルミニウムや銅、あるいはこれらの合金を用いることが可能である。支持部材120は、放熱板110を、発熱体200の鉛直上方に支持している。支持部材120は、発熱体200の熱を放熱板110に伝えないことが好ましい。そのため、支持部材120は、例えば、ガラスやセラミックなどの断熱性の高い材料を用いて作られている。   FIG. 1 is an explanatory diagram showing the first embodiment. The heat dissipation device 100 includes a heat dissipation plate 110, a support member 120, and a heat transfer member 130. The heat sink 110 includes fins 111 for promoting heat dissipation. However, the fin 111 can be omitted. As a material of the heat sink 110, for example, aluminum, copper, or an alloy thereof can be used. The support member 120 supports the heat sink 110 vertically above the heating element 200. It is preferable that the support member 120 does not transmit the heat of the heating element 200 to the heat radiating plate 110. Therefore, the support member 120 is made using a highly heat-insulating material such as glass or ceramic.

伝熱部材130は、発熱体200の熱を放熱板110に伝える機能を有する。したがって、伝熱部材130として、熱伝導率の高い材料、例えばアルミニウムなどの金属を用いることが可能である。一方、伝熱部材130は、発熱体200が低温の時には放熱板110と接触せず、放熱板110に熱を伝えず、発熱体200が高温の時に放熱板110と接触して、放熱板110に熱を伝えるように構成されていることが好ましい。伝熱部材130は、発熱体200と接触しており、発熱体200からの熱により、膨張、あるいは収縮する。この膨張、収縮により、伝熱部材130と放熱板110とが、接触し、あるいは離間する。したがって、伝熱部材130として、熱膨張係数(線膨張係数)が大きな材料、例えば、アルミニウムなどの金属を用いることが可能である。   The heat transfer member 130 has a function of transferring the heat of the heating element 200 to the heat radiating plate 110. Therefore, a material having high thermal conductivity, for example, a metal such as aluminum can be used as the heat transfer member 130. On the other hand, the heat transfer member 130 does not contact the heat radiating plate 110 when the heat generating body 200 is low temperature, does not transmit heat to the heat radiating plate 110, and contacts the heat radiating plate 110 when the heat generating body 200 is high temperature. It is preferable that it is configured to transmit heat to. The heat transfer member 130 is in contact with the heating element 200 and expands or contracts by heat from the heating element 200. Due to the expansion and contraction, the heat transfer member 130 and the heat radiating plate 110 are in contact with or separated from each other. Therefore, a material having a large thermal expansion coefficient (linear expansion coefficient), for example, a metal such as aluminum can be used as the heat transfer member 130.

図2は、放熱装置を鉛直下方、上方から見たときの説明図である。図2(A)は、放熱装置100を鉛直下方から見たときの模式図を示し、図2(A)は、放熱装置100を鉛直上方から見たときの模式図を示している。本実施例では、支持部材120は、パイプ形状(中空円筒形状)をしており、伝熱部材130は、円柱形状をしている。伝熱部材130は、支持部材120の中に配置されている。なお、後述するように、支持部材120や伝熱部材130の形状は、これらの形状以外の形状であってもよい。   FIG. 2 is an explanatory diagram when the heat dissipation device is viewed from vertically below and from above. FIG. 2A shows a schematic diagram when the heat dissipation device 100 is viewed from vertically below, and FIG. 2A shows a schematic diagram when the heat dissipation device 100 is viewed from vertically above. In the present embodiment, the support member 120 has a pipe shape (hollow cylindrical shape), and the heat transfer member 130 has a columnar shape. The heat transfer member 130 is disposed in the support member 120. As will be described later, the shape of the support member 120 and the heat transfer member 130 may be other than these shapes.

以下、放熱装置100の動作について説明する。発熱体200が低温の時には、伝熱部材130は、発熱体200と接触しているが、放熱板110とは接触していない。発熱体200の温度が上がると、伝熱部材130は、発熱体200からの熱を受けて、膨張する。伝熱部材130の温度がある温度以上になると、伝熱部材130は、放熱板110に接触し、熱を放熱板110に伝える。   Hereinafter, the operation of the heat dissipation device 100 will be described. When the heating element 200 is at a low temperature, the heat transfer member 130 is in contact with the heating element 200 but not in contact with the heat sink 110. When the temperature of the heating element 200 rises, the heat transfer member 130 receives heat from the heating element 200 and expands. When the temperature of the heat transfer member 130 reaches a certain temperature or higher, the heat transfer member 130 contacts the heat radiating plate 110 and transfers heat to the heat radiating plate 110.

支持部材120として厚さ5cmのガラス(線膨張係数9×10-6/K、熱伝導率1.38W/cm・K)、伝熱部材130として厚さ5cmのアルミニウム(線膨張係数23.6×10-6、熱伝導率237W/cm・K)を用い、発熱体の温度が20℃から70℃に上昇したとする。このときのガラスの膨張量Δglは、2.3×10-2mmであり、アルミの膨張量ΔAlは、5.9×10-2mmとなる。したがって、ΔAl>Δglである。したがって、発熱体200の温度が70℃に達したときに、伝熱部材130が放熱板110に接触するように、支持部材120と、伝熱部材130のそれぞれの厚さを決めることができる。 The support member 120 is 5 cm thick glass (linear expansion coefficient 9 × 10 −6 / K, thermal conductivity 1.38 W / cm · K), and the heat transfer member 130 is 5 cm thick aluminum (linear expansion coefficient 23.6). Suppose that the temperature of the heating element rose from 20 ° C. to 70 ° C. using × 10 −6 , thermal conductivity 237 W / cm · K). Expansion of delta gl glass at this time is 2.3 × 10 -2 mm, expansion amount delta Al aluminum becomes 5.9 × 10 -2 mm. Therefore, Δ Al > Δ gl . Accordingly, the thicknesses of the support member 120 and the heat transfer member 130 can be determined so that the heat transfer member 130 contacts the heat radiating plate 110 when the temperature of the heating element 200 reaches 70 ° C.

以上第1の実施例によれば、伝熱部材130は、発熱体200の温度があらかじめ定められた温度よりも高い場合には放熱板110と発熱体200の両方と接触し、発熱体200の温度があらかじめ定められた温度よりも低い場合には放熱板110と離間する。そのため、発熱体200が低温である場合には放熱板110への伝熱を抑制して速やかに発熱体200の温度を上昇させ、発熱体200が高温である場合には放熱板110への伝熱を促進して放熱させることができる。   As described above, according to the first embodiment, the heat transfer member 130 is in contact with both the heat radiating plate 110 and the heating element 200 when the temperature of the heating element 200 is higher than a predetermined temperature. When the temperature is lower than a predetermined temperature, the heat sink 110 is separated. Therefore, when the heating element 200 is at a low temperature, the heat transfer to the heat radiating plate 110 is suppressed and the temperature of the heating element 200 is quickly increased. When the heating element 200 is at a high temperature, the heat transfer to the heat radiating plate 110 is performed. Heat can be promoted and released.

図3は、第2の実施例を示す説明図である。第2の実施例は、第1の実施例の放熱装置100を燃料電池システム600に適用している。燃料電池システム600は、複数の発電モジュール610と、エンドプレート620、625と、エアフィルター630と、圧縮ポンプ640と、配管650と、放熱装置100と、を備える。各発電モジュール610は、積層されており、燃料電池スタック615を形成している。燃料電池スタック615の両端には、エンドプレート620、625が配置されている。圧縮ポンプ640は、エアフィルター630を通して取り入れられた空気を圧縮し、配管650を介して燃料電池スタック615に供給する。圧縮ポンプ640は、放熱装置100の支持部材120により、エンドプレート625と接続されている。圧縮ポンプ640は、また、放熱装置100の伝熱部材130と接触している。なお、燃料電池システム600が起動する前においては、伝熱部材130は、エンドプレート625とは接触していない。ここで、圧縮ポンプ640は、実施例1で示した発熱体200に相当する。また、エンドプレート625は、金属性であり、熱伝導率が大きいため、放熱板110としての機能を有する。なお、エンドプレート625は、フィン627を備えていてもよい。   FIG. 3 is an explanatory diagram showing the second embodiment. In the second embodiment, the heat dissipation device 100 of the first embodiment is applied to the fuel cell system 600. The fuel cell system 600 includes a plurality of power generation modules 610, end plates 620 and 625, an air filter 630, a compression pump 640, a pipe 650, and the heat dissipation device 100. The power generation modules 610 are stacked to form a fuel cell stack 615. End plates 620 and 625 are disposed at both ends of the fuel cell stack 615. The compression pump 640 compresses the air taken in through the air filter 630 and supplies the compressed air to the fuel cell stack 615 via the pipe 650. The compression pump 640 is connected to the end plate 625 by the support member 120 of the heat dissipation device 100. The compression pump 640 is also in contact with the heat transfer member 130 of the heat dissipation device 100. Before the fuel cell system 600 is started, the heat transfer member 130 is not in contact with the end plate 625. Here, the compression pump 640 corresponds to the heating element 200 shown in the first embodiment. In addition, the end plate 625 has a function as the heat radiating plate 110 because it is metallic and has high thermal conductivity. Note that the end plate 625 may include fins 627.

燃料電池システム600の起動前においては、圧縮ポンプ640は、動作していない。したがって、圧縮ポンプ640の温度は、外気温と同じである。このときには、伝熱部材130は、エンドプレート625には接触していない。燃料電池システム600が起動すると、圧縮ポンプ640も起動し、圧縮ポンプ640の温度が上昇する。しかし、伝熱部材130はエンドプレート625に接触していないため、熱がエンドプレート625に放熱されることはない。そのため、圧縮ポンプ640は速やかに温度が上昇する。例えば、圧縮ポンプ640が凍結するような低温であっても、圧縮ポンプ640は、速やかに温度を上昇させることが可能となる。圧縮ポンプ640の温度が上がると、伝熱部材130の温度も上がり、伝熱部材130は熱膨張する。伝熱部材130の温度がある値以上になると、伝熱部材130は、エンドプレート625に接触する。そして、伝熱部材130は、エンドプレート625に放熱する。   Before the start of the fuel cell system 600, the compression pump 640 is not operating. Therefore, the temperature of the compression pump 640 is the same as the outside air temperature. At this time, the heat transfer member 130 is not in contact with the end plate 625. When the fuel cell system 600 is activated, the compression pump 640 is also activated, and the temperature of the compression pump 640 is increased. However, since the heat transfer member 130 is not in contact with the end plate 625, heat is not radiated to the end plate 625. Therefore, the temperature of the compression pump 640 rises quickly. For example, even at a low temperature at which the compression pump 640 freezes, the compression pump 640 can quickly increase the temperature. When the temperature of the compression pump 640 increases, the temperature of the heat transfer member 130 also increases, and the heat transfer member 130 expands thermally. When the temperature of the heat transfer member 130 exceeds a certain value, the heat transfer member 130 contacts the end plate 625. The heat transfer member 130 radiates heat to the end plate 625.

第2の実施例によれば、圧縮ポンプ640の温度が低い場合には、圧縮ポンプ640の温度を速やかに上昇させ、圧縮ポンプ640の温度が高い場合には、放熱を促進させることができる。したがって、最適な温度で圧縮ポンプ640を運転させることが出来る。また、エンドプレート625を放熱板として用いることができるので、部品の点数を少なくすることが可能となる。   According to the second embodiment, when the temperature of the compression pump 640 is low, the temperature of the compression pump 640 can be quickly raised, and when the temperature of the compression pump 640 is high, heat dissipation can be promoted. Therefore, the compression pump 640 can be operated at an optimum temperature. Moreover, since the end plate 625 can be used as a heat sink, the number of parts can be reduced.

図4は、第3の実施例を示す説明図である。第3の実施例の放熱装置100は、第1の実施例と比較すると、伝熱部材130を移動させるためのバイメタル300を備えている点が異なる。また、放熱板110は斜めの底面114を有している点、伝熱部材130が、放熱板110の底面114と面で接することが出来る上面131を有している点が異なる。バイメタル300の両端はそれぞれ、発熱体200と、伝熱部材130と接合している。バイメタル300は、熱膨張率が異なる2枚の金属を貼り合わせたものである。本実施例では、バイメタル300を形成する2種の金属のうち、熱膨張率の小さい方が伝熱部材130側、熱膨張率の大きい方が支持部材120側に位置している。   FIG. 4 is an explanatory diagram showing the third embodiment. The heat dissipation device 100 of the third embodiment is different from the first embodiment in that it includes a bimetal 300 for moving the heat transfer member 130. Further, the heat radiating plate 110 has an oblique bottom surface 114 and the heat transfer member 130 has a top surface 131 that can come into contact with the bottom surface 114 of the heat radiating plate 110. Both ends of the bimetal 300 are joined to the heating element 200 and the heat transfer member 130, respectively. The bimetal 300 is a laminate of two metals having different coefficients of thermal expansion. In this embodiment, of the two types of metals forming the bimetal 300, the one with the smaller thermal expansion coefficient is located on the heat transfer member 130 side, and the one with the larger thermal expansion coefficient is located on the support member 120 side.

低温時には、バイメタル300は、ほぼ平板状である。このときには、伝熱部材130は、発熱体200には接触しているが、放熱板110には接触していない。発熱体200の温度があがると、その熱は、バイメタル300にも伝わる。バイメタル300は、温度が上がると、伝熱部材130側に反る。そうすると、伝熱部材130は、放熱板110側に移動し、伝熱部材130の上面131が放熱板110の底面114に接する。その結果、発熱体200の熱は、伝熱部材130を介して、放熱板110から放熱される。   At low temperatures, the bimetal 300 is substantially flat. At this time, the heat transfer member 130 is in contact with the heating element 200 but not in contact with the heat sink 110. When the temperature of the heating element 200 rises, the heat is also transferred to the bimetal 300. The bimetal 300 warps to the heat transfer member 130 side when the temperature rises. Then, the heat transfer member 130 moves to the heat radiating plate 110 side, and the upper surface 131 of the heat transfer member 130 contacts the bottom surface 114 of the heat radiating plate 110. As a result, the heat of the heating element 200 is radiated from the heat radiating plate 110 via the heat transfer member 130.

以上のように、第3の実施例によれば、バイメタル300の反りを用いて、発熱体200が高温の時には放熱板110と発熱体200の両方に伝熱部材130を接触させ、低温の時には、伝熱部材を130、放熱板110から離間させる。その結果、発熱体200が低温である場合には放熱板110への伝熱を抑制して速やかに発熱体200の温度を上昇させ、発熱体200が高温である場合には放熱板110への伝熱を促進して放熱させることができる。また、第3の実施例では、バイメタルの熱による反りを利用しているので、伝熱部材130の熱膨張率は、大きくなくてもよい。また、伝熱部材130の熱膨張を用いなくても良いので、低温時において、伝熱部材130と発熱体200とを離間させるように構成してもよい。   As described above, according to the third embodiment, using the warp of the bimetal 300, the heat transfer member 130 is brought into contact with both the heat radiating plate 110 and the heat generating element 200 when the heat generating element 200 is high temperature, and when the heat generating element 200 is low temperature. The heat transfer member 130 is separated from the heat radiating plate 110. As a result, when the heating element 200 is at a low temperature, heat transfer to the heat radiating plate 110 is suppressed and the temperature of the heating element 200 is quickly increased, and when the heating element 200 is at a high temperature, Heat transfer can be promoted and released. Further, in the third embodiment, since the warp due to the heat of the bimetal is used, the coefficient of thermal expansion of the heat transfer member 130 may not be large. Further, since it is not necessary to use the thermal expansion of the heat transfer member 130, the heat transfer member 130 and the heating element 200 may be separated from each other at a low temperature.

図5は、第3の実施例の変形例を示す説明図である。この変形例では、伝熱部材130を放熱板110と接触させたり、離間させたりするアクチュエータ400を備えている。そして、バイメタル350は、発熱体200に接続され、アクチュエータ400の動作方向を制御するためのスイッチとして用いられている。   FIG. 5 is an explanatory view showing a modification of the third embodiment. In this modification, an actuator 400 is provided for bringing the heat transfer member 130 into contact with or separating from the heat radiating plate 110. The bimetal 350 is connected to the heating element 200 and is used as a switch for controlling the operation direction of the actuator 400.

この変形例によれば、バイメタル350は、スイッチとして用いられ、バイメタル350自体は伝熱部材130を移動させない。したがって、強度の強いバイメタルを用いる必要はない。また、放熱板110への伝熱を促進するために、大きな伝熱部材130を用いることが可能である。なお、本変形例では、アクチュエータ400のスイッチとしてバイメタル350を用いているが、他のスイッチや他の方法を用いることも可能である。例えば、発熱体200に温度センサーを設けてもよい。また、実施例2に示したような燃料電池システムに用いられる場合には、燃料電池システムの起動後一定時間経過したら伝熱部材130を放熱板110と接触させるように、伝熱部材130と放熱板110との接触あるいは離間を、起動からの時間で制御してもよい。   According to this modification, the bimetal 350 is used as a switch, and the bimetal 350 itself does not move the heat transfer member 130. Therefore, it is not necessary to use a strong bimetal. Also, a large heat transfer member 130 can be used to promote heat transfer to the heat sink 110. In this modification, the bimetal 350 is used as the switch of the actuator 400, but other switches and other methods can also be used. For example, the heating element 200 may be provided with a temperature sensor. Further, when used in the fuel cell system as shown in the second embodiment, the heat transfer member 130 and the heat radiating member are brought into contact with the heat radiating plate 110 so that the heat transfer member 130 is brought into contact with the heat radiating plate 110 after a certain time has elapsed after the fuel cell system is started. The contact or separation with the plate 110 may be controlled by the time from activation.

図6は、第4の実施例を示す説明図である。第4の実施例では、支持部材120と伝熱部材130とを接続するバネ500を備えている。バネ500は、二方向性形状記憶合金で形成されている。バネ500は、低温の時は、縮んでおり、伝熱部材130と放熱板110とを離間させている。発熱体200の温度が上がると、伝熱部材130の温度が上昇する。そうすると、バネ500の温度が上昇する。バネ500の温度が設定温度に達すると、形状記憶効果により、バネ500は、伸びて伝熱部材130と放熱板110とを接触させる。一方、発熱体200の温度が下がると、伝熱部材130の温度も下がり、バネ500の温度も下がる。バネ500の温度が設定された温度以下に下がると、縮んで伝熱部材130と放熱板110とを離間させる。   FIG. 6 is an explanatory diagram showing the fourth embodiment. In the fourth embodiment, a spring 500 that connects the support member 120 and the heat transfer member 130 is provided. The spring 500 is made of a bidirectional shape memory alloy. The spring 500 is contracted when the temperature is low, and the heat transfer member 130 and the heat radiating plate 110 are separated from each other. When the temperature of the heating element 200 increases, the temperature of the heat transfer member 130 increases. As a result, the temperature of the spring 500 rises. When the temperature of the spring 500 reaches the set temperature, the spring 500 expands to bring the heat transfer member 130 and the heat sink 110 into contact with each other due to the shape memory effect. On the other hand, when the temperature of the heating element 200 decreases, the temperature of the heat transfer member 130 also decreases, and the temperature of the spring 500 also decreases. When the temperature of the spring 500 falls below the set temperature, the heat transfer member 130 and the heat radiating plate 110 are separated by contracting.

バネ500は、例えば、Ti−Ni系合金で形成されている。二方向性形状記憶合金では、高温における、オーステナイト相の状態を記憶し、低温における、マルテンサイト相の状態を記憶する。二方向形状を記憶させるには、高温オーステナイト相に内部応力場を導入させればよいことが一般に知られている。具体的には、形状回復が可能な程度に変形し、加熱して形状回復させる操作を繰り返すトレーニング法を用いることが可能である。また、高温オーステナイト相に内部応力場を導入させるには、トレーニング法の他、限界以上の強加工を合金に加える強加工法や、変形、拘束固定して、加熱により逆変態させる拘束加熱法を用いてもよい。   The spring 500 is made of, for example, a Ti—Ni alloy. Bidirectional shape memory alloys memorize the state of the austenite phase at a high temperature and memorize the state of the martensite phase at a low temperature. In order to memorize the bi-directional shape, it is generally known that an internal stress field may be introduced into the high temperature austenite phase. Specifically, it is possible to use a training method in which deformation is performed to the extent that shape recovery is possible and heating is repeated to recover the shape. In order to introduce an internal stress field into the high-temperature austenite phase, in addition to the training method, there is a strong processing method in which strong processing exceeding the limit is applied to the alloy, and a constrained heating method in which deformation, constrained fixation, and reverse transformation by heating are performed. It may be used.

以上のように、第4の実施例においても、発熱体200が高温の時には放熱板110と発熱体200の両方に伝熱部材130を接触させ、低温の時には、伝熱部材を130、放熱板110から離間させることが可能となる。   As described above, also in the fourth embodiment, the heat transfer member 130 is brought into contact with both the heat radiating plate 110 and the heat generating member 200 when the heat generating body 200 is high temperature, and the heat transfer member 130 and the heat radiating plate are used when the temperature is low. It is possible to separate from 110.

図7は、第4の実施例の変形例を示す説明図である。第4の実施例では、バネ500は高温時に伸び、低温時に縮むが、この変形例では、バネ500は、高温時に縮み、低温時に伸びる。このように、バネ500に対し、高温時に伸びるように形状記憶させてもよく、逆に高温時の縮むように形状記憶させても良い。   FIG. 7 is an explanatory view showing a modification of the fourth embodiment. In the fourth embodiment, the spring 500 extends at a high temperature and contracts at a low temperature. In this modification, the spring 500 contracts at a high temperature and extends at a low temperature. As described above, the shape of the spring 500 may be memorized so as to extend at a high temperature, and conversely, the shape may be memorized so as to contract at a high temperature.

図8は、変形例を示す説明図である。第1の実施例では、支持部材120は、パイプ形状を有し、伝熱部材130は、円柱形状を有しているが、支持部材120や伝熱部材130の形状は他の形状であってもよい。図8(A)は、に示す例では、伝熱方向と垂直な断面において、支持部材120が碁盤目状に形成されており、伝熱部材130は、碁盤の線の間に配置されている。図8(B)に示す例では、伝熱方向と垂直な断面において、支持部材120と伝熱部材130とが、市松模様(チェッカー模様)を形成するように配置されている。このように、支持部材120や伝熱部材130の形状として様々な形状を採用することが可能である。   FIG. 8 is an explanatory diagram showing a modification. In the first embodiment, the support member 120 has a pipe shape and the heat transfer member 130 has a columnar shape, but the support member 120 and the heat transfer member 130 have other shapes. Also good. In the example shown in FIG. 8A, the support member 120 is formed in a grid pattern in a cross section perpendicular to the heat transfer direction, and the heat transfer member 130 is disposed between the grid lines. . In the example shown in FIG. 8B, the support member 120 and the heat transfer member 130 are arranged so as to form a checkered pattern (checker pattern) in a cross section perpendicular to the heat transfer direction. As described above, various shapes can be adopted as the shape of the support member 120 and the heat transfer member 130.

図9は、他の変形例を示す説明図である。この変形例では、放熱板110は、支持部材120により、ボディ700に支持されている。このように、放熱板110は、発熱体200に直接支持されていなくてもよい。例えば、放熱板110は、発熱体200との間の相対的位置が変わらないように、間接的に支持されていてもよい。   FIG. 9 is an explanatory diagram showing another modification. In this modification, the heat sink 110 is supported by the body 700 by the support member 120. As described above, the heat radiating plate 110 may not be directly supported by the heating element 200. For example, the heat radiating plate 110 may be indirectly supported so that the relative position between the heat radiating plate 110 and the heating element 200 does not change.

図10は、他の変形例を示す説明図である。この変形例に示すように、放熱板110は、発熱体200の鉛直上方ではなく、水平方向に配置されていてもよい。ただし、図10(A)に示すように、留め具140を用いて発熱体200に固定した方が好ましい。   FIG. 10 is an explanatory diagram showing another modification. As shown in this modification, the heat radiating plate 110 may be arranged in the horizontal direction instead of vertically above the heating element 200. However, as shown in FIG. 10 (A), it is preferable to fix the heating element 200 using a fastener 140.

以上、いくつかの実施例に基づいて本発明の実施の形態について説明してきたが、上記した発明の実施の形態は、本発明の理解を容易にするためのものであり、本発明を限定するものではない。本発明は、その趣旨並びに特許請求の範囲を逸脱することなく、変更、改良され得るとともに、本発明にはその等価物が含まれることはもちろんである。   The embodiments of the present invention have been described above based on some examples. However, the above-described embodiments of the present invention are for facilitating the understanding of the present invention and limit the present invention. It is not a thing. The present invention can be changed and improved without departing from the spirit and scope of the claims, and it is needless to say that the present invention includes equivalents thereof.

100…放熱装置
110…放熱板
111…フィン
114…底面
120…支持部材
130…伝熱部材
131…上面
140…留め具
200…発熱体
300、350…バイメタル
400…アクチュエータ
500…バネ
600…燃料電池システム
610…発電モジュール
615…燃料電池スタック
620、625…エンドプレート
627…フィン
630…エアフィルター
640…圧縮ポンプ
650…配管
700…ボディ
DESCRIPTION OF SYMBOLS 100 ... Radiating device 110 ... Radiating plate 111 ... Fin 114 ... Bottom 120 ... Supporting member 130 ... Heat transfer member 131 ... Upper surface 140 ... Fastener 200 ... Heating element 300, 350 ... Bimetal 400 ... Actuator 500 ... Spring 600 ... Fuel cell system 610 ... Power generation module 615 ... Fuel cell stack 620, 625 ... End plate 627 ... Fin 630 ... Air filter 640 ... Compression pump 650 ... Piping 700 ... Body

Claims (6)

発熱体の熱を放熱させるための放熱装置であって、
放熱板と、
前記放熱板を前記発熱体と離間させて支持する支持部材と、
前記放熱板と前記発熱体との間に配置され、前記発熱体の温度があらかじめ定められた温度よりも低い場合には前記放熱板と前記発熱体のうち少なくとも一方と離間し、前記発熱体の温度があらかじめ定められた温度よりも高い場合には前記放熱板と前記発熱体の両方と接触する伝熱部材と、
前記伝熱部材と別部材として設けられ、前記伝熱部材を移動させる移動部材と、
を備え
前記移動部材は、バイメタルと二方向性形状記憶合金とアクチュエータと、のうちのいずれかであり、
前記放熱板は前記発熱体の表面に対して傾斜した底面を有し、
前記伝熱部材は前記放熱板の底面と面で接することが出来る表面を有し、
前記移動部材は、前記発熱体の温度があらかじめ定められた温度よりも高い場合には前記放熱板と前記発熱体の両方に前記伝熱部材を接触させ、前記発熱体の温度が前記あらかじめ定められた温度よりも低い場合には、前記伝熱部材を、前記放熱板と前記発熱体のうち少なくとも一方から離間させ、
前記伝熱部材の線膨張係数は、前記支持部材の線膨張係数よりも大きい、
放熱装置。
A heat dissipation device for dissipating the heat of the heating element,
A heat sink,
A support member for supporting the heat sink away from the heating element;
When the temperature of the heat generating element is lower than a predetermined temperature, the heat dissipating plate is separated from at least one of the heat generating element and the heat generating element. If the temperature is higher than a predetermined temperature, a heat transfer member that contacts both the heat sink and the heating element;
A moving member that is provided as a separate member from the heat transfer member and moves the heat transfer member;
Equipped with a,
The moving member is one of a bimetal, a bidirectional shape memory alloy, and an actuator,
The radiator plate has a bottom surface inclined with respect to the surface of the heating element;
The heat transfer member has a surface that can contact the bottom surface of the heat radiating plate,
When the temperature of the heating element is higher than a predetermined temperature, the moving member brings the heat transfer member into contact with both the heat radiating plate and the heating element, and the temperature of the heating element is determined in advance. If the temperature is lower than the above, the heat transfer member is separated from at least one of the heat radiating plate and the heating element,
The linear expansion coefficient of the heat transfer member is larger than the linear expansion coefficient of the support member,
Heat dissipation device.
発熱体の熱を放熱させるための放熱装置であって、  A heat dissipation device for dissipating the heat of the heating element,
放熱板と、  A heat sink,
前記放熱板を前記発熱体と離間させて支持する支持部材と、  A support member for supporting the heat sink away from the heating element;
前記放熱板と前記発熱体との間に配置され、前記発熱体の温度があらかじめ定められた温度よりも低い場合には前記放熱板と前記発熱体のうち少なくとも一方と離間し、前記発熱体の温度があらかじめ定められた温度よりも高い場合には前記放熱板と前記発熱体の両方と接触する伝熱部材と、  When the temperature of the heat generating element is lower than a predetermined temperature, the heat dissipating plate is separated from at least one of the heat generating element and the heat generating element. If the temperature is higher than a predetermined temperature, a heat transfer member that contacts both the heat sink and the heating element;
前記伝熱部材と別部材として設けられ、前記伝熱部材を移動させる移動部材と、  A moving member that is provided as a separate member from the heat transfer member and moves the heat transfer member;
を備え、  With
前記移動部材は、バイメタルと二方向性形状記憶合金とアクチュエータと、のうちのいずれかであり、  The moving member is one of a bimetal, a bidirectional shape memory alloy, and an actuator,
前記放熱板は前記発熱体の表面に対して傾斜した底面を有し、  The radiator plate has a bottom surface inclined with respect to the surface of the heating element;
前記伝熱部材は前記放熱板の底面と面で接することが出来る表面を有し、  The heat transfer member has a surface that can contact the bottom surface of the heat radiating plate,
前記移動部材は、前記発熱体の温度があらかじめ定められた温度よりも高い場合には前記放熱板と前記発熱体の両方に前記伝熱部材を接触させ、前記発熱体の温度が前記あらかじめ定められた温度よりも低い場合には、前記伝熱部材を、前記放熱板と前記発熱体のうち少なくとも一方から離間させる、  When the temperature of the heating element is higher than a predetermined temperature, the moving member brings the heat transfer member into contact with both the heat radiating plate and the heating element, and the temperature of the heating element is determined in advance. If the temperature is lower than the above, the heat transfer member is separated from at least one of the heat radiating plate and the heating element,
放熱装置。  Heat dissipation device.
請求項1又は請求項2に記載の放熱装置において、
前記伝熱部材は、前記発熱体と接触している、放熱装置。
In the heat radiating device according to claim 1 or claim 2,
The heat transfer member is a heat dissipation device in contact with the heating element.
請求項1から請求項3のいずれかに記載の放熱装置において、
前記放熱装置は、前記発熱体の鉛直上方に配置されている、放熱装置。
In the heat radiating device according to any one of claims 1 to 3,
The heat radiating device is a heat radiating device disposed vertically above the heating element.
請求項1から請求項4のいずれか記載の放熱装置において、
前記支持部材は、前記放熱板及び前記発熱体と接続されており、
前記支持部材の熱伝導率は、前記伝熱部材の熱伝導率よりも小さい、放熱装置。
In the heat radiating device according to any one of claims 1 to 4,
The support member is connected to the heat sink and the heating element,
The heat dissipation device has a heat conductivity smaller than that of the heat transfer member.
請求項1から請求項のいずれかに記載の放熱装置であって、
前記放熱装置は、ポンプを用いて反応ガスを圧縮し、エンドプレートを有する燃料電池スタックに前記反応ガスを供給する燃料電池システムに用いられるものであり、
前記発熱体は、前記ポンプであり、
前記放熱板は、前記エンドプレートである、
放熱装置。
The heat dissipation device according to any one of claims 1 to 5 ,
The heat dissipation device is used in a fuel cell system that compresses a reaction gas using a pump and supplies the reaction gas to a fuel cell stack having an end plate.
The heating element is the pump;
The heat sink is the end plate.
Heat dissipation device.
JP2009168782A 2009-07-17 2009-07-17 Heat dissipation device Expired - Fee Related JP5402346B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009168782A JP5402346B2 (en) 2009-07-17 2009-07-17 Heat dissipation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009168782A JP5402346B2 (en) 2009-07-17 2009-07-17 Heat dissipation device

Publications (2)

Publication Number Publication Date
JP2011021568A JP2011021568A (en) 2011-02-03
JP5402346B2 true JP5402346B2 (en) 2014-01-29

Family

ID=43631855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009168782A Expired - Fee Related JP5402346B2 (en) 2009-07-17 2009-07-17 Heat dissipation device

Country Status (1)

Country Link
JP (1) JP5402346B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021166950A1 (en) 2020-02-21 2021-08-26 三菱マテリアル株式会社 Heat flow switching element
US11362255B2 (en) 2020-02-06 2022-06-14 Mitsubishi Materials Corporation Heat flow switching element
US12063861B2 (en) 2020-02-06 2024-08-13 Mitsubishi Materials Corporation Heat flow switching element

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6137120B2 (en) 2014-11-06 2017-05-31 トヨタ自動車株式会社 END PLATE FOR FUEL CELL, FUEL CELL, AND FUEL CELL SYSTEM
JP6671716B2 (en) * 2015-05-26 2020-03-25 国立大学法人名古屋大学 Variable thermal conductivity device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6041769A (en) * 1984-07-20 1985-03-05 Hitachi Ltd Fuel cell
JPH01239998A (en) * 1988-03-22 1989-09-25 Fujitsu Ltd Heat-radiating structure of plug-in unit
JP2781892B2 (en) * 1989-07-06 1998-07-30 石川島播磨重工業株式会社 Thermal diode
JPH066957U (en) * 1990-12-18 1994-01-28 石川島播磨重工業株式会社 Cold plate
JPH0983184A (en) * 1995-09-14 1997-03-28 Toko Inc Heat dissipating structure for composite electronic component
JP4710683B2 (en) * 2006-03-24 2011-06-29 株式会社デンソー Heat dissipation device
JP5146316B2 (en) * 2006-09-29 2013-02-20 富士通株式会社 Fuel cell
JP2009115048A (en) * 2007-11-09 2009-05-28 Toyota Motor Corp Pump unit and fuel cell system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11362255B2 (en) 2020-02-06 2022-06-14 Mitsubishi Materials Corporation Heat flow switching element
US12063861B2 (en) 2020-02-06 2024-08-13 Mitsubishi Materials Corporation Heat flow switching element
WO2021166950A1 (en) 2020-02-21 2021-08-26 三菱マテリアル株式会社 Heat flow switching element

Also Published As

Publication number Publication date
JP2011021568A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP5402346B2 (en) Heat dissipation device
EP2139036B1 (en) Semiconductor device
EP2923537B1 (en) Flexible thermal interface for electronics
JP5443947B2 (en) Thermoelectric generator
JP2006049872A5 (en)
CN101512784A (en) Thermoelectric facility comprising a thermoelectric generator and means for limiting the temperature on the generator
JP2012527128A (en) Energy conversion by feedback from exothermic part to endothermic part
JP2010245265A (en) Thermoelectric module
JP2015527729A (en) Thermoelectric module, heat exchanger, exhaust system and internal combustion engine
JP6080950B2 (en) Heat exchanger and internal combustion engine for automobile
JP2013148289A (en) Flat heat pipe
CN102425968A (en) Compact type loop heat pipe device
JP6950933B2 (en) Heat-responsive actuator and heat-responsive actuator unit
CN103703335A (en) Cooling device, electronic apparatus and electric vehicle having the same mounted thereon
JP2009021404A (en) Cooling device for electronic component, and manufacturing method thereof
KR20140147132A (en) Structure for connecting cooling apparatus, cooling apparatus, and method for connecting cooling apparatus
JP2010275976A (en) Thermoelectric unit
JP2006211780A (en) Thermoelectric generator
JP2013004837A (en) Thermoelectric generator
NL2012372C2 (en) Spring-loaded heat exchanger fins.
JP2017212091A (en) Battery pack
JP2013211471A (en) Thermoelectric power generating device
JP2011149639A (en) Heat storage device
JP2004162733A (en) Valve coping with high temperature
JP2012199356A (en) Board device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111019

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131014

R151 Written notification of patent or utility model registration

Ref document number: 5402346

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees