JP2013211471A - Thermoelectric power generating device - Google Patents

Thermoelectric power generating device Download PDF

Info

Publication number
JP2013211471A
JP2013211471A JP2012081915A JP2012081915A JP2013211471A JP 2013211471 A JP2013211471 A JP 2013211471A JP 2012081915 A JP2012081915 A JP 2012081915A JP 2012081915 A JP2012081915 A JP 2012081915A JP 2013211471 A JP2013211471 A JP 2013211471A
Authority
JP
Japan
Prior art keywords
heat receiving
receiving plate
conversion module
thermoelectric conversion
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012081915A
Other languages
Japanese (ja)
Inventor
Takashi Kuroki
高志 黒木
Kazuhisa Kabeya
和久 壁矢
Teruo Fujibayashi
晃夫 藤林
Kimiki Kobayashi
公樹 小林
Masahiro Minowa
昌啓 箕輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
SWCC Corp
Original Assignee
JFE Steel Corp
SWCC Showa Cable Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, SWCC Showa Cable Systems Co Ltd filed Critical JFE Steel Corp
Priority to JP2012081915A priority Critical patent/JP2013211471A/en
Publication of JP2013211471A publication Critical patent/JP2013211471A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric power generating device capable of improving a heat exchanging performance and a heat transfer performance of a heat receiving plate, and improving power generation efficiency.SOLUTION: A thermoelectric power generating device comprises: a heat receiving plate; a thermoelectric conversion module arranged so that one face thereof is directed to the heat receiving plate, and obtaining a power generation output using a temperature difference between one face and the other face; and a water-cooling plate tightly fixed and mounted to the other face of the thermoelectric conversion module. Plural heat receiving fins are parallely formed on a heat receiving face of the heat receiving plate, and surface roughness of a contact face of the heat receiving plate to the thermoelectric conversion module is 0.1 μm or more and 20 μm or less.

Description

本発明は、熱電変換モジュールを用いて高温側と低温側の温度差から発電する熱電発電装置に関する。   The present invention relates to a thermoelectric generator that generates power from a temperature difference between a high temperature side and a low temperature side using a thermoelectric conversion module.

従来、熱電変換素子のゼーベック効果又はペルチェ効果を利用して、熱エネルギーを電気エネルギーに、又は電気エネルギーを熱エネルギーに直接変換する熱電変換モジュールが知られている。
一般的な熱電変換モジュールの構成を図1に示す。図1に示すように、熱電変換モジュール10は、熱電素子であるp型半導体111とn型半導体112を金属電極113によって「π」型に接続した熱電素子対11を、多数集合させて電気的に直列に接続し、2枚の絶縁基板(例えばセラミックス基板)12、13で狭持した構成を有する。
Conventionally, a thermoelectric conversion module that directly converts thermal energy into electrical energy or electrical energy into thermal energy using the Seebeck effect or Peltier effect of a thermoelectric conversion element is known.
The structure of a general thermoelectric conversion module is shown in FIG. As shown in FIG. 1, the thermoelectric conversion module 10 is an electrical device in which a large number of thermoelectric element pairs 11 in which a p-type semiconductor 111 and an n-type semiconductor 112, which are thermoelectric elements, are connected in a “π” shape by metal electrodes 113 are assembled. Connected in series to each other and sandwiched between two insulating substrates (for example, ceramic substrates) 12 and 13.

この平板状の熱電変換モジュール10を、一方の面(例えば絶縁基板12)が高温側、他方の面(例えば絶縁基板13)が低温側となるように配置して両面間に温度差を与えると、起電力が生じる。この電力は、熱電変換モジュール10に接続された電流リード14、15を介して取り出される。逆に、電流リード14、15を介して熱電変換モジュール10に電流を流すと、一方の面(例えば絶縁基板12)で発熱が生じ、他方の面(例えば絶縁基板13)で吸熱が生じる。
特許文献1、2には、このような熱電変換モジュール10を用いた熱電変換装置が提案されている。特に、熱電変換モジュール10を用いて発電する装置は、熱電発電装置と呼ばれる。
When the flat thermoelectric conversion module 10 is arranged such that one surface (for example, the insulating substrate 12) is on the high temperature side and the other surface (for example, the insulating substrate 13) is on the low temperature side, a temperature difference is given between both surfaces. An electromotive force is generated. This electric power is taken out through current leads 14 and 15 connected to the thermoelectric conversion module 10. Conversely, when a current is passed through the thermoelectric conversion module 10 via the current leads 14 and 15, heat is generated on one surface (for example, the insulating substrate 12), and heat is absorbed on the other surface (for example, the insulating substrate 13).
Patent Documents 1 and 2 propose a thermoelectric conversion device using such a thermoelectric conversion module 10. In particular, a device that generates power using the thermoelectric conversion module 10 is called a thermoelectric power generation device.

熱電変換モジュールは、可動部(機械的な駆動部分)を持たず構造が簡単であるため、摩耗劣化などの心配がなく信頼性・耐久性に優れる、メンテナンスが容易である、小型化・軽量化が容易で適用場所の制限が少ない、という利点がある。そして、このような利点を有することから、大量の熱が排出される工業炉(電気炉や燃焼炉等、各種産業分野で溶解、精錬、加熱等の工程で使用される炉)にも比較的容易に設置することができる。
この熱電変換モジュールを用いた熱電発電装置は、二酸化炭素を排出することもなく、廃熱を回収してエネルギー源として再利用することができる技術として、環境保全や省エネルギーの観点から非常に注目されている。
The thermoelectric conversion module has no moving parts (mechanical drive parts) and has a simple structure, so there is no worry about wear deterioration, etc., it is excellent in reliability and durability, easy maintenance, miniaturization and weight reduction. However, there is an advantage that there are few restrictions on the application place. And since it has such advantages, it is relatively also used in industrial furnaces (furnace used in processes such as melting, refining, and heating in various industrial fields such as electric furnaces and combustion furnaces) from which a large amount of heat is discharged. It can be installed easily.
Thermoelectric power generators using this thermoelectric conversion module are attracting a great deal of attention from the viewpoint of environmental conservation and energy saving as a technology that can recover waste heat and reuse it as an energy source without discharging carbon dioxide. ing.

熱電発電装置を工業炉に設置する場合、熱電変換モジュールの高温側となる面(以下、加熱面)を加熱する一方で、低温側となる面(以下、冷却面)を冷却し、両端面間に温度差を生じさせる必要がある。また、工業炉の炉壁は、炉内の高温保持性及び安全性の観点から断熱性が高くなっているため、炉壁の外面に熱電変換モジュールの加熱面を密着させても、炉内の熱エネルギーを効率よく取り出すことはできない。   When a thermoelectric generator is installed in an industrial furnace, the surface on the high temperature side (hereinafter referred to as the “heating surface”) of the thermoelectric conversion module is heated, while the surface on the low temperature side (hereinafter referred to as the “cooling surface”) is cooled. It is necessary to cause a temperature difference in In addition, since the furnace wall of an industrial furnace has high heat insulation from the viewpoint of high temperature retention and safety in the furnace, even if the heating surface of the thermoelectric conversion module is in close contact with the outer surface of the furnace wall, Thermal energy cannot be extracted efficiently.

そこで、図2に示すように、炉壁100に形成された開口100aを受熱板20で閉塞し、この受熱板20に熱電変換モジュール10の加熱面を接触させて熱電変換モジュール10を取り付け、熱電変換モジュール10の冷却面に冷却機構を有する水冷板30を取り付ける手法が採用されている。
かかる手法によれば、炉内の熱が受熱板20で吸熱され、熱電変換モジュール10の加熱面に伝達されるので、加熱面が効率よく加熱される。また、受熱板20により炉内の高温ガスが遮蔽され、熱電変換モジュール10の冷却面側に回り込まないため、加熱面と冷却面に大きな温度差が生じる。したがって、熱電発電装置5は、効率よく発電することができる。
Therefore, as shown in FIG. 2, the opening 100 a formed in the furnace wall 100 is closed with the heat receiving plate 20, the heating surface of the thermoelectric conversion module 10 is brought into contact with the heat receiving plate 20, and the thermoelectric conversion module 10 is attached. A method of attaching a water cooling plate 30 having a cooling mechanism to the cooling surface of the conversion module 10 is employed.
According to this method, the heat in the furnace is absorbed by the heat receiving plate 20 and transmitted to the heating surface of the thermoelectric conversion module 10, so that the heating surface is efficiently heated. Moreover, since the high temperature gas in the furnace is shielded by the heat receiving plate 20 and does not enter the cooling surface side of the thermoelectric conversion module 10, a large temperature difference occurs between the heating surface and the cooling surface. Therefore, the thermoelectric generator 5 can generate power efficiently.

また、熱電発電装置5においては、受熱板20により炉内の熱を効率よく取り込んで熱電変換モジュール10の加熱面に伝達させる一方、冷却面の熱を効率よく取り出して水冷板30から放出させることが重要となる。
一般に、受熱板20の受熱効率、又は水冷板30の冷却効率を向上させるためには、フィン構造が有効であることが知られている(例えば特許文献3、4)。また、受熱板20には、熱伝導率の高い硬質材料(例えばSiC、窒化アルミニウム、又は銅、アルミニウム等の金属)が適用される(例えば特許文献5、6)。
Further, in the thermoelectric generator 5, the heat in the furnace is efficiently taken by the heat receiving plate 20 and transmitted to the heating surface of the thermoelectric conversion module 10, while the heat on the cooling surface is efficiently taken out and released from the water cooling plate 30. Is important.
In general, it is known that a fin structure is effective in improving the heat receiving efficiency of the heat receiving plate 20 or the cooling efficiency of the water cooling plate 30 (for example, Patent Documents 3 and 4). In addition, a hard material (for example, SiC, aluminum nitride, or a metal such as copper or aluminum) is applied to the heat receiving plate 20 (for example, Patent Documents 5 and 6).

特開2009−200249号公報JP 2009-200409 A 特開2007−73889号公報JP 2007-73889 A 特開2007−180505号公報JP 2007-180505 A 特開2010−147236号公報JP 2010-147236 A 特開2010−238822号公報JP 2010-238822 A 特許第4751322号公報Japanese Patent No. 4751322

上述したように、受熱板には炉内の熱を取り込む熱交換性能と、取り込んだ熱を熱電変換モジュールに伝達する伝熱性能が要求される。また、発電能力の高い熱電発電装置を実現するためには、大サイズの熱電変換モジュールが必要となり、これに応じて受熱板も大サイズであることが要求される。
しかしながら、窒化アルミニウムは製法上の制約から大きな受熱板を製造することが困難であるため、受熱板の材料に窒化アルミニウムを適用した場合、発電能力の高い大サイズの熱電発電装置を実現することができない。
また、銅、アルミニウム等の金属は線膨張率が大きいため、受熱板の材料に金属を適用した場合、高温環境において受熱板が熱変形して熱電変換モジュールとの接触面積が著しく低下する。その結果、受熱板と熱電変換モジュールとの間の界面熱抵抗が増大し、熱電発電装置の発電効率が低下する。
As described above, the heat receiving plate is required to have heat exchange performance for capturing heat in the furnace and heat transfer performance for transmitting the captured heat to the thermoelectric conversion module. In order to realize a thermoelectric power generation device with high power generation capability, a large-sized thermoelectric conversion module is required, and accordingly, the heat receiving plate is also required to be large.
However, since it is difficult to manufacture a large heat receiving plate due to restrictions on the manufacturing method of aluminum nitride, when aluminum nitride is applied as the material of the heat receiving plate, it is possible to realize a large-sized thermoelectric generator with high power generation capacity. Can not.
Moreover, since metals, such as copper and aluminum, have a large linear expansion coefficient, when a metal is applied to the material of the heat receiving plate, the heat receiving plate is thermally deformed in a high temperature environment, and the contact area with the thermoelectric conversion module is significantly reduced. As a result, the interfacial thermal resistance between the heat receiving plate and the thermoelectric conversion module increases, and the power generation efficiency of the thermoelectric power generator decreases.

このような理由で、従来は、受熱板の材料としてSiCが適用されている。SiCの中でも、加工性に優れ、取り扱いが容易であることから、酸化物結合SiCが主流となっている。酸化物結合SiCとは、SiCを酸化ケイ素(Si2O3)によって結合させたものである。
しかしながら、酸化物結合SiCの見掛気孔率は6.5%程度であるため、受熱板の材料に酸化物結合SiCを適用した場合、熱電変換モジュールとの接触面に凹凸が生じやすい。具体的には、受熱板の熱電変換モジュールとの接触面の表面粗さは、数十μm程度になる。そして、この接触面に形成される凹凸により受熱板と熱電変換モジュール間の界面熱抵抗が増大する、すなわち受熱板の伝熱性能が低下するため、熱電発電装置の発電効率が低下してしまう。
なお、見掛気孔率とは、全体の容積(外形容積)に対する開口気孔容積(水が入りうる気孔の容積)の割合であり、一般に、JIS R 2205準拠の測定方法により測定される。
For this reason, SiC is conventionally applied as a material for the heat receiving plate. Among SiC, oxide-bonded SiC has become the mainstream because of its excellent workability and easy handling. The oxide-bonded SiC is obtained by bonding SiC with silicon oxide (Si2O3).
However, since the apparent porosity of the oxide-bonded SiC is about 6.5%, when the oxide-bonded SiC is applied to the material of the heat receiving plate, the contact surface with the thermoelectric conversion module is likely to be uneven. Specifically, the surface roughness of the contact surface of the heat receiving plate with the thermoelectric conversion module is about several tens of μm. And the interfacial thermal resistance between a heat receiving plate and a thermoelectric conversion module increases by the unevenness | corrugation formed in this contact surface, ie, the heat transfer performance of a heat receiving plate falls, Therefore The power generation efficiency of a thermoelectric power generation device will fall.
The apparent porosity is the ratio of the open pore volume (volume of pores into which water can enter) to the total volume (outer volume), and is generally measured by a measurement method based on JIS R 2205.

本発明の目的は、受熱板の伝熱性能及び熱交換性能を向上することができ、発電効率の向上を図ることができる熱電発電装置を提供することである。   An object of the present invention is to provide a thermoelectric power generator that can improve heat transfer performance and heat exchange performance of a heat receiving plate, and can improve power generation efficiency.

本発明に係る熱電発電装置は、受熱板と、
一方の面を前記受熱板に向けて配置され、前記一方の面と他方の面との温度差を利用して発電出力を得る熱電変換モジュールと、
前記熱電変換モジュールの他方の面に、密着、固定して取り付けられる水冷板と、を備え、
前記受熱板の受熱面には、複数の受熱フィンが平行に形成され、
前記受熱板の前記熱電変換モジュールとの接触面は、表面粗さが0.1μm以上20μm以下であることを特徴とする。
A thermoelectric generator according to the present invention includes a heat receiving plate,
A thermoelectric conversion module that is arranged with one surface facing the heat receiving plate, and obtains a power generation output using a temperature difference between the one surface and the other surface;
A water-cooled plate attached to the other surface of the thermoelectric conversion module in close contact and fixed;
A plurality of heat receiving fins are formed in parallel on the heat receiving surface of the heat receiving plate,
The contact surface of the heat receiving plate with the thermoelectric conversion module has a surface roughness of 0.1 μm or more and 20 μm or less.

本発明によれば、受熱板の熱交換性能及び伝熱性能を両立させることができるので、高い発電効率を有する熱電発電装置を実現することができる。   According to the present invention, since the heat exchange performance and heat transfer performance of the heat receiving plate can be made compatible, a thermoelectric power generator having high power generation efficiency can be realized.

熱電変換モジュールの構成を示す図である。It is a figure which shows the structure of a thermoelectric conversion module. 従来の熱電発電装置の断面図である。It is sectional drawing of the conventional thermoelectric generator. 実施の形態の熱電発電装置の要部を示す斜視図である。It is a perspective view which shows the principal part of the thermoelectric generator of embodiment. 実施の形態の熱電発電装置の断面図である。It is sectional drawing of the thermoelectric generator of embodiment.

以下、本発明の実施の形態を図面に基づいて詳細に説明する。本実施の形態では、DIPフォーミング方式(真空中で銅母線の周囲に溶銅を付着凝固させ、銅線を製造する製法)の銅線製造設備を構成する予熱炉(銅を予め加熱する炉、炉内温度:約850℃)、溶解炉(銅を溶融する炉、炉内温度:1000℃以上)、保持炉(溶融した銅を貯留する炉、炉内温度:1000℃以上)のうち、予熱炉に熱電発電装置を設置する場合について説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the present embodiment, a preheating furnace (furnace that preheats copper) that constitutes a copper wire manufacturing facility of a DIP forming method (a manufacturing method in which molten copper is adhered and solidified around a copper bus bar in a vacuum to manufacture a copper wire), Preheating among furnace temperature (approximately 850 ° C.), melting furnace (furnace of copper, furnace temperature: 1000 ° C. or higher), holding furnace (furnace for storing molten copper, furnace temperature: 1000 ° C. or higher) A case where a thermoelectric generator is installed in the furnace will be described.

図3は、実施の形態の熱電発電装置の要部を示す斜視図である。図4は、実施の形態の熱電発電装置の断面図である。なお、図4では熱電発電装置1を炉壁100に取り付けた状態を示している。
図3、4に示すように、熱電発電装置1は、熱電変換モジュール10、受熱板20、及び水冷板30等が、ケース60内に収容された構成を有する。
FIG. 3 is a perspective view illustrating a main part of the thermoelectric power generator according to the embodiment. FIG. 4 is a cross-sectional view of the thermoelectric generator of the embodiment. FIG. 4 shows a state where the thermoelectric generator 1 is attached to the furnace wall 100.
As shown in FIGS. 3 and 4, the thermoelectric generator 1 has a configuration in which a thermoelectric conversion module 10, a heat receiving plate 20, a water cooling plate 30, and the like are accommodated in a case 60.

熱電発電装置1において、ケース60は、熱電変換モジュール10等を収容する箱状の収容部61と、収容部61の低温側開口61aから外側に張り出すフランジ部62を有する。収容部61は、炉壁100に形成された開口100aとほぼ同一形状の外形を有する。収容部61の底面は額縁状に形成され、高温側開口61bから受熱板20が炉内に臨むようになっている。   In the thermoelectric generator 1, the case 60 includes a box-shaped housing portion 61 that houses the thermoelectric conversion module 10 and the like, and a flange portion 62 that projects outward from the low-temperature side opening 61 a of the housing portion 61. The accommodating part 61 has an outer shape substantially the same shape as the opening 100 a formed in the furnace wall 100. The bottom surface of the accommodating part 61 is formed in a frame shape, and the heat receiving plate 20 faces the furnace from the high temperature side opening 61b.

熱電変換モジュール10は、加熱面10aと冷却面10bとの温度差を利用して発電出力を得ることができる平板状のモジュールである。熱電変換モジュール10は、図1に示すように、熱電素子であるp型半導体111とn型半導体112を金属電極113によって「π」型に接続した熱電素子対11を、多数集合させて電気的に直列に接続し、高温側絶縁基板12、低温側絶縁基板13で狭持した構成を有する。高温側絶縁基板12が受熱板20に対向して配置され、低温側絶縁基板13が水冷板30に対向して配置される。   The thermoelectric conversion module 10 is a flat module that can obtain a power generation output using a temperature difference between the heating surface 10a and the cooling surface 10b. As shown in FIG. 1, the thermoelectric conversion module 10 is an electrical device in which a large number of thermoelectric element pairs 11 in which a p-type semiconductor 111 and an n-type semiconductor 112, which are thermoelectric elements, are connected in a “π” shape by metal electrodes 113 are assembled. Are connected in series and sandwiched between the high temperature side insulating substrate 12 and the low temperature side insulating substrate 13. The high temperature side insulating substrate 12 is disposed to face the heat receiving plate 20, and the low temperature side insulating substrate 13 is disposed to face the water cooling plate 30.

p型半導体111、n型半導体112には、例えば酸化物系の化合物半導体が好適である。酸化物系半導体は適用温度が高く、1000℃近い高温環境下でも動作させることができるためである。一例として、p型半導体としてはCa3Co49を適用でき、n型半導体としてはLaNiO3を適用できる。
なお、高温側絶縁基板12又は低温側絶縁基板13を設けないハーフスケルトン型の熱電変換モジュールを適用することもできる。
For the p-type semiconductor 111 and the n-type semiconductor 112, for example, an oxide-based compound semiconductor is preferable. This is because an oxide-based semiconductor has a high application temperature and can be operated in a high-temperature environment near 1000 ° C. As an example, Ca 3 Co 4 O 9 can be applied as a p-type semiconductor, and LaNiO 3 can be applied as an n-type semiconductor.
Note that a half-skeleton thermoelectric conversion module in which the high temperature side insulating substrate 12 or the low temperature side insulating substrate 13 is not provided can also be applied.

低温側絶縁基板13は、従来のように耐熱性・絶縁性が高く、取り扱い性に優れたカプトンテープ(商品名)で構成してもよいが、Al23板又はAlN板で構成するのが望ましい。Al23及びAlNは、カプトンテープよりも熱伝導率が高く、熱電変換モジュール10の発電効率を向上できるためである。 The low temperature side insulating substrate 13 may be composed of Kapton tape (trade name) having high heat resistance and insulation as in the prior art and excellent in handling properties, but it is composed of an Al 2 O 3 plate or an AlN plate. Is desirable. This is because Al 2 O 3 and AlN have higher thermal conductivity than Kapton tape and can improve the power generation efficiency of the thermoelectric conversion module 10.

受熱板20は、熱電変換モジュール10の高温側絶縁基板12に接触して配置され、炉内のを吸収して、熱電変換モジュール10の加熱面10aを加熱する。受熱板20は、熱電変換モジュール10の加熱面10aよりも一回り大きく、ケース60の収容部61とほぼ同一形状を有する。また、稼働時の受熱板10の全体のそり量は50μm以下であることが望ましい。   The heat receiving plate 20 is disposed in contact with the high temperature side insulating substrate 12 of the thermoelectric conversion module 10, absorbs the inside of the furnace, and heats the heating surface 10a of the thermoelectric conversion module 10. The heat receiving plate 20 is slightly larger than the heating surface 10 a of the thermoelectric conversion module 10 and has substantially the same shape as the housing portion 61 of the case 60. Further, it is desirable that the total warpage amount of the heat receiving plate 10 during operation is 50 μm or less.

また、受熱板20の熱電変換モジュール10の加熱面10aとの接触面(以下、モジュール接触面)には、JIS B 0601に規定されている算術平均粗さRa(以下、表面粗さ)が0.1μm以上20μm以下となるように平面加工処理が施される。受熱板20の表面粗さRaが20μmを超えると、受熱板20と熱電変換モジュール10との接触界面に細かい空気層が生じてしまう結果、界面熱抵抗が高くなる。また、受熱板の表面粗さRaが0.1μmを下回ると、受熱板20と熱電変換モジュール10との固着現象が生じやすく、稼働時に熱歪みが生じやすくなる。
そこで、受熱板20のモジュール接触面の表面粗さRaは、0.1μm以上20μm以下とする。これにより、受熱板20と熱電変換モジュール10との間の界面熱抵抗が小さくなるので、受熱板20の伝熱性能が向上する。
The arithmetic average roughness Ra (hereinafter referred to as surface roughness) defined in JIS B 0601 is 0 on the contact surface (hereinafter referred to as module contact surface) of the heat receiving plate 20 with the heating surface 10a of the thermoelectric conversion module 10. Planar processing is performed so that the thickness is 1 μm or more and 20 μm or less. When the surface roughness Ra of the heat receiving plate 20 exceeds 20 μm, a fine air layer is formed at the contact interface between the heat receiving plate 20 and the thermoelectric conversion module 10, resulting in an increase in the interface thermal resistance. Further, when the surface roughness Ra of the heat receiving plate is less than 0.1 μm, the fixing phenomenon between the heat receiving plate 20 and the thermoelectric conversion module 10 is likely to occur, and thermal distortion is likely to occur during operation.
Therefore, the surface roughness Ra of the module contact surface of the heat receiving plate 20 is 0.1 μm or more and 20 μm or less. Thereby, since the interfacial thermal resistance between the heat receiving plate 20 and the thermoelectric conversion module 10 is reduced, the heat transfer performance of the heat receiving plate 20 is improved.

ここで、受熱板20は、見掛気孔率が0.1%以下のSiCによって形成されるのが望ましい。このような性状を有するSiCは、例えば、SiC粉末とC粉末で多孔質の焼結体を作製した後、これを溶融Siに含浸させて加熱し、CとSiを反応させることにより得られる(いわゆる反応焼結SiC)。   Here, it is desirable that the heat receiving plate 20 be formed of SiC having an apparent porosity of 0.1% or less. SiC having such properties can be obtained, for example, by preparing a porous sintered body with SiC powder and C powder, then impregnating it with molten Si, heating it, and reacting C and Si ( So-called reaction sintered SiC).

反応焼結SiCは、Siによって気孔が埋められているので、見掛気孔率が極めて小さい緻密体となる。具体的には、酸化物結合SiCの見掛気孔率が6.5%、であるのに対して、反応焼結SiCの見掛気孔率は0.1%以下である。そのため、反応焼結SiCで構成された受熱板20の表面(特にモジュール接触面)は、表面粗さが20μm以下という極めて平坦な状態に仕上げることができる。したがって、受熱板20と熱電変換モジュール10との密着性が高まり、界面熱抵抗が低減される。   Reaction-sintered SiC is a dense body with a very small apparent porosity because the pores are filled with Si. Specifically, the apparent porosity of the oxide-bonded SiC is 6.5%, whereas the apparent porosity of the reaction sintered SiC is 0.1% or less. Therefore, the surface (especially the module contact surface) of the heat receiving plate 20 made of reaction sintered SiC can be finished in a very flat state with a surface roughness of 20 μm or less. Therefore, the adhesiveness between the heat receiving plate 20 and the thermoelectric conversion module 10 is increased, and the interfacial thermal resistance is reduced.

また、反応焼結SiCは、1000℃での熱伝導率が35〜45W/(m・K)であり、酸化物結合SiCの熱伝導率の2倍以上であるので、1000℃以上の高温でも高い伝熱性能を維持でき、吸収した熱は効率よく熱電変換モジュール10に伝達される。   In addition, reaction sintered SiC has a thermal conductivity at 1000 ° C. of 35 to 45 W / (m · K) and is more than twice the thermal conductivity of oxide-bonded SiC. High heat transfer performance can be maintained, and the absorbed heat is efficiently transmitted to the thermoelectric conversion module 10.

ここで、受熱板20の伝熱性能は、熱伝導率を高くすることはもちろん、厚さを薄くすることによっても向上する。つまり、受熱板20の縦横のサイズが一定であれば、その伝熱性能は「熱伝導率/厚さ」で表されると考えてよい。したがって、熱伝導率が反応焼結SiCより低い窒化物結合SiCや酸化物結合SiCであっても、反応焼結SiCと同等の伝熱性能を確保できる可能性はある。   Here, the heat transfer performance of the heat receiving plate 20 is improved not only by increasing the thermal conductivity but also by reducing the thickness. That is, if the vertical and horizontal sizes of the heat receiving plate 20 are constant, it may be considered that the heat transfer performance is represented by “thermal conductivity / thickness”. Therefore, there is a possibility that heat transfer performance equivalent to that of reaction-sintered SiC can be secured even with nitride-bonded SiC or oxide-bonded SiC whose thermal conductivity is lower than that of reaction-sintered SiC.

しかし、表1に示すように、窒化物結合SiC、酸化物結合SiCは、反応焼結SiCに比較して、熱伝導率が低いだけでなく、曲げ強度σも低い。また、受熱板20の縦横サイズを一定、厚さをtとしたとき、曲げ破断荷重はt2×σに比例する。したがって、受熱板20を窒化物結合SiC又は酸化物結合SiCで構成した場合、厚さtを薄くすることで受熱板20を反応焼結SiCで構成したときと同等の伝熱性能を確保することはできるが、受熱板20を反応焼結SiCで構成したときに比較して曲げ破断荷重は著しく小さくなる。つまり、受熱板20を窒化物結合SiC又は酸化物結合SiCで構成すると、強度(曲げ破断荷重)が低下し、実用上問題が生じる可能性が高くなる。
かかる観点からも、受熱板20は反応焼結SiCで構成されるのが望ましい。
However, as shown in Table 1, nitride-bonded SiC and oxide-bonded SiC have not only low thermal conductivity but also low bending strength σ compared to reaction-sintered SiC. Further, when the vertical and horizontal sizes of the heat receiving plate 20 are constant and the thickness is t, the bending fracture load is proportional to t 2 × σ. Therefore, when the heat receiving plate 20 is made of nitride-bonded SiC or oxide-bonded SiC, the heat transfer performance equivalent to that when the heat receiving plate 20 is made of reaction sintered SiC is secured by reducing the thickness t. However, the bending rupture load is significantly smaller than when the heat receiving plate 20 is made of reaction sintered SiC. That is, if the heat receiving plate 20 is made of nitride-bonded SiC or oxide-bonded SiC, the strength (bending fracture load) is reduced, and there is a high possibility that a problem will occur in practice.
From this point of view, it is desirable that the heat receiving plate 20 be made of reaction sintered SiC.

Figure 2013211471
Figure 2013211471

また、反応焼結SiCは、1000℃での線膨張率が4.0〜5.0×10-6/Kである。したがって、受熱板20を反応焼結SiCで構成することにより、高温環境における受熱板20の熱変形を抑制することができる。 Reaction sintered SiC has a linear expansion coefficient at 1000 ° C. of 4.0 to 5.0 × 10 −6 / K. Therefore, by constituting the heat receiving plate 20 with reaction sintered SiC, it is possible to suppress thermal deformation of the heat receiving plate 20 in a high temperature environment.

また、受熱板20の受熱面(炉内に臨む面)には、複数の受熱フィン21が平行に立設される。個々の受熱フィン21は、受熱板20の一方の辺と略同一幅の一枚板で構成される。受熱フィン21を設けることにより受熱面積が増大するので、炉内の熱を効率よく吸収することができる。
受熱フィン21の厚さは特に制限されないが、所定の強度を有する範囲で薄い方が望ましい。受熱フィン21の厚さが薄いほど、受熱フィン21の枚数を増やすことができ、受熱面積が大きくなるためである。
A plurality of heat receiving fins 21 are erected in parallel on the heat receiving surface (the surface facing the furnace) of the heat receiving plate 20. Each heat receiving fin 21 is formed of a single plate having substantially the same width as one side of the heat receiving plate 20. Since the heat receiving area is increased by providing the heat receiving fins 21, the heat in the furnace can be absorbed efficiently.
The thickness of the heat receiving fin 21 is not particularly limited, but it is desirable that the heat receiving fin 21 be thin as long as it has a predetermined strength. This is because as the thickness of the heat receiving fins 21 is thinner, the number of the heat receiving fins 21 can be increased and the heat receiving area is increased.

ところで、受熱フィン21の配置間隔が広くなる、又は受熱フィン21の高さが低くなると、受熱フィン21と空気との接触面積が少なくなるため、空気から受熱フィン21への熱移動が制限される。一方、受熱フィン21の配置間隔が狭くなる、又は受熱フィン21の高さが高くなると、隣接する受熱フィン21、21間で空気の粘性抵抗が大きくなるため、空気の流れが滞りやすくなり、やはり空気から受熱フィン21への熱移動が制限される。
また、受熱フィン21の熱交換性能は、熱電発電装置1が設置される炉内の温度や、加熱されたときの受熱フィン21の温度(受熱フィン21の材質)によっても変化する。そのため、受熱フィン21の配置間隔及び高さは、実使用上想定される炉内の温度等を考慮して、熱交換性能が最大となるように設計されるべきである。
By the way, when the arrangement interval of the heat receiving fins 21 is widened or the height of the heat receiving fins 21 is reduced, the contact area between the heat receiving fins 21 and the air is reduced, so that the heat transfer from the air to the heat receiving fins 21 is limited. . On the other hand, when the arrangement interval of the heat receiving fins 21 is narrowed or the height of the heat receiving fins 21 is increased, the air flow resistance is easily increased between the adjacent heat receiving fins 21, 21. The heat transfer from the air to the heat receiving fins 21 is restricted.
Further, the heat exchange performance of the heat receiving fins 21 also varies depending on the temperature in the furnace in which the thermoelectric generator 1 is installed and the temperature of the heat receiving fins 21 when heated (the material of the heat receiving fins 21). Therefore, the arrangement interval and height of the heat receiving fins 21 should be designed so that the heat exchange performance is maximized in consideration of the temperature in the furnace assumed in practical use.

熱電発電装置1において、受熱板20と熱電変換モジュール10の間には、グラファイトシートや六方晶系窒化ホウ素等の柔軟層を介装させてもよい。これにより、受熱板20が熱変形しても、柔軟層が追従して弾塑性変形するので、受熱板20と熱電変換モジュール10の間に隙間が形成されることはなく、界面熱抵抗が増大するのを防止できる。この場合、受熱板20のモジュール接触面の表面粗さは100μm以下であればよい。   In the thermoelectric generator 1, a flexible layer such as a graphite sheet or hexagonal boron nitride may be interposed between the heat receiving plate 20 and the thermoelectric conversion module 10. As a result, even if the heat receiving plate 20 is thermally deformed, the flexible layer follows and elastic-plastically deforms, so that no gap is formed between the heat receiving plate 20 and the thermoelectric conversion module 10 and the interfacial thermal resistance increases. Can be prevented. In this case, the surface roughness of the module contact surface of the heat receiving plate 20 may be 100 μm or less.

水冷板30は、熱電変換モジュール10の低温側絶縁基板13に接触して配置され、熱電変換モジュール10の冷却面10bを冷却する。水冷板30は、例えば、金属製の板材に水を流通させるパイプを埋設した構成を有する。冷却機構としての水冷板30を設け、これに所定の流量で水を流すことにより、熱電モジュール10の冷却面10bを所定の温度に冷却することができる。
熱電変換モジュール10の低温側絶縁基板13と水冷板30は、例えば熱伝導性のグリースを介して圧着される。これにより、低温側絶縁基板13と水冷板30の線膨張率差による変形に対応することができる。
The water cooling plate 30 is disposed in contact with the low temperature side insulating substrate 13 of the thermoelectric conversion module 10 and cools the cooling surface 10 b of the thermoelectric conversion module 10. The water cooling plate 30 has, for example, a structure in which a pipe for circulating water is embedded in a metal plate material. The cooling surface 10b of the thermoelectric module 10 can be cooled to a predetermined temperature by providing a water cooling plate 30 as a cooling mechanism and flowing water at a predetermined flow rate.
The low temperature side insulating substrate 13 and the water cooling plate 30 of the thermoelectric conversion module 10 are pressure bonded via, for example, heat conductive grease. Thereby, it can respond to the deformation | transformation by the linear expansion coefficient difference of the low temperature side insulating substrate 13 and the water cooling board 30. FIG.

また、水冷板30と熱電変換モジュール10との間に、グラファイトシートや六方晶系窒化ホウ素等からなる柔軟層(図示略)を介装させてもよい。これにより、水冷板30の変形や表面粗さに起因して隙間が生じても、柔軟層が追従して弾塑性変形するので、水冷板30と熱電変換モジュール10間に隙間が生じることはなく、界面熱抵抗が増大するのを防止できる。熱電変換モジュール10の冷却面10bは効率的に加熱され、冷却面10bとの間で大きな温度差が得られるので、熱電変換モジュール10の発電効率は格段に向上する。   Further, a flexible layer (not shown) made of a graphite sheet, hexagonal boron nitride, or the like may be interposed between the water cooling plate 30 and the thermoelectric conversion module 10. Thereby, even if a gap occurs due to deformation or surface roughness of the water-cooled plate 30, the flexible layer follows and elastic-plastically deforms, so that no gap is generated between the water-cooled plate 30 and the thermoelectric conversion module 10. It is possible to prevent an increase in interfacial thermal resistance. Since the cooling surface 10b of the thermoelectric conversion module 10 is efficiently heated and a large temperature difference is obtained from the cooling surface 10b, the power generation efficiency of the thermoelectric conversion module 10 is significantly improved.

熱電発電装置1を組み立てる場合、ケース60の収容部61に、受熱板20、熱電変換モジュール10、水冷板30を順に配置する。そして、水冷板30の背面(熱電変換モジュール10と接触する面と反対の面)に、補強梁70を介して押圧ボルト80を締め込むことにより、受熱板20、熱電変換モジュール10、及び水冷板30を固定する。また、補強梁70の両端はケース60にねじ止めされる。   When assembling the thermoelectric generator 1, the heat receiving plate 20, the thermoelectric conversion module 10, and the water cooling plate 30 are sequentially arranged in the housing portion 61 of the case 60. And the heat receiving plate 20, the thermoelectric conversion module 10, and the water cooling plate are fastened to the back surface of the water cooling plate 30 (the surface opposite to the surface in contact with the thermoelectric conversion module 10) via the reinforcing beam 70. 30 is fixed. Further, both ends of the reinforcing beam 70 are screwed to the case 60.

組み立てられた熱電発電装置1は、予熱炉の炉壁100に形成された開口100aに設置される。予熱炉には、炉内を点検するためのメンテナンスハッチが設けられているので、これを開口100aとして利用することができる。
具体的には、炉壁100の開口100aにケース60の収容部61を嵌合させるとともに、フランジ部62を炉壁100にねじ止めすることにより、熱電発電装置1が炉壁100に取り付けられる。熱電変換モジュール10の加熱面10aが高温側である炉内に向き、冷却面10bが低温側である炉外に向いた状態となる。
The assembled thermoelectric generator 1 is installed in the opening 100a formed in the furnace wall 100 of the preheating furnace. Since the preheating furnace is provided with a maintenance hatch for inspecting the inside of the furnace, this can be used as the opening 100a.
Specifically, the thermoelectric generator 1 is attached to the furnace wall 100 by fitting the accommodating part 61 of the case 60 into the opening 100 a of the furnace wall 100 and screwing the flange part 62 to the furnace wall 100. The heating surface 10a of the thermoelectric conversion module 10 faces the inside of the furnace on the high temperature side, and the cooling surface 10b faces the outside of the furnace on the low temperature side.

ケース60に形成された高温側開口61bは受熱板20によって完全に閉塞されている(すなわち炉壁100に形成された開口100aが受熱板20によって閉塞されている)ので、炉内の高温ガスが熱電変換モジュール10の冷却面10b側に回り込むことはない。   Since the high temperature side opening 61b formed in the case 60 is completely closed by the heat receiving plate 20 (that is, the opening 100a formed in the furnace wall 100 is closed by the heat receiving plate 20), the high temperature gas in the furnace is It does not go around to the cooling surface 10b side of the thermoelectric conversion module 10.

予熱炉において銅材が加熱されると、このときに発生する熱が、受熱板20によって吸収され、熱電変換モジュール10に伝達される。これにより、熱電変換モジュール10の加熱面10aが高温(例えば700℃)に加熱される。一方、熱電変換モジュール10の冷却面10bは水冷板30によって低温(例えば80℃)に保持される。
熱電変換モジュール10の両面間には数百℃の温度差が生じ、この温度差に応じて起電力が生じる。この電力は、熱電変換モジュール10に接続された電流リード14、15を介して取り出される(図1参照)。
When the copper material is heated in the preheating furnace, the heat generated at this time is absorbed by the heat receiving plate 20 and transmitted to the thermoelectric conversion module 10. Thereby, the heating surface 10a of the thermoelectric conversion module 10 is heated to high temperature (for example, 700 degreeC). On the other hand, the cooling surface 10 b of the thermoelectric conversion module 10 is held at a low temperature (for example, 80 ° C.) by the water cooling plate 30.
A temperature difference of several hundred degrees Celsius occurs between both surfaces of the thermoelectric conversion module 10, and an electromotive force is generated according to this temperature difference. This electric power is taken out through the current leads 14 and 15 connected to the thermoelectric conversion module 10 (see FIG. 1).

このように、実施の形態に係る熱電発電装置1は、炉壁100に形成された開口100aを閉塞する受熱板20と、加熱面10aを受熱板20に向けて配置され、加熱面10aと冷却面10bとの温度差を利用して発電出力を得る熱電変換モジュール10と、熱電変換モジュール10の冷却面10bに、密着、固定して取り付けられる水冷板30と、を備える。
そして、受熱板20の受熱面には複数の受熱フィン21が平行に形成され、受熱板20の熱電変換モジュール10との接触面は表面粗さが20μm以下となっている。
As described above, the thermoelectric generator 1 according to the embodiment is arranged with the heat receiving plate 20 closing the opening 100a formed in the furnace wall 100 and the heating surface 10a facing the heat receiving plate 20, and cooling with the heating surface 10a. The thermoelectric conversion module 10 which obtains an electric power generation output using the temperature difference with the surface 10b, and the water-cooling board 30 attached to the cooling surface 10b of the thermoelectric conversion module 10 closely and fixedly are provided.
A plurality of heat receiving fins 21 are formed in parallel on the heat receiving surface of the heat receiving plate 20, and the contact surface of the heat receiving plate 20 with the thermoelectric conversion module 10 has a surface roughness of 20 μm or less.

熱電発電装置1においては、受熱板20のモジュール接触面の表面粗さが20μm以下であるので、受熱板20と熱電変換モジュール10との間の界面熱抵抗が小さく、受熱板20の伝熱性能が向上する。
さらには、受熱板20の受熱面には複数の受熱フィン21が平行に形成されているので、受熱板20は炉内の熱を効率よく吸収することができる。
すなわち、熱電発電装置1においては、受熱板20が伝熱性能と熱交換性能を兼ね備えているので、高い発電効率が実現される。
In the thermoelectric generator 1, since the surface roughness of the module contact surface of the heat receiving plate 20 is 20 μm or less, the interfacial thermal resistance between the heat receiving plate 20 and the thermoelectric conversion module 10 is small, and the heat transfer performance of the heat receiving plate 20 Will improve.
Furthermore, since the plurality of heat receiving fins 21 are formed in parallel on the heat receiving surface of the heat receiving plate 20, the heat receiving plate 20 can efficiently absorb the heat in the furnace.
That is, in the thermoelectric generator 1, since the heat receiving plate 20 has both heat transfer performance and heat exchange performance, high power generation efficiency is realized.

[実施例1]
実施例1では、ケース60の高温側開口61bを120×120mmサイズとした熱電発電装置1において、1000℃での熱伝導率が40W/(m・K)、1000℃での線膨張率が4.5×10-6/K、見掛気孔率が0.05%である反応焼結SiCで、受熱板20を形成した。また、適当な表面研磨加工を施すことにより、受熱板20のモジュール接触面の表面粗さRaを6μmとした。また、受熱フィン21の高さを100mm、配置間隔を5.0mm、厚さを2.0mmとし、受熱面に8枚の受熱フィン21を形成した。
[Example 1]
In Example 1, in the thermoelectric generator 1 in which the high-temperature side opening 61b of the case 60 is 120 × 120 mm in size, the thermal conductivity at 1000 ° C. is 40 W / (m · K), and the linear expansion coefficient at 1000 ° C. is 4 The heat receiving plate 20 was formed of reaction sintered SiC having a size of 5 × 10 −6 / K and an apparent porosity of 0.05%. Moreover, the surface roughness Ra of the module contact surface of the heat receiving plate 20 was set to 6 μm by performing an appropriate surface polishing process. Further, the height of the heat receiving fins 21 was 100 mm, the arrangement interval was 5.0 mm, the thickness was 2.0 mm, and eight heat receiving fins 21 were formed on the heat receiving surface.

[比較例1]
比較例1では、ケース60の高温側開口61bを120×120mmサイズとした熱電発電装置1において、1000℃での熱伝導率が20W/(m・K)、1000℃での線膨張率が4.5×10-6/K、見掛気孔率が1%より小さい(例えば0.7%)窒化物結合SiCで、受熱板20を形成した。このとき、受熱板20のモジュール接触面に、実施例1と同様の表面研磨加工を施したところ、表面粗さRaは21μmとなった。受熱フィン21の形状、サイズ、配置態様は実施例1と同じとした。
[Comparative Example 1]
In Comparative Example 1, in the thermoelectric generator 1 in which the high temperature side opening 61b of the case 60 is 120 × 120 mm in size, the thermal conductivity at 1000 ° C. is 20 W / (m · K), and the linear expansion coefficient at 1000 ° C. is 4 The heat receiving plate 20 was formed of nitride-bonded SiC having a size of 0.5 × 10 −6 / K and an apparent porosity smaller than 1% (for example, 0.7%). At this time, when the same surface polishing process as in Example 1 was performed on the module contact surface of the heat receiving plate 20, the surface roughness Ra was 21 μm. The shape, size, and arrangement of the heat receiving fins 21 were the same as those in Example 1.

[比較例2]
比較例2では、ケース60の高温側開口61bを120×120mmサイズとした熱電発電装置1において、1000℃での熱伝導率が16W/(m・K)、1000℃での線膨張率が4.8×10-6/K、見掛気孔率が6.5%である酸化物結合SiCで、受熱板20を形成した。このとき、受熱板20のモジュール接触面に、実施例1と同様の表面研磨加工を施したところ、表面粗さRaは42μmとなった。受熱フィン21の形状、サイズ、配置態様は実施例1と同じとした。
[Comparative Example 2]
In Comparative Example 2, in the thermoelectric generator 1 in which the high temperature side opening 61b of the case 60 is 120 × 120 mm in size, the thermal conductivity at 1000 ° C. is 16 W / (m · K), and the linear expansion coefficient at 1000 ° C. is 4 The heat receiving plate 20 was formed of oxide-bonded SiC having a size of 0.8 × 10 −6 / K and an apparent porosity of 6.5%. At this time, when the same surface polishing process as in Example 1 was performed on the module contact surface of the heat receiving plate 20, the surface roughness Ra was 42 μm. The shape, size, and arrangement of the heat receiving fins 21 were the same as those in Example 1.

[比較例3]
比較例3では、ケース60の高温側開口61bを120×120mmサイズとした熱電発電装置1において、実施例1と同様の反応焼結SiCを用いて、受熱板20を平板形状に形成した。
[Comparative Example 3]
In Comparative Example 3, in the thermoelectric power generator 1 in which the high temperature side opening 61b of the case 60 was 120 × 120 mm in size, the heat receiving plate 20 was formed in a flat plate shape using the same reaction sintered SiC as in Example 1.

実施例1及び比較例1〜3の熱電発電装置について、受熱板20を850℃で加熱し、水冷板30を80℃で冷却したときの開放電圧を測定し、それぞれの発電効率を評価した。評価結果を表2に示す。
表2に示すように、実施例1と比較例1、2の評価結果より、受熱板20を反応焼結SiCで形成することにより、発電効率を改善できることが確認された。受熱板20を反応焼結SiCで形成した場合、酸化物結合SiCや窒化物結合SiCに比較して受熱板20の熱伝導率が高く、かつ受熱板20と熱電変換モジュール10との間の界面熱抵抗が小さくなり、受熱板20の伝熱性能が格段に向上したためと考えられる。
また、実施例1と比較例3の評価結果より、受熱板20の受熱面に受熱フィン21を形成することで発電効率を改善できることが確認された。
About the thermoelectric power generator of Example 1 and Comparative Examples 1-3, the heat receiving plate 20 was heated at 850 degreeC, the open circuit voltage when the water cooling plate 30 was cooled at 80 degreeC was measured, and each electric power generation efficiency was evaluated. The evaluation results are shown in Table 2.
As shown in Table 2, it was confirmed from the evaluation results of Example 1 and Comparative Examples 1 and 2 that the power generation efficiency can be improved by forming the heat receiving plate 20 with reaction sintered SiC. When the heat receiving plate 20 is formed of reaction sintered SiC, the heat conductivity of the heat receiving plate 20 is higher than that of oxide-bonded SiC or nitride-bonded SiC, and the interface between the heat receiving plate 20 and the thermoelectric conversion module 10 This is probably because the heat resistance is reduced and the heat transfer performance of the heat receiving plate 20 is significantly improved.
Further, from the evaluation results of Example 1 and Comparative Example 3, it was confirmed that the power generation efficiency can be improved by forming the heat receiving fins 21 on the heat receiving surface of the heat receiving plate 20.

Figure 2013211471
Figure 2013211471

[実施例2]
実施例2では、実施例1の熱電発電装置1において、受熱フィン21の配置間隔を2.5〜55mmとして、受熱フィン21の配置間隔の最適範囲を確認した。なお、受熱フィン21の高さは100mm、厚さは2.0mmとした(実施例1と同じ)。
実施例2のそれぞれの熱電発電装置について、受熱板20を850℃で加熱し、水冷板30を80℃で冷却したときの開放電圧を測定し、それぞれの発電効率を評価した。評価結果を表3に示す。
[Example 2]
In Example 2, in the thermoelectric generator 1 of Example 1, the arrangement interval of the heat receiving fins 21 was confirmed by setting the arrangement interval of the heat receiving fins 21 to 2.5 to 55 mm. In addition, the height of the heat receiving fin 21 was 100 mm, and the thickness was 2.0 mm (same as Example 1).
About each thermoelectric power generation apparatus of Example 2, the heat receiving plate 20 was heated at 850 degreeC, the open circuit voltage when the water cooling plate 30 was cooled at 80 degreeC was measured, and each power generation efficiency was evaluated. The evaluation results are shown in Table 3.

表3より、受熱フィン21の高さが100mmである場合、配置間隔が3.0〜8.0mmのときに、0.90V以上の開放電圧が得られ、特に、配置間隔が4.5〜5.5mmのときには、0.95V以上の開放電圧が得られた。また、受熱フィン21の高さを80〜150mmとした場合も同等の結果が得られた。   From Table 3, when the height of the heat receiving fins 21 is 100 mm, an open circuit voltage of 0.90 V or more is obtained when the arrangement interval is 3.0 to 8.0 mm, and in particular, the arrangement interval is 4.5 to 4. When the thickness was 5.5 mm, an open circuit voltage of 0.95 V or more was obtained. Moreover, the equivalent result was obtained also when the height of the heat receiving fin 21 was 80-150 mm.

このように、受熱フィン21の高さを80〜150mmとし、受熱フィン21の配置間隔を3.0〜8.0mm、望ましくは4.5〜5.5mmとすることにより、400〜900℃で稼動させる場合に最適な発電効率を得ることができる。   Thus, by setting the height of the heat receiving fins 21 to 80 to 150 mm and the arrangement interval of the heat receiving fins 21 to 3.0 to 8.0 mm, preferably 4.5 to 5.5 mm, the temperature is 400 to 900 ° C. Optimum power generation efficiency can be obtained when operating.

Figure 2013211471
Figure 2013211471

以上、本発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明は上記実施の形態に限定されるものではなく、その要旨を逸脱しない範囲で変更可能である。
例えば、熱電発電装置1は、DIPフォーミング方式の銅線製造設備を構成する溶解炉や保持炉、その他の工業炉(焼却炉等)に設置することができる。
As mentioned above, the invention made by the present inventor has been specifically described based on the embodiment. However, the present invention is not limited to the above embodiment, and can be changed without departing from the gist thereof.
For example, the thermoelectric generator 1 can be installed in a melting furnace, a holding furnace, or another industrial furnace (an incinerator or the like) that constitutes a DIP forming type copper wire manufacturing facility.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 熱電発電装置
10 熱電変換モジュール
20 受熱板
21 受熱フィン
30 水冷板
60 ケース
70 補強梁
80 押圧ボルト
100 炉壁
DESCRIPTION OF SYMBOLS 1 Thermoelectric generator 10 Thermoelectric conversion module 20 Heat receiving plate 21 Heat receiving fin 30 Water cooling plate 60 Case 70 Reinforcement beam 80 Pressing bolt 100 Furnace wall

Claims (4)

受熱板と、
一方の面を前記受熱板に向けて配置され、前記一方の面と他方の面との温度差を利用して発電出力を得る熱電変換モジュールと、
前記熱電変換モジュールの他方の面に、密着、固定して取り付けられる水冷板と、を備え、
前記受熱板の受熱面には、複数の受熱フィンが平行に形成され、
前記受熱板の前記熱電変換モジュールとの接触面は、表面粗さが0.1μm以上20μm以下であることを特徴とする熱電発電装置。
A heat receiving plate,
A thermoelectric conversion module that is arranged with one surface facing the heat receiving plate, and obtains a power generation output using a temperature difference between the one surface and the other surface;
A water-cooled plate attached to the other surface of the thermoelectric conversion module in close contact and fixed;
A plurality of heat receiving fins are formed in parallel on the heat receiving surface of the heat receiving plate,
The thermoelectric generator according to claim 1, wherein the contact surface of the heat receiving plate with the thermoelectric conversion module has a surface roughness of 0.1 μm to 20 μm.
前記受熱板は、1000℃での熱伝導率が35〜45W/(m・K)、見掛気孔率が0.1%以下のSiCによって形成されていることを特徴とする請求項1に記載の熱電発電装置。   2. The heat receiving plate is formed of SiC having a thermal conductivity at 1000 ° C. of 35 to 45 W / (m · K) and an apparent porosity of 0.1% or less. Thermoelectric generator. 前記受熱フィンは、高さが80〜150mmで、かつ配置間隔が3.0〜8.0mmであることを特徴とする請求項1又は2に記載の熱電発電装置。   The thermoelectric generator according to claim 1 or 2, wherein the heat receiving fin has a height of 80 to 150 mm and an arrangement interval of 3.0 to 8.0 mm. 前記受熱フィンの配置間隔が4.5〜5.5mmであることを特徴とする請求項3に記載の熱電発電装置。
The thermoelectric generator according to claim 3, wherein an interval between the heat receiving fins is 4.5 to 5.5 mm.
JP2012081915A 2012-03-30 2012-03-30 Thermoelectric power generating device Pending JP2013211471A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012081915A JP2013211471A (en) 2012-03-30 2012-03-30 Thermoelectric power generating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012081915A JP2013211471A (en) 2012-03-30 2012-03-30 Thermoelectric power generating device

Publications (1)

Publication Number Publication Date
JP2013211471A true JP2013211471A (en) 2013-10-10

Family

ID=49529049

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012081915A Pending JP2013211471A (en) 2012-03-30 2012-03-30 Thermoelectric power generating device

Country Status (1)

Country Link
JP (1) JP2013211471A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701365A (en) * 2013-12-26 2014-04-02 武汉理工大学 Method for improving heat transfer of heat exchanger in box type thermoelectric system of automobile
JP2015130455A (en) * 2014-01-09 2015-07-16 昭和電工株式会社 Thermoelectric conversion device
WO2015159496A1 (en) * 2014-04-16 2015-10-22 パナソニックIpマネジメント株式会社 Thermoelectric power generation apparatus
JP2021511668A (en) * 2018-01-23 2021-05-06 エルジー イノテック カンパニー リミテッド Thermoelectric element and its manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273484A (en) * 1991-02-28 1992-09-29 Matsushita Electric Works Ltd Heat exchanger and heat exchanger with peltier element and manufacture method thereof
JPH1140863A (en) * 1997-07-22 1999-02-12 Nissan Motor Co Ltd Thermoelectric generator
JP2002100816A (en) * 2000-09-22 2002-04-05 Matsushita Refrig Co Ltd Thermoelectric cooling system
JP2003124531A (en) * 2001-10-11 2003-04-25 Komatsu Ltd Thermoelectric module
JP2008128128A (en) * 2006-11-22 2008-06-05 Ngk Insulators Ltd Heat transfer member and thermoelectric power generation device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04273484A (en) * 1991-02-28 1992-09-29 Matsushita Electric Works Ltd Heat exchanger and heat exchanger with peltier element and manufacture method thereof
JPH1140863A (en) * 1997-07-22 1999-02-12 Nissan Motor Co Ltd Thermoelectric generator
JP2002100816A (en) * 2000-09-22 2002-04-05 Matsushita Refrig Co Ltd Thermoelectric cooling system
JP2003124531A (en) * 2001-10-11 2003-04-25 Komatsu Ltd Thermoelectric module
JP2008128128A (en) * 2006-11-22 2008-06-05 Ngk Insulators Ltd Heat transfer member and thermoelectric power generation device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103701365A (en) * 2013-12-26 2014-04-02 武汉理工大学 Method for improving heat transfer of heat exchanger in box type thermoelectric system of automobile
CN103701365B (en) * 2013-12-26 2016-01-06 武汉理工大学 A kind of method improved automobile box heat and power system heat exchanger heat and transmit
JP2015130455A (en) * 2014-01-09 2015-07-16 昭和電工株式会社 Thermoelectric conversion device
WO2015159496A1 (en) * 2014-04-16 2015-10-22 パナソニックIpマネジメント株式会社 Thermoelectric power generation apparatus
JP2021511668A (en) * 2018-01-23 2021-05-06 エルジー イノテック カンパニー リミテッド Thermoelectric element and its manufacturing method
JP7344882B2 (en) 2018-01-23 2023-09-14 エルジー イノテック カンパニー リミテッド Thermoelectric element and its manufacturing method

Similar Documents

Publication Publication Date Title
US20110265838A1 (en) Packaged thermoelectric conversion module
US20120132242A1 (en) Thermoelectric generator apparatus with high thermoelectric conversion efficiency
JP5443947B2 (en) Thermoelectric generator
JP2009295878A (en) Heat exchange device
WO2010050455A1 (en) Thermoelectric module
JP5970222B2 (en) Thermoelectric generator
JP2013211471A (en) Thermoelectric power generating device
KR101822415B1 (en) Thermoelectric conversion module
JP2013004837A (en) Thermoelectric generator
JP2006211780A (en) Thermoelectric generator
US20180277729A1 (en) Light-emitting module substrate, light-emitting module, substrate for light-emitting module having cooler, and production method for light-emitting module substrate
CN108713259B (en) Thermoelectric conversion module
KR20100003494A (en) Thermoelectric cooling device with flexible copper band wire
JP2019161831A (en) Thermoelectric generator
JP5988827B2 (en) Thermoelectric conversion module
WO2017164217A1 (en) Thermoelectric conversion module
RU2505890C2 (en) Method of using heat energy from surface of pyrometallurgical processing plant and thermoelectric device used therein
JP2008098403A (en) Thermoelectric conversion device, and heat treatment apparatus
JP2012089633A (en) Thermoelectric conversion device
JP2015056507A (en) Thermoelectric module
JP2011035059A (en) Thermoelectric conversion power generation device
JP2017063091A (en) Thermoelectric conversion system
JP6628391B2 (en) Flange unit for fixing current lead and flange unit with current lead
JP2020150139A (en) Thermoelectric conversion module
JP2013191801A (en) Airtight case-enclosed thermoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160621