JP5988827B2 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP5988827B2
JP5988827B2 JP2012236208A JP2012236208A JP5988827B2 JP 5988827 B2 JP5988827 B2 JP 5988827B2 JP 2012236208 A JP2012236208 A JP 2012236208A JP 2012236208 A JP2012236208 A JP 2012236208A JP 5988827 B2 JP5988827 B2 JP 5988827B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion module
temperature side
side electrode
internal space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012236208A
Other languages
Japanese (ja)
Other versions
JP2014086650A (en
Inventor
昌尚 冨永
昌尚 冨永
孝広 地主
孝広 地主
石島 善三
善三 石島
森 正芳
正芳 森
山上 武
武 山上
松田 洋
洋 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Showa Denko Materials Co Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012236208A priority Critical patent/JP5988827B2/en
Priority to PCT/JP2013/006335 priority patent/WO2014064945A1/en
Priority to US14/435,553 priority patent/US20150303365A1/en
Priority to CN201380055685.3A priority patent/CN104919610A/en
Priority to DE112013005148.6T priority patent/DE112013005148T5/en
Publication of JP2014086650A publication Critical patent/JP2014086650A/en
Application granted granted Critical
Publication of JP5988827B2 publication Critical patent/JP5988827B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば各種産業機器及び自動車等の排ガス等の圧縮性流体の廃熱を熱源とする、熱電変換モジュールに関する。   The present invention relates to a thermoelectric conversion module using, as a heat source, waste heat of a compressive fluid such as exhaust gas from various industrial equipment and automobiles.

従来の熱電変換モジュールは、複数のp型熱電半導体及びn型熱電半導体の上下面、すなわち高温熱源側の面及び低温熱源側の面に電極を配設して電気回路を構成し、さらに上記電極の外側両面にセラミックスなど電気絶縁板を備える構造が一般的である。   In the conventional thermoelectric conversion module, electrodes are arranged on the upper and lower surfaces of a plurality of p-type thermoelectric semiconductors and n-type thermoelectric semiconductors, that is, on the surface on the high-temperature heat source side and on the surface on the low-temperature heat source side. A structure having an electrical insulating plate such as ceramics on both outer sides is generally used.

一方、近年においては、上記熱電変換モジュールにおいて、高温熱源として各種産業機器及び自動車等の排ガス等の圧縮性流体の廃熱を利用することが試みられている(特許文献1参照)。   On the other hand, in recent years, in the thermoelectric conversion module, it has been attempted to use waste heat of a compressive fluid such as exhaust gas from various industrial equipment and automobiles as a high-temperature heat source (see Patent Document 1).

圧縮性流体から効率よく受熱するためには、上記熱電変換モジュールの圧縮性流体が流れる管体、すなわちエクゾースト管の管壁は薄い方がよい。しかしながら、管体の管壁を薄くすると、当該管壁が変形するため管壁を薄くすることができないでいた。このため、圧縮性流体からの受熱が悪くなり、上記熱電変換モジュールの発電効率が低下してしまうという問題があった。   In order to receive heat efficiently from the compressive fluid, the tube body through which the compressive fluid of the thermoelectric conversion module flows, that is, the tube wall of the exhaust tube, is preferably thin. However, when the tube wall of the tube body is thinned, the tube wall is deformed, so that the tube wall cannot be thinned. For this reason, the heat receiving from a compressive fluid worsened, and there existed a problem that the electric power generation efficiency of the said thermoelectric conversion module will fall.

さらに、管体には温度分布があるため、熱電変換モジュールが均一に膨張せず破壊する恐れがあった。   Furthermore, since the tube has a temperature distribution, the thermoelectric conversion module may not be expanded uniformly and may be broken.

特開2007−221895号JP 2007-221895

本発明は、熱電変換効率を向上させ、各種産業機器及び自動車等などの排ガス等の圧縮性流体の廃熱等を熱源とする、実用性に富んだ熱電変換モジュールを提供することを目的とする。   It is an object of the present invention to provide a thermoelectric conversion module with high practicality that improves the thermoelectric conversion efficiency and uses waste heat of a compressive fluid such as exhaust gas from various industrial equipment and automobiles as a heat source. .

上記目的を達成すべく、本発明は、
圧縮性流体を流すための筒状の管体と、
前記管体の上面側及び下面側それぞれに配設され、前記管体と電気的に絶縁された高温側電極部と、
前記高温側電極部上において、少なくとも一対のp型熱電半導体及びn型熱電半導体が電気的に直列に接続された熱電変換素子と、
前記熱電変換素子上において、前記p型熱電半導体及び前記n型熱電半導体を電気的に直列に接続する低温側電極部と、
前記低温側電極部との間に冷媒を流すための空隙を設けるようにして、前記管体、前記高温側電極部、前記熱電変換素子、及び前記低温側電極部を収納するためのケース部材とを具え、
前記管体の、前記圧縮性流体の流路方向と略垂直な方向であって、前記熱電変換素子の非形成領域に相当する内部空間の少なくとも一部を閉塞させたことを特徴とする、熱電変換モジュールに関する。
In order to achieve the above object, the present invention provides:
A tubular tube for flowing a compressive fluid;
A high temperature side electrode portion disposed on each of an upper surface side and a lower surface side of the tube body and electrically insulated from the tube body;
A thermoelectric conversion element in which at least a pair of a p-type thermoelectric semiconductor and an n-type thermoelectric semiconductor are electrically connected in series on the high temperature side electrode portion;
On the thermoelectric conversion element, a low-temperature side electrode portion that electrically connects the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor in series;
A case member for housing the tubular body, the high temperature side electrode portion, the thermoelectric conversion element, and the low temperature side electrode portion so as to provide a gap for flowing a refrigerant between the low temperature side electrode portion and With
A thermoelectric device characterized in that at least a part of an internal space of the tubular body that is substantially perpendicular to a flow direction of the compressive fluid and corresponds to a non-formation region of the thermoelectric conversion element is closed. Regarding the conversion module.

本発明によれば、例えば各種産業機器及び自動車等の排ガス等の圧縮性流体を流す熱電変換モジュールにおける管体の、熱電変換素子の非形成領域に相当する内部空間の少なくとも一部を閉塞するようにしている。したがって、上記圧縮性流体は、管体内の熱電変換素子が形成されている領域の下方及び上方に相当する内部空間のみを流れるようになり、熱電変換素子の非形成領域に相当する、例えば管体の端部に位置する空間を流れないようになる。すなわち、熱電変換素子の非形成領域に相当する内部空間を流れることによる、熱交換率の低下を抑制することができる。   According to the present invention, for example, at least a part of an internal space corresponding to a non-formation region of a thermoelectric conversion element of a tubular body in a thermoelectric conversion module that flows a compressive fluid such as exhaust gas of various industrial equipment and automobiles is blocked. I have to. Therefore, the compressive fluid flows only in the internal space corresponding to the lower and upper regions of the tube in which the thermoelectric conversion elements are formed, and corresponds to the non-formation region of the thermoelectric conversion element, for example, the tube It will not flow through the space located at the end of the. That is, it is possible to suppress a decrease in the heat exchange rate due to flowing through the internal space corresponding to the non-formation region of the thermoelectric conversion element.

したがって、従来のように、管体の内部空間の全体に亘って圧縮性流体を流す場合に比較して、圧縮性流体からの廃熱は、熱電変換素子が配設されている管体の上面及び下面のみに効率よく伝達されるようになるので、当該廃熱の利用効率が向上する。結果として、管体内を流れる圧縮性流体の廃熱を熱電変換素子の下部に効率良く伝達することができるので、熱電変換素子のゼーベック効果が向上して熱電変換効率が向上し、熱電変換モジュールからより大きな電気エネルギーを取り出すことができる。   Therefore, as compared with the conventional case where the compressive fluid is caused to flow over the entire internal space of the tubular body, the waste heat from the compressive fluid is generated on the upper surface of the tubular body on which the thermoelectric conversion element is disposed. And since it comes to be efficiently transmitted only to a lower surface, the utilization efficiency of the said waste heat improves. As a result, the waste heat of the compressive fluid flowing in the pipe can be efficiently transferred to the lower part of the thermoelectric conversion element, so that the Seebeck effect of the thermoelectric conversion element is improved and the thermoelectric conversion efficiency is improved. Greater electrical energy can be extracted.

すなわち、本発明によれば、管体内を流れる圧縮性流体の流路を狭窄するという簡易な方法によって、熱電変換素子の熱電変換効率を向上させ、熱電変換モジュールから大きな電気エネルギーを取り出すことができる。   That is, according to the present invention, the thermoelectric conversion efficiency of the thermoelectric conversion element can be improved and a large amount of electrical energy can be extracted from the thermoelectric conversion module by a simple method of constricting the flow path of the compressive fluid flowing in the tube. .

なお、上記発明は、構成自体は簡易であるが、本発明者らの長年に亘る研究開発の結果として得た着想に基づくものであって、従来、存在しなかった発想に基づくものである。   In addition, although the structure itself is simple, the said invention is based on the idea obtained as a result of research and development over many years of the present inventors, and is based on the idea which did not exist conventionally.

管体の内部空間の閉塞は、例えば管体の当該内部空間に封止部材を配設して行うことができる。また、管体の少なくとも側面を内部空間側に凹ませて行うことができる。   The internal space of the tubular body can be closed by disposing a sealing member in the internal space of the tubular body, for example. Moreover, it can carry out by denting at least the side surface of a tubular body to the internal space side.

以上、本発明によれば、熱電変換効率を向上させ、各種産業機器及び自動車等などの排ガス等の圧縮性流体の廃熱等を熱源とする、実用性に富んだ熱電変換モジュールを提供することができる。   As described above, according to the present invention, there is provided a practical thermoelectric conversion module that improves the thermoelectric conversion efficiency and uses waste heat of a compressive fluid such as exhaust gas from various industrial equipment and automobiles as a heat source. Can do.

実施形態の熱電変換モジュールの一例を概略的に示す斜視図である。It is a perspective view showing roughly an example of a thermoelectric conversion module of an embodiment. 図1に示す熱電変換モジュールの平面図である。It is a top view of the thermoelectric conversion module shown in FIG. 図1に示す熱電変換モジュールのI−I線に沿った断面図である。It is sectional drawing along the II line of the thermoelectric conversion module shown in FIG. 図1に示す熱電変換モジュールのII-II線に沿った断面図である。It is sectional drawing along the II-II line of the thermoelectric conversion module shown in FIG. 第1の実施形態における熱電変換モジュールの概略構成を示す平面図である。It is a top view which shows schematic structure of the thermoelectric conversion module in 1st Embodiment. 第2の実施形態における熱電変換モジュールの概略構成を示す平面図である。It is a top view which shows schematic structure of the thermoelectric conversion module in 2nd Embodiment. 図6に示す熱電変換モジュールの断面図である。It is sectional drawing of the thermoelectric conversion module shown in FIG. 図6に示す熱電変換モジュールの管体の斜視図である。It is a perspective view of the tubular body of the thermoelectric conversion module shown in FIG.

以下、本発明の熱電変換モジュールの詳細並びにその他の特徴について、実施の形態に基づいて説明する。   Hereinafter, the details and other features of the thermoelectric conversion module of the present invention will be described based on embodiments.

(第1の実施形態)
図1〜図5は、本実施形態における熱電変換モジュールの概略構成を示す図であり、図1は、本実施形態の熱電変換モジュールの一例を概略的に示す斜視図であり、図2は、図1に示す熱電変換モジュールの平面図である。また、図3は、図1に示す熱電変換モジュールのI−I線に沿った断面図であり、図4は、図1に示す熱電変換モジュールのII-II線に沿った断面図である。さらに、図5は、本実施形態の熱電変換モジュールの管体のみを取り出して示す斜視図である。
(First embodiment)
1-5 is a figure which shows schematic structure of the thermoelectric conversion module in this embodiment, FIG. 1 is a perspective view which shows roughly an example of the thermoelectric conversion module of this embodiment, FIG. It is a top view of the thermoelectric conversion module shown in FIG. 3 is a cross-sectional view taken along line II of the thermoelectric conversion module shown in FIG. 1, and FIG. 4 is a cross-sectional view taken along line II-II of the thermoelectric conversion module shown in FIG. Furthermore, FIG. 5 is a perspective view showing only the tubular body of the thermoelectric conversion module of the present embodiment.

図1〜5に示すように、熱電変換モジュール10は、圧縮性流体を流すための、平坦な上面21A及び下面21Bを有する筒状の管体21と、管体21の上面21A側及び下面21B側それぞれに配設され、管体21と電気的に絶縁された高温側電極部12,12とを有している。また、高温側電極部12,12上において、p型熱電半導体131及びn型熱電半導体132が互いに隣接するようにしてマトリックス状に配設されているとともに、電気的に直列に接続されてなる熱電変換素子13,13が配設されている。さらに、熱電変換素子13,13上において、p型熱電半導体131及びn型熱電半導体132を電気的に直列に接続する低温側電極部14,14が配設され、管体21と電気的に絶縁されて当接されている。   As shown in FIGS. 1 to 5, the thermoelectric conversion module 10 includes a cylindrical tube body 21 having a flat upper surface 21 </ b> A and a lower surface 21 </ b> B for flowing a compressive fluid, and an upper surface 21 </ b> A side and a lower surface 21 </ b> B of the tube body 21. It has high temperature side electrode parts 12 and 12 which are arranged on each side and are electrically insulated from tube 21. In addition, the p-type thermoelectric semiconductor 131 and the n-type thermoelectric semiconductor 132 are arranged in a matrix on the high temperature side electrode portions 12 and 12 so as to be adjacent to each other, and are electrically connected in series. Conversion elements 13 are provided. Furthermore, on the thermoelectric conversion elements 13 and 13, the low temperature side electrode portions 14 and 14 that electrically connect the p-type thermoelectric semiconductor 131 and the n-type thermoelectric semiconductor 132 in series are disposed, and are electrically insulated from the tube body 21. Has been abutted.

また、管体21の、熱電変換素子13,13が配設された領域の上下に相当する内部空間内にはフィン21Dが配設され、管体21のフィン21Dが配設された領域の両側、すなわち管体21の端部の内部空間21S内には、図中矢印で示す圧縮性流体の導入方向前方において、内部空間21Sを封止する封止部材23が配設されている。   Further, fins 21D are disposed in the internal space corresponding to the upper and lower sides of the region of the tubular body 21 where the thermoelectric conversion elements 13, 13 are disposed, and both sides of the region of the tubular body 21 where the fins 21D are disposed. In other words, a sealing member 23 that seals the internal space 21S is disposed in the internal space 21S at the end of the tubular body 21 in front of the compressive fluid introduction direction indicated by an arrow in the drawing.

封止部材23は、管体21を製造する際に、内部空間21Sの形成と同時に当該内部空間21S内に組み込むこともできるし、管体21を製造した後に、後加工を行うことによって内部空間21S内に組み込むこともできる。   When manufacturing the tubular body 21, the sealing member 23 can be incorporated into the internal space 21S simultaneously with the formation of the internal space 21S, or after the tubular body 21 is manufactured, the internal space can be obtained by performing post-processing. It can also be incorporated in 21S.

なお、本実施形態では、封止部材23を内部空間21S内の圧縮性流体の導入方向前方に配設したが、内部空間21Sの一部を閉塞させ、以下に説明する作用効果を奏する限りにおいて配設場所が限定されるものではなく、内部空間21Sの圧縮性流体の導入方向後方に配設してもよいし、内部空間21Sの略中央部に配設してもよい。   In the present embodiment, the sealing member 23 is disposed in front of the compressive fluid introduction direction in the internal space 21S. However, as long as a part of the internal space 21S is closed and the following effects are obtained. An arrangement place is not limited, and may be arranged behind the compressive fluid in the internal space 21S in the introduction direction, or may be arranged at a substantially central portion of the internal space 21S.

また、封止部材23は、バルク状の材料である必要はなく、板状のいわゆる蓋体のようなものであってもよい。この蓋体も内部空間21Sの圧縮性流体の導入方向前後方に配設してもよいし、内部空間21Sの略中央部に配設してもよい。   Moreover, the sealing member 23 does not need to be a bulk material, and may be a plate-like so-called lid. This lid may also be disposed at the front and rear in the direction of introduction of the compressive fluid in the internal space 21S, or may be disposed at a substantially central portion of the internal space 21S.

図3に示すように、管体21の内部には、管体21内を流れる圧縮性流体の廃熱を、その上下面21A及び21Bに効率よく伝達するためのフィン21Dが形成されている。   As shown in FIG. 3, fins 21 </ b> D for efficiently transferring waste heat of the compressive fluid flowing in the pipe body 21 to the upper and lower surfaces 21 </ b> A and 21 </ b> B are formed inside the pipe body 21.

管体21、高温側電極部12,12、熱電変換素子13、13、及び低温側電極部14、14は、気密に保持されたケース部材15中に収納され、低温側電極部14,14とケース部材15との間には、ケース部材15(熱電変換モジュール10)の外部に設けられた、冷媒の導入口18及び排出口19を通じて、ケース部材15の上壁面15A及び下壁面15Bで形成される空間内に冷媒を導入及び排出して、低温側電極部14,14を冷却するための空隙16が形成されている(図3参照)。   The tube body 21, the high temperature side electrode parts 12 and 12, the thermoelectric conversion elements 13 and 13, and the low temperature side electrode parts 14 and 14 are housed in a case member 15 that is kept airtight. Between the case member 15, the upper wall surface 15 </ b> A and the lower wall surface 15 </ b> B of the case member 15 are formed through the refrigerant inlet 18 and the outlet 19 provided outside the case member 15 (thermoelectric conversion module 10). A space 16 is formed to cool and cool the low temperature side electrode portions 14 and 14 by introducing and discharging the refrigerant into the space (see FIG. 3).

また、図4に示すように、空隙16中の、冷媒の導入口18及び排出口19と相対する側には、冷媒からの冷熱を低温側電極部14,14に効率良く伝達するための冷却フィン16Aが配設されている。   Further, as shown in FIG. 4, on the side of the gap 16 facing the refrigerant inlet 18 and outlet 19, cooling for efficiently transmitting cold heat from the refrigerant to the low temperature side electrode portions 14, 14. Fins 16A are provided.

なお、ケース部材15は、図1及び図4に示すように、II-II方向の断面において、高温側電極部12,12、熱電変換素子13、13、及び低温側電極部14、14が収納され、冷媒を流すための空隙16が形成された部分が最も厚くなっており、当該部分から外方に向けてステップ状に薄くなるように構成されている。   As shown in FIGS. 1 and 4, the case member 15 accommodates the high temperature side electrode portions 12, 12, the thermoelectric conversion elements 13, 13, and the low temperature side electrode portions 14, 14 in the cross section in the II-II direction. In addition, the portion where the gap 16 for flowing the coolant is formed is the thickest, and is configured to be thinned stepwise from the portion toward the outside.

ケース部材15の、高温側電極部12、12、熱電変換素子13,13、及び低温側電極部14,14を収納した空間は、真空排気されて真空状態に保持されている。   The space of the case member 15 containing the high temperature side electrode portions 12 and 12, the thermoelectric conversion elements 13 and 13 and the low temperature side electrode portions 14 and 14 is evacuated and held in a vacuum state.

なお、管体21の上面21A及び下面21Bに高温側電極部12,12が当接しており、ケース部材15の、冷媒を流すための空間を形成している上壁面15Aに対抗する下壁面15Bに低温側電極部14,14が当接しているが、いずれか一方をろう材等で接合してもよい。   The high temperature side electrode portions 12 and 12 are in contact with the upper surface 21A and the lower surface 21B of the tube body 21, and the lower wall surface 15B that opposes the upper wall surface 15A that forms a space for flowing the refrigerant of the case member 15. Although the low temperature side electrode portions 14 and 14 are in contact with each other, either one may be joined with a brazing material or the like.

このとき、熱電変換素子13,13等を収納した上記空間を真空にすることによって、ケース部材15の下壁面15Bが熱電変換素子13,13を加圧して、上述した当接部の密着性が向上する。   At this time, the lower wall 15B of the case member 15 pressurizes the thermoelectric conversion elements 13 and 13 by evacuating the space containing the thermoelectric conversion elements 13 and 13 and the above-mentioned contact portion has a close adhesion. improves.

なお、上述した当接部には、緩衝材や予備材等を管体11の上面21A及び下面21Bと高温側電極部12,12との間、並びにケース部材15の下壁面15Bと低温側電極部14,14との間に挟み込まれるようにして配設することもできる。   It should be noted that a buffer material, a spare material, and the like are provided between the upper surface 21A and the lower surface 21B of the tubular body 11 and the high temperature side electrode portions 12 and 12 as well as the lower wall surface 15B of the case member 15 and the low temperature side electrode. It can also be disposed so as to be sandwiched between the portions 14 and 14.

さらに、ケース部材15(熱電変換モジュール10)には、熱電変換素子13,13にて発生した電流を外部に取り出すための電極端子17,17が、図示しないリード線を介して熱電変換素子13,13と電気的に接続されている。   Furthermore, in the case member 15 (thermoelectric conversion module 10), electrode terminals 17 and 17 for taking out the current generated in the thermoelectric conversion elements 13 and 13 to the outside are provided via the lead wires (not shown). 13 is electrically connected.

管体21及び封止部材23は、各種産業機器及び自動車等の排ガス等の圧縮性流体を流し、この圧縮性流体に含まれる腐食性ガスに対して抗することができるように、例えばステンレス鋼から構成する。   The pipe body 21 and the sealing member 23 are made of, for example, stainless steel so that a compressive fluid such as exhaust gas from various industrial equipment and automobiles can flow and resists corrosive gas contained in the compressive fluid. Consists of.

高温側電極部12,12及び低温側電極部14,14は、耐熱性及び機械的強度に優れるとともに、比較的高い導電性を示すことが要求され、例えば、Mo,Cu,W,Ti,Niおよびこれらの合金あるいはステンレス鋼などから構成することができる。なお、電極端子17,17も同様の材料から構成することができる。   The high temperature side electrode portions 12 and 12 and the low temperature side electrode portions 14 and 14 are required to exhibit excellent heat resistance and mechanical strength and relatively high conductivity. For example, Mo, Cu, W, Ti, Ni And alloys thereof or stainless steel. The electrode terminals 17 and 17 can also be made of the same material.

また、ブリッジ状電極25は、例えば、薄板、板ばね状の電極部材、銅線、銅の撚り線等の柔軟性に富んだ電極材料から構成することが好ましい。   The bridge-like electrode 25 is preferably made of a flexible electrode material such as a thin plate, a leaf spring-like electrode member, a copper wire, or a copper stranded wire.

熱電変換素子13,13を構成するp型熱電半導体131及びn型熱電半導体132は熱伝導率が低く、高温側及び低温側で大きな温度差を得、ゼーベック効果により大きな電位差を生成する材料から構成することが好ましく、例えば、Bi−Te系,Pb−Te系,Si−Ge系,あるいはMg−Si系等の半導体材料から構成する。   The p-type thermoelectric semiconductor 131 and the n-type thermoelectric semiconductor 132 constituting the thermoelectric conversion elements 13 and 13 are made of a material having low thermal conductivity, obtaining a large temperature difference between the high temperature side and the low temperature side, and generating a large potential difference by the Seebeck effect. For example, it is made of a semiconductor material such as Bi—Te, Pb—Te, Si—Ge, or Mg—Si.

また、ケース部材15は、熱電変換モジュール10を搭載する各種産業機器及び自動車等の軽量化、耐食性及び剛性の観点から、例えばMg,Al、Mo,Cu,W,Ti,Ni,Fe,ステンレス鋼あるいはこれらの合金から構成することができる。   The case member 15 is made of, for example, Mg, Al, Mo, Cu, W, Ti, Ni, Fe, and stainless steel from the viewpoints of weight reduction, corrosion resistance, and rigidity of various industrial equipment and automobiles on which the thermoelectric conversion module 10 is mounted. Or it can comprise from these alloys.

なお、図示しない以下に説明するリード線は、電気的良導体、例えばCu,Ag,Au,Ni,Feおよびこれらの合金等から構成することができる。   In addition, the lead wire demonstrated below which is not shown in figure can be comprised from an electrical good conductor, for example, Cu, Ag, Au, Ni, Fe, these alloys, etc.

図1〜4に示す熱電変換モジュール10においては、管体21内に各種産業機器及び自動車等の排ガス等の圧縮性流体を導入し、当該圧縮性流体の廃熱によって管体21の上面21A及び下面21Bを加熱する。一方、ケース部材15の空隙16中には冷媒を導入する。管体21の上面21A及び下面21Bを加熱した熱は高温側電極部12,12を介して熱電変換素子13,13の下方に伝達され、熱電変換素子13,13の下部を加熱する。一方、空隙16内に導入された冷媒からの冷熱は低温側電極部14,14を介して熱電変換素子13,13の上方に伝達され、熱電変換素子13,13の上部を冷却する。   In the thermoelectric conversion module 10 shown in FIGS. 1 to 4, a compressive fluid such as exhaust gas from various industrial equipment and automobiles is introduced into the tube body 21, and the upper surface 21 </ b> A of the tube body 21 is exhausted by waste heat of the compressive fluid. The lower surface 21B is heated. On the other hand, a refrigerant is introduced into the gap 16 of the case member 15. Heat that heats the upper surface 21A and the lower surface 21B of the tube body 21 is transmitted to the lower side of the thermoelectric conversion elements 13 and 13 via the high temperature side electrode portions 12 and 12, and heats the lower portions of the thermoelectric conversion elements 13 and 13. On the other hand, cold heat from the refrigerant introduced into the gap 16 is transmitted to the upper side of the thermoelectric conversion elements 13 and 13 via the low temperature side electrode portions 14 and 14, and cools the upper portions of the thermoelectric conversion elements 13 and 13.

その結果、熱電変換素子13,13には、ゼーベック効果によって起電力が生じ、この起電力によって、熱電変換素子13,13を構成するp型熱電半導体131及びn型熱電半導体132を電気的に直列に接続した高温側電極部12,12及び低温側電極部14,14を通じて、熱電変換素子13,13の全体に亘って電流が流れるようになり、当該電流は、図示しないリード線を介して、電極端子17,17から熱電変換モジュール10の外部に取出される。   As a result, an electromotive force is generated in the thermoelectric conversion elements 13 and 13 by the Seebeck effect, and the p-type thermoelectric semiconductor 131 and the n-type thermoelectric semiconductor 132 constituting the thermoelectric conversion elements 13 and 13 are electrically connected in series by this electromotive force. Through the high temperature side electrode portions 12 and 12 and the low temperature side electrode portions 14 and 14 connected to the thermoelectric conversion elements 13 and 13, current flows through the lead wire (not shown). The electrode terminals 17 and 17 are taken out of the thermoelectric conversion module 10.

この際、上述したように、ゼーベック効果、すなわち熱電変換効率は、熱電変換素子13,13の上下における温度差が大きくなるにつれて高くなるので、管体21内を流れる圧縮性流体の廃熱を可能な限り有効利用する必要がある。   At this time, as described above, the Seebeck effect, that is, the thermoelectric conversion efficiency increases as the temperature difference between the upper and lower sides of the thermoelectric conversion elements 13 and 13 increases, so that waste heat of the compressive fluid flowing in the tubular body 21 is possible. It is necessary to use it as effectively as possible.

本実施形態の熱電変換モジュール10においては、管体21のフィン21Dが配設された内部空間の両側、すなわち管体21の端部に位置する内部空間21S内に封止部材21Sを配設し、内部空間21S内を圧縮性流体が流れないようにしている。このため、上記圧縮性流体は、管体21内の熱電変換素子13,13が形成されている領域の下方及び上方に相当する、フィン21Dが形成されている内部空間のみを流れるようになる。すなわち、熱電変換素子13,13の非形成領域に相当する内部空間21Sを流れることによる、圧縮性流体の圧力損失を抑制することができる。   In the thermoelectric conversion module 10 according to the present embodiment, the sealing member 21S is disposed in both sides of the internal space where the fins 21D of the tubular body 21 are disposed, that is, in the internal space 21S located at the end of the tubular body 21. The compressive fluid is prevented from flowing in the internal space 21S. Therefore, the compressive fluid flows only in the internal space in which the fins 21D are formed, corresponding to the lower and upper areas of the tube body 21 where the thermoelectric conversion elements 13 and 13 are formed. That is, the pressure loss of the compressive fluid caused by flowing through the internal space 21S corresponding to the non-formation region of the thermoelectric conversion elements 13 and 13 can be suppressed.

したがって、従来のように、管体の内部空間の全体に亘って圧縮性流体を流す場合に比較して、圧縮性流体からの廃熱は、熱電変換素子13,13が配設されている管体21の上面21A及び下面21Bのみに効率よく伝達されるようになるので、当該廃熱の利用効率が向上する。結果として、管体21内を流れる圧縮性流体の廃熱を熱電変換素子13,13の下部に効率良く伝達することができるので、熱電変換素子13,13のゼーベック効果が向上して熱電変換効率が向上し、熱電変換モジュール10からより大きな電気エネルギーを取り出すことができる。   Therefore, as compared with the case where the compressive fluid is made to flow over the entire internal space of the tube body as in the prior art, the waste heat from the compressive fluid is the tube in which the thermoelectric conversion elements 13 and 13 are disposed. Since the heat is efficiently transmitted only to the upper surface 21A and the lower surface 21B of the body 21, the utilization efficiency of the waste heat is improved. As a result, the waste heat of the compressive fluid flowing in the tubular body 21 can be efficiently transmitted to the lower part of the thermoelectric conversion elements 13 and 13, so that the Seebeck effect of the thermoelectric conversion elements 13 and 13 is improved and the thermoelectric conversion efficiency is increased. And more electrical energy can be extracted from the thermoelectric conversion module 10.

すなわち、本実施形態によれば、管体21内を流れる圧縮性流体の流路を狭窄するという簡易な方法によって、熱電変換素子13,13の熱電変換効率を向上させ、熱電変換モジュール10から大きな電気エネルギーを取り出すことができる。   That is, according to the present embodiment, the thermoelectric conversion efficiency of the thermoelectric conversion elements 13 and 13 is improved by a simple method of constricting the flow path of the compressive fluid flowing in the tube body 21, and the thermoelectric conversion module 10 is greatly increased. Electric energy can be taken out.

(第2の実施形態)
図6〜図8は、本実施形態における熱電変換モジュールの概略構成を示す図であり、図6に示す本実施形態の熱電変換モジュールは、第1の実施形態の熱電変換モジュール10の、図2に示す断面図に相当するものであり、図7に示す本実施形態の熱電変換モジュールは、第1の実施形態の熱電変換モジュール10の、図3に示す断面図に相当するものである。また、図8は、本実施形態の熱電変換モジュールの管体のみを取り出して示す斜視図である。
(Second Embodiment)
6-8 is a figure which shows schematic structure of the thermoelectric conversion module in this embodiment, and the thermoelectric conversion module of this embodiment shown in FIG. 6 is the figure of the thermoelectric conversion module 10 of 1st Embodiment. The thermoelectric conversion module of this embodiment shown in FIG. 7 corresponds to the cross-sectional view shown in FIG. 3 of the thermoelectric conversion module 10 of the first embodiment. FIG. 8 is a perspective view showing only the tubular body of the thermoelectric conversion module of the present embodiment.

なお、本実施形態の熱電変換モジュールの全体構成を示す概略構成は、第1の実施形態の図1に示す構成と同一であるので、記載を省略する。   In addition, since the schematic structure which shows the whole structure of the thermoelectric conversion module of this embodiment is the same as the structure shown in FIG. 1 of 1st Embodiment, description is abbreviate | omitted.

また、図1〜4に示す熱電変換モジュールの構成要素と類似あるいは同一の構成要素に関しては、同一の符号を用いている。   Moreover, the same code | symbol is used about the component similar or the same as the component of the thermoelectric conversion module shown in FIGS.

本実施形態の熱電変換モジュール30は、第1の実施形態の熱電変換モジュール10において、管体21の内部空間21S内に封止部材23を配設して閉塞させる代わりに、管体31の側面31Eの一部を加工して内部空間31S側に凹ませてフィン31Dの端部に当接させることによって、管体31の内部空間31Sを閉塞させている。   The thermoelectric conversion module 30 of the present embodiment is different from the thermoelectric conversion module 10 of the first embodiment in that the sealing member 23 is disposed in the internal space 21S of the tube body 21 and closed, instead of the side surface of the tube body 31. The inner space 31S of the tubular body 31 is closed by processing a part of 31E and making it dent in the inner space 31S side and abut against the end of the fin 31D.

したがって、本実施形態においても、管体31内に導入された圧縮性流体は、管体31内の熱電変換素子13,13が形成されている領域の下方及び上方に相当する、フィン31Dが形成されている内部空間のみを流れ、熱電変換素子13,13の非形成領域に相当する内部空間31Sを流れないようになる。   Therefore, also in this embodiment, the compressive fluid introduced into the tube 31 forms fins 31D corresponding to the lower and upper regions of the tube 31 where the thermoelectric conversion elements 13 and 13 are formed. The internal space 31S corresponding to the non-formation region of the thermoelectric conversion elements 13 and 13 does not flow.

このため、従来のように、管体の内部空間の全体に亘って圧縮性流体を流す場合に比較して、圧縮性流体からの廃熱は、熱電変換素子13,13が配設されている管体31の上面31A及び下面31Bのみに効率よく伝達されるようになるので、当該廃熱の利用効率が向上する。結果として、管体31内を流れる圧縮性流体の廃熱を熱電変換素子13,13の下部に効率良く伝達することができるので、熱電変換素子13,13のゼーベック効果が向上して熱電変換効率が向上し、熱電変換モジュール30からより大きな電気エネルギーを取り出すことができる。   For this reason, compared with the case where a compressive fluid is made to flow over the whole interior space of a pipe body conventionally, the thermoelectric conversion elements 13 and 13 are arrange | positioned for the waste heat from a compressive fluid. Since the heat is efficiently transmitted only to the upper surface 31A and the lower surface 31B of the tubular body 31, the utilization efficiency of the waste heat is improved. As a result, the waste heat of the compressive fluid flowing in the tubular body 31 can be efficiently transmitted to the lower part of the thermoelectric conversion elements 13 and 13, so that the Seebeck effect of the thermoelectric conversion elements 13 and 13 is improved and the thermoelectric conversion efficiency is increased. Thus, more electrical energy can be extracted from the thermoelectric conversion module 30.

すなわち、本実施形態によれば、管体31内を流れる圧縮性流体の流路を狭窄するという簡易な方法によって、熱電変換素子13,13の熱電変換効率を向上させ、熱電変換モジュール30から大きな電気エネルギーを取り出すことができる。   That is, according to the present embodiment, the thermoelectric conversion efficiency of the thermoelectric conversion elements 13 and 13 is improved by a simple method of constricting the flow path of the compressive fluid flowing in the tubular body 31, and the thermoelectric conversion module 30 is greatly increased. Electric energy can be taken out.

なお、その他の構成及び特徴については、第2の実施形態における熱電変換モジュール20と同様であるので説明を省略する。   Since other configurations and features are the same as those of the thermoelectric conversion module 20 in the second embodiment, the description thereof is omitted.

以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   While the present invention has been described in detail based on the above specific examples, the present invention is not limited to the above specific examples, and various modifications and changes can be made without departing from the scope of the present invention.

10,30 熱電変換モジュール
21,31 管体
21D,31D (管体内の)フィン
12 高温側電極部
13 熱電変換素子
14 低温側電極部
15 ケース部材
16 (低温側電極部及びケース部材間の)空隙
17 電極端子
18 冷媒導入口
19 冷媒排出口
21S,31S 管体の熱電変換素子の非形成領域に相当する内部空間
23 封止部材
31F 凹み加工
DESCRIPTION OF SYMBOLS 10,30 Thermoelectric conversion module 21,31 Tube 21D, 31D (inside tube) 12 High temperature side electrode part 13 Thermoelectric conversion element 14 Low temperature side electrode part 15 Case member 16 (Between low temperature side electrode part and case member) 17 Electrode terminal 18 Refrigerant inlet 19 Refrigerant outlet 21S, 31S Internal space corresponding to non-formation region of tubular thermoelectric conversion element 23 Sealing member 31F Recessed processing

Claims (3)

圧縮性流体を流すための筒状の管体と、
前記管体の上面側及び下面側それぞれに配設され、前記管体と電気的に絶縁された高温側電極部と、
前記高温側電極部上において、少なくとも一対のp型熱電半導体及びn型熱電半導体が電気的に直列に接続された熱電変換素子と、
前記熱電変換素子上において、前記p型熱電半導体及び前記n型熱電半導体を電気的に直列に接続する低温側電極部と、
前記低温側電極部との間に冷媒を流すための空隙を設けるようにして、前記管体、前記高温側電極部、前記熱電変換素子、及び前記低温側電極部を収納するためのケース部材とを具え、
前記管体の、前記圧縮性流体の流路方向と略垂直な方向であって、前記熱電変換素子の非形成領域に相当する内部空間の少なくとも一部を閉塞させたことを特徴とする、熱電変換モジュール。
A tubular tube for flowing a compressive fluid;
A high temperature side electrode portion disposed on each of an upper surface side and a lower surface side of the tube body and electrically insulated from the tube body;
A thermoelectric conversion element in which at least a pair of a p-type thermoelectric semiconductor and an n-type thermoelectric semiconductor are electrically connected in series on the high temperature side electrode portion;
On the thermoelectric conversion element, a low-temperature side electrode portion that electrically connects the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor in series;
A case member for housing the tubular body, the high temperature side electrode portion, the thermoelectric conversion element, and the low temperature side electrode portion so as to provide a gap for flowing a refrigerant between the low temperature side electrode portion and With
A thermoelectric device characterized in that at least a part of an internal space of the tubular body that is substantially perpendicular to a flow direction of the compressive fluid and corresponds to a non-formation region of the thermoelectric conversion element is closed. Conversion module.
前記内部空間の閉塞は、前記管体の当該内部空間に封止部材を配設して行うことを特徴とする、請求項1に記載の熱電変換モジュール。   2. The thermoelectric conversion module according to claim 1, wherein the internal space is closed by disposing a sealing member in the internal space of the tubular body. 前記内部空間の閉塞は、前記管体の少なくとも側面を前記内部空間側に凹ませて行うことを特徴とする、請求項1に記載の熱電変換モジュール。   2. The thermoelectric conversion module according to claim 1, wherein the blocking of the internal space is performed by recessing at least a side surface of the tubular body toward the internal space.
JP2012236208A 2012-10-26 2012-10-26 Thermoelectric conversion module Expired - Fee Related JP5988827B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012236208A JP5988827B2 (en) 2012-10-26 2012-10-26 Thermoelectric conversion module
PCT/JP2013/006335 WO2014064945A1 (en) 2012-10-26 2013-10-25 Thermoelectric conversion module
US14/435,553 US20150303365A1 (en) 2012-10-26 2013-10-25 Thermoelectric conversion module
CN201380055685.3A CN104919610A (en) 2012-10-26 2013-10-25 Thermoelectric conversion module
DE112013005148.6T DE112013005148T5 (en) 2012-10-26 2013-10-25 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012236208A JP5988827B2 (en) 2012-10-26 2012-10-26 Thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2014086650A JP2014086650A (en) 2014-05-12
JP5988827B2 true JP5988827B2 (en) 2016-09-07

Family

ID=50789409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012236208A Expired - Fee Related JP5988827B2 (en) 2012-10-26 2012-10-26 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP5988827B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6639426B2 (en) * 2017-01-05 2020-02-05 株式会社ユタカ技研 Thermoelectric generator
KR102050920B1 (en) * 2017-12-01 2019-12-02 삼성중공업 주식회사 Thermoelectric Generation device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11173701A (en) * 1997-12-08 1999-07-02 Seiko Seiki Co Ltd Temp. regulator
JP2000018095A (en) * 1998-06-30 2000-01-18 Nissan Motor Co Ltd Exhaust heat power generating set
JP4285144B2 (en) * 2003-08-05 2009-06-24 トヨタ自動車株式会社 Waste heat energy recovery device
JP2006083725A (en) * 2004-09-14 2006-03-30 Toyota Motor Corp Exhaust heat power generator
JP2007157908A (en) * 2005-12-02 2007-06-21 Toyota Motor Corp Thermal power generator
EP2180534B1 (en) * 2008-10-27 2013-10-16 Corning Incorporated Energy conversion devices and methods
US20100186422A1 (en) * 2009-01-23 2010-07-29 Gm Global Technology Operations Efficient and light weight thermoelectric waste heat recovery system
WO2010112571A2 (en) * 2009-04-02 2010-10-07 Avl List Gmbh Thermoelectric generator unit
JP2012057579A (en) * 2010-09-10 2012-03-22 Mitsubishi Fuso Truck & Bus Corp Egr cooler of internal combustion engine

Also Published As

Publication number Publication date
JP2014086650A (en) 2014-05-12

Similar Documents

Publication Publication Date Title
WO2014064945A1 (en) Thermoelectric conversion module
JP6078412B2 (en) Thermoelectric power generator
JP2002084007A (en) Thermoelectric module proved with integrated heat exchanger and its usage
JPH1052077A (en) Thermoelectric module
JP6266206B2 (en) Thermoelectric module
KR20110077486A (en) Thermoelectric power generation using exhaustion heat recovery for vehicle
JP5988827B2 (en) Thermoelectric conversion module
TW201230261A (en) Thermoelectric module for an exhaust system
US20180287517A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
US11393969B2 (en) Thermoelectric generation cell and thermoelectric generation module
KR20130071759A (en) Cooling thermoelectric moudule and method of manufacturing method of the same
JP6002623B2 (en) Thermoelectric conversion module
EP2660888A1 (en) Thermoelectric conversion member
JP2004088057A (en) Thermoelectric module
JP2013211471A (en) Thermoelectric power generating device
JP6350297B2 (en) Thermoelectric generator
EP3435431B1 (en) Thermoelectric conversion module
JP2006086402A (en) Tubular thermoelectric module and thermoelectric converting device
KR101724847B1 (en) Thermoelectric Generation Device for vehicle
WO2017164217A1 (en) Thermoelectric conversion module
JP5761123B2 (en) Thermoelectric converter
JP2014110245A (en) Thermoelectric conversion device
JP2014086649A (en) Thermoelectric conversion module
JP2016524438A (en) Thermoelectric device
RU2736734C1 (en) Thermoelectric battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150708

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160809

R150 Certificate of patent or registration of utility model

Ref document number: 5988827

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees