JP2014086649A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP2014086649A
JP2014086649A JP2012236207A JP2012236207A JP2014086649A JP 2014086649 A JP2014086649 A JP 2014086649A JP 2012236207 A JP2012236207 A JP 2012236207A JP 2012236207 A JP2012236207 A JP 2012236207A JP 2014086649 A JP2014086649 A JP 2014086649A
Authority
JP
Japan
Prior art keywords
temperature side
side electrode
thermoelectric conversion
high temperature
tube body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2012236207A
Other languages
Japanese (ja)
Inventor
Masanao Tominaga
昌尚 冨永
Takahiro Jinushi
孝広 地主
Zenzo Ishijima
善三 石島
Masayoshi Mori
正芳 森
Takeshi Yamagami
武 山上
Hiroshi Matsuda
洋 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Showa Denko Materials Co Ltd
Original Assignee
Honda Motor Co Ltd
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Hitachi Chemical Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2012236207A priority Critical patent/JP2014086649A/en
Publication of JP2014086649A publication Critical patent/JP2014086649A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Fuel Cell (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module capable of securing the flatness of top and bottom faces even when a tube body for a compressive fluid to flow has a reduced wall thickness.SOLUTION: The thermoelectric conversion module comprises: a cylindrical tube body 11 used for a compressive fluid to flow; a high temperature side electrode part disposed on each of the top face and the bottom face sides of the tube body and electrically insulated from the tube body; a thermoelectric conversion element disposed on the high temperature side electrode part; a low temperature side electrode part disposed on the thermoelectric conversion element; and a case member 15 for accommodating the tube body, the high temperature side electrode part, the thermoelectric conversion element, and the low temperature side electrode part. The thermoelectric conversion module is configured in such a way that, in a non-formation region of the thermoelectric conversion element in a direction almost perpendicular to the passage direction of the compressive fluid, the upper tube wall and/or the lower tube wall of the tube body has a depressed rib 23 formed so as to touch the upper tube wall and/or the lower tube wall of the tube body, and that the high temperature side electrode part and/or the low temperature side electrode part include a bridge-shaped electrode 25 formed so as to stretch over a recess which is formed as a result of the rib.

Description

本発明は、例えば各種産業機器及び自動車等の排ガス等の圧縮性流体の廃熱を熱源とする、熱電変換モジュールに関する。   The present invention relates to a thermoelectric conversion module using, as a heat source, waste heat of a compressive fluid such as exhaust gas from various industrial equipment and automobiles.

従来の熱電変換モジュールは、複数のp型熱電半導体及びn型熱電半導体の上下面、すなわち高温熱源側の面及び低温熱源側の面に電極を配設して電気回路を構成し、さらに上記電極の外側両面にセラミックスなど電気絶縁板を備える構造が一般的である。   In the conventional thermoelectric conversion module, electrodes are arranged on the upper and lower surfaces of a plurality of p-type thermoelectric semiconductors and n-type thermoelectric semiconductors, that is, on the surface on the high-temperature heat source side and on the surface on the low-temperature heat source side. A structure having an electrical insulating plate such as ceramics on both outer sides is generally used.

一方、近年においては、上記熱電変換モジュールにおいて、高温熱源として各種産業機器及び自動車等の排ガス等の圧縮性流体の廃熱を利用することが試みられている(例えば、特許文献1〜2参照)。   On the other hand, in recent years, in the thermoelectric conversion module, it has been attempted to use waste heat of a compressive fluid such as exhaust gas from various industrial equipment and automobiles as a high-temperature heat source (see, for example, Patent Documents 1 and 2). .

圧縮性流体から効率よく受熱するためには、上記熱電変換モジュールの圧縮性流体が流れる管体、すなわちエクゾースト管の管壁は薄い方がよい。しかしながら、管体の管壁を薄くすると、当該管壁が変形するため管壁を薄くすることができないでいた。このため、圧縮性流体からの受熱が悪くなり、上記熱電変換モジュールの発電効率が低下してしまうという問題があった。   In order to receive heat efficiently from the compressive fluid, the tube body through which the compressive fluid of the thermoelectric conversion module flows, that is, the tube wall of the exhaust tube, is preferably thin. However, when the tube wall of the tube body is thinned, the tube wall is deformed, so that the tube wall cannot be thinned. For this reason, the heat receiving from a compressive fluid worsened, and there existed a problem that the electric power generation efficiency of the said thermoelectric conversion module will fall.

さらに、管体には温度分布があるため、熱電変換モジュールが均一に膨張せず破壊する恐れがあった。   Furthermore, since the tube has a temperature distribution, the thermoelectric conversion module may not be expanded uniformly and may be broken.

特開2007−221895号JP 2007-221895 特開2010−245265号JP 2010-245265 A

本発明は、熱電変換モジュールにおいて、圧縮性流体を流す管体を薄肉化した場合においても、当該管体の変形及び破損を防止して、特に熱電変換素子を配設する上下面の平坦度を確保することができ、各種産業機器及び自動車等などの排ガス等の圧縮性流体の廃熱等を熱源とする、実用性に富んだ熱電変換モジュールを提供することを目的とする。   In the thermoelectric conversion module, even when the tubular body through which the compressive fluid flows is thinned, the tubular body is prevented from being deformed and broken, and in particular, the flatness of the upper and lower surfaces on which the thermoelectric conversion elements are arranged is improved. It is an object of the present invention to provide a thermoelectric conversion module with high practicality that can be ensured and uses waste heat of a compressive fluid such as exhaust gas from various industrial equipment and automobiles as a heat source.

上記目的を達成すべく、本発明は、
圧縮性流体を流すための筒状の管体と、
前記管体の上面側及び下面側それぞれに配設され、前記管体と電気的に絶縁された高温側電極部と、
前記高温側電極部上において、少なくとも一対のp型熱電半導体及びn型熱電半導体が電気的に直列に接続された熱電変換素子と、
前記熱電変換素子上において、前記p型熱電半導体及び前記n型熱電半導体を電気的に直列に接続する低温側電極部と、
前記低温側電極部との間に冷媒を流すための空隙を設けるようにして、前記管体、前記高温側電極部、前記熱電変換素子、及び前記低温側電極部を収納するためのケース部材とを具え、
前記圧縮性流体の流路方向と略垂直な方向であって、前記熱電変換素子の非形成領域において、前記管体の上管壁及び下管壁の少なくとも一方が、前記管体の前記下管壁及び前記上管壁の少なくとも一方と当接するように凹んでリブを形成し、
前記高温側電極部及び前記低温側電極部の少なくとも一方は、前記リブに起因して形成された凹部を跨ぐようにして形成されたブリッジ状電極を含むことを特徴とする、熱電変換モジュールに関する。
In order to achieve the above object, the present invention provides:
A tubular tube for flowing a compressive fluid;
A high temperature side electrode portion disposed on each of an upper surface side and a lower surface side of the tube body and electrically insulated from the tube body;
A thermoelectric conversion element in which at least a pair of a p-type thermoelectric semiconductor and an n-type thermoelectric semiconductor are electrically connected in series on the high temperature side electrode portion;
On the thermoelectric conversion element, a low-temperature side electrode portion that electrically connects the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor in series;
A case member for housing the tubular body, the high temperature side electrode portion, the thermoelectric conversion element, and the low temperature side electrode portion so as to provide a gap for flowing a refrigerant between the low temperature side electrode portion and With
In the non-formation region of the thermoelectric conversion element, at least one of the upper tube wall and the lower tube wall of the tubular body is the lower tube of the tubular body in a direction substantially perpendicular to the flow direction of the compressive fluid. Forming a rib indented to contact at least one of the wall and the upper tube wall;
At least one of the high temperature side electrode part and the low temperature side electrode part includes a bridge-like electrode formed so as to straddle a recess formed due to the rib, and relates to a thermoelectric conversion module.

本発明によれば、例えば各種産業機器及び自動車等の排ガス等の圧縮性流体を流す熱電変換モジュールの管体に、当該管体の上管壁及び下管壁の少なくとも一方が、管体の下管壁及び上管壁の少なくとも一方と当接するように凹んでリブを形成するようにしている。したがって、上記管体を薄肉化し、管体内を流れる圧縮性流体の熱を管体の上下面に配設した熱電変換素子に効率良く伝達させようとした場合においても、リブが管体上下面の支持部材として機能するようになるので、管体の剛性を高く保持することができる。   According to the present invention, for example, at least one of the upper tube wall and the lower tube wall of the thermoelectric conversion module that flows a compressive fluid such as exhaust gas from various industrial equipment and automobiles, etc. A rib is formed to be recessed so as to contact at least one of the tube wall and the upper tube wall. Therefore, even when the tubular body is thinned and the heat of the compressive fluid flowing through the tubular body is efficiently transferred to the thermoelectric conversion elements disposed on the upper and lower surfaces of the tubular body, the ribs are formed on the upper and lower surfaces of the tubular body. Since it comes to function as a support member, the rigidity of the tube can be kept high.

なお、リブの形態は、管体の下管壁及び上管壁の少なくとも一方に当接させる側を狭窄して曲げ加工部の頂部を構成し、管体の下管壁及び上管壁に当接しない側を開口させるように凹ませ、凹み部分が空間として残存させるようにすることもできるし、管体の下管壁及び上管壁の少なくとも一方に当接させる側を狭窄して曲げ加工部の頂部を構成し、管体の下管壁及び上管壁に当接しない側を閉口させるように凹ませ、リブの両側壁面が接触及び密着し、凹み部分に空間が残存しないようにすることもできる。この場合、後者の形態におけるリブの方の強度が増大するので、管体の剛性をより高く保持することができる。   The rib is formed by constricting the side to be brought into contact with at least one of the lower tube wall and the upper tube wall of the tube body to form the top of the bent portion, and is in contact with the lower tube wall and the upper tube wall of the tube body. The side that does not contact is recessed so that it opens, and the recessed portion can be left as a space, or the side that makes contact with at least one of the lower and upper tube walls of the tube is narrowed and bent. Construct the top of the part, and dent so that the side that does not contact the lower tube wall and upper tube wall of the tube is closed, the both side walls of the rib are in contact and in close contact, so that no space remains in the recessed part You can also In this case, since the strength of the rib in the latter form is increased, the rigidity of the tubular body can be kept higher.

結果として、管体の上下面の変形を抑制することができ、当該上下面の平坦度を向上させることができる。このため、管体の上下面に高温側電極部を密着させることができ、さらに熱電変換素子を、高温側電極部を介して密着させることができるので、管体を薄肉化した場合においても、当該管体内を流れる圧縮性流体の熱を効率良く伝達することができる。   As a result, deformation of the upper and lower surfaces of the tubular body can be suppressed, and the flatness of the upper and lower surfaces can be improved. For this reason, the high temperature side electrode portion can be brought into close contact with the upper and lower surfaces of the tubular body, and further, the thermoelectric conversion element can be brought into close contact with the high temperature side electrode portion, so even when the tubular body is thinned, The heat of the compressive fluid flowing through the tube can be efficiently transferred.

一方、管体にリブを形成した場合においては、管体の上下面において、当該リブの非形成領域、すなわちリブを中心とした両側に熱電変換素子を構成するp型半導体素子及びn型半導体素子を配列し、さらに、リブを跨ぐようにして、p型半導体素子及びn型半導体素子を電気的に直列に接続する高温側電極部及び低温側電極部を配設する。   On the other hand, when ribs are formed on the tubular body, p-type semiconductor elements and n-type semiconductor elements that form thermoelectric conversion elements on the upper and lower surfaces of the tubular body on the rib non-formation regions, that is, on both sides centered on the ribs. And a high temperature side electrode portion and a low temperature side electrode portion for electrically connecting the p-type semiconductor element and the n-type semiconductor element in series so as to straddle the rib.

この場合、特に高温側電極部は管体に直接接触しているので、管体内を流れる圧縮性流体の熱の影響を受けやすく、通常のような板状の電極から構成した場合においては、高温側電極部の熱膨張によって特にリブ近傍に応力集中が生じ、部分的に断裂等、破損してしまう場合がある。したがって、管体上に配設した熱電変換素子の全体から、生成した電流を取り出すことができない場合がある。   In this case, since the high temperature side electrode part is in direct contact with the pipe body, it is easily affected by the heat of the compressive fluid flowing in the pipe body. Due to the thermal expansion of the side electrode portion, stress concentration occurs particularly in the vicinity of the rib, which may be partially broken or damaged. Therefore, the generated current may not be extracted from the entire thermoelectric conversion element disposed on the tube.

しかしながら、本発明においては、リブの両側に高温側電極部を分割配置し、これら2つの分割高温側電極部間を、上記リブを跨ぐようにしてブリッジ状の電極で接続するようにしている。ブリッジ状電極は、例えば薄板、板ばね状の電極部材、銅線、銅の撚り線等から構成することができるので柔軟性に富み、上述のように高温側電極部が膨張した場合においても、上記ブリッジ状電極は容易に変形することができる。したがって、高温側電極部の熱膨脹による応力集中に起因した、当該高温側電極部の部分的な断裂等の破損を防止することができる。この結果、管体上に配設した熱電変換素子の全体から、生成した電流を取り出すことができなくなるという問題を回避することができる。   However, in the present invention, the high temperature side electrode portions are arranged separately on both sides of the rib, and the two divided high temperature side electrode portions are connected by a bridge-like electrode so as to straddle the rib. The bridge-like electrode can be composed of, for example, a thin plate, a leaf spring-like electrode member, a copper wire, a copper stranded wire, etc., so that it is rich in flexibility, and even when the high temperature side electrode portion expands as described above, The bridge electrode can be easily deformed. Therefore, it is possible to prevent damage such as partial tearing of the high temperature side electrode portion due to stress concentration due to thermal expansion of the high temperature side electrode portion. As a result, the problem that it becomes impossible to take out the produced | generated electric current from the whole thermoelectric conversion element arrange | positioned on a tubular body can be avoided.

なお、ブリッジ状電極は、高温側電極部の一部を構成するので、本願発明においては、当該高温側電極部の構成要素に含めている。   In addition, since the bridge-like electrode constitutes a part of the high temperature side electrode portion, in the present invention, it is included in the constituent elements of the high temperature side electrode portion.

本発明の一例において、上記高温側電極部は、順次に積層された第1の金属層/絶縁層/第2の金属層の3層構造とし、ブリッジ状電極は、第2の金属層と電気的に接続するようにして形成することができる。   In an example of the present invention, the high-temperature side electrode portion has a three-layer structure of a first metal layer / insulating layer / second metal layer that are sequentially stacked, and the bridge-shaped electrode is electrically connected to the second metal layer. Can be formed so as to be connected to each other.

高温側電極部は、管体と電気的に絶縁するようにして配設するが、管体及び高温側電極部は、一般に金属体からなるので、管体と高温側電極部との間に絶縁体(絶縁層)を直接配設すると、特に絶縁体と管体との密着性(接合性)が悪く、これらの間に隙間を形成して管体から高温側電極部への伝熱を十分に行うことができない場合がある。   The high temperature side electrode portion is disposed so as to be electrically insulated from the tube body. However, since the tube body and the high temperature side electrode portion are generally made of a metal body, insulation is provided between the tube body and the high temperature side electrode portion. If the body (insulating layer) is placed directly, the adhesion (bonding) between the insulator and the tube is particularly poor, and a gap is formed between them to sufficiently transfer heat from the tube to the high-temperature side electrode. May not be able to be done.

しかしながら、上述のような3層構造とすることにより、第1層目に位置する第1の金属層は管体と接触することになるが、両者ともに金属体からなるので、これら間の密着性(接合性)が向上し、両者の間に隙間を形成することがない。したがって、管体から高温側電極部への伝熱性が向上する。   However, with the three-layer structure as described above, the first metal layer located in the first layer comes into contact with the tubular body, but both are made of a metal body, so the adhesion between them is (Jointability) is improved and no gap is formed between them. Therefore, the heat transfer from the tubular body to the high temperature side electrode portion is improved.

なお、高温側電極部を上述のように3層構造とした場合、上記ブリッジ状電極は最上層に位置する第2の金属層と接続するようにする。これによって、高温側電極部の熱膨脹による応力集中に起因した、当該高温側電極部の部分的な断裂等の破損をより効果的に防止することができる。   In the case where the high temperature side electrode portion has a three-layer structure as described above, the bridge electrode is connected to the second metal layer located at the uppermost layer. As a result, it is possible to more effectively prevent breakage such as partial tearing of the high temperature side electrode portion due to stress concentration due to thermal expansion of the high temperature side electrode portion.

以上、本発明によれば、熱電変換モジュールにおいて、圧縮性流体を流す管体を薄肉化した場合においても、当該管体の変形及び破損を防止して、特に熱電変換素子を配設する上下面の平坦度を確保することでき、各種産業機器及び自動車等などの排ガス等の圧縮性流体の廃熱等を熱源とする、実用性に富んだ熱電変換モジュールを提供することができる。   As described above, according to the present invention, in the thermoelectric conversion module, even when the tubular body through which the compressive fluid flows is thinned, the upper and lower surfaces that prevent deformation and breakage of the tubular body and in particular arrange the thermoelectric conversion element. Therefore, it is possible to provide a practical thermoelectric conversion module that uses waste heat of a compressive fluid such as exhaust gas from various industrial equipment and automobiles as a heat source.

実施形態の熱電変換モジュールの一例を概略的に示す斜視図である。It is a perspective view showing roughly an example of a thermoelectric conversion module of an embodiment. 図1に示す熱電変換モジュールのI−I線に沿った断面図である。It is sectional drawing along the II line of the thermoelectric conversion module shown in FIG. 図1に示す熱電変換モジュールのII-II線に沿った断面図である。It is sectional drawing along the II-II line of the thermoelectric conversion module shown in FIG. 図2に示す熱電変換モジュールのリブ近傍を拡大して示す図である。It is a figure which expands and shows the rib vicinity of the thermoelectric conversion module shown in FIG. 図2に示す熱電変換モジュールの管体の製造例を示す図である。It is a figure which shows the manufacture example of the tubular body of the thermoelectric conversion module shown in FIG.

以下、本発明の熱電変換モジュールの詳細並びにその他の特徴について、実施の形態に基づいて説明する。   Hereinafter, the details and other features of the thermoelectric conversion module of the present invention will be described based on embodiments.

図1は、本実施形態の熱電変換モジュールの一例を概略的に示す斜視図であり、図2は、図1に示す熱電変換モジュールのI−I線に沿った断面図であり、図3は、図1に示す熱電変換モジュールのII-II線に沿った断面図である。また、図4は、図2に示す熱電変換モジュールのリブ近傍を拡大して示す図である。   FIG. 1 is a perspective view schematically showing an example of the thermoelectric conversion module of the present embodiment, FIG. 2 is a cross-sectional view of the thermoelectric conversion module shown in FIG. 1, taken along line II, and FIG. FIG. 2 is a cross-sectional view taken along line II-II of the thermoelectric conversion module shown in FIG. FIG. 4 is an enlarged view showing the vicinity of the rib of the thermoelectric conversion module shown in FIG.

図1〜3に示すように、熱電変換モジュール10は、圧縮性流体を流すための、平坦な上面11A及び下面11Bを有する筒状の管体11を有している。管体11は、その略中央において、管体11の上壁面11Cが下方に向けて凹み、管体11の下壁面11Dに当接してリブ23を形成している。すなわち、管体11の、上記圧縮性流体の流路方向と略垂直な方向においてリブ23が形成されている。   As shown in FIGS. 1 to 3, the thermoelectric conversion module 10 includes a tubular tube body 11 having a flat upper surface 11 </ b> A and a lower surface 11 </ b> B for flowing a compressive fluid. In the tube body 11, the upper wall surface 11 </ b> C of the tube body 11 is recessed downward at substantially the center, and a rib 23 is formed in contact with the lower wall surface 11 </ b> D of the tube body 11. In other words, the ribs 23 are formed in the tube body 11 in a direction substantially perpendicular to the flow direction of the compressive fluid.

上述したリブ23が形成された管体11は、例えば、図5に示すように、略中央部に後のリブを形成する外壁面に凹部(溝部)23Xが形成された上部材21Xを準備するとともに、平坦な板状の下部材21Yを準備し、これらの部材を図中丸印で示す箇所で溶接等することにより形成することができる。   For example, as shown in FIG. 5, the tubular body 11 having the ribs 23 described above prepares an upper member 21 </ b> X in which a concave portion (groove portion) 23 </ b> X is formed on an outer wall surface that forms a rear rib in a substantially central portion. At the same time, a flat plate-like lower member 21Y is prepared, and these members can be formed by welding or the like at locations indicated by circles in the drawing.

なお、本実施形態では、リブ23を管体11の略中央部に形成しているが、管体11の上面11A又は下面11Bのいずれかの箇所に形成されていれば足りる。但し、管体11の中央部近傍に形成することにより、以下に説明するように、リブ23の作用効果をより効果的に奏することができるようになる。   In the present embodiment, the rib 23 is formed at the substantially central portion of the tubular body 11, but it is sufficient if it is formed at any location on the upper surface 11 </ b> A or the lower surface 11 </ b> B of the tubular body 11. However, by forming the tube body 11 in the vicinity of the central portion, the effects of the ribs 23 can be more effectively exhibited as described below.

また、本実施形態では、管体11の上壁面11Cが下方に向けて凹み、管体11の下壁面11Dに当接してリブ23を形成しているが、管体11の下壁面11Dが上方に向けて凹み、管体11の上壁面11Cに当接することによりリブを形成してもよい。さらに、管体11の上壁面11Cが下方へ向けて凹むと同時に、下壁面11Dが上方へ向けて凹み、これらの凹み部分が互いに当接することによってもリブを形成することができる。なお、この場合においても、管体11の中央部近傍にリブを形成することにより、以下に説明するように、リブの作用効果をより効果的に奏することができるようになる。   Further, in the present embodiment, the upper wall surface 11C of the tube body 11 is recessed downward and abuts against the lower wall surface 11D of the tube body 11 to form the rib 23. The ribs may be formed by being recessed toward the top and contacting the upper wall surface 11C of the tube body 11. Furthermore, at the same time that the upper wall surface 11C of the tubular body 11 is recessed downward, the lower wall surface 11D is recessed upward, and the ribs can also be formed by contacting these recessed portions with each other. Even in this case, by forming the rib in the vicinity of the central portion of the tubular body 11, the effect of the rib can be more effectively exhibited as described below.

図2では、リブ23の、管体11の上壁面11C側を開口させて、リブ23内に空間が形成されるような構造としているが、当該部分を閉口させて、リブ23の両側壁面を接触及び密着させ、上述のような空間が形成されないような構造とすることもできる。この場合、リブ23の強度がより向上するので、以下に説明するように、リブの作用効果をより効果的に奏することができるようになる。   In FIG. 2, the rib 23 has a structure in which the upper wall surface 11 </ b> C side of the tubular body 11 is opened and a space is formed in the rib 23. It is also possible to make a structure in which the above-described space is not formed by contact and close contact. In this case, since the strength of the ribs 23 is further improved, the effects of the ribs can be more effectively exhibited as described below.

管体11の上面11A及び下面11Bには、管体11と電気的に絶縁された高温側電極部12,12が、リブ23の両側に分割されて配設されている。分割された高温側電極部12,12は、リブ23を跨ぐようにして形成されたブリッジ状電極25によって電気的に接続されている。   On the upper surface 11 </ b> A and the lower surface 11 </ b> B of the tube body 11, high-temperature side electrode portions 12 and 12 that are electrically insulated from the tube body 11 are disposed on both sides of the rib 23. The divided high temperature side electrode portions 12 and 12 are electrically connected by a bridge electrode 25 formed so as to straddle the rib 23.

また、分割された高温側電極部12,12上には、リブ23の形成領域を除いて、p型熱電半導体131及びn型熱電半導体132が互いに隣接するようにしてマトリックス状に配設されるとともに、分割された高温側電極部12,12によって電気的に直列に接続された熱電変換素子13,13が配設されている。さらに、熱電変換素子13,13上には、p型熱電半導体131及びn型熱電半導体132を電気的に直列に接続する低温側電極部14,14が配設されている。   In addition, on the divided high temperature side electrode portions 12 and 12, the p-type thermoelectric semiconductor 131 and the n-type thermoelectric semiconductor 132 are arranged in a matrix so as to be adjacent to each other except for the formation region of the ribs 23. In addition, thermoelectric conversion elements 13 and 13 that are electrically connected in series by the divided high-temperature side electrode parts 12 and 12 are disposed. Furthermore, on the thermoelectric conversion elements 13, 13, low temperature side electrode portions 14, 14 that electrically connect the p-type thermoelectric semiconductor 131 and the n-type thermoelectric semiconductor 132 in series are disposed.

管体11、高温側電極部12,12、熱電変換素子13,13、及び低温側電極部14,14は、気密に保持されたケース部材15中に収納され、低温側電極部14,14とケース部材15との間には、ケース部材15(熱電変換モジュール10)の外部に設けられた、冷媒の導入口18及び排出口19を通じて、ケース部材15(熱電変換モジュール20)の上壁面15A及び下壁面15Bで形成される空間内に冷媒を導入及び排出して、低温側電極部14,14を冷却するための空隙16が形成されている(図3参照)。   The tube 11, the high temperature side electrode parts 12 and 12, the thermoelectric conversion elements 13 and 13, and the low temperature side electrode parts 14 and 14 are accommodated in a case member 15 that is kept airtight, and the low temperature side electrode parts 14 and 14 and Between the case member 15, an upper wall surface 15 </ b> A of the case member 15 (thermoelectric conversion module 20) and a refrigerant introduction port 18 and a discharge port 19 provided outside the case member 15 (thermoelectric conversion module 10). A space 16 is formed in the space formed by the lower wall surface 15B for introducing and discharging the refrigerant to cool the low temperature side electrode portions 14 and 14 (see FIG. 3).

また、図3に示すように、空隙16中の、冷媒の導入口18及び排出口19と相対する側には、冷媒からの冷熱を低温側電極部14,14に効率良く伝達するための冷却フィン16Aが配設されている。   Further, as shown in FIG. 3, on the side of the air gap 16 facing the refrigerant inlet 18 and outlet 19, cooling for efficiently transmitting cold heat from the refrigerant to the low temperature side electrode portions 14, 14. Fins 16A are provided.

なお、ケース部材15は、図1及び図3に示すように、II-II方向の断面において、高温側電極部12,12、熱電変換素子13、13、及び低温側電極部14、14が収納され、冷媒を流すための空隙16が形成された部分が最も厚くなっており、当該部分から外方に向けてステップ状に薄くなるように構成されている。   As shown in FIGS. 1 and 3, the case member 15 accommodates the high temperature side electrode portions 12 and 12, the thermoelectric conversion elements 13 and 13, and the low temperature side electrode portions 14 and 14 in the section taken along the line II-II. In addition, the portion where the gap 16 for flowing the coolant is formed is the thickest, and is configured to be thinned stepwise from the portion toward the outside.

また、ケース部材15の、高温側電極部12、12、熱電変換素子13,13、及び低温側電極部14,14を収納した空間は、真空排気されて真空状態に保持されている。   Moreover, the space which accommodated the high temperature side electrode parts 12 and 12, the thermoelectric conversion elements 13 and 13 and the low temperature side electrode parts 14 and 14 of the case member 15 is evacuated and kept in a vacuum state.

なお、管体11の上面21A及び下面21Bに高温側電極部12,12が当接しており、ケース部材15の、冷媒を流すための空間を形成している上壁面15Aに対抗する下壁面15Bに低温側電極部14,14が当接しているが、いずれか一方をろう材等で接合してもよい。   The high temperature side electrode portions 12 and 12 are in contact with the upper surface 21A and the lower surface 21B of the tube body 11, and the lower wall surface 15B that opposes the upper wall surface 15A that forms a space for flowing the coolant of the case member 15. Although the low temperature side electrode portions 14 and 14 are in contact with each other, either one may be joined with a brazing material or the like.

このとき、熱電変換素子13,13等を収納した上記空間を真空にすることによって、ケース部材15の下壁面15Bが熱電変換素子13,13を加圧して、上述した当接部の密着性が向上する。   At this time, the lower wall 15B of the case member 15 pressurizes the thermoelectric conversion elements 13 and 13 by evacuating the space containing the thermoelectric conversion elements 13 and 13 and the above-mentioned contact portion has a close adhesion. improves.

なお、上述した当接部には、緩衝材や予備材等を管体11の上面11A及び下面11Bと高温側電極部12,12との間、並びにケース部材15の下壁面15Bと低温側電極部14,14との間に挟み込まれるようにして配設することもできる。   It should be noted that a buffer material, a spare material, and the like are provided between the upper surface 11A and the lower surface 11B of the tubular body 11 and the high temperature side electrode portions 12 and 12 and the lower wall surface 15B of the case member 15 and the low temperature side electrode. It can also be disposed so as to be sandwiched between the portions 14 and 14.

さらに、ケース部材15(熱電変換モジュール10)には、熱電変換素子13,13にて発生した電流を外部に取り出すための電極端子17,17が、図示しないリード線を介して熱電変換素子13,13と電気的に接続されている。   Furthermore, in the case member 15 (thermoelectric conversion module 10), electrode terminals 17 and 17 for taking out the current generated in the thermoelectric conversion elements 13 and 13 to the outside are provided via the lead wires (not shown). 13 is electrically connected.

図1〜3に示す熱電変換モジュール10においては、管体11内に各種産業機器及び自動車等の排ガス等の圧縮性流体を導入し、当該圧縮性流体の廃熱によって管体11の上面11A及び下面11Bを加熱する。一方、ケース部材15の空隙16中には冷媒を導入する。管体11の上面11A及び下面11Bを加熱した熱は高温側電極部12,12を介して熱電変換素子13,13の下方に伝達され、熱電変換素子13,13の下部を加熱する。一方、空隙16内に導入された冷媒からの冷熱は低温側電極部14,14を介して熱電変換素子13,13の上方に伝達され、熱電変換素子13,13の上部を冷却する。   In the thermoelectric conversion module 10 shown in FIGS. 1 to 3, a compressive fluid such as exhaust gas from various industrial equipment and automobiles is introduced into the tube body 11, and the upper surface 11 </ b> A of the tube body 11 is exhausted by waste heat of the compressive fluid. The lower surface 11B is heated. On the other hand, a refrigerant is introduced into the gap 16 of the case member 15. The heat which heated the upper surface 11A and the lower surface 11B of the pipe body 11 is transmitted to the lower part of the thermoelectric conversion elements 13 and 13 via the high temperature side electrode parts 12 and 12, and the lower part of the thermoelectric conversion elements 13 and 13 is heated. On the other hand, cold heat from the refrigerant introduced into the gap 16 is transmitted to the upper side of the thermoelectric conversion elements 13 and 13 via the low temperature side electrode portions 14 and 14, and cools the upper portions of the thermoelectric conversion elements 13 and 13.

その結果、熱電変換素子13,13には、ゼーベック効果によって起電力が生じ、この起電力によって、熱電変換素子13,13を構成するp型熱電半導体131及びn型熱電半導体132を電気的に直列に接続した高温側電極部12,12及び低温側電極部14,14を通じて、熱電変換素子13,13の全体に亘って電流が流れるようになり、当該電流は、図示しないリード線を介して、電極端子17,17から熱電変換モジュール10の外部に取出される。   As a result, an electromotive force is generated in the thermoelectric conversion elements 13 and 13 by the Seebeck effect, and the p-type thermoelectric semiconductor 131 and the n-type thermoelectric semiconductor 132 constituting the thermoelectric conversion elements 13 and 13 are electrically connected in series by this electromotive force. Through the high temperature side electrode portions 12 and 12 and the low temperature side electrode portions 14 and 14 connected to the thermoelectric conversion elements 13 and 13, current flows through the lead wire (not shown). The electrode terminals 17 and 17 are taken out of the thermoelectric conversion module 10.

管体11は、以下に説明するように薄肉化した場合においても十分な剛性を有し、各種産業機器及び自動車等の排ガス等の圧縮性流体を流し、この圧縮性流体に含まれる腐食性ガスに対して抗することができるように、例えばステンレス鋼から構成する。   The tubular body 11 has sufficient rigidity even when it is thinned as will be described below, and flows a compressive fluid such as exhaust gas from various industrial equipment and automobiles, and corrosive gas contained in the compressive fluid. For example, stainless steel is used.

高温側電極部12,12及び低温側電極部14,14は、耐熱性及び機械的強度に優れるとともに、比較的高い導電性を示すことが要求され、例えば、Mo,Cu,W,Ti,Niおよびこれらの合金あるいはステンレス鋼などから構成することができる。なお、電極端子17,17も同様の材料から構成することができる。   The high temperature side electrode portions 12 and 12 and the low temperature side electrode portions 14 and 14 are required to exhibit excellent heat resistance and mechanical strength and relatively high conductivity. For example, Mo, Cu, W, Ti, Ni And alloys thereof or stainless steel. The electrode terminals 17 and 17 can also be made of the same material.

また、ブリッジ状電極25は、例えば、薄板、板ばね状の電極部材、銅線、銅の撚り線等の柔軟性に富んだ電極材料から構成することが好ましい。   The bridge-like electrode 25 is preferably made of a flexible electrode material such as a thin plate, a leaf spring-like electrode member, a copper wire, or a copper stranded wire.

熱電変換素子13,13を構成するp型熱電半導体131及びn型熱電半導体132は熱伝導率が低く、高温側及び低温側で大きな温度差を得、ゼーベック効果により大きな電位差を生成する材料から構成することが好ましく、例えば、Bi−Te系,Pb−Te系,Si−Ge系,あるいはMg−Si系等の半導体材料から構成する。   The p-type thermoelectric semiconductor 131 and the n-type thermoelectric semiconductor 132 constituting the thermoelectric conversion elements 13 and 13 are made of a material having low thermal conductivity, obtaining a large temperature difference between the high temperature side and the low temperature side, and generating a large potential difference by the Seebeck effect. For example, it is made of a semiconductor material such as Bi—Te, Pb—Te, Si—Ge, or Mg—Si.

また、ケース部材15は、熱電変換モジュール10を搭載する各種産業機器及び自動車等の軽量化、耐食性及び剛性の観点から、例えばMg,Al、Mo,Cu,W,Ti,Ni,Fe,ステンレス鋼あるいはこれらの合金から構成することができる。   The case member 15 is made of, for example, Mg, Al, Mo, Cu, W, Ti, Ni, Fe, and stainless steel from the viewpoints of weight reduction, corrosion resistance, and rigidity of various industrial equipment and automobiles on which the thermoelectric conversion module 10 is mounted. Or it can comprise from these alloys.

なお、図示しない以下に説明するリード線は、電気的良導体、例えばCu,Ag,Au,Ni,Feおよびこれらの合金等から構成することができる。   In addition, the lead wire demonstrated below which is not shown in figure can be comprised from an electrical good conductor, for example, Cu, Ag, Au, Ni, Fe, these alloys, etc.

上述した起電力、すなわち熱電変換効率は、熱電変換素子13,13の上下における温度差が大きくなるにつれて高くなるので、熱電変換素子13,13の下部は熱電変換素子13,13を構成するp型熱電半導体131及びn型熱電半導体132が破損しない限りにおいて高温に加熱されることが望ましい。   The electromotive force, that is, the thermoelectric conversion efficiency described above increases as the temperature difference between the upper and lower sides of the thermoelectric conversion elements 13 and 13 increases, so that the lower part of the thermoelectric conversion elements 13 and 13 constitutes the p-type constituting the thermoelectric conversion elements 13 and 13. It is desirable that the thermoelectric semiconductor 131 and the n-type thermoelectric semiconductor 132 be heated to a high temperature as long as they are not damaged.

したがって、図1〜3に示す熱電変換モジュール10においては、管体11を構成する材料、例えばステンレス鋼等の厚さを可能な限り薄く、例えば0.5mm程度とし、管体11内を流れる圧縮性流体の廃熱を熱電変換素子13,13の下部に効率良く伝達する。   Accordingly, in the thermoelectric conversion module 10 shown in FIGS. 1 to 3, the material constituting the tube body 11, for example, stainless steel or the like is made as thin as possible, for example, about 0.5 mm, and compressed in the tube body 11. The waste heat of the ionic fluid is efficiently transmitted to the lower part of the thermoelectric conversion elements 13 and 13.

一方、本実施形態の熱電変換モジュール10においては、管体11の圧縮性流体の流路と垂直な幅方向の略中央部において、管体11の上管壁11Cが、管体11の下管壁11Dに当接するように凹んでリブ23を形成するようにしている。したがって、管体11を薄肉化し、管体11内を流れる圧縮性流体の熱を管体の上下面に配設した熱電変換素子13,13に効率良く伝達させようとした場合においても、リブ23が支持部材として作用するようになるので、管体11の剛性を高く保持することができる。   On the other hand, in the thermoelectric conversion module 10 of the present embodiment, the upper tube wall 11C of the tube body 11 is the lower tube of the tube body 11 at a substantially central portion in the width direction perpendicular to the flow path of the compressive fluid of the tube body 11. The ribs 23 are formed to be recessed so as to contact the wall 11D. Therefore, even when the tubular body 11 is thinned and the heat of the compressive fluid flowing through the tubular body 11 is efficiently transmitted to the thermoelectric conversion elements 13 and 13 disposed on the upper and lower surfaces of the tubular body 11, the rib 23 Acts as a support member, so that the rigidity of the tube body 11 can be kept high.

したがって、管体11の上下面11A及び11Bの変形を抑制することができ、上下面11A及び11Bの平坦度を向上させることができる。このため、管体11の上下面11A及び11Bに高温側電極部12,12を密着させることができ、さらに熱電変換素子13,13を、高温側電極部12,12を介して密着させることができるので、管体11を薄肉化した場合においても、管体11内を流れる圧縮性流体の熱を効率良く伝達することができる。   Therefore, the deformation of the upper and lower surfaces 11A and 11B of the tubular body 11 can be suppressed, and the flatness of the upper and lower surfaces 11A and 11B can be improved. For this reason, high temperature side electrode parts 12 and 12 can be stuck to upper and lower surfaces 11A and 11B of tube body 11, and thermoelectric conversion elements 13 and 13 can be stuck via high temperature side electrode parts 12 and 12. Therefore, even when the tubular body 11 is thinned, the heat of the compressive fluid flowing in the tubular body 11 can be efficiently transmitted.

管体11を薄肉化した場合、高温側電極部12,12は管体11に直接接触しているので、管体11内を流れる圧縮性流体の熱の影響を受けやすく、熱膨張し易くなるが、本実施形態の熱電変換モジュール10においては、リブ23の両側に配設した分割された高温側電極部12,12間を、リブ23を跨ぐようにしてブリッジ状電極25で接続するようにしている。   When the tube body 11 is thinned, the high temperature side electrode portions 12 and 12 are in direct contact with the tube body 11, so that the tube body 11 is easily affected by the heat of the compressive fluid flowing in the tube body 11 and is likely to thermally expand. However, in the thermoelectric conversion module 10 of the present embodiment, the divided high temperature side electrode portions 12 and 12 arranged on both sides of the rib 23 are connected by the bridge electrode 25 so as to straddle the rib 23. ing.

上述のように、ブリッジ状電極25は、例えば板ばね状の電極部材等の柔軟性に富んだ電極材料から構成しているので、上述のようにリブ23の両側に配設された分割高温側電極部12,12が熱膨張した場合においても、ブリッジ状電極25は容易に変形することができる。したがって、分割された高温側電極部12,12の熱膨脹をブリッジ状電極25によって吸収することができるので、リブ23の両側に配設された分割された高温側電極部12,12の断線等を防止することができ、熱電変換素子13,13の全体から、生成した電気エネルギーを熱電変換モジュール10の外部に取り出すことができなくなるという問題を回避することができる。   As described above, since the bridge-shaped electrode 25 is made of a flexible electrode material such as a plate spring-shaped electrode member, the divided high temperature side disposed on both sides of the rib 23 as described above. Even when the electrode portions 12 and 12 are thermally expanded, the bridge electrode 25 can be easily deformed. Therefore, since the thermal expansion of the divided high temperature side electrode portions 12 and 12 can be absorbed by the bridge-like electrode 25, the disconnection of the divided high temperature side electrode portions 12 and 12 disposed on both sides of the rib 23 can be prevented. The problem that it becomes impossible to take out the produced | generated electric energy out of the thermoelectric conversion module 10 from the whole thermoelectric conversion elements 13 and 13 can be avoided.

なお、本実施形態の熱電変換モジュール10と異なり、高温側電極部12,12をリブ23の両側に分割させず、リブ23を跨ぐようにして連続的に形成した場合は、管体11の温度の不均一性に基づく熱膨張の不均一性に起因する熱応力により、リブ23に過度に応力集中が生じ、高温側電極部12,12及び熱電変換素子13,13間で破損し易くなる。この結果、管体11上に配設した熱電変換素子13,13の全体から、生成した電気エネルギーを取り出すことがより困難になる。   In addition, unlike the thermoelectric conversion module 10 of this embodiment, when the high temperature side electrode parts 12 and 12 are not divided | segmented into the both sides of the rib 23, and are continuously formed so that the rib 23 may be straddled, the temperature of the tubular body 11 Due to the thermal stress resulting from the non-uniformity of thermal expansion based on the non-uniformity of the above, excessive concentration of stress occurs in the rib 23 and the high-temperature side electrode portions 12 and 12 and the thermoelectric conversion elements 13 and 13 are likely to be damaged. As a result, it becomes more difficult to extract the generated electric energy from the entire thermoelectric conversion elements 13 and 13 disposed on the tube body 11.

図4に示すように、高温側電極部12,12は、順次に積層された第1の金属層/絶縁層/第2の金属層の3層構造とし、ブリッジ状電極25は、第2の金属層と電気的に接続するようにして形成することができる。   As shown in FIG. 4, the high temperature side electrode portions 12 and 12 have a three-layer structure of a first metal layer / insulating layer / second metal layer that are sequentially stacked, and the bridge electrode 25 It can be formed so as to be electrically connected to the metal layer.

高温側電極部12,12は、管体11と電気的に絶縁するようにして配設するが、管体11及び高温側電極部12,12は、上述のように金属体からなるので、管体11と高温側電極部12,12との間に絶縁体(絶縁層)を直接配設すると、特に絶縁体と管体11との密着性(接合性)が悪く、高温側電極部12,12を管体11上に安定的に配置することができない。   The high temperature side electrode portions 12 and 12 are disposed so as to be electrically insulated from the tube body 11, but the tube body 11 and the high temperature side electrode portions 12 and 12 are made of a metal body as described above. If an insulator (insulating layer) is directly disposed between the body 11 and the high temperature side electrode parts 12, 12, adhesion (bonding) between the insulator and the tube body 11 is particularly poor, and the high temperature side electrode part 12, 12 cannot be stably disposed on the tube 11.

しかしながら、上述のような3層構造とすることにより、第1層目に位置する第1の金属層は、管体11と接触することになるが、両者ともに金属体からなるので、これら間の密着性(接合性)を向上させることができる。したがって、高温側電極部12,12を管体11上に安定的に配置することができるようになる。同様に、低温側電極部14,14のケース部材15の下壁面15Bとの密着性(接合性)も向上する。   However, by adopting the three-layer structure as described above, the first metal layer located in the first layer is in contact with the tubular body 11, but both are made of a metal body. Adhesion (bondability) can be improved. Therefore, the high temperature side electrode portions 12 and 12 can be stably disposed on the tube body 11. Similarly, the adhesion (bondability) between the low-temperature side electrode portions 14 and 14 and the lower wall surface 15B of the case member 15 is also improved.

高温側電極部12,12を上述のように3層構造とした場合、ブリッジ状電極25は最上層に位置する第2の金属層と接続するようにする。これによって、高温側電極部12,12をリブ23の両側に分割配置した場合においても、分割された高温側電極部12,12の熱膨張による変形をブリッジ状電極25の変形によって吸収することができるので、分割された高温側電極部12,12間の断線等を防止することができる。その結果、熱電変換素子13,13の全体から、生成した電気エネルギーを熱電変換モジュール10の外部に取り出すことができなくなるという問題を回避することができる。   When the high temperature side electrode portions 12 and 12 have a three-layer structure as described above, the bridge electrode 25 is connected to the second metal layer located at the uppermost layer. Thus, even when the high temperature side electrode portions 12 and 12 are separately arranged on both sides of the rib 23, the deformation due to the thermal expansion of the divided high temperature side electrode portions 12 and 12 can be absorbed by the deformation of the bridge electrode 25. As a result, disconnection or the like between the divided high temperature side electrode portions 12 and 12 can be prevented. As a result, the problem that the generated electric energy cannot be taken out of the thermoelectric conversion module 10 from the entire thermoelectric conversion elements 13 and 13 can be avoided.

なお、ブリッジ状電極25は、上述のように高温側電極部12,12のみでなく、低温側電極部14,14にも形成することができる。   The bridge-like electrode 25 can be formed not only on the high temperature side electrode portions 12 and 12 but also on the low temperature side electrode portions 14 and 14 as described above.

第1の金属層及び第2の金属層は、Al,Cu,Niあるいはこれらの合金から構成することができ、絶縁層は、アルミナ、窒化ケイ素等の絶縁性セラミックから構成することができる。   The first metal layer and the second metal layer can be made of Al, Cu, Ni, or an alloy thereof, and the insulating layer can be made of an insulating ceramic such as alumina or silicon nitride.

以上、本発明を上記具体例に基づいて詳細に説明したが、本発明は上記具体例に限定されるものではなく、本発明の範疇を逸脱しない限りにおいてあらゆる変形や変更が可能である。   While the present invention has been described in detail based on the above specific examples, the present invention is not limited to the above specific examples, and various modifications and changes can be made without departing from the scope of the present invention.

10 熱電変換モジュール
11 管体
12 高温側電極部
13 熱電変換素子
14 低温側電極部
15 ケース部材
16 (低温側電極部及びケース部材間の)空隙
17 電極端子
18 冷媒導入口
19 冷媒排出口
23 リブ
25 ブリッジ状電極
DESCRIPTION OF SYMBOLS 10 Thermoelectric conversion module 11 Tubing body 12 High temperature side electrode part 13 Thermoelectric conversion element 14 Low temperature side electrode part 15 Case member 16 Air gap (between low temperature side electrode part and case member) 17 Electrode terminal 18 Refrigerant inlet 19 Refrigerant outlet 23 Rib 25 Bridge electrode

Claims (2)

圧縮性流体を流すための筒状の管体と、
前記管体の上面側及び下面側それぞれに配設され、前記管体と電気的に絶縁された高温側電極部と、
前記高温側電極部上において、少なくとも一対のp型熱電半導体及びn型熱電半導体が電気的に直列に接続された熱電変換素子と、
前記熱電変換素子上において、前記p型熱電半導体及び前記n型熱電半導体を電気的に直列に接続する低温側電極部と、
前記低温側電極部との間に冷媒を流すための空隙を設けるようにして、前記管体、前記高温側電極部、前記熱電変換素子、及び前記低温側電極部を収納するためのケース部材とを具え、
前記圧縮性流体の流路方向と略垂直な方向であって、前記熱電変換素子の非形成領域において、前記管体の上管壁及び下管壁の少なくとも一方が、前記管体の前記下管壁及び前記上管壁の少なくとも一方と当接するように凹んでリブを形成し、
前記高温側電極部及び前記低温側電極部の少なくとも一方は、前記リブに起因して形成された凹部を跨ぐようにして形成されたブリッジ状電極を含むことを特徴とする、熱電変換モジュール。
A tubular tube for flowing a compressive fluid;
A high temperature side electrode portion disposed on each of an upper surface side and a lower surface side of the tube body and electrically insulated from the tube body;
A thermoelectric conversion element in which at least a pair of a p-type thermoelectric semiconductor and an n-type thermoelectric semiconductor are electrically connected in series on the high temperature side electrode portion;
On the thermoelectric conversion element, a low-temperature side electrode portion that electrically connects the p-type thermoelectric semiconductor and the n-type thermoelectric semiconductor in series;
A case member for housing the tubular body, the high temperature side electrode portion, the thermoelectric conversion element, and the low temperature side electrode portion so as to provide a gap for flowing a refrigerant between the low temperature side electrode portion and With
In the non-formation region of the thermoelectric conversion element, at least one of the upper tube wall and the lower tube wall of the tubular body is the lower tube of the tubular body in a direction substantially perpendicular to the flow direction of the compressive fluid. Forming a rib indented to contact at least one of the wall and the upper tube wall;
At least one of the high temperature side electrode part and the low temperature side electrode part includes a bridge electrode formed so as to straddle a recess formed due to the rib.
前記高温側電極部は、順次に積層された第1の金属層/絶縁層/第2の金属層の3層構造であり、前記ブリッジ状電極は、前記第2の金属層と電気的に接続するようにして形成されたことを特徴とする、請求項1に記載の熱電変換モジュール。   The high temperature side electrode portion has a three-layer structure of a first metal layer / insulating layer / second metal layer sequentially stacked, and the bridge electrode is electrically connected to the second metal layer. The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module is formed as described above.
JP2012236207A 2012-10-26 2012-10-26 Thermoelectric conversion module Ceased JP2014086649A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012236207A JP2014086649A (en) 2012-10-26 2012-10-26 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012236207A JP2014086649A (en) 2012-10-26 2012-10-26 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2014086649A true JP2014086649A (en) 2014-05-12

Family

ID=50789408

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012236207A Ceased JP2014086649A (en) 2012-10-26 2012-10-26 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2014086649A (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997377U (en) * 1982-12-15 1984-07-02 日産自動車株式会社 Heat exchanger liquid pipe structure
WO2006075571A1 (en) * 2005-01-12 2006-07-20 Showa Denko K.K. Waste heat recovery system and thermoelectric conversion unit
JP2010245265A (en) * 2009-04-06 2010-10-28 Honda Motor Co Ltd Thermoelectric module

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5997377U (en) * 1982-12-15 1984-07-02 日産自動車株式会社 Heat exchanger liquid pipe structure
WO2006075571A1 (en) * 2005-01-12 2006-07-20 Showa Denko K.K. Waste heat recovery system and thermoelectric conversion unit
JP2010245265A (en) * 2009-04-06 2010-10-28 Honda Motor Co Ltd Thermoelectric module

Similar Documents

Publication Publication Date Title
JP5336373B2 (en) Thermoelectric conversion module
WO2014064945A1 (en) Thermoelectric conversion module
JP2008108900A (en) Thermoelectric conversion module and thermoelectric conversion device
TW200908402A (en) Thermoelectric conversion module and thermoelectric generation system
US8648246B2 (en) Thermoelectric module and power generation apparatus
JP2012216360A (en) Battery module
JP2003258323A (en) Thermoelectric device
TW200919790A (en) Thermo-electric conversion module and its method of evaluation
JP5653455B2 (en) Thermoelectric conversion member
JP2016174114A (en) Thermoelectric conversion module
JP2009081286A (en) Thermoelectric conversion module
US11393969B2 (en) Thermoelectric generation cell and thermoelectric generation module
JP2004363295A (en) Semiconductor device
JP2006049736A (en) Thermoelectric module
JP5618791B2 (en) Thermoelectric conversion module
JP5988827B2 (en) Thermoelectric conversion module
JP5130445B2 (en) Peltier module
JP6010941B2 (en) Thermoelectric conversion module with airtight case
JP2014086649A (en) Thermoelectric conversion module
JP2013211471A (en) Thermoelectric power generating device
JP6002623B2 (en) Thermoelectric conversion module
JP7052200B2 (en) Thermoelectric conversion module
US20230187305A1 (en) Power module
JP2011065855A (en) Shape of secondary battery
JP5919013B2 (en) Thermoelectric converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150708

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161220

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20170425