TW200919790A - Thermo-electric conversion module and its method of evaluation - Google Patents

Thermo-electric conversion module and its method of evaluation Download PDF

Info

Publication number
TW200919790A
TW200919790A TW097133582A TW97133582A TW200919790A TW 200919790 A TW200919790 A TW 200919790A TW 097133582 A TW097133582 A TW 097133582A TW 97133582 A TW97133582 A TW 97133582A TW 200919790 A TW200919790 A TW 200919790A
Authority
TW
Taiwan
Prior art keywords
thermoelectric conversion
electrode
conversion module
type
pair
Prior art date
Application number
TW097133582A
Other languages
Chinese (zh)
Inventor
Yuichi Hiroyama
Original Assignee
Sumitomo Chemical Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co filed Critical Sumitomo Chemical Co
Publication of TW200919790A publication Critical patent/TW200919790A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Investigating Or Analyzing Materials Using Thermal Means (AREA)

Abstract

This invention provides a thermo-electric conversion module and its method of evaluation. The thermo-electric conversion module has a pair of substrates corresponding with each other, a plurality of P type thermo electric conversion elements and a plurality of n type thermo-electric conversion elements disposed in between the pair of substrates, and a plurality of electrodes respectively provided on the pair of substrates and electrically connecting respective end surfaces of each pair of the P type thermo-electric conversion elements and the n type thermo-electric conversion elements, electrically connected in series the plurality of the P type thermo-electric conversion elements and the plurality of n type thermo-electric conversion elements in the manner of alternating P type and n type. A through hole is formed in at least one substrate of the pair of substrates to expose a part of the electrode externally.

Description

200919790 六、發明說明: 【發明所屬之技術領域】 本發明係提供熱電轉換模組及其評估方法。 【先前技術】 、 就熱電轉換模組而言,已知有一種熱電轉換模組具備 有:彼此相對向之一對基板,;複數個p型及η型的熱電 轉換元件,係配置在一對基板之間;以及複數個電極,係 分別設置在一對基板上,且談與該些Ρ型及η型的熱電轉 " 換元件係電性連接成串聯(例如日本專利文獻:特開2006- 40963號公報)。 【發明内容】 上述的熱電轉換模組係具有由複數個熱電轉換元件及 複數個電極所構成的電路,且在電路的兩端係設置有電壓 輸出用的外部輸出電極。並且,在具有此種構造的熱電轉 換模組中,於組裝後雖然能夠利用外部輸出電極來針對電 路整體的電阻值進行調查,但由於各熱電轉換模組與電極 ' 係被夾在基板間,因此難以量測電路的一部分的電阻值。 因此,在熱電轉換模組的組裝後,即使發生各熱電轉換元 件與電極的結合形成異常或熱電轉換元件的破損等不良情 形也難以具體地知道該些不良的位置。並且,要特定出不 良情形的位置及原因需花費很多的時間,這是使熱電轉換 模組的生產成本或維護成本增加的重大主要原因之一。 因此,本發明提供一種能夠容易地量測熱電轉換模組 所具有的電路的一部分的電阻值之熱電轉換模組及其評估 4 320571 200919790 方向。 本發明的熱電轉換模組係具備:彼此相對向之一對基 板;複數個P型熱電轉換元件及複數個η型熱電轉換元件, 係配置在一對基板之間;以及複數個電極,係分別設置在 一對基板上,且將Ρ型熱電轉換元件及η型熱電轉換元件 的各一對的端面彼此予以電性連接,且使複數個Ρ型熱電 轉換元件及複數個η型熱電轉換元件以ρ型η型交替的方 式電性連接成串聯;且於一對基板的至少一方形成有使電 極的一部分露出至外部的貫通孔。 依據本發明,能夠使量測用的探針經由貫通孔而容易 地接觸於電極。藉此而使經由貫通孔而露出至外部的電極 •與其他的電極(例如,構成熱電轉換模組的電極之中配置在 最外侧的電極之侧面或外部輸出電極等)導通,藉此,能夠 容易地量測由前述複數個電極、前述複數個ρ型熱電轉換 元件及複數個η型熱電轉換元件所構成的電路的一部分的 電阻值。藉此,根據該電阻值,能夠容易地特定出具有不 Κ ' 良的熱電轉換元件及發生有接合形成異常的熱電轉換元件 與電極存在的部分。 在此,較佳為於一對基板雙方分別各自形成有使電極 的一部分露出的貫通孔。 藉此,能夠使量測用的探針從各基板之側經由貫通孔 而容易地接觸於電極。並且,藉由將可從外部進行接觸的 各個電極與其他的電極導通,能夠更細部地量測電路的一 部分的電阻值。因此,能夠更具體地特定出具有不良的熱 320571 200919790 電轉換元件及發生有接合形成異常的熱電轉換元件與電極 存在的部分。 此外,較佳為於一對基板雙方就每一電極形成有使電 極的一部分露出的貫通孔。 由於依每一電極形成有貫通孔,因此能夠個別地量測 由各熱電轉換元件及夾著該熱電轉換元件的一對電極所構 成早位電路的電阻值_。因此’根.據該電阻值能夠依每一 熱電轉換元件調查熱電轉換元件本身的不良及熱電轉換元 件與電極發生接合形成異常的部分,而能夠極具體地特定 出存在有缺陷之位置。 此外,較佳為p型熱電轉換元件及η型熱電轉換元件 之中至少1個傳導型的熱電轉換元件係含有金屬氧化物。 當熱電轉換元件為由含有金屬氧化物的材料所構成 時,在熱電轉換模組的製造上,有不少難以良好地接合熱 電轉換元件與電極的情形,亦容易發生熱電轉換元件與電 極之接合形成異常。因此,本發明對於採用含有金屬氧化 %' . 物之材料作為熱電轉換元件之情形尤其有用。 此外,本發明的熱電轉換模組的評估方法,係對上述 熱電轉換模組,使探針經由貫通孔而接觸於露出有一部分 的電極,量測由複數個電極、複數個ρ型熱電轉換元件及 複數個η型熱電轉換元件所構成的電路的一部分的電阻 值。藉此,能夠容物地特定出不良之處。 並且較佳為,對於一對基板雙方就每一電極形成有使 電極的一部分露出的貫通孔之熱電轉換模組,形成使複數 6 320571 200919790 個探針經由複數個貫通孔而分別接觸於複數個電極之狀 態,量測由各熱電轉換元件及夾著各該熱電轉換元件兩端 的一對電極所構成的單位電路的電阻值。 藉此,能夠極迅速且容易地調查不良之處。 【實施方式】 以下,參照附圖詳細說明本發明的較佳實施形態。其 中,於圖式的說明之際,相同或者相當之要素係標註相同 的符號,並省略重複的說明。此外,各圖式的尺寸比例並 非一定與實際上的尺寸比例一致。 第1實施形態 (熱電轉換模組的構成) 第1圖係顯示熱電轉換模組20的第1實施形態的剖面 圖。如第1圖所示,熱電轉換模組20係具備有第1基板2、 第1電極8、熱電轉換元件10、第2電極6及第2基板7。 第1基板2係形成為例如矩形狀,具有電的絕緣性, 且具有熱傳導性,並覆蓋複數個熱電轉換元件10的一端。 就此第1基板2的材料而言,例如可舉出氧化铭 (alumina)、氮化銘、氧化鎮(magnesia)等。 第1電極8係設置於第1基板2上,並將彼此相鄰接 的熱電轉換元件10的一端面彼此予以電性連接。此第1電 極8係可利用例如滅鍍或蒸鑛等薄膜技術、網版印刷、電 鍍、熱喷塗膜等方法來形成於第1基板2上的預定位置。 此外,亦可以例如銲劑、銅銲等來將預定形狀的金屬板接 合至第1基板2上。就第1電極8的材料而言,只要為具 7 320571 200919790 有導電性即可,並未特別 耐姓性、對熱電元件的接紐性、 由錄、叙'路、鐘、鐵、始、辞:來f’較佳為含有從 鎮及銘所組成的群之帽擇的至少 辛 之金屬,在此,主#八替几料作為主成为 上之成分。 成刀射曰在電極材料中含有50體積%以 分別二ΐΓ 1電極8之中的配置在最外侧的電極8係 :之電二 7的外側,發揮作為將因熱電動勢而產 生之電流取出至外部的外部輸出電極Ua、llb之功能。 生熱電轉換元件10係為例如剖面為矩形狀的棒狀構 ’且有P型熱電轉換元件3& n型熱電轉換元 類。 ”至 構成各熱電轉換元件1G的材料並未特別限定,可使用 金屬、金屬氧化物等各種材料。 就P型的材料而言,例如可舉出NaxC〇〇2、仏⑽等 金屬複合氧化物、MnSi "3、Fei:xMnxSi 2、si。. 8Ge。· 2、々-FeS i 2 等矽化物、Cosb3、FeSb3、RFe3C〇Sb12(R 表示 La、Ce 或 Yb) 等方銘礦(skutterudite)、BiTeSb、PbTeSb、Bi2Te3、PbTe 等含有Te之合金等。 .此外’就n型的材料而言,例如可舉出SrTi〇3、200919790 VI. Description of the Invention: [Technical Field of the Invention] The present invention provides a thermoelectric conversion module and an evaluation method thereof. [Prior Art] In the case of a thermoelectric conversion module, a thermoelectric conversion module is known which has a pair of substrates facing each other, and a plurality of p-type and n-type thermoelectric conversion elements are disposed in a pair Between the substrates, and a plurality of electrodes are respectively disposed on a pair of substrates, and are electrically connected in series with the 热-type and n-type thermoelectric conversion elements (for example, Japanese Patent Literature: JP-2006) - Bulletin No. 40963). SUMMARY OF THE INVENTION The above-described thermoelectric conversion module has a circuit including a plurality of thermoelectric conversion elements and a plurality of electrodes, and external output electrodes for voltage output are provided at both ends of the circuit. Further, in the thermoelectric conversion module having such a structure, although the external output electrode can be used to investigate the resistance value of the entire circuit after assembly, since each thermoelectric conversion module and the electrode 'are sandwiched between the substrates, It is therefore difficult to measure the resistance value of a part of the circuit. Therefore, even after the assembly of the thermoelectric conversion module, it is difficult to specifically know the defective positions even if the combination of the thermoelectric conversion elements and the electrodes is abnormal or the thermoelectric conversion element is broken. Moreover, it takes a lot of time to specify the location and cause of the unfavorable situation, which is one of the major reasons for increasing the production cost or maintenance cost of the thermoelectric conversion module. Accordingly, the present invention provides a thermoelectric conversion module capable of easily measuring the resistance value of a part of a circuit of a thermoelectric conversion module and its evaluation 4 320571 200919790 direction. The thermoelectric conversion module of the present invention includes: a pair of substrates facing each other; a plurality of P-type thermoelectric conversion elements and a plurality of n-type thermoelectric conversion elements disposed between a pair of substrates; and a plurality of electrodes respectively Provided on a pair of substrates, and electrically connecting end faces of the pair of the Ρ-type thermoelectric conversion element and the n-type thermoelectric conversion element to each other, and a plurality of Ρ-type thermoelectric conversion elements and a plurality of n-type thermoelectric conversion elements The p-type n-type alternately is electrically connected in series; and at least one of the pair of substrates is formed with a through hole that exposes a part of the electrode to the outside. According to the present invention, the probe for measurement can be easily brought into contact with the electrode via the through hole. Thereby, the electrode exposed to the outside through the through hole is electrically connected to another electrode (for example, the side surface of the electrode which is disposed on the outermost side of the electrode constituting the thermoelectric conversion module or the external output electrode, etc.), whereby The resistance value of a part of the circuit composed of the plurality of electrodes, the plurality of p-type thermoelectric conversion elements, and the plurality of n-type thermoelectric conversion elements is easily measured. According to this resistance value, it is possible to easily specify a portion of the thermoelectric conversion element having a good shape and a thermoelectric conversion element and an electrode in which a bonding abnormality has occurred. Here, it is preferable that each of the pair of substrates has a through hole in which a part of the electrode is exposed. Thereby, the probe for measurement can be easily brought into contact with the electrode from the side of each substrate via the through hole. Further, by electrically connecting the respective electrodes that can be externally contacted to the other electrodes, it is possible to measure the resistance value of a part of the circuit in a more detailed manner. Therefore, it is possible to specify more specifically the portion having the defective heat 320571 200919790 electric conversion element and the thermoelectric conversion element in which the bonding formation abnormality occurs and the electrode. Further, it is preferable that each of the pair of substrates has a through hole in which a part of the electrode is exposed. Since the through holes are formed for each of the electrodes, the resistance value _ of the early circuit formed by the respective thermoelectric conversion elements and the pair of electrodes sandwiching the thermoelectric conversion elements can be individually measured. Therefore, according to the resistance value, it is possible to investigate the defect of the thermoelectric conversion element itself and the portion where the thermoelectric conversion element and the electrode are joined to form an abnormality according to each of the thermoelectric conversion elements, and it is possible to specify the position where the defect exists in a very specific manner. Further, at least one of the conductivity type thermoelectric conversion elements of the p-type thermoelectric conversion element and the n-type thermoelectric conversion element preferably contains a metal oxide. When the thermoelectric conversion element is composed of a material containing a metal oxide, there are many cases in which the thermoelectric conversion element and the electrode are difficult to be bonded well in the manufacture of the thermoelectric conversion module, and the junction of the thermoelectric conversion element and the electrode is also likely to occur. An abnormality is formed. Therefore, the present invention is particularly useful in the case of using a material containing a metal oxide % as a thermoelectric conversion element. Further, in the evaluation method of the thermoelectric conversion module of the present invention, the thermoelectric conversion module is configured such that the probe contacts a portion of the exposed electrode via the through hole, and the plurality of electrodes and the plurality of p-type thermoelectric conversion elements are measured. And a resistance value of a part of a circuit composed of a plurality of n-type thermoelectric conversion elements. Thereby, it is possible to specify a defect in the contents. Further, it is preferable that a thermoelectric conversion module having a through hole for exposing a part of the electrode to each of the pair of substrates is formed so that a plurality of 6 320571 200919790 probes are respectively contacted to the plurality of through holes through the plurality of through holes. In the state of the electrode, the resistance value of each unit circuit composed of each of the thermoelectric conversion elements and a pair of electrodes sandwiching the both ends of the thermoelectric conversion elements is measured. Thereby, it is possible to investigate the defects extremely quickly and easily. [Embodiment] Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In the description of the drawings, the same or corresponding elements are designated by the same reference numerals, and the repeated description is omitted. In addition, the size ratio of each drawing does not necessarily match the actual size ratio. (First Embodiment) (Configuration of Thermoelectric Conversion Module) Fig. 1 is a cross-sectional view showing a first embodiment of the thermoelectric conversion module 20. As shown in FIG. 1 , the thermoelectric conversion module 20 includes a first substrate 2 , a first electrode 8 , a thermoelectric conversion element 10 , a second electrode 6 , and a second substrate 7 . The first substrate 2 is formed, for example, in a rectangular shape, has electrical insulation, and has thermal conductivity, and covers one end of a plurality of thermoelectric conversion elements 10. The material of the first substrate 2 may, for example, be alumina, nitrite or magnesia. The first electrode 8 is provided on the first substrate 2, and electrically connects one end faces of the thermoelectric conversion elements 10 adjacent to each other to each other. The first electrode 8 can be formed on a predetermined position on the first substrate 2 by a thin film technique such as deplating or steaming, a screen printing, an electroplating, or a thermal spray film. Further, a metal plate of a predetermined shape may be bonded to the first substrate 2 by, for example, soldering, brazing or the like. As for the material of the first electrode 8, as long as it has conductivity of 7 320571 200919790, it is not particularly resistant to the surname, the connection to the thermoelectric element, the recording, the ruth, the clock, the iron, the beginning, Remarks: It is better to have at least the metal of the group that contains the caps of the group composed of the town and the Ming Dynasty. Here, the main #八替料 is the main ingredient. The lancet is contained in the electrode material in an amount of 50% by volume, which is disposed on the outer side of the electrode 8 of the outermost electrode 8 of the electrode 1 of the electrode 1 and is used as a current to generate a current due to the thermoelectromotive force. The function of the external external output electrodes Ua, 11b. The thermoelectric conversion element 10 is, for example, a rod-like structure having a rectangular cross section and having a P-type thermoelectric conversion element 3 & n-type thermoelectric conversion element. The material constituting each of the thermoelectric conversion elements 1G is not particularly limited, and various materials such as a metal or a metal oxide can be used. Examples of the material of the P type include metal composite oxides such as NaxC 〇〇 2 and 仏 (10). MnSi "3, Fei:xMnxSi 2,si.. 8Ge.·2, 々-FeS i 2 and other tellurides, Cosb3, FeSb3, RFe3C〇Sb12 (R represents La, Ce or Yb), etc. (skutterudite) And alloys containing Te such as BiTeSb, PbTeSb, Bi2Te3, and PbTe. Further, 'for the n-type material, for example, SrTi〇3,

Zm-xAlxO、CaMn〇3、LaNiCb、BaxTi8〇16、BaTi〇3、TihNbxO 等金屬複合氧化物、Mg2Si、Fei-xC〇xSi2、SiuGeu、沒-FeSh 等矽化物、方鈷礦、Ba8All2Si3fl、Ba8Ah2Ge3。等晶籠 (clathrate)化合物、CaBe、SrBe、BaBe、CeBe 等硼化合物、 8 320571 200919790Zm-xAlxO, CaMn〇3, LaNiCb, BaxTi8〇16, BaTi〇3, TihNbxO and other metal composite oxides, Mg2Si, Fei-xC〇xSi2, SiuGeu, non-FeSh and other tellurides, skutterudite, Ba8All2Si3fl, Ba8Ah2Ge3. Clathrate compound, boron compound such as CaBe, SrBe, BaBe, CeBe, etc., 8 320571 200919790

BiTeSb、PbTeSb、Bi2Te3、PbTe 等含有 Te 之合金等。 第2基板7係形成為例如矩形狀,並覆蓋熱電轉換元 件10的另一端側。此外,第2基板7係與第1基板2相對 向。第2基板8係與第1基板2同樣地,只要為具有電的 絕緣性且具有熱傳導性者即可,並未特別限定,例如可使 用氧化鋁、氮化鋁、氧化鎂等材料。 第2電極6係將彼此相鄰接的熱電轉換元件1〇的另一 端面彼此予以電性連接者,可利用例如濺鍍或蒸鍍等薄膜 技術、網版印刷、電鍍、熱噴塗膜等方法來形成於第2基 板7的下表面。並且’熱電轉換元件1〇係藉由此第2電極 6與設置在熱電轉換元件1Q的下端面之第丨電極8而 連接成串聯。 P型熱電轉換it件3及n型熱電轉換元件4係以交 排列的方式配置於第1基板2及第2基板7間,並且㈣ ^AuS^PbSb,^#J^f(sil_ 而固疋於該些熱電轉換元件的兩面所對’ 及第2電極6的表面’因此整 〕 電極 在此,P型熱電轉換元件型熱電 :於其些的上表面及底面分別具有金屬層。亦即70 “ 猎由接合劑9將各熱電轉換元件1()+亦可名 之際,為了使各熱電轉換元件) 予以接名 升’而於各熱電轉換元件10的表面:二:接合_ 預先形成蝴,再細與電之^ 320571 200919790 予以接合。 若於各熱電轉換元件10與電極6、8之接合面形成有 金屬層,藉由接合材9,能夠容易地進行該金屬層與電極 6、8之接合,而且由於金屬層與各熱電轉換元件10的密 接性佳,因此能夠實現連接可靠度更高且接觸電阻更低的 熱電轉換模組20。因此,能夠提高熱電轉換模組20的發 電效率。 特別是在各熱電轉換元件10為由含有金屬氧化物之 '材料所構成時,熱電轉換元件與電極之接合有不少難以進 行的時候,因此尤其較佳為預先形成金屬層。然而,在含 有金屬氧化物的熱電轉換元件的表面預先形成密接性高的 金屬層這件事本身也有不少難以進行的時候,而容易發生 熱電轉換元件與電極之接合形成異常。因此,本發明係當 P型熱電轉換元件3及η型熱電轉換元件4之中至少1個 傳導型的熱電轉換元件10為由含有金屬氧化物之材料所 ,構成時極為有效。 ν 」- 並且,在本實施形態中係在一對基板2、7之中一方的 例如第2基板7形成有使第2電極6的一部分露出至外部 的貫通孔1。另外,雖然本實施形態中的貫通孔1係使電 極6之中不與ρ型熱電轉換元件3及η型熱電轉換元件4 相對向之部分露出至外部,但亦可使電極6之中與ρ型熱 電轉換元件3相對向之部分、與η型熱電轉換元件4相對 向之部分露出至外部。 貫通孔1的直徑係只要為能夠插入後述的導通實驗用 10 320571 200919790 的探針之直徑即可,並未特別限定,但較佳為 另外,雖然直徑的最大值係比 ',、、·,上‘ 孔1 丄電小即可,但藉由將貫通 •力:二某來緩和在電極與基板之間產生的 '、、、應力*财有抑制熱電轉換模组受到破壞之效果。 此貝通孔1係例如能夠藉由對預先形 二?:從形成有電極6之面的相反側以鐵‘ 形成而製造。此外,亦能夠對預先祕 而作為電極。、,以覆蓋貫通孔1的方式貼附金屬板 (評估方法) 對熱電轉換模組2〇,使電阻量測器的探針的 二通孔1而接觸於露出有-部分的電極6,使電阻量 、、⑽^ 其他電極(例如,外部輸出電極 金wn 即能夠量測由複數個電極6、8、及福 忠古P型熱電轉換元件3及〇型熱 電路的一部分的 、^干4所構成的 分的電極二體而言,藉由將露出有一部 —部八… 輪電極…之間的電阻值、及露出有 σ刀、Μ 6與外部輪出電輕m之 是在第w左側之中的 能夠判斷具有不良的熱電轉換元件及 合开:常的_元件舆電極之接合面存二接 電钰_纟此所1測的電阻值係為由各探針接觸的2片 電極間的各熱電轉換元件 _2片 轉換元件10之忒心心 電極6、8與熱電 之各界面的接㈣阻值、及各電 320571 11 200919790 的電阻值所合成的合成電阻值。 此外,此處所使用的探針並未特別限定,例如能夠使 用直徑為10#m至75//m等的具有導電性之針狀物。 如此,依據本實施形態,由於能夠使探針通過設置在 第2基板7的貫通孔1而從外部接觸於第2電極6,因此 能夠量測由複數個電極6、8、複數個p型熱電轉換元件3 及η型熱電轉換元件4所構成的電路的一部分的電阻值。 因此,根據量測得的電阻值,能夠容易地特定出存在不良 / . ' 4 之區域。 第2實施形態 (熱電轉換模組的構成) 於第2圖顯示熱電轉換模組20的第2實施形態的剖面 圖。 ~ 第2實施形態的熱電轉換模組20與第1實施形態的熱 電轉換模組20的相異點在於,第2實施形態係再於第1基 板2形成使第1電極8的一部分露出至外部的貫通孔1。 . (評估方法) 在本實施形態的熱電轉換模組20中,除了能夠使探針 經由設置在第1基板2的貫通孔1而從外部接觸於第2電 極6,而且還能夠使探針經由設置在第2基板7的貫通孔1 而從外部接觸於第1電極8。因此,能夠進一步來量測可 從外部進行接觸的第1電極8與可從外部進行接觸的第2 電極6之間的電阻值、及該第1電極8與外部輸出電極 11a、lib之間的電阻值。因此,根據該等電阻值,能夠比 12 320571 200919790 第1實施形態更具體地特定出具有不良的熱電轉換元件10 及發生有接合形成異常的熱電轉換元件10與電極6、8存 在的部分。 第3實施形態 (熱電轉換模組的構成) 於第3圖顯示熱電轉換模組20的第3實施形態的剖面 圖。 第3實施形態的熱電轉換模組20與第2實施形態的熱 電轉換模組20的相異點在於,第3實施形態係於一對基板 2、7雙方,就每一電極形成有使電極6、8的一部分露出 至外部的貫通孔1。 (評估方法) 對此種的熱電轉換模組20係能夠使探針經由各貫通 '孔1而從外部接觸於各電極6、8。藉此,能夠量測夾著1 個熱電轉換元件3、4的一對電極6、8間的電阻值。亦即, 能夠依每一形成為構成熱電轉換模組20的整體電路的最 小單位之由1個熱電轉換元件10及夾著該熱電轉換元件 10的2片電極6、8所構成的單位電路來量測電阻值。因 此,根據該些電阻值,能夠依每一熱電轉換元件調查熱電 轉換元件本身的不良及熱電轉換元件與電極發生接合形成 異常的部分,而能夠極精密地特定出存在有缺陷之位置。 此外,在本實施形態的熱電轉換模組20中,如第4圖 所示,藉由固定有多數個探針的探針卡(probe card)42a、 42b,能夠簡單地量測單位電路的電阻值。 13 320571 200919790 探針卡4la係為於基板41設立有複數個探針4〇&至 40c者,而探針卡41b係為於基板41設立有複數個探針_ =者二各Ϊ針卡*、41'的探針·至4〇g係與各基 、、各貝通孔1的設置間隔相對應地設置於各基板 ’探針4Qa至4〇c與探針4〇d至卿係分別連接 針二4r,lexer)50a、5°b,_^^ 針的^號供給至電阻量測器60的兩端。 :各产錢用此種的探針卡41a、41b,則能夠形成使 時二J Ϊ咖與複數個電極6、8經由各貫通孔1而同 之狀恶。並且’利用多工器咖、娜,能約一邊掃 的探針間的電阻值—邊迅速地量測。例如,能夠取 與探針之間的電阻值、探針—與探針咖 ^的電阻值、···、探針他與探針為之間的電阻值。 曰匕,要特定出不良之處即變得極為容易。. ㈣然具體地顯示了本發明的較佳實施形態,但本 、 毛月亚非被限定於此。 =如,亦可將第i實施形態與第2實施形態中的貫通 於各基板形成有複數個係自不待言。 (產業上的利用可能性) 依據本發日㈣熱電轉換模組及其評估方法,能夠容易 =]由稷數個電極、複數個p型熱電轉換元件及複數個 L、、電轉換元件所構成的電路的—部分的電阻值。 【圖式簡單說明】 第1圖係本發明第i實施形態的熱電轉換模組2 〇的剖 320571 14 200919790 面圖。 第2圖係本發明第2實施形態的熱電轉換模組20的剖 面圖。 第3圖係本發明第3實施形態的熱電轉換模組20的剖 面圖。 第4圖係顯示第3圖的熱電轉換模組的電阻值量測法 的一例之剖面圖。 【主要元件符號說明】 1 貫通孔 2 第1基板 3 P型熱電轉換元件 4 η型熱電轉換元件 6 第2電極 7 第2基板 8 第1電極 9 接合材 10 熱電轉換元件 11a、 lib外部輸出電極 20 熱電轉換模組 40a至40g探針 41 基板 42a、 42b探針卡 50a、 50b多工器 60 電阻量測器 15 320571An alloy containing Te such as BiTeSb, PbTeSb, Bi2Te3, or PbTe. The second substrate 7 is formed, for example, in a rectangular shape, and covers the other end side of the thermoelectric conversion element 10. Further, the second substrate 7 is opposed to the first substrate 2. Similarly to the first substrate 2, the second substrate 8 is not particularly limited as long as it has electrical insulation properties and thermal conductivity. For example, materials such as alumina, aluminum nitride, and magnesium oxide can be used. The second electrode 6 is electrically connected to the other end faces of the thermoelectric conversion elements 1A adjacent to each other, and may be formed by, for example, a thin film technique such as sputtering or vapor deposition, screen printing, plating, or a thermal spray film. The lower surface of the second substrate 7 is formed. Further, the thermoelectric conversion element 1 is connected in series by the second electrode 6 and the second electrode 8 provided on the lower end surface of the thermoelectric conversion element 1Q. The P-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 are arranged between the first substrate 2 and the second substrate 7 so as to be arranged in an aligned manner, and (4) ^AuS^PbSb, ^#J^f(sil_ The electrodes on both sides of the thermoelectric conversion elements and the surface of the second electrode 6 are thus integrated. Here, the P-type thermoelectric conversion element type thermoelectricity has a metal layer on each of the upper surface and the bottom surface. "When the thermoelectric conversion element 1 () is also named by the bonding agent 9, in order to make each thermoelectric conversion element) "on the surface of each thermoelectric conversion element 10: two: bonding_ pre-formed butterfly Further, it is bonded to the electric ^ 320571 200919790. If a metal layer is formed on the joint surface of each of the thermoelectric conversion elements 10 and the electrodes 6 and 8, the metal layer and the electrodes 6 and 8 can be easily formed by the bonding material 9. Since the bonding between the metal layer and each of the thermoelectric conversion elements 10 is good, the thermoelectric conversion module 20 having higher connection reliability and lower contact resistance can be realized. Therefore, the power generation efficiency of the thermoelectric conversion module 20 can be improved. Especially in each thermoelectric conversion element 10 When it is composed of a material containing a metal oxide, when the junction of the thermoelectric conversion element and the electrode is difficult to perform, it is particularly preferable to form a metal layer in advance. However, on the surface of the thermoelectric conversion element containing the metal oxide The fact that the metal layer having high adhesion is formed in advance is also difficult to carry out, and the junction between the thermoelectric conversion element and the electrode is likely to be abnormal. Therefore, the present invention is a P-type thermoelectric conversion element 3 and an n-type thermoelectric conversion. At least one of the conductivity type thermoelectric conversion elements 10 of the element 4 is extremely effective when it is composed of a material containing a metal oxide. ν ′ - Further, in the present embodiment, it is one of the pair of substrates 2 and 7. For example, the second substrate 7 is formed with a through hole 1 that exposes a part of the second electrode 6 to the outside. Further, the through hole 1 in the present embodiment is such that the portion of the electrode 6 that is not opposed to the p-type thermoelectric conversion element 3 and the n-type thermoelectric conversion element 4 is exposed to the outside, but the electrode 6 may be provided with ρ. The portion of the thermoelectric conversion element 3 that is opposed to the portion of the thermoelectric conversion element 3 is exposed to the outside with respect to the portion opposite to the n-type thermoelectric conversion element 4. The diameter of the through hole 1 is not particularly limited as long as it can insert a probe for the conduction test 10 320571 200919790 to be described later, but it is preferable that the diameter is the maximum ratio of ', , , , The upper hole 1 is small, but the effect of the thermoelectric conversion module is suppressed by the penetration of the force: the two to alleviate the ',, and stress* generated between the electrode and the substrate. Can this beton hole 1 be able to be pre-shaped, for example? : It is produced by forming iron from the opposite side to the side on which the electrode 6 is formed. In addition, it can also be used as an electrode in advance. A metal plate is attached so as to cover the through hole 1 (evaluation method). The thermoelectric conversion module 2 is placed so that the two through holes 1 of the probe of the resistance measuring instrument are in contact with the exposed electrode 6 The amount of resistance, (10) ^ other electrodes (for example, the external output electrode gold wn can measure a part of the electrode 6, 8, and Fuzhonggu P-type thermoelectric conversion element 3 and part of the 热-type thermal circuit, ^ 4 The electrode two bodies of the sub-section are formed by exposing a portion-part eight...the resistance value between the wheel electrodes, and exposing the σ knife, the Μ6 and the external wheel to the light output m. Among the left side, it can be judged that the defective thermoelectric conversion element and the opening: the common _ element 舆 electrode is connected to the junction surface. The resistance value measured by this is the two electrodes that are contacted by the respective probes. The thermoelectric conversion element 2 between the core conversion electrodes 10 and 8 of the sheet conversion element 10 and the interface of the thermoelectric (four) resistance value, and the combined resistance value of each of the electrical resistance values of 320571 11 200919790. The probe to be used is not particularly limited, and for example, a diameter of 10# can be used. In the present embodiment, the probe can pass through the through hole 1 provided in the second substrate 7 and is in contact with the second electrode 6 from the outside. Therefore, the probe can be electrically connected to the second electrode 6 . The resistance value of a part of the circuit composed of the plurality of electrodes 6, 8 and the plurality of p-type thermoelectric conversion elements 3 and the n-type thermoelectric conversion elements 4 can be measured. Therefore, the resistance value measured based on the amount can be easily specified. In the second embodiment (the configuration of the thermoelectric conversion module), the cross-sectional view of the second embodiment of the thermoelectric conversion module 20 is shown in Fig. 2. The thermoelectric conversion mode of the second embodiment The difference between the group 20 and the thermoelectric conversion module 20 of the first embodiment is that the second embodiment further forms a through hole 1 for exposing a part of the first electrode 8 to the outside of the first substrate 2 . In the thermoelectric conversion module 20 of the present embodiment, the probe can be externally contacted to the second electrode 6 via the through hole 1 provided in the first substrate 2, and the probe can be placed in the second via the second The through hole 1 of the substrate 7 is in contact with the first one from the outside. Therefore, the resistance value between the first electrode 8 which can be externally contacted and the second electrode 6 which can be externally contacted, and the first electrode 8 and the external output electrode 11a, lib can be further measured. Therefore, according to the resistance values, the thermoelectric conversion element 10 having the defective thermoelectric conversion element 10 and the thermoelectric conversion element 10 and the electrode 6 in which the bonding abnormality occurs can be specified more specifically than the first embodiment of 12 320571 200919790, Part 3: Third Embodiment (Configuration of Thermoelectric Conversion Module) A cross-sectional view of a third embodiment of the thermoelectric conversion module 20 is shown in Fig. 3. The thermoelectric conversion module 20 and the second embodiment of the third embodiment The difference between the thermoelectric conversion module 20 of the embodiment is that the third embodiment is formed on both of the pair of substrates 2 and 7, and each of the electrodes has a through hole 1 in which a part of the electrodes 6 and 8 are exposed to the outside. (Evaluation Method) In the thermoelectric conversion module 20 described above, the probe can be brought into contact with each of the electrodes 6 and 8 from the outside via the respective through holes 1 . Thereby, the resistance value between the pair of electrodes 6 and 8 sandwiching one thermoelectric conversion element 3, 4 can be measured. In other words, it is possible to form a unit circuit including one thermoelectric conversion element 10 and two electrodes 6 and 8 sandwiching the thermoelectric conversion element 10 as a minimum unit of the entire circuit constituting the thermoelectric conversion module 20. Measure the resistance value. Therefore, based on these resistance values, it is possible to investigate the defect of the thermoelectric conversion element itself and the portion where the thermoelectric conversion element and the electrode are joined to each other to form an abnormality for each of the thermoelectric conversion elements, and it is possible to specify the position where the defect exists extremely accurately. Further, in the thermoelectric conversion module 20 of the present embodiment, as shown in Fig. 4, the resistance of the unit circuit can be easily measured by the probe cards 42a and 42b to which a plurality of probes are fixed. value. 13 320571 200919790 The probe card 4la is provided with a plurality of probes 4 〇 & to 40c on the substrate 41, and the probe card 41b is provided with a plurality of probes on the substrate 41 _ = two Ϊ pin cards *, 41' probes to 4〇g are provided on each of the substrates 'probes 4Qa to 4〇c and probes 4〇d to the respective bases, and the spacing between the respective passholes 1 is set to The numbers of the needles 4r, lexer) 50a, 5°b, and _^^ pins are respectively supplied to both ends of the resistance measuring device 60. In the case of using the probe cards 41a and 41b of the above-described types of money, it is possible to form the same time and the plurality of electrodes 6, 8 through the respective through holes 1. In addition, the multiplexer can be quickly measured by the resistance value between the probes. For example, it is possible to take the resistance value between the probe, the resistance value of the probe and the probe, the resistance value between the probe and the probe. Hey, it’s extremely easy to identify the bad things. (4) Although the preferred embodiment of the present invention has been specifically shown, the present invention is not limited thereto. = For example, it is also possible to form a plurality of systems through the respective substrates in the i-th embodiment and the second embodiment. (Industrial use possibility) According to the (4) thermoelectric conversion module and its evaluation method, it can be easily =] composed of a plurality of electrodes, a plurality of p-type thermoelectric conversion elements, and a plurality of L, and electric conversion elements. The resistance value of the part of the circuit. BRIEF DESCRIPTION OF THE DRAWINGS Fig. 1 is a cross-sectional view of a thermoelectric conversion module 2 of the i-th embodiment of the present invention, 320571 14 200919790. Fig. 2 is a cross-sectional view showing a thermoelectric conversion module 20 according to a second embodiment of the present invention. Fig. 3 is a cross-sectional view showing a thermoelectric conversion module 20 according to a third embodiment of the present invention. Fig. 4 is a cross-sectional view showing an example of a resistance value measurement method of the thermoelectric conversion module of Fig. 3. [Description of main component symbols] 1 through hole 2 first substrate 3 p-type thermoelectric conversion element 4 n-type thermoelectric conversion element 6 second electrode 7 second substrate 8 first electrode 9 bonding material 10 thermoelectric conversion element 11a, lib external output electrode 20 thermoelectric conversion modules 40a to 40g probe 41 substrate 42a, 42b probe card 50a, 50b multiplexer 60 resistance measuring device 15 320571

Claims (1)

200919790 七、申請專利範圍: 1. 一種熱電轉換模組,係具備: 彼此相對向之一對基板; 複數個P型熱電轉換元件及複數個η型熱電轉換元 件,係配置在前述一對基板之間;以及 複數個電極,係分別設置在前述一對基板上,且將 前述Ρ型熱電轉換元件及前述η型熱電轉換元件的各一 對的端面彼此予以電性連接,且使前述複數個ρ型熱電 轉換元件及前述複數個η型熱電轉換元件以ρ型η型交 替的方式電性連接成串聯; 且於前述一對基板的至少一方形成有使前述電極 的一部分露出至外部的貫通孔。 2. 如申請專利範圍第1項之熱電轉換模組,其中,於前述 < 一對基板雙方分別各自形成有使前述電極的一部吩露 出的貫通孔。 3. 如申請專利範圍第1項之熱電轉換模組,其中,於前述 一對基板雙方就每一前述電極形成有使前述電極的一 部分露出的貫通孔。' 4. 如申請專利範圍第1至3項中任一項之熱電轉換模組, 其中,前述Ρ型熱電轉換元件及η型熱電轉換元件之中 至少1個傳導型的熱電轉換元件係含有金屬氧化物。 5. —種熱電轉換模組的評估方法,該熱電轉換模組為申請 專利範圍第1至3項中任一項之熱電轉換模組,該評估 方法為:使探針經由前述貫通孔而接觸於前述露出有一 16 320571 200919790 部分的電極,量測由前述複數個電極、前述複數個p 型熱電轉換元件及前述複數個η型熱電轉換元件所構 成的電路的一部分的電阻值。 6. —種熱電轉換模組的評估方法,該熱電轉換模組為申請 專利範圍第3項之熱電轉換模組「該評估方法為:形成 使複數個探針經由前述複數個貫通孔而分別接觸於前 述複數個電極之狀態,量測由前述各熱電轉換元件及夾 著前述各該熱電轉換元件兩端的一對前述電極所構成 '的單位電路的電阻值。 17 320571200919790 VII. Patent application scope: 1. A thermoelectric conversion module, comprising: a pair of substrates facing each other; a plurality of P-type thermoelectric conversion elements and a plurality of n-type thermoelectric conversion elements, which are disposed on the pair of substrates And a plurality of electrodes respectively disposed on the pair of substrates, and electrically connecting end faces of the pair of the Ρ-type thermoelectric conversion elements and the n-type thermoelectric conversion elements to each other, and making the plurality of ρ The thermoelectric conversion element and the plurality of n-type thermoelectric conversion elements are electrically connected in series in a p-type n-type alternate manner, and at least one of the pair of substrates is formed with a through hole that exposes a part of the electrode to the outside. 2. The thermoelectric conversion module according to claim 1, wherein each of the pair of substrates is formed with a through hole for exposing a part of the electrode. 3. The thermoelectric conversion module according to claim 1, wherein a through hole for exposing a part of the electrode is formed on each of the pair of substrates. 4. The thermoelectric conversion module according to any one of claims 1 to 3, wherein at least one of the conductivity type thermoelectric conversion elements and the n-type thermoelectric conversion element contains a metal Oxide. 5. A method for evaluating a thermoelectric conversion module, the thermoelectric conversion module being the thermoelectric conversion module according to any one of claims 1 to 3, wherein the evaluation method is: contacting the probe through the through hole An electrode having a portion of 16 320571 200919790 is exposed, and a resistance value of a part of a circuit composed of the plurality of electrodes, the plurality of p-type thermoelectric conversion elements, and the plurality of n-type thermoelectric conversion elements is measured. 6. A method for evaluating a thermoelectric conversion module, the thermoelectric conversion module being the thermoelectric conversion module of claim 3, wherein the evaluation method is: forming a plurality of probes respectively contacting through the plurality of through holes In the state of the plurality of electrodes, a resistance value of a unit circuit composed of the respective thermoelectric conversion elements and a pair of the electrodes sandwiching the both ends of the thermoelectric conversion elements is measured. 17 320571
TW097133582A 2007-09-07 2008-09-02 Thermo-electric conversion module and its method of evaluation TW200919790A (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007232951A JP2009065044A (en) 2007-09-07 2007-09-07 Thermoelectric conversion module and its evaluation method

Publications (1)

Publication Number Publication Date
TW200919790A true TW200919790A (en) 2009-05-01

Family

ID=40429002

Family Applications (1)

Application Number Title Priority Date Filing Date
TW097133582A TW200919790A (en) 2007-09-07 2008-09-02 Thermo-electric conversion module and its method of evaluation

Country Status (3)

Country Link
JP (1) JP2009065044A (en)
TW (1) TW200919790A (en)
WO (1) WO2009031698A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467407B (en) * 2011-06-30 2015-01-01 Nat Univ Chin Yi Technology Method of computing coefficient of performance, refrigerating capacity and error of thermoelectric cooling chip
TWI570972B (en) * 2016-01-20 2017-02-11 財團法人工業技術研究院 Thermoelectric conversion device and thermoelectric converter
CN107210355A (en) * 2015-03-06 2017-09-26 株式会社Kelk Thermoelectric power generation unit

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5229382B2 (en) * 2009-03-31 2013-07-03 富士通株式会社 Thermoelectric conversion module and repair method thereof
EP3696868B1 (en) * 2019-02-12 2021-10-06 LG Innotek Co., Ltd. Thermoelectric module
US11723275B2 (en) 2019-02-12 2023-08-08 Lg Innotek Co., Ltd. Thermoelectric module
US11980098B2 (en) 2019-02-12 2024-05-07 Lg Innotek Co., Ltd. Thermoelectric module

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6270458A (en) * 1985-09-24 1987-03-31 Sakata Shokai Ltd Coating resin composition
JPH0349409Y2 (en) * 1985-10-21 1991-10-22
JPH08335723A (en) * 1995-06-06 1996-12-17 Fujikura Ltd Thermoelectric converter

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI467407B (en) * 2011-06-30 2015-01-01 Nat Univ Chin Yi Technology Method of computing coefficient of performance, refrigerating capacity and error of thermoelectric cooling chip
CN107210355A (en) * 2015-03-06 2017-09-26 株式会社Kelk Thermoelectric power generation unit
US10355189B2 (en) 2015-03-06 2019-07-16 Kelk Ltd. Thermoelectric generation unit
CN107210355B (en) * 2015-03-06 2020-01-21 株式会社Kelk Thermoelectric power generation unit
TWI570972B (en) * 2016-01-20 2017-02-11 財團法人工業技術研究院 Thermoelectric conversion device and thermoelectric converter

Also Published As

Publication number Publication date
JP2009065044A (en) 2009-03-26
WO2009031698A1 (en) 2009-03-12

Similar Documents

Publication Publication Date Title
TW200919790A (en) Thermo-electric conversion module and its method of evaluation
JP4728745B2 (en) Thermoelectric device and thermoelectric module
EP2787545B1 (en) Thermoelectric conversion module
RU2546830C2 (en) Thermoelectric element
TW200924251A (en) Thermo-electric conversion module
JP2008010764A (en) Thermoelectric conversion device
EP3605624A1 (en) Thermoelectric power generating module, thermoelectric power generating device using said thermoelectric power generating module, and temperature measuring method
US20140225247A1 (en) Power semiconductor chip with a metallic moulded body for contacting thick wires or strips and method for the production thereof
JP2010165840A (en) Thermoelectric conversion module and thermoelectric conversion module block
JP5796631B2 (en) Semiconductor device and manufacturing method thereof
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
US10868230B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP6092509B2 (en) Contact terminal support and probe card
JP3472593B2 (en) Thermoelectric device
JP2019216175A (en) Thermoelectric conversion module
US10038133B2 (en) Differential temperature sensor
TWI364832B (en) Ic apparatus, system and method for measuring
JPH118417A (en) Thermoelectric element
JP2013051355A (en) Penetration wiring inspection method and penetration wiring board manufacturing method
TWI679712B (en) Sensor mounted wafer
JP2020150139A (en) Thermoelectric conversion module
WO2012120572A1 (en) Electricity generation method using thermoelectric generation element, thermoelectric generation element and manufacturing method thereof, and thermoelectric generation device
KR102333422B1 (en) Bulk thermoelectric element and manufacturing method thereof
WO2021167089A1 (en) Thermoelectric conversion module, insulated circuit substrate, method for joining members, and method for attaching thermoelectric conversion module
JP2019175995A (en) Sample holder