TWI467407B - Method of computing coefficient of performance, refrigerating capacity and error of thermoelectric cooling chip - Google Patents

Method of computing coefficient of performance, refrigerating capacity and error of thermoelectric cooling chip Download PDF

Info

Publication number
TWI467407B
TWI467407B TW100123150A TW100123150A TWI467407B TW I467407 B TWI467407 B TW I467407B TW 100123150 A TW100123150 A TW 100123150A TW 100123150 A TW100123150 A TW 100123150A TW I467407 B TWI467407 B TW I467407B
Authority
TW
Taiwan
Prior art keywords
coefficient
thermoelectric
cold
equation
calculating
Prior art date
Application number
TW100123150A
Other languages
Chinese (zh)
Other versions
TW201301076A (en
Inventor
Fujen Wang
Kuochien Lin
Rongjie Chang
Original Assignee
Nat Univ Chin Yi Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Univ Chin Yi Technology filed Critical Nat Univ Chin Yi Technology
Priority to TW100123150A priority Critical patent/TWI467407B/en
Publication of TW201301076A publication Critical patent/TW201301076A/en
Application granted granted Critical
Publication of TWI467407B publication Critical patent/TWI467407B/en

Links

Description

計算系統中熱電晶片性能係數、實際致冷能力及實驗誤差之方法Method for calculating coefficient of performance, actual cooling capacity and experimental error of thermoelectric wafer in a system

本揭示內容是有關於藉助電腦運算之方法,且特別是有關於一種運用電腦軟硬體配合計算系統中熱電晶片相關數據之方法。The present disclosure relates to methods of computing by computer, and more particularly to a method of using computer hardware and software to fit data related to thermoelectric wafers in a computing system.

目前欲得知熱電晶片應用於系統中時的性能係數(COP)方法,如習知技術的一種熱電冷卻系統,係藉由計算水冷式散熱器內之流體帶走熱電晶片冷熱端能量的方式,來得到熱電晶片性能係數(COP);前述方法須經由複雜的運算方式始能計算出熱電晶片的性能係數(COP)。At present, a coefficient of performance (COP) method for a thermoelectric wafer to be used in a system, such as a thermoelectric cooling system of the prior art, is to calculate the energy of the hot and cold end of the thermoelectric chip by calculating the fluid in the water-cooled heat sink. To obtain the thermoelectric chip performance coefficient (COP); the foregoing method must calculate the coefficient of performance (COP) of the thermoelectric wafer through a complicated operation method.

又如先前於國際學術期刊上發表的習知技術之熱電冷卻系統,是以實驗量測出熱電參數後再計算出性能係數;首先,將熱電晶片冷熱端分別接觸在金屬塊表面上,而兩金屬塊內預先埋設溫度熱電偶線,再者,除了量測熱電晶片冷熱端的溫度,亦在熱電晶片冷端與金屬塊接觸的另一端置放一個加熱器(heater),當加熱器與熱電晶片冷端達到熱平衡時,可從加熱器所加功率反推得到熱電晶片致冷功率;然而,前述方法須在一抽真空環境下進行相關實驗,以避免熱損失及外界侵入熱。In another example, the thermoelectric cooling system of the prior art published in international academic journals calculates the coefficient of performance after experimentally measuring the thermoelectric parameters. First, the hot and cold ends of the thermoelectric wafer are respectively contacted on the surface of the metal block, and two A temperature thermocouple wire is pre-embedded in the metal block. In addition, in addition to measuring the temperature of the hot and cold end of the thermoelectric chip, a heater is placed on the other end of the thermoelectric chip in contact with the metal block, and the heater and the thermoelectric chip are placed. When the cold end reaches the thermal equilibrium, the thermoelectric chip cooling power can be reversed from the power applied by the heater; however, the foregoing method requires relevant experiments in a vacuum environment to avoid heat loss and external intrusion heat.

前述的習知技術常需以較複雜的實驗方式及較精密的儀器來進行量測及運算,不僅造成實務上操作及應用的不便,亦有量測設備成本高昂的問題。The above-mentioned conventional techniques often require measurement and calculation by more complicated experimental methods and more sophisticated instruments, which not only causes inconvenience in practical operation and application, but also has a problem of high cost of measuring equipment.

因此,本揭示內容之一技術態樣在於提供一種計算系統中熱電晶片性能係數、實際致冷能力及實驗誤差之方法,以克服上述實務操作、應用不便,及量測設備成本高昂的問題。Therefore, one technical aspect of the present disclosure is to provide a method for calculating a coefficient of thermal power chip performance, an actual cooling capacity, and an experimental error in a system to overcome the above-mentioned practical operation, inconvenient application, and high cost of the measuring device.

依據本技術態樣一實施方式,提出一種計算系統中熱電晶片性能係數之方法,是藉助一電腦進行運算,其包含下列步驟:利用一記錄單元記錄一熱電晶片安裝於系統中時的複數個電壓(Vi )、複數個電流(Ii )、複數個熱端溫度(THi )及複數個冷端溫度(TCi )。利用一計算單元將電壓(Vi )、電流(Ii )、熱端溫度(THi )及冷端溫度(TCi )代入一第一方程式V i =α(T Hi -T Ci )+I i R ,解聯立方程式得到一席貝克係數(α)及一內阻值(R)。輸入一固定電壓(V)於熱電晶片,並藉由一量測單元量測熱電晶片之一電流(I)、一熱端溫度(TH )、一冷端溫度(TC )及一冷熱端溫差(ΔT)。利用一查詢單元查詢熱電晶片之一基本性能曲線圖,並得到熱電晶片之一致冷能力(QC )。利用計算單元將席貝克係數(α)、電流(I)、冷端溫度(TC )、內阻值(R)及冷熱端溫差(ΔT)代入一第二方程式,得到一熱傳導係數(K)。利用計算單元將席貝克係數(α)、內阻值(R)及熱傳導係數(K)代入一第三方程式,得到一優質係數(Z)。利用計算單元將席貝克係數(α)、電流(I)、冷端溫度(TC )、內阻值(R)、熱傳導係數(K)及冷熱端溫差(ΔT)代入一第四方程式,得到一實際致冷能力(QCR )。利用計算單元將席貝克係數(α)、電流(I)、熱端溫度(TH )、冷端溫度(TC )及內阻值(R)代入一第五方程式PI (T H -T C )+I 2 R ,得到一輸入功率(P)。利用計算單元將實際致冷能力(QCR )及輸入功率(P)代入一第六方程式,得到一系統中熱電晶片性能係數(COP)。According to an embodiment of the present invention, a method for calculating a coefficient of performance of a thermoelectric chip in a system is provided, which is performed by means of a computer, comprising the steps of: recording a plurality of voltages when a thermoelectric chip is mounted in the system by using a recording unit; (V i ), a plurality of currents (I i ), a plurality of hot end temperatures (T Hi ), and a plurality of cold junction temperatures (T Ci ). Using a calculation unit, the voltage (V i ), the current (I i ), the hot end temperature (T Hi ), and the cold junction temperature (T Ci ) are substituted into a first equation V i =α( T Hi - T Ci )+ I i R , the solution to the cubic equation gives a Becker coefficient (α) and an internal resistance (R). Input a fixed voltage (V) to the thermoelectric chip, and measure a current (I), a hot end temperature (T H ), a cold end temperature (T C ), and a cold and hot end of the thermoelectric chip by a measuring unit. Temperature difference (ΔT). A query unit is used to query a basic performance graph of the thermoelectric chip, and the uniform cooling capacity (Q C ) of the thermoelectric chip is obtained. The calculation unit is used to substitute the Schübeck coefficient (α), current (I), cold junction temperature (T C ), internal resistance (R) and hot and cold end temperature difference (ΔT) into a second equation. , a heat transfer coefficient (K) is obtained. Substituting the Sibeck coefficient (α), internal resistance (R) and heat transfer coefficient (K) into a third-party program using a calculation unit , get a high quality coefficient (Z). The calculation unit is used to substitute the Sibeck coefficient (α), current (I), cold junction temperature (T C ), internal resistance (R), heat transfer coefficient (K) and hot and cold end temperature difference (ΔT) into a fourth equation. , to obtain an actual cooling capacity (Q CR ). The calculation unit is used to substitute the Scheib coefficient (α), current (I), hot end temperature (T H ), cold junction temperature (T C ) and internal resistance (R) into a fifth equation P = α I ( T H - T C ) + I 2 R , to obtain an input power (P). Substituting the actual cooling capacity (Q CR ) and input power (P) into a sixth equation using a computing unit To obtain a thermoelectric wafer coefficient of performance (COP) in a system.

更進一步的說,在本技術態樣其他實施方式中,可更包含計算單元利用一第七方程式計算出一實驗誤差的步驟。完成前述步驟後,輸出實驗誤差小於10%之資料,並藉由一繪圖單元繪製成圖。此外,亦可藉由一驗證單元重覆前五個步驟,來判斷席貝克係數(α)、內阻值(R)及熱傳導係數(K)是否正確無誤。Further, in other embodiments of the technical aspect, the computing unit may further comprise a seventh equation. The step of calculating an experimental error is calculated. After the foregoing steps are completed, data with an experimental error of less than 10% is output and plotted by a drawing unit. In addition, it is also possible to determine whether the Schiebeck coefficient (α), the internal resistance value (R), and the heat transfer coefficient (K) are correct by repeating the first five steps by a verification unit.

依據本技術態樣另一實施方式,提出一種計算系統中熱電晶片實際致冷能力之方法,是藉助一電腦進行運算,其包含下列步驟:利用一熱電晶片安裝於系統中時的複數個電壓(Vi )、複數個電流(Ii )、複數個熱端溫度(THi )及複數個冷端溫度(TCi ),經由一計算單元求出一席貝克係數(α)及一內阻值(R)。輸入一固定電壓(V)於熱電晶片,並藉由一量測單元量測該熱電晶片之一電流(I)、一熱端溫度(TH )、一冷端溫度(TC )及一冷熱端溫差(ΔT)。利用一查詢單元查詢熱電晶片之一基本性能曲線圖,並得到熱電晶片之一致冷能力(QC )。利用席貝克係數(α)、電流(I)、冷端溫度(TC )、內阻值(R)及冷熱端溫差(ΔT),經由計算單元求出一熱傳導係數(K)。利用席貝克係數(α)、內阻值(R)及熱傳導係數(K),經由計算單元求出一優質係數(Z)。利用計算單元將席貝克係數(α)、電流(I)、冷端溫度(TC )、內阻值(R)、熱傳導係數(K)及冷熱端溫差(ΔT)代入方程式,得到一實際致冷能力(QCR )。According to another embodiment of the present technology, a method for calculating the actual cooling capacity of a thermoelectric chip in a system is provided, which is performed by a computer, and includes the following steps: using a plurality of voltages when a thermoelectric chip is mounted in the system ( V i ), a plurality of currents (I i ), a plurality of hot end temperatures (T Hi ), and a plurality of cold junction temperatures (T Ci ), and a Becker coefficient (α) and an internal resistance value are obtained via a calculation unit ( R). Inputting a fixed voltage (V) to the thermoelectric chip, and measuring a current (I), a hot end temperature (T H ), a cold end temperature (T C ), and a heat of the thermoelectric chip by a measuring unit End temperature difference (ΔT). A query unit is used to query a basic performance graph of the thermoelectric chip, and the uniform cooling capacity (Q C ) of the thermoelectric chip is obtained. A heat transfer coefficient (K) is obtained via a calculation unit using the Schiebeck coefficient (α), the current (I), the cold junction temperature (T C ), the internal resistance value (R), and the hot and cold end temperature difference (ΔT). Using the Sibeck coefficient (α), the internal resistance (R), and the heat transfer coefficient (K), a high-quality coefficient (Z) is obtained via the calculation unit. The calculation unit is used to substitute the Sibeck coefficient (α), current (I), cold junction temperature (T C ), internal resistance (R), heat transfer coefficient (K) and hot and cold end temperature difference (ΔT) into the equation. , to obtain an actual cooling capacity (Q CR ).

更進一步的說,在本技術態樣其他實施方式中,其中,計算單元可將電壓(Vi )、電流(Ii )、熱端溫度(THi )及冷端溫度(TCi )代入方程式V i =α(T Hi -T Ci )+I i R ,解聯立後得到該席貝克係數(α)及該內阻值(R)。再者,計算單元亦可將席貝克係數(α)、電流(I)、冷端溫度(TC )、內阻值(R)及冷熱端溫差(ΔT)代入方程式,得到熱傳導係數(K)。另一方面,計算單元可將席貝克係數(α)、內阻值(R)及熱傳導係數(K)代入方程式,得到優質係數(Z)。Furthermore, in other embodiments of the present technical aspect, the computing unit can substitute the voltage (V i ), the current (I i ), the hot end temperature (T Hi ), and the cold junction temperature (T Ci ) into the equation. V i =α( T Hi - T Ci )+ I i R , and the Sibeck coefficient (α) and the internal resistance value (R) are obtained after the solution is combined. Furthermore, the calculation unit can also substitute the Schiesbeck coefficient (α), the current (I), the cold junction temperature (T C ), the internal resistance value (R), and the hot and cold end temperature difference (ΔT) into the equation. , the heat transfer coefficient (K) is obtained. On the other hand, the calculation unit can substitute the Schiesbeck coefficient (α), internal resistance (R) and heat transfer coefficient (K) into the equation. , get the quality coefficient (Z).

依據本技術態樣又一實施方式,提出一種利用前述方法之實際致冷能力來計算系統中熱電晶片性能係數實驗誤差之方法,是藉助一電腦進行運算,其包含下列步驟:利用席貝克係數(α)、電流(I)、熱端溫度(TH )、冷端溫度(TC )及內阻值(R)經由一計算單元求出一輸入功率(P)。將實際致冷能力(QCR )及輸入功率(P)經由計算單元代入方程式,得到一系統中熱電晶片性能係數(COP)。計算單元利用方程式計算出一實驗誤差。According to still another embodiment of the present technical aspect, a method for calculating an experimental error of a thermoelectric chip performance coefficient in a system by using the actual cooling capability of the foregoing method is proposed, which is performed by a computer, and includes the following steps: using the Scheben coefficient ( α), current (I), hot end temperature (T H ), cold junction temperature (T C ), and internal resistance (R) determine an input power (P) via a calculation unit. Substituting actual cooling capacity (Q CR ) and input power (P) into the equation via the calculation unit To obtain a thermoelectric wafer coefficient of performance (COP) in a system. Computing unit using equations Calculate an experimental error.

更進一步的說,在本技術態樣其他實施方式中,可更包含輸出實驗誤差小於10%之資料,並藉由一繪圖單元繪製成圖的步驟。Further, in other embodiments of the technical aspect, the method further includes outputting an experimental error of less than 10%, and drawing a mapping step by using a drawing unit.

因此,上述諸實施方式藉由特殊設計的流程步驟,不僅能快速計算出應用於系統中熱電晶片的性能係數,亦省下了習知技術因量測方法所致成本高昂的問題。Therefore, the above embodiments can not only quickly calculate the coefficient of performance of the thermoelectric wafer applied to the system, but also save the cost of the conventional technique due to the measurement method.

第1圖繪示本揭示內容一實施方式之計算系統中熱電晶片性能係數之方法的系統示意圖,第2圖繪示第1圖之計算系統中熱電晶片性能係數之方法的局部放大圖。如第1圖及第2圖所示,本實施方式以一簡單的冷卻系統100來說明後續的計算方法,首先,本實施方式之冷卻系統100中包含一箱體110、一熱電晶片120、一電源供應器130、兩金屬導熱塊140、一平板鰭片150、一散熱裝置160、兩熱電偶溫度感測器170、一無紙式多點記錄器180及一電腦190。1 is a system diagram of a method for calculating a coefficient of performance of a thermoelectric wafer in a computing system according to an embodiment of the present disclosure, and FIG. 2 is a partially enlarged view showing a method for determining a coefficient of performance of a thermoelectric wafer in the computing system of FIG. 1. As shown in FIG. 1 and FIG. 2, the present embodiment describes a subsequent calculation method by a simple cooling system 100. First, the cooling system 100 of the present embodiment includes a case 110, a thermoelectric chip 120, and a The power supply 130, the two metal heat conducting blocks 140, a flat fin 150, a heat sink 160, two thermocouple temperature sensors 170, a paperless multipoint recorder 180, and a computer 190.

熱電晶片120安裝於箱體110上,且熱電晶片120具有一冷端121及一熱端122。電源供應器130提供直流電壓給熱電晶片120,使熱電晶片120產生冷熱現象。兩金屬導熱塊140分別接觸黏貼至熱電晶片120的冷端121及熱端122,且兩金屬導熱塊140各具有一溝槽141。平板鰭片150位於箱體110內,且與冷端121的金屬導熱塊140相連。散熱裝置160與熱端122的金屬導熱塊140相連。兩熱電偶溫度感測器170分別位於兩金屬導熱塊140之溝槽141內,用以感測熱電晶片120冷端121及熱端122的溫度狀況。無紙式多點記錄器180與兩熱電偶溫度感測器170相連,用以接收兩熱電偶溫度感測器170量得熱電晶片120冷121及熱端122的溫度數據。電腦190與無紙式多點記錄器180相連,用以記錄無紙式多點記錄器180接收的溫度數據。The thermoelectric wafer 120 is mounted on the casing 110, and the thermoelectric wafer 120 has a cold end 121 and a hot end 122. The power supply 130 supplies a direct current voltage to the thermoelectric wafer 120, causing the thermoelectric wafer 120 to generate a hot and cold phenomenon. The two metal heat conducting blocks 140 are respectively adhered to the cold end 121 and the hot end 122 of the thermoelectric wafer 120, and the two metal heat conducting blocks 140 each have a groove 141. The flat fins 150 are located within the housing 110 and are coupled to the metal thermal block 140 of the cold end 121. The heat sink 160 is coupled to the metal heat transfer block 140 of the hot end 122. The two thermocouple temperature sensors 170 are respectively located in the trenches 141 of the two metal heat conducting blocks 140 for sensing the temperature conditions of the cold end 121 and the hot end 122 of the thermoelectric chip 120. The paperless multi-point recorder 180 is connected to the two thermocouple temperature sensors 170 for receiving the temperature data of the thermocouple wafer 120 cold 121 and the hot end 122 of the two thermocouple temperature sensors 170. The computer 190 is coupled to the paperless multipoint recorder 180 for recording temperature data received by the paperless multipoint recorder 180.

值得一提的是,兩金屬導熱塊140是藉由散熱膏與熱電晶片120的冷端121及熱端122相黏合。此外,溝槽141與熱電偶溫度感測器170之間的空隙,亦以散熱膏填充。It is worth mentioning that the two metal thermal block 140 is bonded to the cold end 121 and the hot end 122 of the thermoelectric chip 120 by a thermal grease. In addition, the gap between the trench 141 and the thermocouple temperature sensor 170 is also filled with a thermal paste.

第3A圖至第3C圖繪示第1圖之計算系統中熱電晶片性能係數之方法的步驟流程圖,其中,第3A圖及第3B圖的內容相接續。具體的計算系統中熱電晶片性能係數之方法200的步驟,將於後續做詳細的說明。3A to 3C are flow charts showing the steps of the method for calculating the coefficient of performance of the thermoelectric chip in the computing system of Fig. 1, wherein the contents of Figs. 3A and 3B are successive. The steps of the method 200 of calculating the coefficient of performance of the thermoelectric wafer in a particular system will be described in detail later.

步驟210是利用一記錄單元記錄一熱電晶片安裝於系統中時的複數個電壓(Vi )、複數個電流(Ii )、複數個熱端溫度(THi )及複數個冷端溫度(TCi )。配合第1圖之系統示意圖可知,熱電偶溫度感測器170量測到熱電晶片120冷端121及熱端122的溫度後,將溫度數據傳輸至無紙式多點記錄器180,接著,內建於電腦190中的紀錄單元再將溫度數據加以記錄。另一方面,量測熱電晶片的電壓及電流為習知技術,在此不予贅述。Step 210 is to record, by using a recording unit, a plurality of voltages (V i ), a plurality of currents (I i ), a plurality of hot end temperatures (T Hi ), and a plurality of cold junction temperatures (T ) when a thermoelectric chip is mounted in the system. Ci ). As can be seen from the system diagram of FIG. 1, after the thermocouple temperature sensor 170 measures the temperature of the cold end 121 and the hot end 122 of the thermoelectric chip 120, the temperature data is transmitted to the paperless multi-point recorder 180, and then, The recording unit built in the computer 190 records the temperature data. On the other hand, measuring the voltage and current of the thermoelectric chip is a conventional technique and will not be described herein.

步驟211利用一計算單元將電壓(Vi )、電流(Ii )、熱端溫度(THi )及冷端溫度(TCi )代入一第一方程式V i =α(T Hi -T Ci )+I i R ,解聯立方程式得到一席貝克係數(α)及一內阻值(R)。計算單元內建於電腦190中,如前一步驟中的紀錄單元,皆屬於電腦190的一部分,計算單元將步驟210中得到的各項數據經過第一方程式的運算,解出席貝克係數(α)及內阻值(R)。Step 211 uses a calculation unit to substitute voltage (V i ), current (I i ), hot end temperature (T Hi ), and cold junction temperature (T Ci ) into a first equation V i =α( T Hi - T Ci ) + I i R , the solution of the cubic equation gives a Becker coefficient (α) and an internal resistance (R). The computing unit is built in the computer 190. The recording unit in the previous step belongs to a part of the computer 190. The computing unit performs the operation of the first equation on the data obtained in step 210 to solve the Becker coefficient (α). And internal resistance (R).

步驟220輸入一固定電壓(V)於熱電晶片,並藉由一量測單元量測熱電晶片之一電流(I)、一熱端溫度(TH )、一冷端溫度(TC )及一冷熱端溫差(ΔT)。前述固定電壓的來源是電源供應器130,而量測單元為熱電偶溫度感測器170。Step 220 inputs a fixed voltage (V) to the thermoelectric chip, and measures a current (I), a hot end temperature (T H ), a cold end temperature (T C ), and a thermoelectric chip by a measuring unit. Hot and cold end temperature difference (ΔT). The source of the aforementioned fixed voltage is the power supply 130, and the measuring unit is the thermocouple temperature sensor 170.

步驟221利用一查詢單元查詢熱電晶片之一基本性能曲線圖,並得到熱電晶片之一致冷能力(QC )。查詢單元是內建於電腦190中,本實施方式採用原廠製造熱電晶片120廠商所提供的基本性能曲線圖,並將基本性能曲線圖的相關數據建檔入電腦120中,因此,查詢單元可利用步驟220量測到的冷熱端溫差(ΔT)查得熱電晶片120的致冷能力(QC )。Step 221 uses a query unit to query a basic performance graph of the thermoelectric wafer and obtain a uniform cooling capability (Q C ) of the thermoelectric wafer. The query unit is built in the computer 190. The basic performance curve provided by the original manufacturer of the thermoelectric chip 120 manufacturer is used in the embodiment, and the relevant data of the basic performance graph is filed into the computer 120. Therefore, the query unit can be The cooling capacity (Q C ) of the thermoelectric wafer 120 is ascertained using the hot and cold end temperature difference (ΔT) measured in step 220.

步驟222利用計算單元將席貝克係數(α)、電流(I)、冷端溫度(TC )、內阻值(R)及冷熱端溫差(ΔT)代入一第二方程式,得到一熱傳導係數(K)。Step 222 uses the calculation unit to substitute the Schiebeck coefficient (α), the current (I), the cold junction temperature (T C ), the internal resistance value (R), and the hot and cold end temperature difference (ΔT) into a second equation. , a heat transfer coefficient (K) is obtained.

步驟230藉由一驗證單元重覆上述步驟210、211、220、221及222,來判斷席貝克係數(α)、內阻值(R)及熱傳導係數(K)是否正確無誤。此步驟並非必要,但驗證席貝克係數(α)、內阻值(R)及熱傳導係數(K)的正確性,可使計算結果更接近真實情況。Step 230 repeats steps 210, 211, 220, 221, and 222 by a verification unit to determine whether the Schiebeck coefficient (α), the internal resistance (R), and the heat transfer coefficient (K) are correct. This step is not necessary, but verifying the correctness of the Sibeck coefficient (α), the internal resistance (R), and the heat transfer coefficient (K) can make the calculation result closer to the real situation.

步驟240利用計算單元將席貝克係數(α)、內阻值(R)及熱傳導係數(K)代入一第三方程式,得到一優質係數(Z)。此優質係數(Z)是用來判斷熱電晶片120的優劣,優質係數(Z)越大,熱電晶片120冷端121及熱端122的溫差就越大,即性能越佳。Step 240 uses a computing unit to substitute the Scheib coefficient (α), the internal resistance (R), and the thermal conductivity (K) into a third-party program. , get a high quality coefficient (Z). The quality factor (Z) is used to judge the merits of the thermoelectric wafer 120. The larger the quality factor (Z), the greater the temperature difference between the cold end 121 and the hot end 122 of the thermoelectric wafer 120, that is, the better the performance.

步驟250利用計算單元將席貝克係數(α)、電流(I)、冷端溫度(TC )、內阻值(R)、熱傳導係數(K)及冷熱端溫差(ΔT)代入一第四方程式,得到一實際致冷能力(QCR )。此步驟250所求出的實際致冷能力(QCR )與步驟221查得的致冷能力(QC )不同;實際致冷能力(QCR )是熱電晶片120安裝於系統時的致冷能力,換句話說,即熱電晶片120於動態時的致冷能力,而致冷能力(QC )是熱電晶片於原廠單一晶片測試時的致冷能力。Step 250 uses a calculation unit to substitute the Sibeck coefficient (α), current (I), cold junction temperature (T C ), internal resistance (R), heat transfer coefficient (K), and hot and cold end temperature difference (ΔT) into a fourth equation. , to obtain an actual cooling capacity (Q CR ). The actual refrigeration capacity (Q CR ) determined in this step 250 is different from the refrigeration capacity (Q C ) found in step 221; the actual refrigeration capacity (Q CR ) is the refrigeration capacity of the thermoelectric wafer 120 when it is installed in the system. In other words, the cooling capacity of the thermoelectric wafer 120 when it is dynamic, and the cooling capacity (Q C ) is the cooling capacity of the thermoelectric wafer when it is tested in the original single wafer.

步驟260利用計算單元將席貝克係數(α)、電流(I)、熱端溫度(TH )、冷端溫度(TC )及內阻值(R)代入一第五方程式PI (T H -T C )+I 2 R ,得到一輸入功率(P)。Step 260 uses the calculation unit to substitute the Schiebeck coefficient (α), the current (I), the hot end temperature (T H ), the cold junction temperature (T C ), and the internal resistance value (R) into a fifth equation P = α I ( T H - T C ) + I 2 R , an input power (P) is obtained.

步驟270利用計算單元將實際致冷能力(QCR )及輸入功率(P)代入一第六方程式,得到一系統中熱電晶片性能係數(COP)。值得一提的是,習知技術量測熱電晶片120的性能係數(COP),其方法之所以複雜且成本高昂,就是因為實際致冷能力(QCR )的量測非常不容易;現在經由本實施方式所設計的流程步驟,可快速的計算出熱電晶片120的性能係數(COP)。因此,本實施方式亦可單獨應用在計算熱電晶片120的實際致冷能力(QCR )上。Step 270 uses the computing unit to substitute the actual cooling capacity (Q CR ) and the input power (P) into a sixth equation. To obtain a thermoelectric wafer coefficient of performance (COP) in a system. It is worth mentioning that the conventional technique measures the coefficient of performance (COP) of the thermoelectric wafer 120, and the method is complicated and costly because the measurement of the actual refrigeration capacity (Q CR ) is very difficult; now through this The process steps designed by the embodiment can quickly calculate the coefficient of performance (COP) of the thermoelectric wafer 120. Therefore, the present embodiment can also be applied separately to calculate the actual cooling capacity (Q CR ) of the thermoelectric wafer 120.

無論是學術或產業界之實驗量測所得到之數據,通常為真值(Ture Value)和誤差(Error)所構成,其中誤差為不可避免,一般學術界可接受誤差範圍±10%左右,而產業界亦允許誤差範圍±30%左右。以下步驟為驗證前述步驟所計算出的性能係數(COP)是否在可接受的誤差範圍內。Whether it is experimental or industrial data obtained from experimental measurements, it is usually composed of true value (Ture Value) and error (Error), where the error is unavoidable, and the general academic community can accept an error range of ±10%. The industry also allows an error range of ±30%. The following steps are to verify that the coefficient of performance (COP) calculated in the previous steps is within an acceptable error range.

步驟280計算單元利用一第七方程式計算出一實驗誤差;前述方程式係由申請人經長期研究推導得出,因此,此一步驟280亦可單獨應用在計算實驗誤差上。Step 280: the calculation unit utilizes a seventh equation An experimental error is calculated; the foregoing equation is derived by the applicant through long-term research. Therefore, this step 280 can also be applied separately to calculate the experimental error.

步驟290是將步驟280所計算出的實驗誤差小於10%的資料輸出,並藉由一繪圖單元繪製成圖。前述繪製成圖的方法為習知技術,在此不予贅述。Step 290 is to output the data whose experimental error calculated in step 280 is less than 10%, and draw a map by a drawing unit. The foregoing method of drawing a map is a conventional technique and will not be described herein.

由上述實施方式可知,應用本揭示內容之計算系統中熱電晶片性能係數之方法,除了能計算出熱電晶片的性能係數外,亦可應用在熱電晶片實際致冷能力(QCR )及實驗誤差的計算,如此一來,充分解決了習知技術運算複雜及成本高昂的問題。It can be seen from the above embodiments that the method for applying the coefficient of performance of the thermoelectric chip in the computing system of the present disclosure can be applied to the actual cooling capacity (Q CR ) of the thermoelectric chip and the experimental error, in addition to calculating the coefficient of performance of the thermoelectric chip. The calculation, as a result, fully solves the problem of complicated operation and high cost of the conventional technology.

雖然本揭示內容已以諸實施方式揭露如上,然其並非用以限定本揭示內容,任何熟習此技藝者,在不脫離本揭示內容之精神和範圍內,當可作各種之更動與潤飾,因此本揭示內容之保護範圍當視後附之申請專利範圍所界定者為準。The present disclosure has been disclosed in the above embodiments, and is not intended to limit the scope of the disclosure, and thus, various modifications and refinements may be made without departing from the spirit and scope of the disclosure. The scope of the disclosure is defined by the scope of the appended claims.

100...冷卻系統100. . . cooling system

110...箱體110. . . Box

120...熱電晶片120. . . Thermoelectric chip

121...冷端121. . . Cold end

122...熱端122. . . Hot end

130...電源供應器130. . . Power Supplier

140...金屬導熱塊140. . . Metal heat conduction block

141...溝槽141. . . Trench

150...平板鰭片150. . . Flat fin

160...散熱裝置160. . . Heat sink

170...熱電偶溫度感測器170. . . Thermocouple temperature sensor

180...無紙式多點記錄器180. . . Paperless multi-point recorder

190...電腦190. . . computer

200...計算系統中熱電晶片性能係數之方法200. . . Method for calculating the coefficient of performance of a thermoelectric chip in a system

210~290...步驟210~290. . . step

第1圖繪示本揭示內容一實施方式之計算系統中熱電晶片性能係數之方法的系統示意圖。FIG. 1 is a system diagram of a method for calculating a coefficient of performance of a thermoelectric chip in a computing system according to an embodiment of the present disclosure.

第2圖繪示第1圖之計算系統中熱電晶片性能係數之方法的局部放大圖。Figure 2 is a partial enlarged view of the method of thermoelectric wafer performance coefficient in the computing system of Figure 1.

第3A圖至第3C圖繪示第1圖之計算系統中熱電晶片性能係數之方法的步驟流程圖。3A to 3C are flow charts showing the steps of the method for calculating the coefficient of performance of the thermoelectric chip in the calculation system of Fig. 1.

200...計算系統中熱電晶片性能係數之方法200. . . Method for calculating the coefficient of performance of a thermoelectric chip in a system

210~290...步驟210~290. . . step

Claims (10)

一種計算系統中熱電晶片性能係數之方法,係藉助一電腦進行運算,包含:利用一記錄單元記錄一熱電晶片安裝於系統中時的複數個電壓(Vi )、複數個電流(Ii )、複數個熱端溫度(THi )及複數個冷端溫度(TCi );利用一計算單元將該些電壓(Vi )、該些電流(Ii )、該些熱端溫度(THi )及該些冷端溫度(TCi )代入一第一方程式V i =α(T Hi -T Ci )+I i R ,解聯立方程式得到一席貝克係數(α)及一內阻值(R);輸入一固定電壓(V)於該熱電晶片,並藉由一量測單元量測該熱電晶片之一電流(I)、一熱端溫度(TH )、一冷端溫度(TC )及一冷熱端溫差(ΔT);利用一查詢單元查詢該熱電晶片之一基本性能曲線圖,並得到該熱電晶片之一致冷能力(QC );利用該計算單元將該席貝克係數(α)、該電流(I)、該冷端溫度(TC )、該內阻值(R)及該冷熱端溫差(ΔT)代入一第二方程式,得到一熱傳導係數(K);利用該計算單元將該席貝克係數(α)、該內阻值(R)及該熱傳導係數(K)代入一第三方程式,得到一優質係數(Z);利用該計算單元將該席貝克係數(α)、該電流(I)、該冷端溫度(TC )、該內阻值(R)、該熱傳導係數(K)及該冷熱端溫差(ΔT)代入一第四方程式,得到一實際致冷能力(QCR );利用該計算單元將該席貝克係數(α)、該電流(I)、該熱端溫度(TH )、該冷端溫度(TC )及該內阻值(R)代入一第五方程式PI (T H -T C )+I 2 R ,得到一輸入功率(P);以及利用該計算單元將該實際致冷能力(QCR )及該輸入功率(P)代入一第六方程式,得到一系統中熱電晶片性能係數(COP)。A method for calculating a coefficient of performance of a thermoelectric chip in a system is performed by a computer, comprising: recording, by a recording unit, a plurality of voltages (V i ), a plurality of currents (I i ) when a thermoelectric chip is mounted in the system, a plurality of hot end temperatures (T Hi ) and a plurality of cold end temperatures (T Ci ); the voltages (V i ), the currents (I i ), and the hot end temperatures (T Hi ) are calculated by a computing unit And the cold junction temperature (T Ci ) is substituted into a first equation V i =α( T Hi - T Ci )+ I i R , and the uncoupled cubic equation obtains a Becker coefficient (α) and an internal resistance value (R); a fixed voltage (V) is applied to the thermoelectric chip, and a current (I), a hot end temperature (T H ), a cold end temperature (T C ), and a cold heat of the thermoelectric chip are measured by a measuring unit. Temperature difference (ΔT); querying a basic performance curve of the thermoelectric wafer by using a query unit, and obtaining a uniform cooling capacity (Q C ) of the thermoelectric chip; using the calculation unit to calculate the Schiesbeck coefficient (α), the current (I), the cold end temperature (T C ), the internal resistance value (R) and the cold and hot end temperature difference (ΔT) are substituted into a second equation Obtaining a heat transfer coefficient (K); using the calculation unit to substitute the Schiesbeck coefficient (α), the internal resistance value (R), and the heat transfer coefficient (K) into a third-party program Obtaining a quality coefficient (Z); using the calculation unit, the Schiesbeck coefficient (α), the current (I), the cold junction temperature (T C ), the internal resistance value (R), and the heat transfer coefficient (K) And the cold and hot end temperature difference (ΔT) is substituted into a fourth equation Obtaining an actual cooling capacity (Q CR ); using the calculation unit, the Schiesbeck coefficient (α), the current (I), the hot end temperature (T H ), the cold end temperature (T C ), and the The internal resistance value (R) is substituted into a fifth equation P = α I ( T H - T C ) + I 2 R to obtain an input power (P); and the actual cooling capacity (Q CR ) is obtained by using the calculation unit And the input power (P) is substituted into a sixth equation To obtain a thermoelectric wafer coefficient of performance (COP) in a system. 如請求項1所述之計算系統中熱電晶片性能係數之方法,更包含:該計算單元利用一第七方程式計算出一實驗誤差。The method for calculating a coefficient of performance of a thermoelectric chip in a system according to claim 1, further comprising: the calculating unit utilizing a seventh equation Calculate an experimental error. 如請求項2所述之計算系統中熱電晶片性能係數之方法,更包含:輸出該實驗誤差小於10%之資料,並藉由一繪圖單元繪製成圖。The method for calculating the coefficient of performance of the thermoelectric chip in the system according to claim 2, further comprising: outputting the data with the experimental error less than 10%, and drawing the image by a drawing unit. 如請求項1所述之計算系統中熱電晶片性能係數之方法,更包含:藉由一驗證單元重覆前五個步驟,來判斷該席貝克係數(α)、該內阻值(R)及該熱傳導係數(K)是否正確無誤。The method for calculating a coefficient of performance of a thermoelectric chip in a system according to claim 1, further comprising: repeating the first five steps by a verification unit to determine the Scheib coefficient (α), the internal resistance (R), and Whether the heat transfer coefficient (K) is correct or not. 一種計算系統中熱電晶片實際致冷能力之方法,係藉助一電腦進行運算,包含:利用一熱電晶片安裝於系統中時的複數個電壓(Vi )、複數個電流(Ii )、複數個熱端溫度(THi )及複數個冷端溫度(TCi ),經由一計算單元求出一席貝克係數(α)及一內阻值(R);輸入一固定電壓(V)於該熱電晶片,並藉由一量測單元量測該熱電晶片之一電流(I)、一熱端溫度(TH )、一冷端溫度(TC )及一冷熱端溫差(ΔT);利用一查詢單元查詢該熱電晶片之一基本性能曲線圖,並得到該熱電晶片之一致冷能力(QC );利用該席貝克係數(α)、該電流(I)、該冷端溫度(TC )、該內阻值(R)及該冷熱端溫差(ΔT),經由該計算單元求出一熱傳導係數(K);利用該席貝克係數(α)、該內阻值(R)及該熱傳導係數(K),經由該計算單元求出一優質係數(Z);以及利用該計算單元將該席貝克係數(α)、該電流(I)、該冷端溫度(TC )、該內阻值(R)、該熱傳導係數(K)及該冷熱端溫差(ΔT)代入方程式,得到一實際致冷能力(QCR )。A method for calculating the actual cooling capacity of a thermoelectric chip in a system is performed by a computer comprising: a plurality of voltages (V i ), a plurality of currents (I i ), and a plurality of numbers when a thermoelectric chip is mounted in the system a hot end temperature (T Hi ) and a plurality of cold end temperatures (T Ci ), a Becker coefficient (α) and an internal resistance value (R) are obtained through a calculation unit; and a fixed voltage (V) is input to the thermoelectric chip And measuring a current (I), a hot end temperature (T H ), a cold end temperature (T C ), and a cold end temperature difference (ΔT) of the thermoelectric wafer by using a measuring unit; using a query unit Querying a basic performance graph of the thermoelectric wafer, and obtaining a uniform cooling capacity (Q C ) of the thermoelectric wafer; using the Schiesbeck coefficient (α), the current (I), the cold junction temperature (T C ), the The internal resistance value (R) and the hot and cold end temperature difference (ΔT) are determined by the calculation unit to obtain a heat transfer coefficient (K); using the Schiesbeck coefficient (α), the internal resistance value (R), and the heat transfer coefficient (K) Calculating a quality coefficient (Z) via the calculation unit; and using the calculation unit to calculate the Schiesbeck coefficient (α), the current (I), and the cold end Temperature (T C ), the internal resistance (R), the heat transfer coefficient (K), and the hot and cold end temperature difference (ΔT) are substituted into the equation , to obtain an actual cooling capacity (Q CR ). 如請求項5所述之計算系統中熱電晶片實際致冷能力之方法,其中該計算單元係將該些電壓(Vi )、該些電流(Ii )、該些熱端溫度(THi )及該些冷端溫度(TCi )代入方程式V i =α(T Hi -T Ci )+I i R ,解聯立後得到該席貝克係數(α)及該內阻值(R)。The method of claim 5, wherein the calculating unit is the voltage (V i ), the currents (I i ), and the hot end temperatures (T Hi ) And the cold junction temperature (T Ci ) is substituted into the equation V i =α( T Hi - T Ci )+ I i R , and the Sibeck coefficient (α) and the internal resistance value (R) are obtained after the solution is combined. 如請求項5所述之計算系統中熱電晶片實際致冷能力之方法,其中該計算單元係將該席貝克係數(α)、該電流(I)、該冷端溫度(TC )、該內阻值(R)及該冷熱端溫差(ΔT)代入方程式,得到該熱傳導係數(K)。A method for calculating the actual cooling capacity of a thermoelectric wafer in a system as claimed in claim 5, wherein the calculating unit is the Scheib coefficient (α), the current (I), the cold junction temperature (T C ), the inner Resistance (R) and the temperature difference between the hot and cold ends (ΔT) are substituted into the equation The heat transfer coefficient (K) is obtained. 如請求項5所述之計算系統中熱電晶片實際致冷能力之方法,其中該計算單元係將該席貝克係數(α)、該內阻值(R)及該熱傳導係數(K)代入方程式,得到該優質係數(Z)。A method for calculating the actual cooling capacity of a thermoelectric wafer in a system as claimed in claim 5, wherein the calculating unit substitutes the Schiesbeck coefficient (α), the internal resistance value (R), and the heat transfer coefficient (K) into the equation , get the quality factor (Z). 一種利用請求項5之實際致冷能力來計算系統中熱電晶片性能係數實驗誤差之方法,係藉助一電腦進行運算,包含:利用該席貝克係數(α)、該電流(I)、該熱端溫度(TH )、該冷端溫度(TC )及該內阻值(R)經由一計算單元求出一輸入功率(P);以及將該實際致冷能力(QCR )及該輸入功率(P)經由該計算單元代入方程式,得到一系統中熱電晶片性能係數(COP);以及該計算單元利用方程式計算出一實驗誤差。A method for calculating an experimental error of a thermoelectric chip performance coefficient in a system by using the actual cooling capacity of the request item 5, which is performed by means of a computer, comprising: utilizing the Becker coefficient (α), the current (I), the hot end Temperature (T H ), the cold junction temperature (T C ), and the internal resistance value (R) determine an input power (P) via a calculation unit; and the actual refrigeration capacity (Q CR ) and the input power (P) substituting the equation via the computing unit Obtaining a coefficient of thermal performance (COP) of a thermoelectric wafer in a system; and using the equation for the calculation unit Calculate an experimental error. 如請求項9所述之利用請求項5之實際致冷能力來計算系統中熱電晶片性能係數實驗誤差之方法,更包含:輸出該實驗誤差小於10%之資料,並藉由一繪圖單元繪製成圖。The method for calculating the experimental error of the thermoelectric chip performance coefficient in the system by using the actual cooling capacity of the request item 5, as described in claim 9, further comprising: outputting the data with the experimental error less than 10%, and drawing by using a drawing unit Figure.
TW100123150A 2011-06-30 2011-06-30 Method of computing coefficient of performance, refrigerating capacity and error of thermoelectric cooling chip TWI467407B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW100123150A TWI467407B (en) 2011-06-30 2011-06-30 Method of computing coefficient of performance, refrigerating capacity and error of thermoelectric cooling chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW100123150A TWI467407B (en) 2011-06-30 2011-06-30 Method of computing coefficient of performance, refrigerating capacity and error of thermoelectric cooling chip

Publications (2)

Publication Number Publication Date
TW201301076A TW201301076A (en) 2013-01-01
TWI467407B true TWI467407B (en) 2015-01-01

Family

ID=48137505

Family Applications (1)

Application Number Title Priority Date Filing Date
TW100123150A TWI467407B (en) 2011-06-30 2011-06-30 Method of computing coefficient of performance, refrigerating capacity and error of thermoelectric cooling chip

Country Status (1)

Country Link
TW (1) TWI467407B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161140A (en) * 1987-12-17 1989-06-23 Nippon Steel Corp Evaluating method for thermoelectric transducing material
JP2007059462A (en) * 2005-08-22 2007-03-08 Chiba Univ Method of evaluating characteristics of thermoelectric element
TW200919790A (en) * 2007-09-07 2009-05-01 Sumitomo Chemical Co Thermo-electric conversion module and its method of evaluation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01161140A (en) * 1987-12-17 1989-06-23 Nippon Steel Corp Evaluating method for thermoelectric transducing material
JP2007059462A (en) * 2005-08-22 2007-03-08 Chiba Univ Method of evaluating characteristics of thermoelectric element
TW200919790A (en) * 2007-09-07 2009-05-01 Sumitomo Chemical Co Thermo-electric conversion module and its method of evaluation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Sixth European Workshop on Thermoelectricity of the European Thermoelectricity Society, September 2001 *

Also Published As

Publication number Publication date
TW201301076A (en) 2013-01-01

Similar Documents

Publication Publication Date Title
Lu et al. Inverse estimation of the inner wall temperature fluctuations in a pipe elbow
CN112013978B (en) Automatic compensation method for dynamic temperature measurement of temperature sensor
CN106124078B (en) A method of strong transient fluid temperature is measured using double-thermocouple
CN106124955B (en) The transient electrical test method of liquid cold plate thermal resistance
CN111879443A (en) Tool for measuring density of gas-liquid two-phase heat flow in rocket engine
CN104933308B (en) Reliability estimation method towards domestic military IGBT module
CN110750912B (en) Battery thermal parameter identification method based on non-dimensionalized model
JP2011122859A (en) Method and system for diagnosis of defect
Lee et al. The function estimation in predicting heat flux of pin fins with variable heat transfer coefficients
TWI570412B (en) Thermal needle probe
KR101889818B1 (en) Thermal conductivity mearsuring device and measuring method thereof
CN108387601B (en) Device and method for measuring thermal resistance of high-heat-conducting-piece-metal heat sink interface
Cardenas et al. Thermoreflectance measurement of temperature and thermal resistance of thin film gold
TWI467407B (en) Method of computing coefficient of performance, refrigerating capacity and error of thermoelectric cooling chip
JP5540241B2 (en) Heat flux measuring device and heat flux measuring method
CN107255650A (en) One kind is on thermoelectric material Seebeck coefficient testing methods
Huang et al. An iterative regularization method in estimating the base temperature for non-Fourier fins
US10302379B1 (en) Apparatus of heat pipe quality detection using infrared thermal imager and method thereof
CN106679818B (en) Device and method for measuring temperature distribution of smooth surface
Sapozhnikov et al. An experimental investigation of the film boiling of subcooled water by gradient heat flux measurement
TW201510519A (en) System and method for measuring properties of thermoelectric module
CN111103319B (en) Health state monitoring method for heat-conducting silicone grease and cooling fan
Kerstin et al. The Challenge of Accurately Analyzing Thermal Resistances
Szekely et al. Design of a static TIM tester
Begot et al. Estimation of internal fuel cell temperatures from surface temperature measurements

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees