WO2019021703A1 - Thermoelectric power generation module for calibration - Google Patents

Thermoelectric power generation module for calibration Download PDF

Info

Publication number
WO2019021703A1
WO2019021703A1 PCT/JP2018/023516 JP2018023516W WO2019021703A1 WO 2019021703 A1 WO2019021703 A1 WO 2019021703A1 JP 2018023516 W JP2018023516 W JP 2018023516W WO 2019021703 A1 WO2019021703 A1 WO 2019021703A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric
generation module
thermoelectric conversion
power generation
calibration
Prior art date
Application number
PCT/JP2018/023516
Other languages
French (fr)
Japanese (ja)
Inventor
山本 淳
和夫 長瀬
誠 相原
道広 太田
弘隆 西当
高澤 弘幸
Original Assignee
国立研究開発法人産業技術総合研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立研究開発法人産業技術総合研究所 filed Critical 国立研究開発法人産業技術総合研究所
Priority to JP2019532445A priority Critical patent/JP6858379B2/en
Publication of WO2019021703A1 publication Critical patent/WO2019021703A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric power generation module, and more particularly to a thermoelectric power generation module for calibration of an evaluation device of a thermoelectric power generation module, and more specifically to a thermoelectric conversion element constituting a thermoelectric power generation module for calibration.
  • thermoelectric conversion technology is a technology for mutually converting thermal energy and electrical energy using a solid thermoelectric conversion element.
  • the technology for converting thermal energy into electrical energy is called thermoelectric generation and is based on the Seebeck effect, which is one of the thermoelectric effects.
  • thermoelectric generation a temperature difference between both ends of a thermoelectric conversion element is directly converted to electrical energy.
  • thermoelectric conversion element generally has a configuration in which a thermoelectric conversion material is sandwiched between two electrodes.
  • a thermoelectric power generation module can be configured using the thermoelectric conversion element. Specifically, for example, a P-type thermoelectric conversion element (carriers carrying charges are holes), an N-type thermoelectric conversion element (carriers carrying charges are electrons), and thermal using an upper junction electrode and a lower junction electrode
  • the thermoelectric generation module is obtained by electrically connecting in series in parallel.
  • thermoelectric generation module functions as a thermoelectric generation module even with a pair of P-type-N-type thermoelectric conversion elements, but usually, in order to obtain a larger output, multiple pairs of P-type-N-type thermoelectric conversion elements are connected to form a thermoelectric generation module Further, a plurality of the thermoelectric generation modules are combined to constitute a thermoelectric generation device.
  • thermoelectric power generation module that constitutes the thermoelectric power generation device
  • the calibration of the evaluation device is generally performed using a standard (standard) calibration thermoelectric generation module.
  • thermoelectric conversion element that can be used for a thermoelectric power generation module for calibration that withstands the high temperature side temperature of 500 ° C. is not readily available.
  • the thermoelectric conversion element of a BiTe-based sintered body currently commercially available is about 230 ° C. at maximum use temperature.
  • the thermoelectric conversion element of Mg 2 Si-based sintered body can be used at 500 ° C., there is a problem of durability of the thermoelectric conversion element itself, and it can not be used for calibration.
  • thermoelectric conversion element of a SiGe-based sintered body can be used at 500 ° C.
  • the difference between the thermal expansion coefficient and the thermal expansion coefficient of metal electrodes such as Cu, Au, Ni, etc. is large.
  • metal electrodes such as Cu, Au, Ni, etc.
  • thermoelectric power generation module As a problem of the evaluation device side of the thermoelectric power generation module, when using a metal-based or metal alloy-based thermoelectric conversion element that can be used at a high temperature 500 ° C., heat flow (heat flux) flowing in the element becomes large and evaluation The heat flow beyond what is usually considered may be input to the device, and the heat flow may not be accurately measured. Specifically, a large heat flow exceeds the capacity of the cooling device of the evaluation device of the thermoelectric power generation module, and it becomes difficult to keep the low temperature and the temperature difference between the high temperature and the low temperature constant.
  • Patent document 1 makes the shape of the thermoelectric element a shape whose area is not uniform in the cross-sectional direction perpendicular to the heat flux, for example, a truncated cone, a truncated pyramid, a shape combining a plurality of these, or a shape combining spheres.
  • a thermoelectric power generation element is disclosed, which is capable of increasing the temperature difference between the high temperature side and the low temperature side in the thermoelectric element, in which a hot spot is formed in the thermoelectric element.
  • thermoelectric conversion element of Patent Document 1 has a truncated cone or truncated pyramid shape, and the cross-sectional area of one of the surfaces in contact with the upper and lower electrodes is reduced.
  • the shape and bonding condition are different from those of the thermoelectric conversion elements in which the cross-sectional areas of the surfaces in contact with the upper and lower electrodes having the shape of a regular rectangular parallelepiped or a column to be evaluated by the evaluation device are the same. Therefore, as the heat flow is reduced, the bonding surface with the metal electrode becomes smaller, and there is a possibility that sufficient bonding strength can not be obtained. That is, it is not suitable as a thermoelectric conversion element which comprises the thermoelectric-generation module for calibration of the evaluation apparatus of a thermoelectric-generation module.
  • a thermoelectric conversion element in which two small circles of two truncated cone-shaped thermoelectric elements are combined by electric heating or the like also has a small bonding surface, and thus there is a possibility that sufficient strength can not be maintained.
  • thermoelectric conversion element that can be secured and used as a thermoelectric power generation module for calibration of an evaluation device of a thermoelectric power generation module, and a thermoelectric power generation module including the same.
  • thermoelectric generation module for calibration of an evaluation device of a thermoelectric generation module includes a plurality of thermoelectric conversion elements arranged in parallel between an upper electrode and a lower electrode, and a side surface of each of the plurality of thermoelectric conversion elements Preferably, at least one or more through holes are provided to suppress an increase in heat flow between the upper electrode and the lower electrode during power generation.
  • thermoelectric generation module for calibration of one aspect of the present invention, the heat flow (heat flux) between the upper electrode and the lower electrode is suppressed at the time of power generation by the through holes provided on the side surfaces of the thermoelectric conversion elements. Power generation efficiency can be improved as compared with the case of using a thermoelectric conversion element without through holes.
  • thermoelectric-generation module It is a figure which shows the structure of the conventional thermoelectric conversion element. It is a figure which shows the structure (a pair of PN thermal-electric conversion element) of the conventional thermoelectric-generation module. It is a figure which shows the structure of the thermoelectric conversion element of one Embodiment of this invention. It is a figure which shows the external appearance of the conventional thermoelectric-generation module. It is a figure which shows the external appearance of the thermoelectric-generation module of one Example of this invention. It is a figure which shows the characteristic of the thermoelectric-generation module of one Example of this invention. It is a figure which shows the characteristic of the thermoelectric-generation module of one Example of this invention.
  • FIG. 1 is a diagram showing the configuration of a conventional thermoelectric conversion element.
  • the thermoelectric conversion element 10 has a configuration in which the thermoelectric conversion material 1 is sandwiched between two electrode materials 2a and 2b.
  • the electrode materials 2a and 2b electrically and thermally connect the thermoelectric conversion material 1 and a junction electrode to be described later, and transmit current and heat well while suppressing the reaction between the thermoelectric conversion material 1 and the junction electrode And the role of relieving stress between the thermoelectric conversion material 1 and the junction electrode.
  • FIG. 2 is a diagram showing the configuration (a pair of PN thermoelectric conversion elements) of a conventional thermoelectric generation module.
  • the thermoelectric generation module 100 includes two thermoelectric conversion elements, a thermoelectric conversion element 20 and a thermoelectric conversion element 30, and one upper junction electrode 13 disposed to bridge these two thermoelectric conversion elements, and a thermoelectric conversion element 20 and lower junction electrodes 14 and 14 'disposed under the thermoelectric conversion element 30, respectively.
  • the thermoelectric power generation module 100 has a ⁇ -shape as a whole.
  • the upper bonding electrode 13 and the lower bonding electrodes 14 and 14 ' correspond to the above-described bonding electrodes.
  • a material having good electrical and thermal conductivity is used for the upper junction electrode 13 and the lower junction electrode 14 and 14 '.
  • Cu, Au, Ni, etc. are used.
  • the thickness is about 1 mm at the upper limit in consideration of productivity.
  • the thermoelectric conversion element 20 has a configuration in which the thermoelectric conversion material 11 is sandwiched between two electrodes 12 a and 12 b as in the case of the thermoelectric conversion element 10 in FIG. 1, and the thermoelectric conversion element 30 also has two thermoelectric conversion materials 11 ′. It is set as the structure clamped by electrode 12a ', 12b'.
  • thermoelectric generation module 100 when the thermoelectric conversion element 20 is a P-type thermoelectric conversion element (the carrier carrying the charge is a hole), the pair of thermoelectric conversion elements 30 is an N-type thermoelectric conversion element (the carrier carrying the charge is electrons) It is.
  • the upper junction electrode 13 is heated to a high temperature and the lower junction electrodes 14 and 14 'are cooled to a low temperature, it can be used as a thermoelectric power generation module that generates a potential difference between the lower junction electrodes 14-14'.
  • FIG. 3 is a view showing a configuration (appearance) of a thermoelectric conversion element according to an embodiment of the present invention.
  • (A) to (c) of FIG. 3 show an example of three thermoelectric conversion elements 40, 41, 42 having the shape of a vertically long rectangular parallelepiped.
  • the thermoelectric conversion element 40 of (a) has a configuration in which the thermoelectric conversion material 3 is sandwiched between two electrode materials 4a and 4b. In each of the four side surfaces of the thermoelectric conversion material 3, in other words, each of two adjacent side surfaces, two through holes 5 having a circular cross section are provided.
  • thermoelectric conversion element 41 of FIG. 3B similarly has a configuration in which the thermoelectric conversion material 3 is sandwiched between two electrode materials 4a and 4b.
  • thermoelectric conversion element 42 of (c) similarly has a configuration in which the thermoelectric conversion material 3 is sandwiched between two electrode materials 4a and 4b.
  • One through hole 7 having a circular cross section is provided on each of two adjacent side surfaces of the thermoelectric conversion material 3.
  • the number of through holes 3 to 5 and the opening size are thermoelectric generation materials at the time of power generation, that is, when the upper and lower electrode materials 4a and 4b have a predetermined temperature difference.
  • the effective range can be determined to suppress the heat flow flowing through three. If the number of through holes and the opening size increase, the substantial heat transfer path of the thermoelectric conversion material 3 narrows through the through holes and the thermal resistance increases. Therefore, the heat flow flowing through the thermoelectric conversion material 3 is further suppressed. Can.
  • thermoelectric conversion material 3 becomes a current path due to the potential difference generated simultaneously, if the number of through holes and the opening size are made too large, the power generation amount (power generation efficiency) will be lowered. . Therefore, it is necessary to determine the number of through holes and the opening size in consideration of the balance between the heat flow (its suppression) and the power generation amount (its maintenance).
  • thermoelectric conversion elements 41 to 42 are used as a part of the thermoelectric generation module for calibration, the temperature of the upper electrode 4b which is high is 500 ° C. or higher. Even materials that can withstand are selected. In addition, since a through hole is provided on the side surface, it is also required to be an easy material that can be processed. Furthermore, in order to prevent bonding peeling and the like at the time of heating, it is desirable that the material has a thermal expansion coefficient close to that of metals (for example, Cu, Au, Ni, etc.) which can be the upper and lower electrode materials 4a, 4b.
  • metals for example, Cu, Au, Ni, etc.
  • thermoelectric conversion material 3 As a material of the thermoelectric conversion material 3 which satisfy
  • the material of the thermoelectric conversion material 3 is not limited to this example, As long as it is a material which can satisfy said 3 conditions, other arbitrary materials can be selected.
  • FIG. 4 is a view showing the appearance of a conventional thermoelectric generation module for comparison.
  • FIG. 5 is an external view of a thermoelectric generation module according to an embodiment of the present invention.
  • 6 and 7 are diagrams showing the characteristics of the thermoelectric generation modules of FIGS. 4 and 5, respectively.
  • the conventional thermoelectric generation module 50 of FIG. 4 (a) 16 thermoelectric conversion elements 10 in the shape of (b) are arranged in parallel between the upper substrate 51 at high temperature and the lower substrate 52 at low temperature. It is done.
  • the 16 thermoelectric conversion elements 10 there are eight P-type and eight N-type, and they are alternately arranged in parallel one by one.
  • the thermoelectric conversion element 10 of (b) is the same as that of the structure by which the thermoelectric conversion material 1 of FIG. 1 was clamped by two electrode material 2a, 2b.
  • thermoelectric conversion elements 40 in the shape of (b) are arranged in parallel between the upper substrate 61 which is high temperature and the lower substrate 62 which is low temperature. Is located in Among the 16 thermoelectric conversion elements 40, there are eight P-type and eight N-type, and they are alternately arranged in parallel one by one.
  • the thermoelectric conversion element 40 of (b) is the same as the structure by which the thermoelectric conversion material 3 which has the through-hole 5 of Fig.3 (a) was clamped by two electrode material 4a, 4b.
  • the thermoelectric conversion elements 10 and 40 of FIG. 4 and FIG. 5 are basically the same except for the configuration (the presence or absence of the through hole) of the thermoelectric conversion elements.
  • Table 1 below shows basic specifications of the thermoelectric conversion element 40 according to the embodiment of the present invention shown in FIG. 5 (b). Assuming that the last two rows in the table have the names of the holeless P-type element and the holeless N-type element in FIG. 4B, the conventional thermoelectric conversion element 10 in FIG. , Materials, etc.). As a high temperature side and a low temperature side substrate in the table, a substrate made of silicon nitride with 0.2 mm thick copper adhered on the surface was used. The number behind the element name of Sn63Pb37 on the low temperature side bonding material in the table means atomic%, and mp 183 ° C. indicates that the melting point is 183 ° C.
  • the numbers after the element names of Ni90Cr10 and Cu55Ni45 in the table mean atomic%.
  • surface is a millimeter (mm), and (PHI) 2 shows that the diameter of a through-hole is 2 mm.
  • FIG. 6 gives temperature loads on the high temperature side 500 ° C. and the low temperature side 50 ° C. in each of the thermoelectric power generation modules in FIGS. 4 and 5 and measures the heat flow passing between the upper and lower electrodes for deriving the power generation efficiency at that time
  • the graph of A is the heat flow Q (W) of the thermoelectric generation module 60 of one embodiment of the present invention in FIG. 5
  • the graph of B is the heat flow Q (W) of the conventional thermoelectric generation module 50 of FIG.
  • the inventive heat flow Q of A was about 74 W and the heat flow density was about 9.4 W / cm 2 .
  • the heat flow of the conventional structure of B was about 234 W, and the heat flow density was about 29.8 W / cm 2 . From the comparison of the two, in the thermoelectric power generation module 60 according to the embodiment of the present invention shown in FIG. 5, the passing heat flow can be reduced (suppressed) by about 69% as compared with the conventional structure shown in FIG.
  • FIG. 7 shows the thermoelectric-to-electricity conversion efficiency% (%) obtained under the measurement conditions of FIG.
  • the graph of A is the conversion efficiency ⁇ (%) of the thermoelectric power generation module 60 of the embodiment of the present invention of FIG. 5, and the graph of B is ⁇ (%) of the conventional thermoelectric power generation module 50 of FIG.
  • the conversion efficiency ⁇ of the present invention of A was about 0.52%, and the conversion efficiency ⁇ of the conventional structure of B was about 0.30%. From the comparison of the two, the thermoelectric generation module 60 according to the embodiment of the present invention shown in FIG. 5 was able to increase (improve) the conversion efficiency ⁇ by about 70% as compared with the conventional structure shown in FIG.
  • thermoelectric conversion element instead of the through holes in the side surfaces of the thermoelectric conversion element, an opening having a depth not halfway through the thermoelectric conversion material may be provided to obtain the same heat flow reduction effect. At that time, it is possible to adjust the flow rate of heat released depending on the depth of the opening and the like.
  • thermoelectric conversion element of the present invention and the thermoelectric power generation module using the same can be industrially used as a thermoelectric power generation module for calibration of an evaluation device of a thermoelectric power generation module.
  • thermoelectric conversion element 20 P type thermoelectric conversion element 30 N type thermoelectric conversion element 12a , 12b, 12a ', 12b' electrode 13 upper bonding electrode 14, 14 'lower bonding electrode 51, 61 upper substrate 52, 62 lower substrate

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

Provided are a thermoelectric conversion element and a thermoelectric power generation module including same, which are utilizable as a thermoelectric power generation module for calibration of an evaluation device for thermoelectric power generation modules. The thermoelectric power generation module for calibration of an evaluation device for thermoelectric power generation modules according to the present invention is characterized by comprising a plurality of thermoelectric conversion elements (40) disposed in parallel between an upper electrode (4b) and a lower electrode (4a), and by providing at least one through-hole (5, 6, 7) in respective lateral surfaces of the plurality of thermoelectric conversion elements so that heat flow between the upper electrode and the lower electrode is suppressed at the time of power generation.

Description

校正用熱電発電モジュールThermoelectric module for calibration
 本発明は、熱電発電モジュールに関し、具体的には、熱電発電モジュールの評価装置の校正用の熱電発電モジュールに関し、より具体的には、その校正用の熱電発電モジュールを構成する熱電変換素子に関する。 The present invention relates to a thermoelectric power generation module, and more particularly to a thermoelectric power generation module for calibration of an evaluation device of a thermoelectric power generation module, and more specifically to a thermoelectric conversion element constituting a thermoelectric power generation module for calibration.
 熱電変換技術とは、固体の熱電変換素子を用いて熱エネルギーと電気エネルギーを相互に変換する技術である。熱エネルギーを電気エネルギーに変換する技術は、熱電発電と呼ばれ、熱電効果の1つであるゼーベック効果に基づく。熱電発電では、熱電変換素子の両端間の温度差が電気エネルギーに直接変換される。この熱電発電を利用して、工場や自動車から排出されている膨大な未利用熱エネルギーを回収し、そこから電力を生み出すことで、化石燃料の消費量低減、更にはCO削減と省エネルギーに大いに貢献できる。 The thermoelectric conversion technology is a technology for mutually converting thermal energy and electrical energy using a solid thermoelectric conversion element. The technology for converting thermal energy into electrical energy is called thermoelectric generation and is based on the Seebeck effect, which is one of the thermoelectric effects. In thermoelectric generation, a temperature difference between both ends of a thermoelectric conversion element is directly converted to electrical energy. By using this thermoelectric power generation to recover the vast amount of unused thermal energy emitted from factories and automobiles, and generating electricity from there, it is possible to greatly reduce fossil fuel consumption, CO 2 reduction and energy saving. I can contribute.
 熱電変換素子は、一般に熱電変換材料が2つの電極で挟持された構成を有する。その熱電変換素子を用いて熱電発電モジュールを構成することができる。具体的には、例えば、P型熱電変換素子(電荷を運ぶキャリアが正孔)と、N型熱電変換素子(電荷を運ぶキャリアが電子)を、上部接合電極と下部接合電極を用いて熱的には並列に電気的には直列に接続することにより、熱電発電モジュールを得る。熱電発電モジュールはP型-N型熱電変換素子一対でも熱電発電モジュールとして機能するが、通常、より大きな出力を得るために、P型-N型熱電変換素子を複数対接続して熱電発電モジュールとし、さらにこの熱電発電モジュールを複数個組み合わせて、熱電発電装置を構成する。 The thermoelectric conversion element generally has a configuration in which a thermoelectric conversion material is sandwiched between two electrodes. A thermoelectric power generation module can be configured using the thermoelectric conversion element. Specifically, for example, a P-type thermoelectric conversion element (carriers carrying charges are holes), an N-type thermoelectric conversion element (carriers carrying charges are electrons), and thermal using an upper junction electrode and a lower junction electrode The thermoelectric generation module is obtained by electrically connecting in series in parallel. The thermoelectric generation module functions as a thermoelectric generation module even with a pair of P-type-N-type thermoelectric conversion elements, but usually, in order to obtain a larger output, multiple pairs of P-type-N-type thermoelectric conversion elements are connected to form a thermoelectric generation module Further, a plurality of the thermoelectric generation modules are combined to constitute a thermoelectric generation device.
 熱電発電装置を構成する熱電発電モジュールの性能規格の標準化を進める上で、熱電発電モジュールの開発・製造メーカ等において、熱電発電モジュールの特性評価がより適切かつ正確に行われる必要がある。そのためには、熱電発電モジュールの特性評価を行う評価装置の校正が不可欠である。評価装置の校正は基準(標準)となる校正用の熱電発電モジュールを用いて行うのが一般的である。評価装置の校正においては校正用の熱電発電モジュールの高温側に500℃程度の温度を付加する必要があるが、従来の熱電発電モジュールを用いた場合以下のような問題がある。 In order to standardize the performance standard of the thermoelectric power generation module that constitutes the thermoelectric power generation device, it is necessary for the development, manufacture and the like of the thermoelectric power generation module to more appropriately and accurately evaluate the characteristics of the thermoelectric power generation module. For that purpose, it is indispensable to calibrate the evaluation device that performs the characteristic evaluation of the thermoelectric generation module. The calibration of the evaluation device is generally performed using a standard (standard) calibration thermoelectric generation module. In the calibration of the evaluation device, it is necessary to add a temperature of about 500 ° C. to the high temperature side of the thermoelectric generation module for calibration, but there are the following problems when using the conventional thermoelectric generation module.
 熱電発電モジュール自体の問題として、高温側温度500℃に耐える校正用の熱電発電モジュールに使用できる熱電変換素子が容易に入手できないことが挙げられる。例えば、現在一般販売されているBiTe系焼結体の熱電変換素子は、最高使用温度230℃程度である。また、MgSi系焼結体の熱電変換素子などは500℃にて使用可能であるが、熱電変換素子自体の耐久性の課題があり校正用としては使用できない。さらに、SiGe系焼結体の熱電変換素子などは500℃にて使用可能であるが、その熱膨張係数がCu、Au、Niなどの金属電極の熱膨張係数との差が大きく、熱電変換素子と金属電極間の接合部剥がれや素子自体の破損が懸念され、熱電発電モジュールとして耐久性の問題があるので校正用としては使用できない。 As a problem of the thermoelectric power generation module itself, it can be mentioned that a thermoelectric conversion element that can be used for a thermoelectric power generation module for calibration that withstands the high temperature side temperature of 500 ° C. is not readily available. For example, the thermoelectric conversion element of a BiTe-based sintered body currently commercially available is about 230 ° C. at maximum use temperature. In addition, although the thermoelectric conversion element of Mg 2 Si-based sintered body can be used at 500 ° C., there is a problem of durability of the thermoelectric conversion element itself, and it can not be used for calibration. Furthermore, although the thermoelectric conversion element of a SiGe-based sintered body can be used at 500 ° C., the difference between the thermal expansion coefficient and the thermal expansion coefficient of metal electrodes such as Cu, Au, Ni, etc. is large. There is concern about peeling of the joint between the metal electrodes and breakage of the element itself, and there is a problem of durability as a thermoelectric power generation module, so it can not be used for calibration.
 熱電発電モジュールの評価装置側の問題として、高温側温度500℃で使用可能な金属系、金属の合金系の熱電変換素子を用いた場合、素子内を流れる熱流(熱流束)が大きくなり、評価装置に通常考えられる以上の熱流が入力されてしまい、熱流を正確に測れない恐れがある。具体的には、大きい熱流が熱電発電モジュールの評価装置の冷却装置の能力を超えてしまい、低温側温度及び高温側と低温側の間の温度差を一定に保つのが難しくなる。 As a problem of the evaluation device side of the thermoelectric power generation module, when using a metal-based or metal alloy-based thermoelectric conversion element that can be used at a high temperature 500 ° C., heat flow (heat flux) flowing in the element becomes large and evaluation The heat flow beyond what is usually considered may be input to the device, and the heat flow may not be accurately measured. Specifically, a large heat flow exceeds the capacity of the cooling device of the evaluation device of the thermoelectric power generation module, and it becomes difficult to keep the low temperature and the temperature difference between the high temperature and the low temperature constant.
特許文献1は、熱電素子の形状を、熱流束と垂直な断面方向において面積が一様とならない形状、例えば、円錐台や角錐台、あるいはこれらを複数組み合わせた形状、球を組み合わせた形状にすることによって、熱電素子内にホットスポットを形成して成る、熱電素子内の高温側と低温側の温度差を大きくすることを可能とした熱電発電素子を開示する。 Patent document 1 makes the shape of the thermoelectric element a shape whose area is not uniform in the cross-sectional direction perpendicular to the heat flux, for example, a truncated cone, a truncated pyramid, a shape combining a plurality of these, or a shape combining spheres. Thus, a thermoelectric power generation element is disclosed, which is capable of increasing the temperature difference between the high temperature side and the low temperature side in the thermoelectric element, in which a hot spot is formed in the thermoelectric element.
特開2006-253341号広報Japanese Patent Application Laid-Open No. 2006-253341
 特許文献1の熱電変換素子は、円錐台や角錐台の形状を有し、上下の電極に接する面の一方の断面積が小さくなる。評価装置での評価対象となる通常の直方体や円柱形の形状を有する上下の電極に接する面の断面積が同一である熱電変換素子とは、形状や接合条件が異なる。よって、熱流の低減を図ろうとすればするほど、金属電極との接合面が小さくなるので、十分な接合強度を得られない恐れがある。つまり、熱電発電モジュールの評価装置の校正用の熱電発電モジュールを構成する熱電変換素子としては適していない。また、円錐台形状の熱電素子2個の小さい円同士を通電過熱等により結合させた熱電変換素子も、同様に小さな接合面となることから、十分な強度を保てない恐れがある。 The thermoelectric conversion element of Patent Document 1 has a truncated cone or truncated pyramid shape, and the cross-sectional area of one of the surfaces in contact with the upper and lower electrodes is reduced. The shape and bonding condition are different from those of the thermoelectric conversion elements in which the cross-sectional areas of the surfaces in contact with the upper and lower electrodes having the shape of a regular rectangular parallelepiped or a column to be evaluated by the evaluation device are the same. Therefore, as the heat flow is reduced, the bonding surface with the metal electrode becomes smaller, and there is a possibility that sufficient bonding strength can not be obtained. That is, it is not suitable as a thermoelectric conversion element which comprises the thermoelectric-generation module for calibration of the evaluation apparatus of a thermoelectric-generation module. In addition, a thermoelectric conversion element in which two small circles of two truncated cone-shaped thermoelectric elements are combined by electric heating or the like also has a small bonding surface, and thus there is a possibility that sufficient strength can not be maintained.
 本発明は、高温側温度が500℃以上の高温でも熱流(熱流束)が抑制され、かつ通常の熱電変換素子の形状に近く、上下の電極に接する面の断面積が同一であって接合強度が確保でき、熱電発電モジュールの評価装置の校正用の熱電発電モジュールとして利用可能な熱電変換素子及びこれを含む熱電発電モジュールを提供することを目的とする。 In the present invention, heat flow (heat flux) is suppressed even at high temperatures on the high temperature side of 500 ° C. or higher, and the cross-sectional area of the surface in contact with the upper and lower electrodes is similar to that of a normal thermoelectric conversion element. It is an object of the present invention to provide a thermoelectric conversion element that can be secured and used as a thermoelectric power generation module for calibration of an evaluation device of a thermoelectric power generation module, and a thermoelectric power generation module including the same.
 本発明の一態様の熱電発電モジュールの評価装置の校正用熱電発電モジュールは、上部電極と下部電極の間に並列に配置された複数の熱電変換素子を含み、複数の熱電変換素子の各々の側面に、発電時において上部電極と下部電極の間の熱流の増加を抑制するように、少なくとも1つ以上の貫通孔を設けることを特徴とする。 A thermoelectric generation module for calibration of an evaluation device of a thermoelectric generation module according to an aspect of the present invention includes a plurality of thermoelectric conversion elements arranged in parallel between an upper electrode and a lower electrode, and a side surface of each of the plurality of thermoelectric conversion elements Preferably, at least one or more through holes are provided to suppress an increase in heat flow between the upper electrode and the lower electrode during power generation.
 本発明の一態様の校正用熱電発電モジュールによれば、熱電変換素子の側面に設けられた貫通孔により、発電時において上部電極と下部電極の間の熱流(熱流束)が抑制され、また、発電効率を貫通孔の無い熱電変換素子を用いた場合よりも向上させることができる。 According to the thermoelectric generation module for calibration of one aspect of the present invention, the heat flow (heat flux) between the upper electrode and the lower electrode is suppressed at the time of power generation by the through holes provided on the side surfaces of the thermoelectric conversion elements. Power generation efficiency can be improved as compared with the case of using a thermoelectric conversion element without through holes.
従来の熱電変換素子の構成を示す図である。It is a figure which shows the structure of the conventional thermoelectric conversion element. 従来の熱電発電モジュールの構成(一対のP-N熱電変換素子)を示す図である。It is a figure which shows the structure (a pair of PN thermal-electric conversion element) of the conventional thermoelectric-generation module. 本発明の一実施形態の熱電変換素子の構成を示す図である。It is a figure which shows the structure of the thermoelectric conversion element of one Embodiment of this invention. 従来の熱電発電モジュールの外観を示す図である。It is a figure which shows the external appearance of the conventional thermoelectric-generation module. 本発明の一実施例の熱電発電モジュールの外観を示す図である。It is a figure which shows the external appearance of the thermoelectric-generation module of one Example of this invention. 本発明の一実施例の熱電発電モジュールの特性を示す図である。It is a figure which shows the characteristic of the thermoelectric-generation module of one Example of this invention. 本発明の一実施例の熱電発電モジュールの特性を示す図である。It is a figure which shows the characteristic of the thermoelectric-generation module of one Example of this invention.
 図面を参照しながら本発明の実施形態について説明する。なお、以下の説明では、比較のため及び本発明と共通する構成を理解するために、適宜従来の熱電変換素子及び熱電発電モジュールに関する図面も参照しながら説明を行う。 Embodiments of the present invention will be described with reference to the drawings. In the following description, for comparison and in order to understand the configuration common to the present invention, the description will be made with reference to the drawings regarding the conventional thermoelectric conversion element and the thermoelectric generation module as appropriate.
 図1は、従来の熱電変換素子の構成を示す図である。熱電変換素子10は、熱電変換材料1が2つの電極材料2a、2bで挟持された構成とされる。電極材料2a、2bは、熱電変換材料1と、後述する接合電極とを電気的、熱的に接続して、電流や熱を良く伝える一方で、熱電変換材料1と接合電極との反応を抑制する役割、及び熱電変換材料1と接合電極と間の応力を緩和する役割を有する。 FIG. 1 is a diagram showing the configuration of a conventional thermoelectric conversion element. The thermoelectric conversion element 10 has a configuration in which the thermoelectric conversion material 1 is sandwiched between two electrode materials 2a and 2b. The electrode materials 2a and 2b electrically and thermally connect the thermoelectric conversion material 1 and a junction electrode to be described later, and transmit current and heat well while suppressing the reaction between the thermoelectric conversion material 1 and the junction electrode And the role of relieving stress between the thermoelectric conversion material 1 and the junction electrode.
 図2は、従来の熱電発電モジュールの構成(一対のP-N熱電変換素子)を示す図である。熱電発電モジュール100は、熱電変換素子20と熱電変換素子30の2つの熱電変換素子と、上部にこれら2つの熱電変換素子を架け渡すように配される1つの上部接合電極13と、熱電変換素子20及び熱電変換素子30の下部にそれぞれ配される下部接合電極14、14’とを含む。図2に示すように熱電発電モジュール100は全体がπ型の形状とされる。 FIG. 2 is a diagram showing the configuration (a pair of PN thermoelectric conversion elements) of a conventional thermoelectric generation module. The thermoelectric generation module 100 includes two thermoelectric conversion elements, a thermoelectric conversion element 20 and a thermoelectric conversion element 30, and one upper junction electrode 13 disposed to bridge these two thermoelectric conversion elements, and a thermoelectric conversion element 20 and lower junction electrodes 14 and 14 'disposed under the thermoelectric conversion element 30, respectively. As shown in FIG. 2, the thermoelectric power generation module 100 has a π-shape as a whole.
 上部接合電極13及び下部接合電極14、14’は、前述の接合電極に相当する。これらの上部接合電極13及び下部接合電極14、14’には、電気的、熱的な伝導性の良い材料が使用される。例えばCu、Au、Niなどが使われる。その厚さは、生産性を考慮して、上限1mm程度である。また、熱電変換素子20は、図1の熱電変換素子10と同様、熱電変換材料11が2つの電極12a、12bで挟持された構成とされ、熱電変換素子30も熱電変換材料11’が2つの電極12a’、12b’で挟持された構成とされる。 The upper bonding electrode 13 and the lower bonding electrodes 14 and 14 'correspond to the above-described bonding electrodes. A material having good electrical and thermal conductivity is used for the upper junction electrode 13 and the lower junction electrode 14 and 14 '. For example, Cu, Au, Ni, etc. are used. The thickness is about 1 mm at the upper limit in consideration of productivity. Further, the thermoelectric conversion element 20 has a configuration in which the thermoelectric conversion material 11 is sandwiched between two electrodes 12 a and 12 b as in the case of the thermoelectric conversion element 10 in FIG. 1, and the thermoelectric conversion element 30 also has two thermoelectric conversion materials 11 ′. It is set as the structure clamped by electrode 12a ', 12b'.
 熱電発電モジュール100においては、熱電変換素子20がP型熱電変換素子(電荷を運ぶキャリアが正孔)であると、対の熱電変換素子30がN型熱電変換素子(電荷を運ぶキャリアが電子)である。上部接合電極13側を高温にし、下部接合電極14、14’側を低温にすると、下部接合電極14-14’間に電位差を生じさせる熱電発電モジュールとして利用することができる。なお、以上の従来の熱電変換素子10及び熱電発電モジュール100の構成の内、熱電変換材料1、11、11’の構成(形態)を除いて他の構成は、以下に説明する本発明の一実施形態の熱電発電モジュールと基本的に同様である。 In the thermoelectric generation module 100, when the thermoelectric conversion element 20 is a P-type thermoelectric conversion element (the carrier carrying the charge is a hole), the pair of thermoelectric conversion elements 30 is an N-type thermoelectric conversion element (the carrier carrying the charge is electrons) It is. When the upper junction electrode 13 is heated to a high temperature and the lower junction electrodes 14 and 14 'are cooled to a low temperature, it can be used as a thermoelectric power generation module that generates a potential difference between the lower junction electrodes 14-14'. Among the configurations of the conventional thermoelectric conversion element 10 and the thermoelectric power generation module 100 described above, other configurations except for the configuration (form) of the thermoelectric conversion materials 1, 11 and 11 'are ones of the present invention described below. It is basically the same as the thermoelectric generation module of the embodiment.
 図3は、本発明の一実施形態の熱電変換素子の構成(外観)を示す図である。図3の(a)~(c)は、縦長の直方体の形状を有する3つの熱電変換素子40、41、42の例を示す。(a)の熱電変換素子40では、熱電変換材料3が2つの電極材料4a、4bで挟持された構成を有する。熱電変換材料3の4つの側面の各々に、言い換えれば隣り合う2つの側面の各々に、断面が円形の貫通孔5が2つ設けられている。 FIG. 3 is a view showing a configuration (appearance) of a thermoelectric conversion element according to an embodiment of the present invention. (A) to (c) of FIG. 3 show an example of three thermoelectric conversion elements 40, 41, 42 having the shape of a vertically long rectangular parallelepiped. The thermoelectric conversion element 40 of (a) has a configuration in which the thermoelectric conversion material 3 is sandwiched between two electrode materials 4a and 4b. In each of the four side surfaces of the thermoelectric conversion material 3, in other words, each of two adjacent side surfaces, two through holes 5 having a circular cross section are provided.
 図3(b)の熱電変換素子41では、同様に熱電変換材料3が2つの電極材料4a、4bで挟持された構成を有する。熱電変換材料3の4つの側面の各々に、言い換えれば隣り合う2つの側面の各々に、断面が方形の貫通孔6が2つ設けられている。(c)の熱電変換素子42では、同様に熱電変換材料3が2つの電極材料4a、4bで挟持された構成を有する。熱電変換材料3の隣り合う2つの側面の各々に断面が円形の貫通孔7が1つ設けられている。なお、図示はしていないが、上記した縦長の直方体の形状に代えて、縦長の円柱の形状を有する場合も(a)~(c)で示したような貫通孔を設けることで他の一実施形態として本発明に含まれる。 The thermoelectric conversion element 41 of FIG. 3B similarly has a configuration in which the thermoelectric conversion material 3 is sandwiched between two electrode materials 4a and 4b. In each of the four side surfaces of the thermoelectric conversion material 3, in other words, each of two adjacent side surfaces, two through holes 6 having a rectangular cross section are provided. The thermoelectric conversion element 42 of (c) similarly has a configuration in which the thermoelectric conversion material 3 is sandwiched between two electrode materials 4a and 4b. One through hole 7 having a circular cross section is provided on each of two adjacent side surfaces of the thermoelectric conversion material 3. Although not shown in the drawings, in the case of having a vertically long cylindrical shape instead of the above long rectangular shape, it is possible to provide another through hole as shown in (a) to (c). It is included in the present invention as an embodiment.
 図3の各実施形態の熱電変換素子40~41において、貫通孔3~5の数と開口サイズは、発電時、すなわち上下の電極材料4a、4bに所定の温度差を与えた時に熱電変換材料3を流れる熱流を抑制するために有効な範囲で決めることができる。貫通孔の数と開口サイズが大きくなれば、貫通孔を介して熱電変換材料3の実質的伝熱経路が狭くなり熱抵抗が大きくなるため、熱電変換材料3を流れる熱流をより大きく抑制することができる。ただし、発電時において、熱電変換材料3は同時に生じた電位差による電流路となることから、貫通孔の数と開口サイズを大きくしすぎると反って発電量(発電効率)を下げてしまうことになる。したがって、熱流(その抑制)と発電量(その維持)のバランスを考慮して貫通孔の数と開口サイズを決める必要がある。 In the thermoelectric conversion elements 40 to 41 of each embodiment of FIG. 3, the number of through holes 3 to 5 and the opening size are thermoelectric generation materials at the time of power generation, that is, when the upper and lower electrode materials 4a and 4b have a predetermined temperature difference. The effective range can be determined to suppress the heat flow flowing through three. If the number of through holes and the opening size increase, the substantial heat transfer path of the thermoelectric conversion material 3 narrows through the through holes and the thermal resistance increases. Therefore, the heat flow flowing through the thermoelectric conversion material 3 is further suppressed. Can. However, at the time of power generation, since the thermoelectric conversion material 3 becomes a current path due to the potential difference generated simultaneously, if the number of through holes and the opening size are made too large, the power generation amount (power generation efficiency) will be lowered. . Therefore, it is necessary to determine the number of through holes and the opening size in consideration of the balance between the heat flow (its suppression) and the power generation amount (its maintenance).
 熱電変換材料3の材料は、本発明の一実施形態の熱電変換素子41~42が校正用熱電発電モジュールの一部として使用されることから、高温となる上側の電極4bの温度が500℃以上でも耐え得ることができる材料が選択される。また、側面に貫通孔を設けることからその加工が可能な容易な材料であることも求められる。さらに、加熱時の接合剥がれ等を防ぐために、上下の電極材料4a、4bとなり得る金属(例えばCu、Au、Niなど)に近い熱膨張係数を有する材料であることが望ましい。これらの条件を満たす熱電変換材料3の材料として、例えばP型熱電変換素子となるNiCr合金、N型熱電変換素子となるCuNi合金などが挙げられる。なお、熱電変換材料3の材料はこの一例に限定されず、上記の3条件を満たし得る材料であれば他の任意の材料を選択することができる。 Since the thermoelectric conversion elements 41 to 42 according to the embodiment of the present invention are used as a part of the thermoelectric generation module for calibration, the temperature of the upper electrode 4b which is high is 500 ° C. or higher. Even materials that can withstand are selected. In addition, since a through hole is provided on the side surface, it is also required to be an easy material that can be processed. Furthermore, in order to prevent bonding peeling and the like at the time of heating, it is desirable that the material has a thermal expansion coefficient close to that of metals (for example, Cu, Au, Ni, etc.) which can be the upper and lower electrode materials 4a, 4b. As a material of the thermoelectric conversion material 3 which satisfy | fills these conditions, the NiCr alloy used as a P-type thermoelectric conversion element, the CuNi alloy used as an N-type thermoelectric conversion element etc. are mentioned, for example. In addition, the material of the thermoelectric conversion material 3 is not limited to this example, As long as it is a material which can satisfy said 3 conditions, other arbitrary materials can be selected.
 図4~図7を参照しながら本発明の実施例について説明する。図4は、比較のための従来の熱電発電モジュールの外観を示す図である。図5は、本発明の一実施例の熱電発電モジュールの外観を示す図である。図6と図7は、図4と図5の熱電発電モジュールの特性を示す図である。図4(a)の従来の熱電発電モジュール50では、高温となる上側の基板51と低温となる下側の基板52の間に、(b)の形状の熱電変換素子10が16個並列に配置されている。16個の熱電変換素子10の内、P型とN型が8個ずつあり、1つずつ交互に並列に配置されている。(b)の熱電変換素子10は、図1の熱電変換材料1が2つの電極材料2a、2bで挟持された構成と同様である。 An embodiment of the present invention will be described with reference to FIGS. 4 to 7. FIG. 4 is a view showing the appearance of a conventional thermoelectric generation module for comparison. FIG. 5 is an external view of a thermoelectric generation module according to an embodiment of the present invention. 6 and 7 are diagrams showing the characteristics of the thermoelectric generation modules of FIGS. 4 and 5, respectively. In the conventional thermoelectric generation module 50 of FIG. 4 (a), 16 thermoelectric conversion elements 10 in the shape of (b) are arranged in parallel between the upper substrate 51 at high temperature and the lower substrate 52 at low temperature. It is done. Among the 16 thermoelectric conversion elements 10, there are eight P-type and eight N-type, and they are alternately arranged in parallel one by one. The thermoelectric conversion element 10 of (b) is the same as that of the structure by which the thermoelectric conversion material 1 of FIG. 1 was clamped by two electrode material 2a, 2b.
 図5の本発明の一実施例の熱電発電モジュール60では、高温となる上側の基板61と低温となる下側の基板62の間に、(b)の形状の熱電変換素子40が16個並列に配置されている。16個の熱電変換素子40の内、P型とN型が8個ずつあり、1つずつ交互に並列に配置されている。(b)の熱電変換素子40は、図3(a)の貫通孔5を有する熱電変換材料3が2つの電極材料4a、4bで挟持された構成と同様である。図4と図5の熱電変換素子10、40では、熱電変換素子の形状(貫通孔の有無)が異なるだけで他の構成は基本的に同様である。 In the thermoelectric generation module 60 according to the embodiment of the present invention shown in FIG. 5, 16 thermoelectric conversion elements 40 in the shape of (b) are arranged in parallel between the upper substrate 61 which is high temperature and the lower substrate 62 which is low temperature. Is located in Among the 16 thermoelectric conversion elements 40, there are eight P-type and eight N-type, and they are alternately arranged in parallel one by one. The thermoelectric conversion element 40 of (b) is the same as the structure by which the thermoelectric conversion material 3 which has the through-hole 5 of Fig.3 (a) was clamped by two electrode material 4a, 4b. The thermoelectric conversion elements 10 and 40 of FIG. 4 and FIG. 5 are basically the same except for the configuration (the presence or absence of the through hole) of the thermoelectric conversion elements.
 下記の表1に図5(b)の本発明の一実施例の熱電変換素子40の基本仕様を示す。表中の最後の2行の部位名を図4(b)の孔無しP型素子、孔無しN型素子とすれば、図4(b)の従来の熱電変換素子10も同様な仕様(サイズ、材料等)を有する。表中の高温側及び低温側基板として、表面に0.2mm厚の銅を貼り付けた窒化ケイ素からなる基板を用いた。表中の低温側接合材のSn63Pb37の元素名の後ろの数字は原子%を意味し、mp183℃は融点が183℃であることを示している。同様に表中のNi90Cr10とCu55Ni45の元素名の後ろの数字は原子%を意味する。また、表中のサイズの単位はミリメートル(mm)であり、Φ2は貫通孔の直径が2mmであることを示す。 Table 1 below shows basic specifications of the thermoelectric conversion element 40 according to the embodiment of the present invention shown in FIG. 5 (b). Assuming that the last two rows in the table have the names of the holeless P-type element and the holeless N-type element in FIG. 4B, the conventional thermoelectric conversion element 10 in FIG. , Materials, etc.). As a high temperature side and a low temperature side substrate in the table, a substrate made of silicon nitride with 0.2 mm thick copper adhered on the surface was used. The number behind the element name of Sn63Pb37 on the low temperature side bonding material in the table means atomic%, and mp 183 ° C. indicates that the melting point is 183 ° C. Similarly, the numbers after the element names of Ni90Cr10 and Cu55Ni45 in the table mean atomic%. Moreover, the unit of the size in a table | surface is a millimeter (mm), and (PHI) 2 shows that the diameter of a through-hole is 2 mm.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 図6は、図4と図5の熱電発電モジュールの各々において、高温側500℃、低温側50℃の温度負荷を与え、その時の発電効率導出のために上下の電極間の通過熱流の測定を行った結果を示す。Aのグラフは図5の本発明の一実施例の熱電発電モジュール60の熱流Q(W)であり、Bのグラフは図4の従来の熱電発電モジュール50の熱流Q(W)である。Aの本発明の熱流Qは約74Wであり、熱流密度は約9.4W/cmであった。一方、Bの従来構造の熱流は約234Wであり、熱流密度は約29.8W/cmであった。両者の比較から、図5の本発明の一実施例の熱電発電モジュール60では図4の従来構造に較べて通過熱流を約69%低減(抑制)することができた。 FIG. 6 gives temperature loads on the high temperature side 500 ° C. and the low temperature side 50 ° C. in each of the thermoelectric power generation modules in FIGS. 4 and 5 and measures the heat flow passing between the upper and lower electrodes for deriving the power generation efficiency at that time The results are shown. The graph of A is the heat flow Q (W) of the thermoelectric generation module 60 of one embodiment of the present invention in FIG. 5, and the graph of B is the heat flow Q (W) of the conventional thermoelectric generation module 50 of FIG. The inventive heat flow Q of A was about 74 W and the heat flow density was about 9.4 W / cm 2 . On the other hand, the heat flow of the conventional structure of B was about 234 W, and the heat flow density was about 29.8 W / cm 2 . From the comparison of the two, in the thermoelectric power generation module 60 according to the embodiment of the present invention shown in FIG. 5, the passing heat flow can be reduced (suppressed) by about 69% as compared with the conventional structure shown in FIG.
 図7は、図6の測定条件下で得られた熱から電気への熱電変換効率η(%)を示す。Aのグラフは図5の本発明の一実施例の熱電発電モジュール60の変換効率η(%)であり、Bのグラフは図4の従来の熱電発電モジュール50のη(%)である。Aの本発明の変換効率ηは約0.52%であり、Bの従来構造の変換効率ηは約0.30%であった。両者の比較から、図5の本発明の一実施例の熱電発電モジュール60では図4の従来構造に較べて変換効率ηを約70%増加(向上)させることができた。 FIG. 7 shows the thermoelectric-to-electricity conversion efficiency% (%) obtained under the measurement conditions of FIG. The graph of A is the conversion efficiency η (%) of the thermoelectric power generation module 60 of the embodiment of the present invention of FIG. 5, and the graph of B is η (%) of the conventional thermoelectric power generation module 50 of FIG. The conversion efficiency η of the present invention of A was about 0.52%, and the conversion efficiency η of the conventional structure of B was about 0.30%. From the comparison of the two, the thermoelectric generation module 60 according to the embodiment of the present invention shown in FIG. 5 was able to increase (improve) the conversion efficiency η by about 70% as compared with the conventional structure shown in FIG.
 図7の変換効率ηの向上は、図6の熱流Qの低減効果に依ることが大きいと考えられる。すわち、変換効率ηは、発電出力Pと熱電変換素子の通過熱流Qoutを用いて下記の式(1)で表すことができる。
 
    η=P/(Qout+P)×100(%)   (1)
 
 式(1)から変換効率ηを上げるには通過熱流Qoutを低減させることが有効であることがわかる。
The improvement of the conversion efficiency η in FIG. 7 is considered to largely depend on the heat flow Q reduction effect of FIG. That is, the conversion efficiency η can be expressed by the following equation (1) using the power generation output P and the passing heat flow Q out of the thermoelectric conversion element.

η = P / (Q out + P) × 100 (%) (1)

From the equation (1), it can be seen that it is effective to reduce the passing heat flow Q out in order to increase the conversion efficiency η.
 本発明の実施形態について、図を参照しながら説明をした。しかし、本発明はこれらの実施形態に限られるものではない。さらに、本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施できるものである。例えば、熱電変換素子の側面の貫通孔に代えて、熱電変換材料を貫通しない途中までの深さの開口を設けて同様な熱流の低減効果を得るようにしてもよい。その際、開口の深さ等に応じて放出される熱流量を調整することができる。 Embodiments of the present invention have been described with reference to the drawings. However, the present invention is not limited to these embodiments. Furthermore, the present invention can be implemented in variously modified, modified, or modified forms based on the knowledge of those skilled in the art without departing from the scope of the present invention. For example, instead of the through holes in the side surfaces of the thermoelectric conversion element, an opening having a depth not halfway through the thermoelectric conversion material may be provided to obtain the same heat flow reduction effect. At that time, it is possible to adjust the flow rate of heat released depending on the depth of the opening and the like.
 本発明の熱電変換素子及びこれを用いた熱電発電モジュールは、熱電発電モジュールの評価装置の校正用の熱電発電モジュールとして産業上利用することができる。 The thermoelectric conversion element of the present invention and the thermoelectric power generation module using the same can be industrially used as a thermoelectric power generation module for calibration of an evaluation device of a thermoelectric power generation module.
1、3、11、11’ 熱電変換材料
2a、2b、4a、4b 電極材料
5、6、7 貫通孔
10、40、41、42 熱電変換素子
20 P型熱電変換素子
30 N型熱電変換素子
12a、12b、12a’、12b’ 電極
13 上部接合電極
14、14’ 下部接合電極
51、61 上側の基板
52、62 下側の基板

 
1, 3, 11, 11 ' thermoelectric conversion material 2a, 2b, 4a, 4b electrode material 5, 6, 7 through hole 10, 40, 41, 42 thermoelectric conversion element 20 P type thermoelectric conversion element 30 N type thermoelectric conversion element 12a , 12b, 12a ', 12b' electrode 13 upper bonding electrode 14, 14 ' lower bonding electrode 51, 61 upper substrate 52, 62 lower substrate

Claims (7)

  1.  熱電発電モジュールの評価装置の校正用熱電発電モジュールであって、
     上部電極と下部電極の間に並列に配置された複数の熱電変換素子を含み、
     複数の熱電変換素子の各々の側面に、発電時において上部電極と下部電極の間の熱流を抑制するように、少なくとも1つ以上の貫通孔を設けることを特徴とする、校正用熱電発電モジュール。
    A thermoelectric generation module for calibration of an evaluation device of a thermoelectric generation module,
    Including a plurality of thermoelectric conversion elements arranged in parallel between the upper electrode and the lower electrode;
    A calibration thermoelectric generation module, wherein at least one through hole is provided on each side surface of the plurality of thermoelectric conversion elements so as to suppress heat flow between the upper electrode and the lower electrode during power generation.
  2.  前記貫通孔は、前記熱電変換素子の隣り合う2つの側面の各々に少なくとも1つ以上設けられている、請求項1に記載の校正用熱電発電モジュール。 The calibration thermoelectric generation module according to claim 1, wherein at least one or more of the through holes are provided in each of two adjacent side surfaces of the thermoelectric conversion element.
  3.  前記貫通孔は、前記熱電変換素子の1つの側面に2つ以上設けられている、請求項1に記載の校正用熱電発電モジュール。 The calibration thermoelectric generation module according to claim 1, wherein two or more through holes are provided on one side surface of the thermoelectric conversion element.
  4.  前記熱電変換素子の各々は、直方体または円柱の形状を有する、請求項1~3のいずれかに記載の校正用熱電発電モジュール。 The calibration thermoelectric generation module according to any one of claims 1 to 3, wherein each of the thermoelectric conversion elements has a rectangular or cylindrical shape.
  5.  前記貫通孔の断面は、円形または方形の形状を有する、請求項4に記載の校正用熱電発電モジュール。 The calibration thermoelectric generation module according to claim 4, wherein a cross section of the through hole has a circular or rectangular shape.
  6.  前記複数の熱電変換素子は、横方向に交互に配置されたP型熱電変換素子とN型熱電変換素子を含む、請求項5に記載の校正用熱電発電モジュール。 The calibration thermoelectric generation module according to claim 5, wherein the plurality of thermoelectric conversion elements include P-type thermoelectric conversion elements and N-type thermoelectric conversion elements alternately arranged in the lateral direction.
  7.  前記熱電変換素子の各々の上面及び下面と、前記上部電極及び前記下部電極との間に金属接合層を有する、請求項6に記載の校正用熱電発電モジュール。 The calibration thermoelectric generation module according to claim 6, further comprising a metal bonding layer between the upper surface and the lower surface of each of the thermoelectric conversion elements, and the upper electrode and the lower electrode.
PCT/JP2018/023516 2017-07-27 2018-06-20 Thermoelectric power generation module for calibration WO2019021703A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019532445A JP6858379B2 (en) 2017-07-27 2018-06-20 Calibration thermoelectric power generation module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-145692 2017-07-27
JP2017145692 2017-07-27

Publications (1)

Publication Number Publication Date
WO2019021703A1 true WO2019021703A1 (en) 2019-01-31

Family

ID=65040065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/023516 WO2019021703A1 (en) 2017-07-27 2018-06-20 Thermoelectric power generation module for calibration

Country Status (2)

Country Link
JP (2) JP6858379B2 (en)
WO (1) WO2019021703A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299383A (en) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd Thermoelectric converting module
JP2006294935A (en) * 2005-04-12 2006-10-26 Kiyoshi Inaizumi High efficiency and low loss thermoelectric module
WO2013006246A1 (en) * 2011-07-07 2013-01-10 Corning Incorporated A thermoelectric element design
US20130019918A1 (en) * 2011-07-18 2013-01-24 The Regents Of The University Of Michigan Thermoelectric devices, systems and methods

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4524382B2 (en) * 2005-03-10 2010-08-18 独立行政法人産業技術総合研究所 Thermoelectric power generation elements that are subject to temperature differences
JP2013026334A (en) * 2011-07-19 2013-02-04 National Institute Of Advanced Industrial & Technology Stacked thermoelectric conversion module
JP6035970B2 (en) * 2012-08-03 2016-11-30 富士通株式会社 Thermoelectric conversion device and manufacturing method thereof
CN106537621B (en) * 2014-03-25 2018-12-07 美特瑞克斯实业公司 Thermoelectric device and system
JP6518887B2 (en) * 2015-06-24 2019-05-29 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element, method of manufacturing the same, and thermoelectric generation module and Peltier cooling module
JP6417050B2 (en) * 2015-08-31 2018-10-31 富士フイルム株式会社 Thermoelectric conversion module

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299383A (en) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd Thermoelectric converting module
JP2006294935A (en) * 2005-04-12 2006-10-26 Kiyoshi Inaizumi High efficiency and low loss thermoelectric module
WO2013006246A1 (en) * 2011-07-07 2013-01-10 Corning Incorporated A thermoelectric element design
US20130019918A1 (en) * 2011-07-18 2013-01-24 The Regents Of The University Of Michigan Thermoelectric devices, systems and methods

Also Published As

Publication number Publication date
JP2021078351A (en) 2021-05-20
JPWO2019021703A1 (en) 2020-05-28
JP7441524B2 (en) 2024-03-01
JP6858379B2 (en) 2021-04-14

Similar Documents

Publication Publication Date Title
JP4728745B2 (en) Thermoelectric device and thermoelectric module
US9793462B2 (en) Thermoelectric module, thermoelectric power generating apparatus, and thermoelectric generator
US8841540B2 (en) High temperature thermoelectrics
US20140261608A1 (en) Thermal Interface Structure for Thermoelectric Devices
US20070199587A1 (en) Thermoelectric Conversion Module
KR20120080820A (en) Thermoelectric module
JP5653455B2 (en) Thermoelectric conversion member
JP6430781B2 (en) Thermoelectric module
KR102022429B1 (en) Cooling thermoelectric moudule and method of manufacturing method of the same
US20180287517A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
JP2009081286A (en) Thermoelectric conversion module
US11393969B2 (en) Thermoelectric generation cell and thermoelectric generation module
JP2011134940A (en) Thermoelectric conversion element, and thermoelectric conversion module and thermoelectric conversion device employing the same
JP7441524B2 (en) Thermoelectric generation module for calibration
KR20180029409A (en) Thermoelectric element
JP7052200B2 (en) Thermoelectric conversion module
JP7313660B2 (en) Thermoelectric conversion module
JP2014110245A (en) Thermoelectric conversion device
KR102456680B1 (en) Thermoelectric element
KR20140101121A (en) Thermo electric device
KR20190044236A (en) Thermoelectric element and thermoelectric conversion device comprising the same
JP7396621B2 (en) Thermoelectric cells and thermoelectric modules
KR20190049971A (en) Multi-multi-array themoeletric generator and its manufacturing method
JP2017152618A (en) Thermoelectric module and manufacturing method thereof and thermoelectric device
JP2018067589A (en) Method for manufacturing thermoelectric conversion module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18838583

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019532445

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18838583

Country of ref document: EP

Kind code of ref document: A1