JP6858379B2 - Calibration thermoelectric power generation module - Google Patents

Calibration thermoelectric power generation module Download PDF

Info

Publication number
JP6858379B2
JP6858379B2 JP2019532445A JP2019532445A JP6858379B2 JP 6858379 B2 JP6858379 B2 JP 6858379B2 JP 2019532445 A JP2019532445 A JP 2019532445A JP 2019532445 A JP2019532445 A JP 2019532445A JP 6858379 B2 JP6858379 B2 JP 6858379B2
Authority
JP
Japan
Prior art keywords
power generation
thermoelectric conversion
thermoelectric
generation module
thermoelectric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019532445A
Other languages
Japanese (ja)
Other versions
JPWO2019021703A1 (en
Inventor
山本 淳
淳 山本
和夫 長瀬
和夫 長瀬
誠 相原
誠 相原
道広 太田
道広 太田
弘隆 西当
弘隆 西当
高澤 弘幸
弘幸 高澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Publication of JPWO2019021703A1 publication Critical patent/JPWO2019021703A1/en
Priority to JP2021014374A priority Critical patent/JP7441524B2/en
Application granted granted Critical
Publication of JP6858379B2 publication Critical patent/JP6858379B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Description

本発明は、熱電発電モジュールに関し、具体的には、熱電発電モジュールの評価装置の校正用の熱電発電モジュールに関し、より具体的には、その校正用の熱電発電モジュールを構成する熱電変換素子に関する。 The present invention relates to a thermoelectric power generation module, specifically, a thermoelectric power generation module for calibrating an evaluation device of the thermoelectric power generation module, and more specifically, a thermoelectric conversion element constituting the thermoelectric power generation module for calibration.

熱電変換技術とは、固体の熱電変換素子を用いて熱エネルギーと電気エネルギーを相互に変換する技術である。熱エネルギーを電気エネルギーに変換する技術は、熱電発電と呼ばれ、熱電効果の1つであるゼーベック効果に基づく。熱電発電では、熱電変換素子の両端間の温度差が電気エネルギーに直接変換される。この熱電発電を利用して、工場や自動車から排出されている膨大な未利用熱エネルギーを回収し、そこから電力を生み出すことで、化石燃料の消費量低減、更にはCO削減と省エネルギーに大いに貢献できる。The thermoelectric conversion technology is a technology for mutually converting thermal energy and electric energy using a solid thermoelectric conversion element. The technology for converting thermal energy into electrical energy is called thermoelectric power generation and is based on the Seebeck effect, which is one of the thermoelectric effects. In thermoelectric power generation, the temperature difference between both ends of the thermoelectric conversion element is directly converted into electrical energy. By using this thermoelectric power generation to recover the enormous amount of unused thermal energy emitted from factories and automobiles and generate electricity from it, fossil fuel consumption can be reduced, and CO 2 can be reduced and energy can be saved. Can contribute.

熱電変換素子は、一般に熱電変換材料が2つの電極で挟持された構成を有する。その熱電変換素子を用いて熱電発電モジュールを構成することができる。具体的には、例えば、P型熱電変換素子(電荷を運ぶキャリアが正孔)と、N型熱電変換素子(電荷を運ぶキャリアが電子)を、上部接合電極と下部接合電極を用いて熱的には並列に電気的には直列に接続することにより、熱電発電モジュールを得る。熱電発電モジュールはP型−N型熱電変換素子一対でも熱電発電モジュールとして機能するが、通常、より大きな出力を得るために、P型−N型熱電変換素子を複数対接続して熱電発電モジュールとし、さらにこの熱電発電モジュールを複数個組み合わせて、熱電発電装置を構成する。 The thermoelectric conversion element generally has a configuration in which a thermoelectric conversion material is sandwiched between two electrodes. A thermoelectric power generation module can be configured by using the thermoelectric conversion element. Specifically, for example, a P-type thermoelectric conversion element (a carrier carrying an electric charge is a hole) and an N-type thermoelectric conversion element (a carrier carrying an electric charge is an electron) are thermally driven by using an upper junction electrode and a lower junction electrode. A thermoelectric power generation module is obtained by connecting in parallel and electrically in series. A thermoelectric generation module functions as a thermoelectric power generation module even with a pair of P-type-N type thermoelectric conversion elements, but usually, in order to obtain a larger output, a plurality of pairs of P-type-N type thermoelectric conversion elements are connected to form a thermoelectric power generation module. Further, a plurality of these thermoelectric power generation modules are combined to form a thermoelectric power generation device.

熱電発電装置を構成する熱電発電モジュールの性能規格の標準化を進める上で、熱電発電モジュールの開発・製造メーカ等において、熱電発電モジュールの特性評価がより適切かつ正確に行われる必要がある。そのためには、熱電発電モジュールの特性評価を行う評価装置の校正が不可欠である。評価装置の校正は基準(標準)となる校正用の熱電発電モジュールを用いて行うのが一般的である。評価装置の校正においては校正用の熱電発電モジュールの高温側に500℃程度の温度を付加する必要があるが、従来の熱電発電モジュールを用いた場合以下のような問題がある。 In order to promote the standardization of the performance standards of the thermoelectric power generation modules that make up the thermoelectric power generation equipment, it is necessary for the developers and manufacturers of the thermoelectric power generation modules to evaluate the characteristics of the thermoelectric power generation modules more appropriately and accurately. For that purpose, it is indispensable to calibrate the evaluation device that evaluates the characteristics of the thermoelectric power generation module. Calibration of the evaluation device is generally performed using a thermoelectric power generation module for calibration which is a standard (standard). In the calibration of the evaluation device, it is necessary to add a temperature of about 500 ° C. to the high temperature side of the thermoelectric power generation module for calibration, but when the conventional thermoelectric power generation module is used, there are the following problems.

熱電発電モジュール自体の問題として、高温側温度500℃に耐える校正用の熱電発電モジュールに使用できる熱電変換素子が容易に入手できないことが挙げられる。例えば、現在一般販売されているBiTe系焼結体の熱電変換素子は、最高使用温度230℃程度である。また、MgSi系焼結体の熱電変換素子などは500℃にて使用可能であるが、熱電変換素子自体の耐久性の課題があり校正用としては使用できない。さらに、SiGe系焼結体の熱電変換素子などは500℃にて使用可能であるが、その熱膨張係数がCu、Au、Niなどの金属電極の熱膨張係数との差が大きく、熱電変換素子と金属電極間の接合部剥がれや素子自体の破損が懸念され、熱電発電モジュールとして耐久性の問題があるので校正用としては使用できない。As a problem of the thermoelectric power generation module itself, there is a problem that a thermoelectric conversion element that can be used for a thermoelectric power generation module for calibration that can withstand a high temperature side temperature of 500 ° C. is not easily available. For example, a thermoelectric conversion element of a BiTe-based sintered body currently on the market has a maximum operating temperature of about 230 ° C. Further, although a thermoelectric conversion element of an Mg 2 Si sintered body can be used at 500 ° C., it cannot be used for calibration due to the problem of durability of the thermoelectric conversion element itself. Further, a thermoelectric conversion element of a SiGe-based sintered body can be used at 500 ° C., but the coefficient of thermal expansion thereof is significantly different from the coefficient of thermal expansion of metal electrodes such as Cu, Au, and Ni, and the thermoelectric conversion element. There is a concern that the joint between the metal electrode and the metal electrode may come off or the element itself may be damaged, and there is a problem with durability as a thermoelectric power generation module, so it cannot be used for calibration.

熱電発電モジュールの評価装置側の問題として、高温側温度500℃で使用可能な金属系、金属の合金系の熱電変換素子を用いた場合、素子内を流れる熱流(熱流束)が大きくなり、評価装置に通常考えられる以上の熱流が入力されてしまい、熱流を正確に測れない恐れがある。具体的には、大きい熱流が熱電発電モジュールの評価装置の冷却装置の能力を超えてしまい、低温側温度及び高温側と低温側の間の温度差を一定に保つのが難しくなる。 As a problem on the evaluation device side of the thermoelectric power generation module, when a metal-based or metal alloy-based thermoelectric conversion element that can be used at a high temperature side temperature of 500 ° C. is used, the heat flow (heat flux) flowing in the element becomes large and evaluated. There is a risk that the heat flow will be input to the device more than normally thought, and the heat flow cannot be measured accurately. Specifically, a large heat flow exceeds the capacity of the cooling device of the evaluation device of the thermoelectric power generation module, and it becomes difficult to keep the temperature on the low temperature side and the temperature difference between the high temperature side and the low temperature side constant.

特許文献1は、熱電素子の形状を、熱流束と垂直な断面方向において面積が一様とならない形状、例えば、円錐台や角錐台、あるいはこれらを複数組み合わせた形状、球を組み合わせた形状にすることによって、熱電素子内にホットスポットを形成して成る、熱電素子内の高温側と低温側の温度差を大きくすることを可能とした熱電発電素子を開示する。Patent Document 1 makes the shape of a thermoelectric element a shape in which the area is not uniform in the cross-sectional direction perpendicular to the heat flux, for example, a truncated cone, a truncated cone, a combination of a plurality of these, or a shape in which spheres are combined. Thereby, a thermoelectric power generation element capable of increasing the temperature difference between the high temperature side and the low temperature side in the thermoelectric element, which is formed by forming a hot spot in the thermoelectric element, is disclosed.

特開2006−253341号広報Japanese Patent Application Laid-Open No. 2006-253341

特許文献1の熱電変換素子は、円錐台や角錐台の形状を有し、上下の電極に接する面の一方の断面積が小さくなる。評価装置での評価対象となる通常の直方体や円柱形の形状を有する上下の電極に接する面の断面積が同一である熱電変換素子とは、形状や接合条件が異なる。よって、熱流の低減を図ろうとすればするほど、金属電極との接合面が小さくなるので、十分な接合強度を得られない恐れがある。つまり、熱電発電モジュールの評価装置の校正用の熱電発電モジュールを構成する熱電変換素子としては適していない。また、円錐台形状の熱電素子2個の小さい円同士を通電過熱等により結合させた熱電変換素子も、同様に小さな接合面となることから、十分な強度を保てない恐れがある。 The thermoelectric conversion element of Patent Document 1 has the shape of a truncated cone or a truncated cone, and the cross-sectional area of one of the surfaces in contact with the upper and lower electrodes becomes smaller. The shape and bonding conditions are different from those of a normal rectangular parallelepiped or a thermoelectric conversion element having a cylindrical shape and having the same cross-sectional area of the surfaces in contact with the upper and lower electrodes to be evaluated by the evaluation device. Therefore, the more the heat flow is reduced, the smaller the joint surface with the metal electrode becomes, and there is a possibility that sufficient joint strength cannot be obtained. That is, it is not suitable as a thermoelectric conversion element constituting the thermoelectric power generation module for calibration of the evaluation device of the thermoelectric power generation module. Further, a thermoelectric conversion element in which two small circles of two truncated cone-shaped thermoelectric elements are coupled to each other by energization overheating or the like also has a similarly small joint surface, so that there is a possibility that sufficient strength cannot be maintained.

本発明は、高温側温度が500℃以上の高温でも熱流(熱流束)が抑制され、かつ通常の熱電変換素子の形状に近く、上下の電極に接する面の断面積が同一であって接合強度が確保でき、熱電発電モジュールの評価装置の校正用の熱電発電モジュールとして利用可能な熱電変換素子及びこれを含む熱電発電モジュールを提供することを目的とする。 In the present invention, the heat flow (heat flux) is suppressed even at a high temperature of 500 ° C. or higher on the high temperature side, the shape is close to that of a normal thermoelectric conversion element, the cross-sectional area of the surface in contact with the upper and lower electrodes is the same, and the bonding strength is the same. It is an object of the present invention to provide a thermoelectric conversion element which can be secured and can be used as a thermoelectric power generation module for calibrating an evaluation device of a thermoelectric power generation module, and a thermoelectric power generation module including the thermoelectric conversion element.

本発明の一態様の熱電発電モジュールの評価装置の校正用熱電発電モジュールは、上部電極と下部電極の間に並列に配置された複数の熱電変換素子を含み、複数の熱電変換素子の各々の側面に、発電時において上部電極と下部電極の間の熱流の増加を抑制するように、少なくとも1つ以上の貫通孔を設けることを特徴とする。 The calibration thermoelectric power generation module of the evaluation device for the thermoelectric power generation module according to one aspect of the present invention includes a plurality of thermoelectric conversion elements arranged in parallel between the upper electrode and the lower electrode, and each side surface of the plurality of thermoelectric conversion elements. In addition, at least one or more through holes are provided so as to suppress an increase in heat flow between the upper electrode and the lower electrode during power generation.

本発明の一態様の校正用熱電発電モジュールによれば、熱電変換素子の側面に設けられた貫通孔により、発電時において上部電極と下部電極の間の熱流(熱流束)が抑制され、また、発電効率を貫通孔の無い熱電変換素子を用いた場合よりも向上させることができる。 According to the calibration thermoelectric power generation module of one aspect of the present invention, the through hole provided on the side surface of the thermoelectric conversion element suppresses the heat flow (heat flux) between the upper electrode and the lower electrode during power generation, and also The power generation efficiency can be improved as compared with the case of using a thermoelectric conversion element having no through hole.

従来の熱電変換素子の構成を示す図である。It is a figure which shows the structure of the conventional thermoelectric conversion element. 従来の熱電発電モジュールの構成(一対のP−N熱電変換素子)を示す図である。It is a figure which shows the structure (a pair of PN thermoelectric conversion elements) of the conventional thermoelectric power generation module. 本発明の一実施形態の熱電変換素子の構成を示す図である。It is a figure which shows the structure of the thermoelectric conversion element of one Embodiment of this invention. 従来の熱電発電モジュールの外観を示す図である。It is a figure which shows the appearance of the conventional thermoelectric power generation module. 本発明の一実施例の熱電発電モジュールの外観を示す図である。It is a figure which shows the appearance of the thermoelectric power generation module of one Example of this invention. 本発明の一実施例の熱電発電モジュールの特性を示す図である。It is a figure which shows the characteristic of the thermoelectric power generation module of one Example of this invention. 本発明の一実施例の熱電発電モジュールの特性を示す図である。It is a figure which shows the characteristic of the thermoelectric power generation module of one Example of this invention.

図面を参照しながら本発明の実施形態について説明する。なお、以下の説明では、比較のため及び本発明と共通する構成を理解するために、適宜従来の熱電変換素子及び熱電発電モジュールに関する図面も参照しながら説明を行う。 An embodiment of the present invention will be described with reference to the drawings. In the following description, for comparison and in order to understand the configuration common to the present invention, the description will be made with reference to the drawings relating to the conventional thermoelectric conversion element and the thermoelectric power generation module as appropriate.

図1は、従来の熱電変換素子の構成を示す図である。熱電変換素子10は、熱電変換材料1が2つの電極材料2a、2bで挟持された構成とされる。電極材料2a、2bは、熱電変換材料1と、後述する接合電極とを電気的、熱的に接続して、電流や熱を良く伝える一方で、熱電変換材料1と接合電極との反応を抑制する役割、及び熱電変換材料1と接合電極と間の応力を緩和する役割を有する。 FIG. 1 is a diagram showing a configuration of a conventional thermoelectric conversion element. The thermoelectric conversion element 10 has a configuration in which the thermoelectric conversion material 1 is sandwiched between two electrode materials 2a and 2b. The electrode materials 2a and 2b electrically and thermally connect the thermoelectric conversion material 1 and the bonding electrode described later to transfer current and heat well, while suppressing the reaction between the thermoelectric conversion material 1 and the bonding electrode. It also has a role of relaxing the stress between the thermoelectric conversion material 1 and the junction electrode.

図2は、従来の熱電発電モジュールの構成(一対のP−N熱電変換素子)を示す図である。熱電発電モジュール100は、熱電変換素子20と熱電変換素子30の2つの熱電変換素子と、上部にこれら2つの熱電変換素子を架け渡すように配される1つの上部接合電極13と、熱電変換素子20及び熱電変換素子30の下部にそれぞれ配される下部接合電極14、14’とを含む。図2に示すように熱電発電モジュール100は全体がπ型の形状とされる。 FIG. 2 is a diagram showing a configuration (a pair of PN thermoelectric conversion elements) of a conventional thermoelectric power generation module. The thermoelectric power generation module 100 includes two thermoelectric conversion elements, a thermoelectric conversion element 20 and a thermoelectric conversion element 30, an upper junction electrode 13 arranged so as to bridge these two thermoelectric conversion elements on the upper part, and a thermoelectric conversion element. 20 and lower bonding electrodes 14 and 14'arranged below the thermoelectric conversion element 30, respectively, are included. As shown in FIG. 2, the thermoelectric power generation module 100 has a π-shaped shape as a whole.

上部接合電極13及び下部接合電極14、14’は、前述の接合電極に相当する。これらの上部接合電極13及び下部接合電極14、14’には、電気的、熱的な伝導性の良い材料が使用される。例えばCu、Au、Niなどが使われる。その厚さは、生産性を考慮して、上限1mm程度である。また、熱電変換素子20は、図1の熱電変換素子10と同様、熱電変換材料11が2つの電極12a、12bで挟持された構成とされ、熱電変換素子30も熱電変換材料11’が2つの電極12a’、12b’で挟持された構成とされる。 The upper bonding electrode 13 and the lower bonding electrodes 14 and 14'correspond to the above-mentioned bonding electrode. A material having good electrical and thermal conductivity is used for the upper bonding electrode 13 and the lower bonding electrodes 14 and 14'. For example, Cu, Au, Ni and the like are used. The thickness is about 1 mm at the upper limit in consideration of productivity. Further, the thermoelectric conversion element 20 has a configuration in which the thermoelectric conversion material 11 is sandwiched between two electrodes 12a and 12b, similarly to the thermoelectric conversion element 10 of FIG. 1, and the thermoelectric conversion element 30 also has two thermoelectric conversion materials 11'. It is configured to be sandwiched between electrodes 12a'and 12b'.

熱電発電モジュール100においては、熱電変換素子20がP型熱電変換素子(電荷を運ぶキャリアが正孔)であると、対の熱電変換素子30がN型熱電変換素子(電荷を運ぶキャリアが電子)である。上部接合電極13側を高温にし、下部接合電極14、14’側を低温にすると、下部接合電極14−14’間に電位差を生じさせる熱電発電モジュールとして利用することができる。なお、以上の従来の熱電変換素子10及び熱電発電モジュール100の構成の内、熱電変換材料1、11、11’の構成(形態)を除いて他の構成は、以下に説明する本発明の一実施形態の熱電発電モジュールと基本的に同様である。 In the thermoelectric power generation module 100, when the thermoelectric conversion element 20 is a P-type thermoelectric conversion element (the carrier carrying the electric charge is a hole), the paired thermoelectric conversion element 30 is an N-type thermoelectric conversion element (the carrier carrying the electric charge is an electron). Is. When the upper junction electrode 13 side is heated to a high temperature and the lower junction electrodes 14 and 14'sides are cooled to a low temperature, it can be used as a thermoelectric power generation module that causes a potential difference between the lower junction electrodes 14-14'. Of the above-mentioned configurations of the conventional thermoelectric conversion element 10 and the thermoelectric power generation module 100, other configurations except for the configurations (forms) of the thermoelectric conversion materials 1, 11 and 11'are one of the present inventions described below. It is basically the same as the thermoelectric power generation module of the embodiment.

図3は、本発明の一実施形態の熱電変換素子の構成(外観)を示す図である。図3の(a)〜(c)は、縦長の直方体の形状を有する3つの熱電変換素子40、41、42の例を示す。(a)の熱電変換素子40では、熱電変換材料3が2つの電極材料4a、4bで挟持された構成を有する。熱電変換材料3の4つの側面の各々に、言い換えれば隣り合う2つの側面の各々に、断面が円形の貫通孔5が2つ内部で直交するように設けられている。 FIG. 3 is a diagram showing a configuration (appearance) of a thermoelectric conversion element according to an embodiment of the present invention. FIGS. 3A to 3C show examples of three thermoelectric conversion elements 40, 41, and 42 having a vertically long rectangular parallelepiped shape. The thermoelectric conversion element 40 of (a) has a configuration in which the thermoelectric conversion material 3 is sandwiched between two electrode materials 4a and 4b. Each of the four side surfaces of the thermoelectric conversion material 3, in other words, each of the two adjacent side surfaces, is provided with two through holes 5 having a circular cross section so as to be orthogonal to each other inside.

図3(b)の熱電変換素子41では、同様に熱電変換材料3が2つの電極材料4a、4bで挟持された構成を有する。熱電変換材料3の4つの側面の各々に、言い換えれば隣り合う2つの側面の各々に、断面が方形の貫通孔6が2つ内部で直交するように設けられている。(c)の熱電変換素子42では、同様に熱電変換材料3が2つの電極材料4a、4bで挟持された構成を有する。熱電変換材料3の隣り合う2つの側面の各々に断面が円形の貫通孔7が1つ設けられている。なお、図示はしていないが、上記した縦長の直方体の形状に代えて、縦長の円柱の形状を有する場合も(a)〜(c)で示したような貫通孔を設けることで他の一実施形態として本発明に含まれる。 Similarly, the thermoelectric conversion element 41 of FIG. 3B has a structure in which the thermoelectric conversion material 3 is sandwiched between the two electrode materials 4a and 4b. Each of the four side surfaces of the thermoelectric conversion material 3, in other words, each of the two adjacent side surfaces, is provided with two through holes 6 having a rectangular cross section so as to be orthogonal to each other inside. Similarly, the thermoelectric conversion element 42 of (c) has a configuration in which the thermoelectric conversion material 3 is sandwiched between the two electrode materials 4a and 4b. One through hole 7 having a circular cross section is provided on each of two adjacent side surfaces of the thermoelectric conversion material 3. Although not shown, even if the shape of a vertically long cylinder is used instead of the shape of the vertically long rectangular parallelepiped described above, it is possible to provide a through hole as shown in (a) to (c). It is included in the present invention as an embodiment.

図3の各実施形態の熱電変換素子40〜41において、貫通孔3〜5の数と開口サイズは、発電時、すなわち上下の電極材料4a、4bに所定の温度差を与えた時に熱電変換材料3を流れる熱流を抑制するために有効な範囲で決めることができる。貫通孔の数と開口サイズが大きくなれば、貫通孔を介して熱電変換材料3の実質的伝熱経路が狭くなり熱抵抗が大きくなるため、熱電変換材料3を流れる熱流をより大きく抑制することができる。ただし、発電時において、熱電変換材料3は同時に生じた電位差による電流路となることから、貫通孔の数と開口サイズを大きくしすぎると反って発電量(発電効率)を下げてしまうことになる。したがって、熱流(その抑制)と発電量(その維持)のバランスを考慮して貫通孔の数と開口サイズを決める必要がある。 In the thermoelectric conversion elements 40 to 41 of each embodiment of FIG. 3, the number of through holes 3 to 5 and the opening size are determined during power generation, that is, when a predetermined temperature difference is applied to the upper and lower electrode materials 4a and 4b. It can be determined within an effective range for suppressing the heat flow flowing through 3. If the number of through holes and the opening size are increased, the substantial heat transfer path of the thermoelectric conversion material 3 is narrowed through the through holes and the thermal resistance is increased, so that the heat flow flowing through the thermoelectric conversion material 3 is further suppressed. Can be done. However, since the thermoelectric conversion material 3 becomes a current path due to the potential difference generated at the same time during power generation, if the number of through holes and the opening size are made too large, the amount of power generation (power generation efficiency) will be lowered. .. Therefore, it is necessary to determine the number of through holes and the opening size in consideration of the balance between the heat flow (suppression thereof) and the amount of power generation (maintenance thereof).

熱電変換材料3の材料は、本発明の一実施形態の熱電変換素子41〜42が校正用熱電発電モジュールの一部として使用されることから、高温となる上側の電極4bの温度が500℃以上でも耐え得ることができる材料が選択される。また、側面に貫通孔を設けることからその加工が可能な容易な材料であることも求められる。さらに、加熱時の接合剥がれ等を防ぐために、上下の電極材料4a、4bとなり得る金属(例えばCu、Au、Niなど)に近い熱膨張係数を有する材料であることが望ましい。これらの条件を満たす熱電変換材料3の材料として、例えばP型熱電変換素子となるNiCr合金、N型熱電変換素子となるCuNi合金などが挙げられる。なお、熱電変換材料3の材料はこの一例に限定されず、上記の3条件を満たし得る材料であれば他の任意の材料を選択することができる。 As the material of the thermoelectric conversion material 3, since the thermoelectric conversion elements 41 to 42 of the embodiment of the present invention are used as a part of the thermoelectric power generation module for calibration, the temperature of the upper electrode 4b, which becomes high temperature, is 500 ° C. or higher. But a material that can withstand is selected. Further, it is also required that the material is easy to process because the through hole is provided on the side surface. Further, in order to prevent joint peeling during heating, it is desirable that the material has a coefficient of thermal expansion close to that of a metal (for example, Cu, Au, Ni, etc.) that can be the upper and lower electrode materials 4a and 4b. Examples of the material of the thermoelectric conversion material 3 satisfying these conditions include a NiCr alloy serving as a P-type thermoelectric conversion element and a CuNi alloy serving as an N-type thermoelectric conversion element. The material of the thermoelectric conversion material 3 is not limited to this example, and any other material can be selected as long as it can satisfy the above three conditions.

図4〜図7を参照しながら本発明の実施例について説明する。図4は、比較のための従来の熱電発電モジュールの外観を示す図である。図5は、本発明の一実施例の熱電発電モジュールの外観を示す図である。図6と図7は、図4と図5の熱電発電モジュールの特性を示す図である。図4(a)の従来の熱電発電モジュール50では、高温となる上側の基板51と低温となる下側の基板52の間に、(b)の形状の熱電変換素子10が16個並列に配置されている。16個の熱電変換素子10の内、P型とN型が8個ずつあり、1つずつ交互に並列に配置されている。(b)の熱電変換素子10は、図1の熱電変換材料1が2つの電極材料2a、2bで挟持された構成と同様である。 Examples of the present invention will be described with reference to FIGS. 4 to 7. FIG. 4 is a diagram showing the appearance of a conventional thermoelectric power generation module for comparison. FIG. 5 is a diagram showing the appearance of a thermoelectric power generation module according to an embodiment of the present invention. 6 and 7 are diagrams showing the characteristics of the thermoelectric power generation modules of FIGS. 4 and 5. In the conventional thermoelectric power generation module 50 of FIG. 4A, 16 thermoelectric conversion elements 10 having the shape of (b) are arranged in parallel between the upper substrate 51 having a high temperature and the lower substrate 52 having a low temperature. Has been done. Of the 16 thermoelectric conversion elements 10, eight are P-type and eight are N-type, and one is alternately arranged in parallel. The thermoelectric conversion element 10 of (b) has the same configuration as the thermoelectric conversion material 1 of FIG. 1 sandwiched between two electrode materials 2a and 2b.

図5の本発明の一実施例の熱電発電モジュール60では、高温となる上側の基板61と低温となる下側の基板62の間に、(b)の形状の熱電変換素子40が16個並列に配置されている。16個の熱電変換素子40の内、P型とN型が8個ずつあり、1つずつ交互に並列に配置されている。(b)の熱電変換素子40は、図3(a)の貫通孔5を有する熱電変換材料3が2つの電極材料4a、4bで挟持された構成と同様である。図4と図5の熱電変換素子10、40では、熱電変換素子の形状(貫通孔の有無)が異なるだけで他の構成は基本的に同様である。 In the thermoelectric power generation module 60 according to the embodiment of the present invention of FIG. 5, 16 thermoelectric conversion elements 40 having the shape (b) are arranged in parallel between the upper substrate 61 having a high temperature and the lower substrate 62 having a low temperature. Is located in. Of the 16 thermoelectric conversion elements 40, eight are P-type and eight are N-type, and one is alternately arranged in parallel. The thermoelectric conversion element 40 of (b) has the same configuration as the thermoelectric conversion material 3 having the through hole 5 of FIG. 3A sandwiched between the two electrode materials 4a and 4b. The thermoelectric conversion elements 10 and 40 of FIGS. 4 and 5 are basically the same in other configurations except that the shapes of the thermoelectric conversion elements (presence or absence of through holes) are different.

下記の表1に図5(b)の本発明の一実施例の熱電変換素子40の基本仕様を示す。表中の最後の2行の部位名を図4(b)の孔無しP型素子、孔無しN型素子とすれば、図4(b)の従来の熱電変換素子10も同様な仕様(サイズ、材料等)を有する。表中の高温側及び低温側基板として、表面に0.2mm厚の銅を貼り付けた窒化ケイ素からなる基板を用いた。表中の低温側接合材のSn63Pb37の元素名の後ろの数字は原子%を意味し、mp183℃は融点が183℃であることを示している。同様に表中のNi90Cr10とCu55Ni45の元素名の後ろの数字は原子%を意味する。また、表中のサイズの単位はミリメートル(mm)であり、Φ2は貫通孔の直径が2mmであることを示す。 Table 1 below shows the basic specifications of the thermoelectric conversion element 40 according to the embodiment of the present invention shown in FIG. 5 (b). If the part names in the last two rows in the table are the holeless P-type element and the holeless N-type element in FIG. 4 (b), the conventional thermoelectric conversion element 10 in FIG. 4 (b) has the same specifications (size). , Materials, etc.). As the high-temperature side and low-temperature side substrates in the table, a substrate made of silicon nitride with 0.2 mm thick copper attached to the surface was used. The number after the element name of Sn63Pb37 of the low temperature side bonding material in the table means atomic%, and mp183 ° C. indicates that the melting point is 183 ° C. Similarly, the numbers after the element names of Ni90Cr10 and Cu55Ni45 in the table mean atomic%. The unit of size in the table is millimeter (mm), and Φ2 indicates that the diameter of the through hole is 2 mm.

Figure 0006858379
Figure 0006858379

図6は、図4と図5の熱電発電モジュールの各々において、高温側500℃、低温側50℃の温度負荷を与え、その時の発電効率導出のために上下の電極間の通過熱流の測定を行った結果を示す。Aのグラフは図5の本発明の一実施例の熱電発電モジュール60の熱流Q(W)であり、Bのグラフは図4の従来の熱電発電モジュール50の熱流Q(W)である。Aの本発明の熱流Qは約74Wであり、熱流密度は約9.4W/cmであった。一方、Bの従来構造の熱流は約234Wであり、熱流密度は約29.8W/cmであった。両者の比較から、図5の本発明の一実施例の熱電発電モジュール60では図4の従来構造に較べて通過熱流を約69%低減(抑制)することができた。FIG. 6 shows that in each of the thermoelectric power generation modules of FIGS. 4 and 5, a temperature load of 500 ° C. on the high temperature side and 50 ° C. on the low temperature side is applied, and the passing heat flow between the upper and lower electrodes is measured in order to derive the power generation efficiency at that time. The result of this is shown. The graph of A is the heat flow Q (W) of the thermoelectric power generation module 60 according to the embodiment of the present invention of FIG. 5, and the graph of B is the heat flow Q (W) of the conventional thermoelectric power generation module 50 of FIG. The heat flow Q of the present invention of A was about 74 W, and the heat flow density was about 9.4 W / cm 2 . On the other hand, the heat flow of the conventional structure of B was about 234 W, and the heat flow density was about 29.8 W / cm 2 . From the comparison between the two, the thermoelectric power generation module 60 of the embodiment of the present invention of FIG. 5 was able to reduce (suppress) the passing heat flow by about 69% as compared with the conventional structure of FIG.

図7は、図6の測定条件下で得られた熱から電気への熱電変換効率η(%)を示す。Aのグラフは図5の本発明の一実施例の熱電発電モジュール60の変換効率η(%)であり、Bのグラフは図4の従来の熱電発電モジュール50のη(%)である。Aの本発明の変換効率ηは約0.52%であり、Bの従来構造の変換効率ηは約0.30%であった。両者の比較から、図5の本発明の一実施例の熱電発電モジュール60では図4の従来構造に較べて変換効率ηを約70%増加(向上)させることができた。 FIG. 7 shows the thermoelectric conversion efficiency η (%) from heat to electricity obtained under the measurement conditions of FIG. The graph of A is the conversion efficiency η (%) of the thermoelectric power generation module 60 according to the embodiment of the present invention in FIG. 5, and the graph of B is the η (%) of the conventional thermoelectric power generation module 50 of FIG. The conversion efficiency η of the present invention of A was about 0.52%, and the conversion efficiency η of the conventional structure of B was about 0.30%. From the comparison between the two, in the thermoelectric power generation module 60 of the embodiment of the present invention of FIG. 5, the conversion efficiency η could be increased (improved) by about 70% as compared with the conventional structure of FIG.

図7の変換効率ηの向上は、図6の熱流Qの低減効果に依ることが大きいと考えられる。すわち、変換効率ηは、発電出力Pと熱電変換素子の通過熱流Qoutを用いて下記の式(1)で表すことができる。

η=P/(Qout+P)×100(%) (1)

式(1)から変換効率ηを上げるには通過熱流Qoutを低減させることが有効であることがわかる。
It is considered that the improvement of the conversion efficiency η in FIG. 7 is largely due to the effect of reducing the heat flow Q in FIG. That is, the conversion efficiency η can be expressed by the following equation (1) using the power generation output P and the passing heat flow Q out of the thermoelectric conversion element.

η = P / (Q out + P) × 100 (%) (1)

From the equation (1), it can be seen that it is effective to reduce the passing heat flow Q out in order to increase the conversion efficiency η.

本発明の実施形態について、図を参照しながら説明をした。しかし、本発明はこれらの実施形態に限られるものではない。さらに、本発明はその趣旨を逸脱しない範囲で当業者の知識に基づき種々なる改良、修正、変形を加えた態様で実施できるものである。例えば、熱電変換素子の側面の貫通孔に代えて、熱電変換材料を貫通しない途中までの深さの開口を設けて同様な熱流の低減効果を得るようにしてもよい。その際、開口の深さ等に応じて放出される熱流量を調整することができる。 An embodiment of the present invention has been described with reference to the drawings. However, the present invention is not limited to these embodiments. Further, the present invention can be carried out in a mode in which various improvements, modifications and modifications are added based on the knowledge of those skilled in the art without departing from the spirit of the present invention. For example, instead of the through hole on the side surface of the thermoelectric conversion element, an opening having a depth halfway not penetrating the thermoelectric conversion material may be provided to obtain the same heat flow reduction effect. At that time, the heat flow rate released can be adjusted according to the depth of the opening and the like.

本発明の熱電変換素子及びこれを用いた熱電発電モジュールは、熱電発電モジュールの評価装置の校正用の熱電発電モジュールとして産業上利用することができる。 The thermoelectric conversion element of the present invention and the thermoelectric power generation module using the same can be industrially used as a thermoelectric power generation module for calibrating the evaluation device of the thermoelectric power generation module.

1、3、11、11’ 熱電変換材料
2a、2b、4a、4b 電極材料
5、6、7 貫通孔
10、40、41、42 熱電変換素子
20 P型熱電変換素子
30 N型熱電変換素子
12a、12b、12a’、12b’ 電極
13 上部接合電極
14、14’ 下部接合電極
51、61 上側の基板
52、62 下側の基板

1, 3, 11, 11'Thermoelectric conversion material 2a, 2b, 4a, 4b Electrode material 5, 6, 7 Through holes 10, 40, 41, 42 Thermoelectric conversion element 20 P-type thermoelectric conversion element 30 N-type thermoelectric conversion element 12a , 12b, 12a', 12b' Electrode 13 Upper bonding electrode 14, 14'Lower bonding electrode 51, 61 Upper substrate 52, 62 Lower substrate

Claims (6)

熱電発電モジュールの評価装置の校正用熱電発電モジュールであって、
上部電極と下部電極の間に並列に配置された複数の熱電変換素子を含み、
複数の熱電変換素子の各々の側面に、当該熱電変換素子の内部において直交するように複数の貫通孔を設けることを特徴とする、校正用熱電発電モジュール。
It is a thermoelectric power generation module for calibration of the evaluation device of the thermoelectric power generation module.
Includes multiple thermoelectric conversion elements arranged in parallel between the upper and lower electrodes
A thermoelectric power generation module for calibration, characterized in that a plurality of through holes are provided on each side surface of the plurality of thermoelectric conversion elements so as to be orthogonal to each other inside the thermoelectric conversion element.
前記複数の熱電変換素子の各々は、直方体の形状を有しており、
前記貫通孔は、前記熱電変換素子の隣り合う2つの側面の各々に設けられている
請求項記載の校正用熱電発電モジュール。
Each of the plurality of thermoelectric conversion elements has a rectangular parallelepiped shape.
The through hole is calibrated thermoelectric power generation module according to claim 1, characterized in that provided on each of the two side surfaces adjacent the thermoelectric conversion element.
前記貫通孔は、前記熱電変換素子の各側面に複数設けられている
請求項記載の校正用熱電発電モジュール。
The calibration thermoelectric power generation module according to claim 2 , wherein a plurality of through holes are provided on each side surface of the thermoelectric conversion element.
前記貫通孔の断面は、円形または方形の形状を有する、請求項1乃至3のいずれか1つに記載の校正用熱電発電モジュール。 The calibration thermoelectric power generation module according to any one of claims 1 to 3 , wherein the cross section of the through hole has a circular or rectangular shape. 前記複数の熱電変換素子は、横方向に交互に配置されたP型熱電変換素子とN型熱電変換素子を含む、請求項1乃至4のいずれか1つに記載の校正用熱電発電モジュール。 The calibration thermoelectric power generation module according to any one of claims 1 to 4 , wherein the plurality of thermoelectric conversion elements include P-type thermoelectric conversion elements and N-type thermoelectric conversion elements arranged alternately in the lateral direction. 前記熱電変換素子の各々の上面及び下面と、前記上部電極及び前記下部電極との間に金属接合層を有する、請求項1乃至5のいずれか1つに記載の校正用熱電発電モジュール。 The thermoelectric power generation module for calibration according to any one of claims 1 to 5 , further comprising a metal bonding layer between the upper surface and the lower surface of each of the thermoelectric conversion elements and the upper electrode and the lower electrode.
JP2019532445A 2017-07-27 2018-06-20 Calibration thermoelectric power generation module Active JP6858379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021014374A JP7441524B2 (en) 2017-07-27 2021-02-01 Thermoelectric generation module for calibration

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017145692 2017-07-27
JP2017145692 2017-07-27
PCT/JP2018/023516 WO2019021703A1 (en) 2017-07-27 2018-06-20 Thermoelectric power generation module for calibration

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2021014374A Division JP7441524B2 (en) 2017-07-27 2021-02-01 Thermoelectric generation module for calibration

Publications (2)

Publication Number Publication Date
JPWO2019021703A1 JPWO2019021703A1 (en) 2020-05-28
JP6858379B2 true JP6858379B2 (en) 2021-04-14

Family

ID=65040065

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019532445A Active JP6858379B2 (en) 2017-07-27 2018-06-20 Calibration thermoelectric power generation module
JP2021014374A Active JP7441524B2 (en) 2017-07-27 2021-02-01 Thermoelectric generation module for calibration

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2021014374A Active JP7441524B2 (en) 2017-07-27 2021-02-01 Thermoelectric generation module for calibration

Country Status (2)

Country Link
JP (2) JP6858379B2 (en)
WO (1) WO2019021703A1 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63299383A (en) * 1987-05-29 1988-12-06 Matsushita Electric Ind Co Ltd Thermoelectric converting module
JP4524382B2 (en) * 2005-03-10 2010-08-18 独立行政法人産業技術総合研究所 Thermoelectric power generation elements that are subject to temperature differences
JP2006294935A (en) * 2005-04-12 2006-10-26 Kiyoshi Inaizumi High efficiency and low loss thermoelectric module
US20130008479A1 (en) * 2011-07-07 2013-01-10 Peng Chen Thermoelectric element design
US20130019918A1 (en) * 2011-07-18 2013-01-24 The Regents Of The University Of Michigan Thermoelectric devices, systems and methods
JP2013026334A (en) * 2011-07-19 2013-02-04 National Institute Of Advanced Industrial & Technology Stacked thermoelectric conversion module
JP6035970B2 (en) * 2012-08-03 2016-11-30 富士通株式会社 Thermoelectric conversion device and manufacturing method thereof
US9263662B2 (en) * 2014-03-25 2016-02-16 Silicium Energy, Inc. Method for forming thermoelectric element using electrolytic etching
JP6518887B2 (en) * 2015-06-24 2019-05-29 国立研究開発法人産業技術総合研究所 Thermoelectric conversion element, method of manufacturing the same, and thermoelectric generation module and Peltier cooling module
JP6417050B2 (en) * 2015-08-31 2018-10-31 富士フイルム株式会社 Thermoelectric conversion module

Also Published As

Publication number Publication date
JP7441524B2 (en) 2024-03-01
WO2019021703A1 (en) 2019-01-31
JPWO2019021703A1 (en) 2020-05-28
JP2021078351A (en) 2021-05-20

Similar Documents

Publication Publication Date Title
JP4728745B2 (en) Thermoelectric device and thermoelectric module
JP5336373B2 (en) Thermoelectric conversion module
US9793462B2 (en) Thermoelectric module, thermoelectric power generating apparatus, and thermoelectric generator
US8841540B2 (en) High temperature thermoelectrics
US20070199587A1 (en) Thermoelectric Conversion Module
KR20120080820A (en) Thermoelectric module
JP5653455B2 (en) Thermoelectric conversion member
JP2009081286A (en) Thermoelectric conversion module
US20180287517A1 (en) Phase change inhibited heat-transfer thermoelectric power generation device and manufacturing method thereof
US11393969B2 (en) Thermoelectric generation cell and thermoelectric generation module
JP2008177356A (en) Thermoelectric power generation element
JP6858379B2 (en) Calibration thermoelectric power generation module
US10897001B2 (en) Thermoelectric conversion module
JP7313660B2 (en) Thermoelectric conversion module
US20140360549A1 (en) Thermoelectric Module and Method of Making Same
WO2009098947A1 (en) Infrared sensor
JP2013084874A (en) Thermoelectric module
KR102456680B1 (en) Thermoelectric element
JP2014110245A (en) Thermoelectric conversion device
KR20140101121A (en) Thermo electric device
JP7396621B2 (en) Thermoelectric cells and thermoelectric modules
JP2019029504A (en) Thermoelectric conversion device
KR20180095292A (en) Flexible thermoelectric module
KR102423607B1 (en) Thermoelectric module
JP2017152618A (en) Thermoelectric module and manufacturing method thereof and thermoelectric device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200527

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210128

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210209

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210310

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210316

R150 Certificate of patent or registration of utility model

Ref document number: 6858379

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250