JP2000050661A - Power generator - Google Patents

Power generator

Info

Publication number
JP2000050661A
JP2000050661A JP10208153A JP20815398A JP2000050661A JP 2000050661 A JP2000050661 A JP 2000050661A JP 10208153 A JP10208153 A JP 10208153A JP 20815398 A JP20815398 A JP 20815398A JP 2000050661 A JP2000050661 A JP 2000050661A
Authority
JP
Japan
Prior art keywords
thermoelectric elements
base
bases
elements
types
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10208153A
Other languages
Japanese (ja)
Inventor
Masaya Koyama
雅也 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NISHINOMIYA KINZOKU KOGYO KK
Original Assignee
NISHINOMIYA KINZOKU KOGYO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NISHINOMIYA KINZOKU KOGYO KK filed Critical NISHINOMIYA KINZOKU KOGYO KK
Priority to JP10208153A priority Critical patent/JP2000050661A/en
Publication of JP2000050661A publication Critical patent/JP2000050661A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To enable a power generator to obtain a large thermoelectromotive force by connecting the end sections of thermoelectric elements to each other by bringing the elements into contact with electrodes fixed to the facing surface sides of at least high temperature-side substrates. SOLUTION: Substrates 2A and 2B of a Seebeck module 1 are formed into square plate-like shapes by using an insulator having a heat resistance and thermal conductivity, and one of the substrates 2A and 2B is maintained at a high temperature through heating, while the other substrate is maintained at a low temperature through having heat radiated. In addition, many electrodes 6 are provided on the internal surface side (facing surface side) of each substrate 2A and 2B, and the end section of an N-type semiconductor 3A is connected to that of the adjacent P-type semiconductor 3B by bringing the end sections of thermoelectric elements 3A and 3B in the length wise direction into contact with the electrodes 6. Since the thermoelectric elements 3A and 3B are not affected by the elongation of the heating-side substrate by thermal expansion, the breakdown of the elements 3A and 3B can be avoided. At the same time, since the elements 3A and 3B can be heated to a high temperatures, a large thermoelectromotive force can be obtained.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、ゼーベック効果を
利用した発電装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generator utilizing the Seebeck effect.

【0002】[0002]

【従来の技術】電気的性質の異なる2種の導体(金属)
又は半導体からなる熱電素子の端部同士を相互に接続し
て閉回路を形成し、2つの接続部に温度差を与えたと
き、該温度差に比例した熱起電力が発生し、直流電流が
流れる現象をゼーベック効果といい、このゼーベック効
果を利用した発電装置(ゼーベックモジュール)とし
て、例えば、馬蹄形のゼーベック素子をつなげたもの、
2枚の平板状絶縁体間に棒状の半導体を配列したものな
どが知られている。
2. Description of the Related Art Two types of conductors (metals) having different electrical properties
Alternatively, when the ends of thermoelectric elements made of a semiconductor are connected to each other to form a closed circuit, and a temperature difference is applied to the two connection portions, a thermoelectromotive force proportional to the temperature difference is generated, and a DC current is generated. The flowing phenomenon is called the Seebeck effect. As a power generation device (Seebeck module) using the Seebeck effect, for example, a horseshoe-shaped Seebeck element is connected,
An arrangement in which rod-shaped semiconductors are arranged between two flat insulators is known.

【0003】前者のものは、図7に示すように、2種の
熱電素子21A,21Bの一端側同士を溶融接合して馬
蹄形のゼーベック素子21を形成し、これを多数直列状
に接続することでゼーベックモジュールが構成される。
各熱電素子21A,21Bの他端側には、リード線22
が接続されており、ゼーベック素子21の溶融接合部分
が加熱部23とされ、熱電素子21A,21Bの一端側
と他端側との間の中間部分が放熱部24とされている。
In the former case, as shown in FIG. 7, one end of two types of thermoelectric elements 21A and 21B are melt-bonded to form a horseshoe-shaped Seebeck element 21 and a number of these elements are connected in series. Constitutes a Seebeck module.
A lead wire 22 is connected to the other end of each of the thermoelectric elements 21A and 21B.
Are connected to each other, and a fusion bonding portion of the Seebeck element 21 is a heating portion 23, and an intermediate portion between one end side and the other end side of the thermoelectric elements 21 </ b> A and 21 </ b> B is a heat radiation portion 24.

【0004】このものにあっては、熱電素子21A,2
1Bの一端側と他端側との間で放熱するので、放熱部2
4の距離がある程度必要とされ、装置が大型化するとい
う欠点がある。そこで、後者のものが、小型化が容易で
あるため、ゼーベックモジュールとして広く使われてい
る。この後者のゼーベックモジュール26は、図8〜1
0に示すように、絶縁体からなる板状の2枚の基体27
A,27Bを、間隔をおいて上下対向状に配置し、この
基体27A,27B間に、N型とP型の半導体からなる
熱電素子28A,28Bを碁盤目状に配列すると共に、
これら熱電素子28A,28Bが直列状となるように、
該熱電素子28A,28Bの両端を基体27A,27B
内面側にハンダ29によって接合固定している。このも
のにあっては、一方の基体27Aを加熱して高温にする
と共に、他方の基体27Bから熱を放散させて低温にす
ることにより、熱電素子28A,28Bの一端側と他端
側とに温度差を与え、熱起電力を発生させるようにして
いる。
In this device, the thermoelectric elements 21A, 21A
Since heat is radiated between one end side and the other end side of the radiator 1B,
The distance of 4 is required to some extent, and there is a disadvantage that the device becomes large. Therefore, the latter is widely used as a Seebeck module because it can be easily miniaturized. This latter Seebeck module 26 is illustrated in FIGS.
As shown in FIG. 0, two plate-like substrates 27 made of an insulator are used.
A and 27B are arranged in a vertically opposing manner at an interval, and thermoelectric elements 28A and 28B made of N-type and P-type semiconductors are arranged in a grid pattern between the bases 27A and 27B.
In order that these thermoelectric elements 28A, 28B are in series,
Both ends of the thermoelectric elements 28A, 28B are connected to bases 27A, 27B.
It is joined and fixed to the inner surface side by solder 29. In this device, one base 27A is heated to a high temperature and the other base 27B dissipates heat to a low temperature, so that one end and the other end of the thermoelectric elements 28A and 28B are connected. A temperature difference is given to generate a thermoelectromotive force.

【0005】[0005]

【発明が解決しようとする課題】ゼーベックモジュール
においては、温度差に比例して起電力が得られるため、
いかに大きな温度差を与えられるかが、性能を決定する
重要な要因であり、そのためには、加熱側(吸熱側)の
温度を高くする必要があるが、従来の後者のものにあっ
ては、個々の熱電素子28A,28Bがハンダ29で基
体27A,27Bに固定されているので、図11及び図
12に示すように、加熱側の基体27Aの熱膨張による
矢示方向の伸びによって、熱電素子28A,28Bの加
熱側の端部(上端側)が、基体27Aの面に沿う方向に
引っ張られ、該熱電素子28A,28Bが破壊してしま
うという欠陥があった。
In the Seebeck module, an electromotive force is obtained in proportion to the temperature difference.
How large the temperature difference can be given is an important factor that determines the performance. For that purpose, it is necessary to raise the temperature on the heating side (endothermic side), but in the latter case, Since the individual thermoelectric elements 28A and 28B are fixed to the bases 27A and 27B by solder 29, as shown in FIGS. 11 and 12, the thermoelectric elements are expanded by the thermal expansion of the base 27A on the heating side in the direction indicated by the arrow. The heating-side ends (upper ends) of the heating elements 28A and 28B are pulled in a direction along the surface of the base 27A, and there is a defect that the thermoelectric elements 28A and 28B are broken.

【0006】また、従来の後者のものは、ハンダ29の
溶融点以上の温度に加熱することはできず、発生させる
熱起電力に限界があった。また、溶融点以下の温度に加
熱する場合でも、ハンダ29自体の形状保持力が溶融点
に近づくに従い減少する(柔らかくなる)。このため、
一方の基体27Aの加熱が停止され該基体27Aが熱収
縮すると、ハンダ29と基体27Aとでは熱収縮率の違
いがあるため、ハンダ29の熱収縮が終了した後も基体
27Aの熱収縮が続き、結果としてハンダ29が延びた
状態となる。
[0006] Further, the conventional latter cannot be heated to a temperature higher than the melting point of the solder 29, and there is a limit to the generated thermoelectromotive force. Further, even when the solder 29 is heated to a temperature lower than the melting point, the shape retaining force of the solder 29 itself decreases (becomes softer) as approaching the melting point. For this reason,
When the heating of one of the bases 27A is stopped and the base 27A undergoes thermal contraction, there is a difference in the thermal contraction rate between the solder 29 and the base 27A. As a result, the solder 29 is extended.

【0007】そして、これが繰り返されると、隣接する
ハンダ29が、ついには接触して電気ショートを起こ
し、熱電素子28A,28Bが破壊することがある。な
お、ゼーベックモジュール26の中央部分より離れるほ
ど、熱膨張の影響が大きくなるため、端側の熱電素子2
8A,28Bから破壊されやすい。そこで本発明は、ゼ
ーベック効果を利用した発電装置であって、該発電装置
を構成する熱電素子の破壊を防止し、大きな熱起電力を
得ることができる発電装置を提供することを目的とす
る。
[0007] When this is repeated, the adjacent solders 29 eventually come into contact with each other to cause an electric short, and the thermoelectric elements 28A and 28B may be broken. The effect of thermal expansion increases as the distance from the center of the Seebeck module 26 increases.
8A, 28B easily breaks. Therefore, an object of the present invention is to provide a power generation device utilizing the Seebeck effect, which can prevent a thermoelectric element constituting the power generation device from being destroyed and can obtain a large thermoelectromotive force.

【0008】[0008]

【課題を解決するための手段】本発明が前記目的を達成
するために講じた技術的手段は、一対の基体2A,2B
を対向状に配置し、この基体2A,2B間に2種の熱電
素子3A,3Bを介在し、一方の基体2A又は2Bを高
温にし、他方の基体2B又は2Aを低温にして温度差を
与えることにより熱起電力が発生するように、前記2種
の熱電素子3A,3Bの端部同士を接続した発電装置に
おいて、少なくとも高温側の基体2A又は2Bの対向面
側に固定した電極6に熱電素子3A,3Bを接当させる
ことによって2種の熱電素子3A,3Bの端部同士を接
続させるようにしたことを特徴とする。
The technical measures taken by the present invention to achieve the above object are a pair of bases 2A and 2B.
Are arranged facing each other, two types of thermoelectric elements 3A and 3B are interposed between the bases 2A and 2B, and one base 2A or 2B is set to a high temperature and the other base 2B or 2A is set to a low temperature to give a temperature difference. In the power generating device in which the ends of the two types of thermoelectric elements 3A and 3B are connected to each other, at least a thermoelectric element is fixed to the electrode 6 fixed to the facing surface of the base 2A or 2B on the high temperature side so that a thermoelectromotive force is generated. The end portions of the two types of thermoelectric elements 3A and 3B are connected by bringing the elements 3A and 3B into contact with each other.

【0009】また、一対の基体2A,2Bを対向状に配
置し、この基体2A,2B間に2種の熱電素子3A,3
Bを介在し、一方の基体2A又は2Bを高温にし、他方
の基体2B又は2Aを低温にして温度差を与えることに
より熱起電力が発生するように、前記2種の熱電素子3
A,3Bの端部同士を接続した発電装置において、前記
熱電素子3A,3Bを保持する素子ホルダ4を設けたこ
とを特徴とする。
A pair of bases 2A and 2B are arranged to face each other, and two types of thermoelectric elements 3A and 3B are interposed between the bases 2A and 2B.
B, the two types of thermoelectric elements 3 are arranged so that one base 2A or 2B has a high temperature and the other base 2B or 2A has a low temperature to give a temperature difference to generate a thermoelectromotive force.
In a power generating apparatus in which ends of A and 3B are connected to each other, an element holder 4 for holding the thermoelectric elements 3A and 3B is provided.

【0010】また、一対の基体2A,2Bを対向状に配
置し、この基体2A,2B間に2種の熱電素子3A,3
Bを介在し、一方の基体2A又は2Bを高温にし、他方
の基体2B又は2Aを低温にして温度差を与えることに
より熱起電力が発生するように、前記2種の熱電素子3
A,3Bの端部同士を接続した発電装置において、各基
体2A,2Bの対向面側に固定した電極6に熱電素子3
A,3Bを接当させることによって2種の熱電素子3
A,3Bの端部同士を接続させるようにすると共に、熱
電素子3A,3Bを保持する素子ホルダ4を設けたこと
を特徴とする。
A pair of bases 2A and 2B are arranged to face each other, and two types of thermoelectric elements 3A and 3B are interposed between the bases 2A and 2B.
B, the two types of thermoelectric elements 3 are arranged so that one base 2A or 2B has a high temperature and the other base 2B or 2A has a low temperature to give a temperature difference to generate a thermoelectromotive force.
In the power generating device in which the ends of the bases A and 3B are connected to each other, the thermoelectric element 3
A and 3B are brought into contact with each other to form two types of thermoelectric elements 3.
A and 3B are connected to each other, and an element holder 4 for holding the thermoelectric elements 3A and 3B is provided.

【0011】また、一対の基体2A,2Bを対向状に配
置し、この基体2A,2B間に2種の熱電素子3A,3
Bを介在し、一方の基体2A又は2Bを高温にし、他方
の基体2B又は2Aを低温にして温度差を与えることに
より熱起電力が発生するように、前記2種の熱電素子3
A,3Bの端部同士を接続した発電装置において、高温
側は、基体2Aの対向面側に固定した電極6に熱電素子
3A,3Bを接当させることによって2種の熱電素子3
A,3Bの端部同士を接続し、低温側は、導電材料17
によって2種の熱電素子3A,3Bの端部を基体2Bの
対向面側に固定することによって2種の熱電素子3A,
3Bの端部同士を接続するようにしたことを特徴とす
る。
A pair of bases 2A and 2B are arranged to face each other, and two types of thermoelectric elements 3A and 3B are interposed between the bases 2A and 2B.
B, the two types of thermoelectric elements 3 are arranged so that one base 2A or 2B has a high temperature and the other base 2B or 2A has a low temperature to give a temperature difference to generate a thermoelectromotive force.
In the power generating device in which the ends of the thermoelectric elements 3A and 3B are connected to each other, the thermoelectric elements 3A and 3B are brought into contact with the electrode 6 fixed to the facing surface of the base 2A.
A and 3B are connected to each other, and the low-temperature side is made of a conductive material 17.
By fixing the ends of the two types of thermoelectric elements 3A, 3B to the facing surface side of the base 2B, the two types of thermoelectric elements 3A, 3B are fixed.
The end portions of 3B are connected to each other.

【0012】[0012]

【発明の実施の形態】以下、図面を参照して本発明の実
施の形態について説明する。図1及び図2は、第1の実
施の形態を示し、ゼーベックモジュール1は、一対の基
体2A,2Bと、この基体2A,2Bの間に配列された
2種の熱電素子3A,3Bと、この2種の熱電素子3
A,3Bを保持する素子ホルダ4と、前記基体2A,2
Bの間に熱電素子3A,3Bを配列した状態(組み立て
た状態)を保持する固定手段5とを備えて構成されてい
る。
Embodiments of the present invention will be described below with reference to the drawings. 1 and 2 show a first embodiment, in which a Seebeck module 1 includes a pair of bases 2A and 2B, and two types of thermoelectric elements 3A and 3B arranged between the bases 2A and 2B. These two types of thermoelectric elements 3
A, 3B, an element holder 4 and the bases 2A, 2
B, and fixing means 5 for holding a state in which the thermoelectric elements 3A and 3B are arranged (assembled state).

【0013】基体2A,2Bは、耐熱性及び熱伝導性を
有する絶縁体で形成され、本実施の形態では、セラミッ
クスによって四角平板状に形成されている。この基体2
A,2Bの一方は加熱されて高温に保持され、他方は熱
を放散させて低温に保持される。したがって、基体2
A,2Bの加熱側には、加熱手段が一体的に又は別体で
設けられ、放熱側には、放熱器、熱交換器、放熱板等が
一体的に又は別体で設けられる。
The bases 2A and 2B are formed of an insulator having heat resistance and heat conductivity. In the present embodiment, the bases 2A and 2B are formed of ceramics in a square plate shape. This base 2
One of A and 2B is heated and maintained at a high temperature, and the other dissipates heat and maintained at a low temperature. Therefore, the base 2
A heating means is provided integrally or separately on the heating side of A and 2B, and a radiator, a heat exchanger, a radiator plate and the like are provided integrally or separately on the heat radiation side.

【0014】なお、前記基体2A,2Bは、平板状に形
成されなくてもよく、また、少なくとも内面側が絶縁材
料で形成されていればよい。前記2種の熱電素子3A,
3Bとしては、本実施の形態では、N型半導体3AとP
型半導体3Bが採用されており、その材料としては、B
i(ビスマス)とTe(テルル)、Pb(鉛)とTe、
Fe(鉄)とSi(ケイ素)、FeとAl(アルミニウ
ム)等の組み合わせが広く知られているが、ゼーベック
効果を奏する熱電材料であれば何でもよい。
The bases 2A and 2B do not have to be formed in a flat plate shape, and it is sufficient that at least the inner surface is formed of an insulating material. The two types of thermoelectric elements 3A,
In this embodiment, N-type semiconductor 3A and P
Type semiconductor 3B is adopted, and the material thereof is B
i (bismuth) and Te (tellurium), Pb (lead) and Te,
Combinations of Fe (iron) and Si (silicon), and Fe and Al (aluminum) are widely known, but any thermoelectric material exhibiting the Seebeck effect may be used.

【0015】この2種の熱電素子3A,3Bは、棒状に
形成されて多数個設けられており、各熱電素子3A,3
Bは、基体2A,2Bの対向方向に配置されている。ま
た、これら多数の熱電素子3A,3Bは、基体2A,2
Bの対向方向に直交する方向(面に沿う方向)に相互に
間隔をおいて、且つN型半導体3AとP型半導体3Bと
が隣合うように、碁盤目状に配列されている。
The two types of thermoelectric elements 3A, 3B are formed in a rod shape and provided in a large number.
B is arranged in a direction facing the bases 2A and 2B. Further, these thermoelectric elements 3A, 3B are composed of bases 2A, 2B.
The N-type semiconductors 3A and the P-type semiconductors 3B are arranged in a grid pattern so as to be spaced apart from each other in a direction perpendicular to the direction in which B faces (the direction along the plane) and that the N-type semiconductors 3A and the P-type semiconductors 3B are adjacent to each other.

【0016】また、各基体2A,2Bの内面側(対向面
側)には、電極6が多数設けられており、この電極6
に、熱電素子3A,3Bの長手方向(基体2A,2B対
向方向)の端部を接当させることによって、隣合うN型
半導体3AとP型半導体3Bとの端部同士が接続される
ようになっている。この電極6は、例えば、金、銀、銅
などの高融点の電気良導体から構成され、印刷、打込
み、容射等によって基体2A,2Bの内面に固定されて
いる。また、この電極6は隣合う2つのN型半導体3A
とP型半導体3Bの一端側を接続すると共に、この隣合
う2つのN型半導体3AとP型半導体3Bの他端側は、
他の隣合う半導体3A,3Bと接続するように、且つN
型半導体3AとP型半導体3Bとが交互に接続されるよ
うに設けられており、したがって、この電極6によって
多数のN型半導体3AとP型半導体3Bとが交互に且つ
直列状に接続されるようになっている。
A large number of electrodes 6 are provided on the inner surface side (opposing surface side) of each of the bases 2A and 2B.
To the ends of the thermoelectric elements 3A and 3B in the longitudinal direction (opposite directions of the bases 2A and 2B) so that the ends of the adjacent N-type semiconductor 3A and P-type semiconductor 3B are connected to each other. Has become. The electrode 6 is made of, for example, a high-melting electric conductor such as gold, silver, or copper, and is fixed to the inner surfaces of the bases 2A and 2B by printing, driving, spraying, or the like. The electrode 6 is formed of two adjacent N-type semiconductors 3A.
And one end of the P-type semiconductor 3B, and the other end of the two adjacent N-type semiconductors 3A and P-type semiconductor 3B
N is connected to other adjacent semiconductors 3A and 3B, and N
The type semiconductors 3A and the P-type semiconductors 3B are provided so as to be connected alternately. Therefore, a large number of the N-type semiconductors 3A and the P-type semiconductors 3B are connected alternately and in series by the electrodes 6. It has become.

【0017】なお、前記2種の熱電素子3A,3Bは、
少なくとも1つずつあればよい。また、多数のN型半導
体3AとP型半導体3Bとを直列状に接続してなる回路
の一端側はN型半導体3Aとされ、他端側はP型半導体
3Bとされ、これらN型半導体3AとP型半導体3Bと
が接触する端部電極7は陰極端子又は陽極端子とされて
おり、この端部電極7にはそれぞれリード線8が接続さ
れている。
The two types of thermoelectric elements 3A and 3B are:
It is sufficient that at least one is provided. One end of a circuit formed by connecting a large number of N-type semiconductors 3A and P-type semiconductors 3B in series is an N-type semiconductor 3A, and the other end is a P-type semiconductor 3B. And the P-type semiconductor 3B are in contact with each other as an end electrode 7 serving as a cathode terminal or an anode terminal, and a lead wire 8 is connected to each of the end electrodes 7.

【0018】前記素子ホルダ4は、耐熱性を有する絶縁
体によって形成されており、本実施の形態では四角厚板
状に形成され、厚さ方向(基体2A,2Bの対向方向)
に貫通形成された保持孔9が熱電素子3A,3Bの数に
相当する数設けられている。そして、この保持孔9に、
素子ホルダ4の厚さ方向両側から熱電素子3A,3Bが
若干突出するように、該熱電素子3A,3Bが嵌挿され
ると共に、この熱電素子3A,3Bが前記嵌挿状態に保
持されるようになっている。
The element holder 4 is formed of a heat-resistant insulator. In the present embodiment, the element holder 4 is formed in the shape of a square thick plate, and has a thickness direction (a direction in which the bases 2A and 2B face each other).
Are provided in a number corresponding to the number of thermoelectric elements 3A and 3B. And, in this holding hole 9,
The thermoelectric elements 3A, 3B are inserted so that the thermoelectric elements 3A, 3B slightly protrude from both sides in the thickness direction of the element holder 4, and the thermoelectric elements 3A, 3B are held in the inserted state. Has become.

【0019】したがって、この素子ホルダ4に熱電素子
3A,3Bを嵌挿することによって、熱電素子3A,3
Bが設定された配列状態に位置決めされ、決められた配
列位置に熱電素子3A,3Bが保持されるようになって
いる。なお、この素子ホルダ4は、特になくてもゼーベ
ックモジュール1を構成できるが、本実施の形態では、
素子ホルダ4に熱電素子3A,3Bを嵌挿した後、この
素子ホルダ4に嵌挿した熱電素子3A,3Bを基体2
A,2B間に挟み込み、固定手段5によって熱電素子3
A,3Bと基体2A,2Bとが離反しないように固定す
ることで組み立てられ、素子ホルダ4を設けることによ
って生産性がよくなるという利点もある。
Therefore, by inserting the thermoelectric elements 3A, 3B into the element holder 4, the thermoelectric elements 3A, 3B are inserted.
B is positioned in the set arrangement state, and the thermoelectric elements 3A and 3B are held at the determined arrangement position. Note that the element holder 4 can constitute the Seebeck module 1 without any particular configuration.
After the thermoelectric elements 3A and 3B are fitted into the element holder 4, the thermoelectric elements 3A and 3B
A, 2B, and the thermoelectric element 3
A and 3B are assembled by fixing the bases 2A and 2B so as not to separate from each other, and there is also an advantage that productivity is improved by providing the element holder 4.

【0020】前記固定手段5は、バネ板又はバネ鋼等の
バネ材から形成され、一対の押圧部5aと、該押圧部5
aの一端側同士を連結する連結部5bとから構成されて
おり、押圧部5aを弾性的に拡開させて、該押圧部5a
間に、熱電素子3A,3Bと基体2A,2Bとを組んだ
ものを挟み込むことによって、押圧部5aの弾性復元力
により、熱電素子3A,3Bが基体2A,2Bで挟持固
定されるようになっている。これによって、熱電素子3
A,3Bと電極6及び端部電極7との接当状態が保持さ
れ、且つ電極6及び端部電極7が熱電素子3A,3Bに
対して相対的に摺動可能(電極6及び端部電極7が熱電
素子3A,3Bに接当しまま動き得る状態)とされてい
る。
The fixing means 5 is formed of a spring material such as a spring plate or spring steel, and has a pair of pressing portions 5a and the pressing portions 5a.
a connecting portion 5b for connecting one end sides of the pressing portion 5a to each other.
The thermoelectric elements 3A, 3B and the bases 2A, 2B are interposed therebetween, so that the thermoelectric elements 3A, 3B are sandwiched and fixed between the bases 2A, 2B by the elastic restoring force of the pressing portion 5a. ing. Thereby, the thermoelectric element 3
A, 3B, the contact state between the electrode 6 and the end electrode 7 is maintained, and the electrode 6 and the end electrode 7 can slide relative to the thermoelectric elements 3A, 3B (the electrode 6 and the end electrode 7). 7 can move while being in contact with the thermoelectric elements 3A, 3B).

【0021】したがって、加熱側の基体2A又は2Bが
熱膨張によって伸びても、該基体2A又は2Bの伸びに
より熱電素子3A,3Bが引っ張られることはなく、熱
電素子3A,3Bの破壊を回避することができる。図3
に示すものは、固定手段5の他の例を示しており、この
固定手段5は、固定ネジ10、一対のネジ孔11A,1
1Bが形成されたナット体12、調圧ネジ13及び調圧
ネジ14から構成されている。固定ネジ10は、一方の
基体3Bに外面側から挿通されてナット体12の一方の
ネジ孔11Aに螺合され、これによって、一方の基体3
Bの内面側にナット体12が固定される。
Therefore, even if the base 2A or 2B on the heating side expands due to thermal expansion, the thermoelectric elements 3A and 3B are not pulled by the expansion of the base 2A or 2B, and the breakage of the thermoelectric elements 3A and 3B is avoided. be able to. FIG.
1 shows another example of the fixing means 5, and the fixing means 5 includes a fixing screw 10, a pair of screw holes 11A, 1A.
It is composed of a nut body 12 on which 1B is formed, a pressure adjusting screw 13, and a pressure adjusting screw 14. The fixing screw 10 is inserted into the one base 3B from the outer surface side and screwed into the one screw hole 11A of the nut body 12, whereby the one base 3B
The nut body 12 is fixed to the inner surface side of B.

【0022】また、調圧ネジ13は他方の基体3Aに外
面側から挿通されてナット体12の他方のネジ孔11B
に螺合されており、この調圧ネジ13の頭部と他方の基
体3Aとの間に調圧バネ14が圧縮状に介在されてお
り、これによって、熱電素子3A,3Bと電極6及び端
部電極7との接当状態が保持されると共に、電極6及び
端部電極7が熱電素子3A,3Bに対して相対的に摺動
可能とされている。
The pressure adjusting screw 13 is inserted into the other base 3A from the outer side, and the other screw hole 11B of the nut body 12 is formed.
A pressure adjusting spring 14 is interposed between the head of the pressure adjusting screw 13 and the other base 3A in a compressed state, whereby the thermoelectric elements 3A and 3B, the electrode 6 and the end are formed. The contact state with the unit electrode 7 is maintained, and the electrode 6 and the end electrode 7 are slidable relative to the thermoelectric elements 3A, 3B.

【0023】この固定手段5では、調圧ネジ13を螺進
・螺退させることにより、調圧バネ14のバネ力を調節
でき、したがって、基体3A,3B(電極6及び端部電
極7)の熱電素子3A,3Bに対する押圧力を変えるこ
とができる。前記ナット体12は断熱材から形成されて
いて、加熱側から放熱側への熱の移動が防止されるよう
になっている。
In the fixing means 5, the spring force of the pressure adjustment spring 14 can be adjusted by advancing and retreating the pressure adjustment screw 13, so that the bases 3A and 3B (the electrode 6 and the end electrode 7) can be adjusted. The pressing force on the thermoelectric elements 3A, 3B can be changed. The nut body 12 is formed of a heat insulating material, so that the transfer of heat from the heating side to the heat radiation side is prevented.

【0024】なお、前記固定手段5は前記のものに限定
されることはなく種々設計変更でき、例えば、熱電素子
3A,3Bと基体3A,3B等とを組んだ状態で収納で
きるケースを設け、このケースによって、熱電素子3
A,3Bと基体3A,3B等との組み付け状態を保持す
るようにしてもよい。また、電極6及び端部電極7を基
体2A,2Bに固定するのに、図4及び図5に示すよう
にしてもよい。すなわち、基体2A,2Bに取付孔15
を厚さ方向に貫通形成し、電極6及び端部電極7を金属
板材で構成すると共に、該電極6及び端部電極7に取付
片16を設け、この取付片16を取付孔15に挿通する
と共に取付片16の先端側を折り曲げることによって、
基体2A,2Bに電極6及び端部電極7が固定されてい
る。
The fixing means 5 is not limited to the above-mentioned one, but can be variously designed. For example, a case is provided in which the thermoelectric elements 3A, 3B and the bases 3A, 3B can be housed in an assembled state. In this case, the thermoelectric element 3
The assembled state of A, 3B and the bases 3A, 3B may be maintained. Alternatively, the electrodes 6 and the end electrodes 7 may be fixed to the bases 2A and 2B as shown in FIGS. That is, the mounting holes 15 are formed in the bases 2A and 2B.
Are formed in the thickness direction, the electrode 6 and the end electrode 7 are made of a metal plate material, and the electrode 6 and the end electrode 7 are provided with a mounting piece 16, and the mounting piece 16 is inserted into the mounting hole 15. By bending the tip side of the mounting piece 16 together,
The electrodes 6 and the end electrodes 7 are fixed to the bases 2A and 2B.

【0025】また、これ以外にビス止め、リベット止め
等で固定してもよい。図6は第2の実施の形態を示して
おり、この実施の形態では、加熱側(吸熱側)の構成は
前記第1の実施の形態と同様とされているが、放熱側の
構成が異なる。すなわち、放熱側の基体2Bの内面側
に、熱電素子3A,3Bが、ハンダ等の導電材料17を
溶かして固めることによって、隣合う2つのN型半導体
3AとP型半導体3Bとの端部同士が接続されるように
固定されている。
In addition, it may be fixed with screws, rivets, or the like. FIG. 6 shows a second embodiment. In this embodiment, the configuration on the heating side (heat absorption side) is the same as that in the first embodiment, but the configuration on the heat radiation side is different. . That is, the thermoelectric elements 3A and 3B are formed by melting the conductive material 17 such as solder on the inner surface side of the base body 2B on the heat radiation side, thereby solidifying the ends of the two adjacent N-type semiconductors 3A and P-type semiconductors 3B. Is fixed to be connected.

【0026】このものにあっては、放熱側は低温である
ので、加熱側が前記導電材料17の溶融点を超える高温
に加熱されても、なんら問題となることはない。したが
って、本発明では、少なくとも加熱側が、基体2A又は
2Bに固定した電極6に熱電素子3A,3Bが接当する
ようになっていればよい。なお、この実施の形態では、
素子ホルダ4を設けていないが、設けてもよい。また、
加熱側の基体2Aは、前記固定手段5と同様のもの、又
は他の構成のものによって、熱電素子3A,3Bと電極
6及び端部電極7との接当状態が保持されるように固定
される。
In this case, since the heat radiation side is at a low temperature, there is no problem even if the heating side is heated to a high temperature exceeding the melting point of the conductive material 17. Therefore, in the present invention, it is sufficient that at least the heating side is such that the thermoelectric elements 3A and 3B come into contact with the electrode 6 fixed to the base 2A or 2B. In this embodiment,
Although the element holder 4 is not provided, it may be provided. Also,
The base 2A on the heating side is fixed by the same means as the fixing means 5 or another structure so that the contact state between the thermoelectric elements 3A, 3B, the electrodes 6, and the end electrodes 7 is maintained. You.

【0027】前記構成のものにおいて、電極6の材料は
前記実施の形態で記載したもの以外の電気の導体で構成
してもよい。また、電極6を基体2A,2Bの内面に固
定する方法は前記実施の形態で例示したものに限定され
ることはなく、その他の固定手段によって電極6を固定
してもよい。
In the above configuration, the material of the electrode 6 may be an electric conductor other than those described in the above embodiment. The method for fixing the electrode 6 to the inner surfaces of the bases 2A and 2B is not limited to the method described in the above embodiment, and the electrode 6 may be fixed by other fixing means.

【0028】[0028]

【発明の効果】本発明によれば、熱電素子の加熱側の端
部同士を接続するのに、ハンダで基体に固定するのでは
なく、基体の対向面側に固定した電極に熱電素子の端部
を接当させるようにしているので、熱電素子が加熱側の
基体の熱膨張による伸びの影響を受けず、熱電素子の破
壊を回避することができる。
According to the present invention, the ends of the thermoelectric element on the heating side are connected to each other on the electrode fixed on the opposing surface of the base instead of being fixed to the base by soldering. Since the portions are brought into contact with each other, the thermoelectric element is not affected by elongation due to the thermal expansion of the base on the heating side, and the breakage of the thermoelectric element can be avoided.

【0029】また、ハンダを使わないでよいので、電極
に高融点の材料を採用でき、ハンダに比べ遙かに高温に
加熱することができ、大きな熱起電力を得ることが可能
である。また、熱電素子を保持する素子ホルダを設ける
ことによって、熱電素子の位置決めが容易に行え、生産
性が向上する。
Further, since it is not necessary to use solder, a material having a high melting point can be used for the electrode, and it can be heated to a much higher temperature than solder, and a large thermoelectromotive force can be obtained. Further, by providing the element holder for holding the thermoelectric element, the positioning of the thermoelectric element can be easily performed, and the productivity is improved.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態の発電装置の分解斜視図であ
る。
FIG. 1 is an exploded perspective view of a power generator according to a first embodiment.

【図2】発電装置の断面図である。FIG. 2 is a sectional view of a power generator.

【図3】発電装置の他の例を示す断面図である。FIG. 3 is a cross-sectional view illustrating another example of the power generation device.

【図4】電極の他の固定方法を示す斜視図である。FIG. 4 is a perspective view showing another method of fixing an electrode.

【図5】電極の固定部分の断面図である。FIG. 5 is a sectional view of a fixed portion of an electrode.

【図6】第2の実施の形態の発伝装置の断面図である。FIG. 6 is a cross-sectional view of a power transmission device according to a second embodiment.

【図7】従来の発電装置のゼーベック素子を示す正面図
である。
FIG. 7 is a front view showing a Seebeck element of a conventional power generation device.

【図8】従来の発電装置の断面図である。FIG. 8 is a sectional view of a conventional power generator.

【図9】従来の発電装置の平面図である。FIG. 9 is a plan view of a conventional power generation device.

【図10】従来の発電装置の底面図である。FIG. 10 is a bottom view of a conventional power generator.

【図11】従来の発電装置の平面図である。FIG. 11 is a plan view of a conventional power generation device.

【図12】従来の発電装置の平面図である。FIG. 12 is a plan view of a conventional power generation device.

【符号の説明】[Explanation of symbols]

2A 基体 2B 基体 3A 熱電素子(N型半導体) 3B 熱電素子(P型半導体) 4 素子ホルダ 6 電極 17 導電材料 2A Base 2B Base 3A Thermoelectric element (N-type semiconductor) 3B Thermoelectric element (P-type semiconductor) 4 Element holder 6 Electrode 17 Conductive material

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 一対の基体(2A,2B)を対向状に配
置し、この基体(2A,2B)間に2種の熱電素子(3
A,3B)を介在し、一方の基体(2A又は2B)を高
温にし、他方の基体(2B又は2A)を低温にして温度
差を与えることにより熱起電力が発生するように、前記
2種の熱電素子(3A,3B)の端部同士を接続した発
電装置において、 少なくとも高温側の基体(2A又は2B)の対向面側に
固定した電極(6)に熱電素子(3A,3B)を接当さ
せることによって2種の熱電素子(3A,3B)の端部
同士を接続させるようにしたことを特徴とする発電装
置。
1. A pair of bases (2A, 2B) are arranged facing each other, and two types of thermoelectric elements (3) are interposed between the bases (2A, 2B).
A, 3B) so that one base (2A or 2B) is heated to a high temperature and the other base (2B or 2A) is cooled to give a temperature difference, thereby generating a thermoelectromotive force. In the power generator in which the ends of the thermoelectric elements (3A, 3B) are connected to each other, the thermoelectric elements (3A, 3B) are connected at least to the electrode (6) fixed to the facing surface side of the high-temperature side base (2A or 2B). A power generator characterized in that end portions of two types of thermoelectric elements (3A, 3B) are connected to each other by contact.
【請求項2】 一対の基体(2A,2B)を対向状に配
置し、この基体(2A,2B)間に2種の熱電素子(3
A,3B)を介在し、一方の基体(2A又は2B)を高
温にし、他方の基体(2B又は2A)を低温にして温度
差を与えることにより熱起電力が発生するように、前記
2種の熱電素子(3A,3B)の端部同士を接続した発
電装置において、 前記熱電素子(3A,3B)を保持する素子ホルダ
(4)を設けたことを特徴とする発電装置。
2. A pair of bases (2A, 2B) are arranged to face each other, and two types of thermoelectric elements (3) are interposed between the bases (2A, 2B).
A, 3B) so that one base (2A or 2B) is heated to a high temperature and the other base (2B or 2A) is cooled to give a temperature difference, thereby generating a thermoelectromotive force. A power generator in which the ends of the thermoelectric elements (3A, 3B) are connected to each other, wherein an element holder (4) for holding the thermoelectric elements (3A, 3B) is provided.
【請求項3】 一対の基体(2A,2B)を対向状に配
置し、この基体(2A,2B)間に2種の熱電素子(3
A,3B)を介在し、一方の基体(2A又は2B)を高
温にし、他方の基体(2B又は2A)を低温にして温度
差を与えることにより熱起電力が発生するように、前記
2種の熱電素子(3A,3B)の端部同士を接続した発
電装置において、 各基体(2A,2B)の対向面側に固定した電極(6)
に熱電素子(3A,3B)を接当させることによって2
種の熱電素子(3A,3B)の端部同士を接続させるよ
うにすると共に、熱電素子(3A,3B)を保持する素
子ホルダ(4)を設けたことを特徴とする発電装置。
3. A pair of bases (2A, 2B) are arranged to face each other, and two types of thermoelectric elements (3) are interposed between the bases (2A, 2B).
A, 3B) so that one base (2A or 2B) is heated to a high temperature and the other base (2B or 2A) is cooled to give a temperature difference, thereby generating a thermoelectromotive force. In the power generator in which the ends of the thermoelectric elements (3A, 3B) are connected to each other, the electrode (6) fixed to the facing surface side of each base (2A, 2B)
By contacting thermoelectric elements (3A, 3B) with
A power generator, wherein end portions of thermoelectric elements (3A, 3B) are connected to each other, and an element holder (4) for holding the thermoelectric elements (3A, 3B) is provided.
【請求項4】 一対の基体(2A,2B)を対向状に配
置し、この基体(2A,2B)間に2種の熱電素子(3
A,3B)を介在し、一方の基体(2A又は2B)を高
温にし、他方の基体(2B又は2A)を低温にして温度
差を与えることにより熱起電力が発生するように、前記
2種の熱電素子(3A,3B)の端部同士を接続した発
電装置において、 高温側は、基体(2A)の対向面側に固定した電極
(6)に熱電素子(3A,3B)を接当させることによ
って2種の熱電素子(3A,3B)の端部同士を接続
し、低温側は、導電材料(17)によって2種の熱電素
子(3A,3B)の端部を基体(2B)の対向面側に固
定することによって2種の熱電素子(3A,3B)の端
部同士を接続するようにしたことを特徴とする発電装
置。
4. A pair of bases (2A, 2B) are arranged to face each other, and two types of thermoelectric elements (3) are interposed between the bases (2A, 2B).
A, 3B) so that one base (2A or 2B) is heated to a high temperature and the other base (2B or 2A) is cooled to give a temperature difference, thereby generating a thermoelectromotive force. In the power generator in which the ends of the thermoelectric elements (3A, 3B) are connected to each other, the high-temperature side brings the thermoelectric elements (3A, 3B) into contact with the electrode (6) fixed to the facing surface of the base (2A). In this way, the ends of the two types of thermoelectric elements (3A, 3B) are connected to each other. On the low-temperature side, the ends of the two types of thermoelectric elements (3A, 3B) are opposed to the base (2B) by the conductive material (17). A power generator characterized in that ends of two kinds of thermoelectric elements (3A, 3B) are connected to each other by being fixed to a surface side.
JP10208153A 1998-07-23 1998-07-23 Power generator Pending JP2000050661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10208153A JP2000050661A (en) 1998-07-23 1998-07-23 Power generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10208153A JP2000050661A (en) 1998-07-23 1998-07-23 Power generator

Publications (1)

Publication Number Publication Date
JP2000050661A true JP2000050661A (en) 2000-02-18

Family

ID=16551532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10208153A Pending JP2000050661A (en) 1998-07-23 1998-07-23 Power generator

Country Status (1)

Country Link
JP (1) JP2000050661A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158379A (en) * 2000-11-21 2002-05-31 National Institute Of Advanced Industrial & Technology Aggregation of thermoelectric conversion elements, method of manufacturing the same and thermoelectric module
JP2005064457A (en) * 2003-07-25 2005-03-10 Toshiba Corp Thermoelectric converter
JP2005277206A (en) * 2004-03-25 2005-10-06 Toshiba Corp Thermoelectric converter
WO2005117153A1 (en) * 2004-05-31 2005-12-08 Denso Corporation Thermoelectric converter and its manufacturing method
JP2006049872A (en) * 2004-07-06 2006-02-16 Central Res Inst Of Electric Power Ind Thermoelectric conversion module
JP2006073633A (en) * 2004-08-31 2006-03-16 Toshiba Corp Thermoelectric conversion device and its manufacturing method
JP2015012173A (en) * 2013-06-28 2015-01-19 株式会社東芝 Temperature difference power generator
WO2023145185A1 (en) * 2022-01-26 2023-08-03 株式会社テイエルブイ Thermoelectric power generation device and steam system
JP7421425B2 (en) 2020-06-25 2024-01-24 カヤバ株式会社 thermal power generation device
JP7469967B2 (en) 2020-06-25 2024-04-17 カヤバ株式会社 Thermoelectric power generation device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002158379A (en) * 2000-11-21 2002-05-31 National Institute Of Advanced Industrial & Technology Aggregation of thermoelectric conversion elements, method of manufacturing the same and thermoelectric module
JP2005064457A (en) * 2003-07-25 2005-03-10 Toshiba Corp Thermoelectric converter
JP2005277206A (en) * 2004-03-25 2005-10-06 Toshiba Corp Thermoelectric converter
WO2005117153A1 (en) * 2004-05-31 2005-12-08 Denso Corporation Thermoelectric converter and its manufacturing method
JP2006049872A (en) * 2004-07-06 2006-02-16 Central Res Inst Of Electric Power Ind Thermoelectric conversion module
JP2006073633A (en) * 2004-08-31 2006-03-16 Toshiba Corp Thermoelectric conversion device and its manufacturing method
JP4521236B2 (en) * 2004-08-31 2010-08-11 株式会社東芝 Thermoelectric conversion device and method of manufacturing thermoelectric conversion device
JP2015012173A (en) * 2013-06-28 2015-01-19 株式会社東芝 Temperature difference power generator
JP7421425B2 (en) 2020-06-25 2024-01-24 カヤバ株式会社 thermal power generation device
JP7469967B2 (en) 2020-06-25 2024-04-17 カヤバ株式会社 Thermoelectric power generation device
WO2023145185A1 (en) * 2022-01-26 2023-08-03 株式会社テイエルブイ Thermoelectric power generation device and steam system

Similar Documents

Publication Publication Date Title
JP4728745B2 (en) Thermoelectric device and thermoelectric module
US3819418A (en) Thermoelectric generator and method of producing the same
JP2000050661A (en) Power generator
JP2005277206A (en) Thermoelectric converter
JP2004273489A (en) Thermoelectric conversion module and its manufacturing method
JP4832137B2 (en) Thermoelectric conversion module
JP5713526B2 (en) Thermoelectric conversion module, cooling device, power generation device and temperature control device
JP2008177356A (en) Thermoelectric power generation element
JP3469812B2 (en) Thermoelectric conversion module and thermoelectric conversion module block
US3243869A (en) Process for producing thermoelectric elements
KR101628171B1 (en) Apparatus for fixing thermoelectric device elements
JPH0793459B2 (en) Thermoelectric device
JP3472593B2 (en) Thermoelectric device
JP3813180B2 (en) Current connections for power semiconductor devices
JP3498223B2 (en) Thermopile
JPH0333082Y2 (en)
JP2000188429A (en) Thermo-electric conversion module
JPH09321353A (en) Thermoelectric module
JPH04249385A (en) Thermoelectric device
JP2016092017A (en) Thermoelectric module
JPH08293628A (en) Thermoelectricity conversion device
JPH06169108A (en) Thermoelectric element
JPH0333083Y2 (en)
JPH11135842A (en) Thermoionic element
WO2016136856A1 (en) Thermoelectric module