JP7421425B2 - thermal power generation device - Google Patents

thermal power generation device Download PDF

Info

Publication number
JP7421425B2
JP7421425B2 JP2020109799A JP2020109799A JP7421425B2 JP 7421425 B2 JP7421425 B2 JP 7421425B2 JP 2020109799 A JP2020109799 A JP 2020109799A JP 2020109799 A JP2020109799 A JP 2020109799A JP 7421425 B2 JP7421425 B2 JP 7421425B2
Authority
JP
Japan
Prior art keywords
heat
housing
conductive member
attached
thermoelectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020109799A
Other languages
Japanese (ja)
Other versions
JP2022007084A (en
Inventor
克道 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2020109799A priority Critical patent/JP7421425B2/en
Publication of JP2022007084A publication Critical patent/JP2022007084A/en
Application granted granted Critical
Publication of JP7421425B2 publication Critical patent/JP7421425B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electromechanical Clocks (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Description

本発明は、熱発電装置及びその製造方法に関するものである。 The present invention relates to a thermal power generation device and a method for manufacturing the same.

特許文献1には、熱エネルギーを電力に変換する熱発電素子を備える熱発電装置が開示されている。この熱発電装置は、固定部と、熱発電素子の入熱面および固定部に接続されている熱伝導部材と、熱発電素子の放熱面に接続されているヒートシンクなどの放熱部材と、熱発電素子などの電子部品を覆うカバーと、を備える。カバーは、固定部を介して伝導される熱を、放熱部材を介して熱発電素子の放熱面に伝導させないために、プラスチックなどの断熱材料によって形成される。 Patent Document 1 discloses a thermoelectric generator including a thermoelectric generator that converts thermal energy into electric power. This thermoelectric power generation device consists of a fixed part, a heat conductive member connected to the heat input surface of the thermoelectric power generating element and the fixed part, a heat dissipating member such as a heat sink connected to the heat dissipating surface of the thermoelectric generating element, and a thermoelectric generator. A cover that covers electronic components such as elements. The cover is formed of a heat insulating material such as plastic in order to prevent the heat conducted through the fixed portion from being conducted to the heat radiation surface of the thermoelectric generating element through the heat radiation member.

特開2014-8569号公報Unexamined Japanese Patent Publication No. 2014-8569

特許文献1の熱発電装置では、固定部と放熱部材とがカバーによって連結され、カバーの内側では固定部に取り付けられた熱伝導部材と放熱部材とによって熱発電素子が挟持される。 In the thermoelectric power generation device of Patent Document 1, a fixed part and a heat radiating member are connected by a cover, and a thermoelectric generating element is sandwiched between the heat conductive member and the heat radiating member attached to the fixed part inside the cover.

一般に、このような熱発電装置を構成する固定部、放熱部材、カバー、及び熱伝導部材といった各構成部品には、寸法誤差が生じる。また、各構成部品の材質の違いによって熱伝導率に差が生じるため、周囲の温度変化による各構成部品の寸法変化量も互いに異なる。 Generally, dimensional errors occur in each component such as a fixing part, a heat radiation member, a cover, and a heat conduction member that constitute such a thermal power generation device. Furthermore, since differences in thermal conductivity occur depending on the material of each component, the amount of dimensional change in each component due to changes in ambient temperature also differs from each other.

このようにして設計値からの寸法のずれが各構成部品に生じることで、熱発電素子と熱伝導部材又は放熱部材との間に隙間が生じたり、反対に熱伝導部材と放熱部材によって熱発電素子を圧縮してしまったりするおそれがある。熱発電素子と熱伝導部材等との間で隙間が生じると、熱発電素子に熱が充分に伝導されず、発電効率が低下する。また、熱発電素子が圧縮されると、熱発電素子が損傷するおそれがある。 In this way, deviations in dimensions from the design values occur in each component, resulting in gaps between the thermoelectric generation element and the heat conduction member or the heat radiation member, or conversely, the generation of heat by the heat conduction member and the heat radiation member. There is a risk that the element may be compressed. If a gap occurs between the thermoelectric generating element and the heat conductive member, heat will not be sufficiently conducted to the thermoelectric generating element, and power generation efficiency will decrease. Furthermore, if the thermoelectric generating element is compressed, there is a risk that the thermoelectric generating element may be damaged.

本発明は、上記の問題点に鑑みてなされたものであり、熱発電装置の発電効率と耐久性を向上させることを目的とする。 The present invention has been made in view of the above problems, and aims to improve the power generation efficiency and durability of a thermal power generation device.

本発明は、熱発電装置であって、ケースと、ケースに収容され吸熱面と放熱面との温度差に応じて起電力を生じる熱電変換素子と、を備え、ケースは、熱電変換素子の吸熱面と熱的に接続される第1部材と、熱電変換素子の放熱面と熱的に接続される第2部材と、第1部材と第2部材とに挟まれて設けられ第1部材と第2部材とを断熱する樹脂製の断熱部材と、を有し、熱電変換素子は、弾性を有する弾性接着材によって第1部材又は第2部材に取り付けられ、一端が第1部材及び第2部材の一方に取り付けられ、他端に熱電変換素子が弾性接着材によって接着され、他端と第1部材及び第2部材の他方との間で熱電変換素子を支持する熱伝導部材が設けられ、ケース部材の内周には、熱伝導部材が挿入される溝部が形成されることを特徴とする。 The present invention is a thermoelectric power generation device that includes a case and a thermoelectric conversion element that is housed in the case and generates an electromotive force according to a temperature difference between a heat absorption surface and a heat radiation surface, and the case is configured to absorb heat of the thermoelectric conversion element. a first member that is thermally connected to the surface, a second member that is thermally connected to the heat dissipation surface of the thermoelectric conversion element, and a first member that is provided between the first and second members; the thermoelectric conversion element is attached to the first member or the second member with an elastic adhesive , and one end is attached to the first member and the second member. a thermoelectric conversion element is attached to one end of the case with an elastic adhesive, a thermal conductive member is provided between the other end and the other of the first member and the second member to support the thermoelectric conversion element; The member is characterized in that a groove portion into which the heat conductive member is inserted is formed on the inner periphery of the member .

この発明では、熱電変換素子は、弾性を有する弾性接着材によって第1部材又は第2部材に取り付けられるため、第1部材、第2部材、ケース部材に寸法誤差や温度変化に伴う寸法変化が生じても、弾性接着材の弾性により寸法誤差や寸法変化を吸収することができる。これにより、熱電変換素子と第1部材又は第2部材との間での隙間の発生や、第1部材と第2部材とにより熱電変換素子が圧縮されることを抑制することができる。また、この発明では、熱伝導部材が取り付けられた第1部材又は第2部材とケース部材とを組付けた状態で熱伝導部材の先端に弾性接着材を塗布することで、熱伝導部材の先端と溝部との間の空間がポケットとして機能する。このため、熱伝導部材の先端に弾性接着材が貯留され、先端からの液だれが抑制される。これにより、熱伝導部材の先端への熱電変換素子の接着状態を良好にすることができ、熱電変換素子への圧縮力及び引張力の吸収と熱電変換素子から熱伝導部材を通じた第1部材又は第2部材への熱伝導とを効果的に行うことができる。 In this invention, since the thermoelectric conversion element is attached to the first member or the second member using an elastic adhesive having elasticity, dimensional errors or dimensional changes due to temperature changes occur in the first member, the second member, and the case member. However, dimensional errors and dimensional changes can be absorbed by the elasticity of the elastic adhesive. Thereby, it is possible to suppress the generation of a gap between the thermoelectric conversion element and the first member or the second member, and the compression of the thermoelectric conversion element by the first member and the second member. Moreover, in this invention, by applying an elastic adhesive to the tip of the heat conductive member in a state where the first member or the second member to which the heat conductive member is attached and the case member are assembled, the tip of the heat conductive member is The space between the groove and the groove functions as a pocket. Therefore, the elastic adhesive is stored at the tip of the heat conductive member, and dripping from the tip is suppressed. As a result, it is possible to improve the adhesion state of the thermoelectric conversion element to the tip of the heat conduction member, and to absorb compressive force and tensile force to the thermoelectric conversion element, and to transfer the compressive force and tensile force from the thermoelectric conversion element to the first member or the heat conduction member. Heat conduction to the second member can be performed effectively.

また、本発明は、第1部材及び第2部材の一方に設けられ雌ねじが形成される第1ねじ部材と、第1部材及び第2部材の他方を挿通し第1ねじ部の雌ねじに螺合する雄ねじが形成される第2ねじ部材と、をさらに備え、第1ねじ部材と、第2ねじ部材が挿通する第1部材及び第2部材の他方とは、互いに接触せずに離間していることを特徴とする。 Further, the present invention provides a first threaded member provided on one of the first member and the second member in which a female thread is formed, and the other of the first member and the second member is inserted and screwed into the female thread of the first threaded portion. a second threaded member formed with a male thread, the first threaded member and the other of the first and second members through which the second threaded member is inserted are spaced apart without contacting each other. It is characterized by

この発明では、第1ねじ部材が第1部材及び第2部材の他方と接触しないため、第1部材と第2部材との位置関係は、断熱部材によって位置決めされる。つまり、第1ねじ部材の寸法のばらつきが生じても第1ねじ部材が第1部材及び第2部材の他方に接触しないため、第1ねじ部材は、断熱部材による第1部材と第2部材との位置決めを阻害しない。これにより、第1部材と第2部材とは断熱部材によって適切に位置決めされ、第1ねじ部材が第1部材及び第2部材の他方に接触することに起因した熱電変換素子と第1部材及び第2部材の他方との間での隙間の発生が防止される。よって、熱電変換素子から第1部材及び第2部材の他方への熱伝導性が確保される。 In this invention, since the first screw member does not contact the other of the first member and the second member, the positional relationship between the first member and the second member is determined by the heat insulating member. In other words, even if the dimensions of the first screw member vary, the first screw member does not come into contact with the other of the first member and the second member. does not interfere with positioning. Thereby, the first member and the second member are appropriately positioned by the heat insulating member, and the thermoelectric conversion element and the first member and the second member due to the first screw member contacting the other of the first member and the second member are Generation of a gap between the two members is prevented. Therefore, thermal conductivity from the thermoelectric conversion element to the other of the first member and the second member is ensured.

また、本発明は、熱伝導部材が取り付けられる第1部材及び第2部材の一方には、熱伝導部材の一端が収容される取付穴が形成され、取付穴には、熱伝導部材を第1部材及び第2部材の他方に向けて付勢する弾性部材が設けられ、熱伝導部材は、弾性部材と共に取付穴に充填される弾性接着材によって第1部材及び第2部材の一方に取り付けられることを特徴とする。 Further, in the present invention, a mounting hole is formed in one of the first member and the second member to which the heat conductive member is attached, and a mounting hole is formed in which one end of the heat conductive member is accommodated, and the heat conductive member is attached to the first member in the mounting hole. An elastic member biased toward the other of the first member and the second member is provided, and the heat conductive member is attached to one of the first member and the second member by an elastic adhesive filled in the attachment hole together with the elastic member. It is characterized by

この発明では、熱伝導部材及び熱電変換素子は、弾性接着材に加えて、弾性部材によっても弾性支持される。これにより、熱電変換素子を支持する弾性力は、弾性接着材とコイルスプリングとによる弾性力の合力となる。このように弾性部材を設けることで、熱電変換素子を支持する弾性力を調整することができる。 In this invention, the heat conductive member and the thermoelectric conversion element are elastically supported by the elastic member in addition to the elastic adhesive. As a result, the elastic force that supports the thermoelectric conversion element becomes the resultant force of the elastic force caused by the elastic adhesive and the coil spring. By providing the elastic member in this way, the elastic force that supports the thermoelectric conversion element can be adjusted.

本発明によれば、熱発電装置の発電効率と耐久性が向上する。 According to the present invention, the power generation efficiency and durability of the thermal power generation device are improved.

本発明の実施形態に係る熱発電装置が取り付けられる油圧シリンダの一部断面図である。1 is a partial cross-sectional view of a hydraulic cylinder to which a thermoelectric generator according to an embodiment of the present invention is attached. 本発明の実施形態に係る熱発電装置が取り付けられる油圧シリンダの部分拡大断面図である。1 is a partially enlarged sectional view of a hydraulic cylinder to which a thermoelectric generator according to an embodiment of the present invention is attached. 本発明の実施形態に係る熱発電装置の放熱部材の平面図である。FIG. 2 is a plan view of a heat dissipation member of a thermoelectric power generation device according to an embodiment of the present invention. 本発明の実施形態に係る熱発電装置のケース部材の平面図である。FIG. 2 is a plan view of a case member of a thermoelectric power generation device according to an embodiment of the present invention. 本発明の実施形態に係る熱発電装置の製造方法を説明するための断面図であり、放熱部材とケース部材とがアセンブリ化された状態を示す図である。FIG. 2 is a cross-sectional view for explaining a method of manufacturing a thermoelectric power generation device according to an embodiment of the present invention, and is a diagram showing a state in which a heat radiating member and a case member are assembled. 本発明の実施形態に係る熱発電装置の変形例を示す部分拡大断面図である。FIG. 7 is a partially enlarged sectional view showing a modification of the thermal power generation device according to the embodiment of the present invention.

以下、図面を参照して、本発明の実施形態に係る熱発電装置100について説明する。 Hereinafter, a thermal power generation device 100 according to an embodiment of the present invention will be described with reference to the drawings.

熱発電装置100は、例えば、建設機械(油圧ショベルなど)の流体圧システムに設けられるセンサ装置101の電源として用いられる。 The thermal power generation device 100 is used, for example, as a power source for a sensor device 101 provided in a fluid pressure system of a construction machine (such as a hydraulic excavator).

まず、図1を参照して、熱発電装置100が適用されるセンサ装置101について説明する。 First, with reference to FIG. 1, a sensor device 101 to which a thermoelectric power generation device 100 is applied will be described.

以下では、センサ装置101が、ブーム,アーム,及びバケットといった駆動対象(図示省略)を駆動する流体圧システムの油圧シリンダ1(流体圧シリンダ)で生じる作動油の漏れを検出する油漏れセンサである場合を説明する。 In the following description, the sensor device 101 is an oil leak sensor that detects a leak of hydraulic oil occurring in a hydraulic cylinder 1 (hydraulic cylinder) of a fluid pressure system that drives drive objects (not shown) such as a boom, an arm, and a bucket. Explain the case.

図1に示すように、油圧シリンダ1は、筒状のシリンダチューブ2と、シリンダチューブ2に挿入されるピストンロッド3と、ピストンロッド3の基端に設けられるピストン4と、を備える。ピストン4は、シリンダチューブ2の内周面に沿って摺動自在に設けられる。シリンダチューブ2の内部は、ピストン4によってロッド側室2aと反ロッド側室2bとに区画される。 As shown in FIG. 1, the hydraulic cylinder 1 includes a cylindrical cylinder tube 2, a piston rod 3 inserted into the cylinder tube 2, and a piston 4 provided at the base end of the piston rod 3. The piston 4 is provided slidably along the inner peripheral surface of the cylinder tube 2. The interior of the cylinder tube 2 is divided by the piston 4 into a rod side chamber 2a and an anti-rod side chamber 2b.

ピストンロッド3は、先端がシリンダチューブ2の開口端から延出している。図示しない油圧源からロッド側室2a又は反ロッド側室2bに選択的に作動油が導かれると、ピストンロッド3は、シリンダチューブ2に対して移動する。これにより、油圧シリンダ1は伸縮作動する。 The tip of the piston rod 3 extends from the open end of the cylinder tube 2. When hydraulic oil is selectively introduced into the rod side chamber 2a or the anti-rod side chamber 2b from a hydraulic power source (not shown), the piston rod 3 moves relative to the cylinder tube 2. This causes the hydraulic cylinder 1 to expand and contract.

シリンダチューブ2の開口端には、ピストンロッド3が挿通するシリンダヘッド5が設けられる。シリンダヘッド5は、複数のボルト6を用いてシリンダチューブ2の開口端に締結される。 A cylinder head 5 through which a piston rod 3 is inserted is provided at the open end of the cylinder tube 2 . The cylinder head 5 is fastened to the open end of the cylinder tube 2 using a plurality of bolts 6.

図2に示すように、シリンダヘッド5には、ピストンロッド3の外周面とシリンダヘッド5の内周面との間の環状の隙間(以下、「環状隙間8」と称する。)を封止するロッドシール7aと、環状隙間8を封止し、ロッドシール7aと共に検出空間9を区画する検出シール7bと、ピストンロッド3を摺動自在に支持するブッシュ7cと、ピストンロッド3の外周面に付着するダストをかき出して、外部からシリンダチューブ2内へのダストの侵入を防止するダストシール7dと、が設けられる。 As shown in FIG. 2, the cylinder head 5 has an annular gap (hereinafter referred to as an "annular gap 8") between the outer circumferential surface of the piston rod 3 and the inner circumferential surface of the cylinder head 5 that is sealed. A rod seal 7a, a detection seal 7b that seals an annular gap 8 and partitions a detection space 9 together with the rod seal 7a, a bush 7c that slidably supports the piston rod 3, and is attached to the outer peripheral surface of the piston rod 3. A dust seal 7d is provided to scrape out the dust and prevent dust from entering into the cylinder tube 2 from the outside.

センサ装置101は、油圧シリンダ1のシリンダヘッド5の外周部に取り付けられ、ピストンロッド3の外周面とシリンダヘッド5の内周面との間の環状隙間8から漏れ出す作動油の圧力を検出する。センサ装置101の検出結果は、コントローラ102に無線通信によって送信される。コントローラ102は、センサ装置101の検出結果に基づいて、油圧シリンダ1における油漏れの有無を判定する。 The sensor device 101 is attached to the outer periphery of the cylinder head 5 of the hydraulic cylinder 1 and detects the pressure of hydraulic oil leaking from the annular gap 8 between the outer periphery of the piston rod 3 and the inner periphery of the cylinder head 5. . The detection results of the sensor device 101 are transmitted to the controller 102 by wireless communication. The controller 102 determines whether there is an oil leak in the hydraulic cylinder 1 based on the detection result of the sensor device 101.

センサ装置101は、第1部材としてのハウジング20と第2部材としての放熱部材30との温度差によって発電する熱発電装置100と、油圧シリンダ1のロッド側室2aから環状隙間8に漏れ出した作動油の圧力を検出するセンサ部としての圧力センサ80と、それぞれ配線16,82を通じて熱発電装置100及び圧力センサ80が電気的に接続される回路基板81と、を備える。回路基板81には、熱発電装置100が発電した電力を圧力センサ80に供給する電源回路と、圧力センサ80の検出結果をコントローラ102に無線送信する通信回路と、が実装される。 The sensor device 101 includes a thermoelectric generator 100 that generates electricity based on the temperature difference between a housing 20 as a first member and a heat dissipation member 30 as a second member, and a thermoelectric generator 100 that generates electricity based on a temperature difference between a housing 20 as a first member and a heat dissipation member 30 as a second member. It includes a pressure sensor 80 as a sensor unit that detects oil pressure, and a circuit board 81 to which the thermoelectric generator 100 and the pressure sensor 80 are electrically connected through wirings 16 and 82, respectively. Mounted on the circuit board 81 are a power supply circuit that supplies power generated by the thermoelectric power generation device 100 to the pressure sensor 80 and a communication circuit that wirelessly transmits the detection results of the pressure sensor 80 to the controller 102.

熱発電装置100は、ケース10と、ケース10に収容され吸熱面15aと放熱面15bとの温度差に応じて起電力を生じる熱電変換素子(以下、単に「熱電素子15」と称する。)と、を備える。 The thermoelectric power generation device 100 includes a case 10 and a thermoelectric conversion element (hereinafter simply referred to as "thermoelectric element 15") that is housed in the case 10 and generates an electromotive force according to the temperature difference between a heat absorption surface 15a and a heat radiation surface 15b. , is provided.

ケース10は、油圧シリンダ1のシリンダヘッド5に取り付けられるハウジング20と、外周に複数のフィン31aを備えるヒートシンクとして構成される放熱部材30と、ハウジング20と放熱部材30とに挟まれて熱電素子15を囲う樹脂製の断熱部材としてのスペーサ40と、を有する。 The case 10 includes a housing 20 attached to the cylinder head 5 of the hydraulic cylinder 1, a heat radiating member 30 configured as a heat sink having a plurality of fins 31a on the outer periphery, and a thermoelectric element 15 sandwiched between the housing 20 and the heat radiating member 30. It has a spacer 40 as a resin-made heat insulating member surrounding the spacer.

ハウジング20は、油圧シリンダ1のシリンダヘッド5と同様の鉄系材料(より具体的には鋼材)によって形成され、シリンダヘッド5に取り付けられる。ハウジング20には、油圧シリンダ1で発生する熱がシリンダヘッド5を通じて伝達される。 The housing 20 is formed of the same ferrous material (more specifically, steel) as the cylinder head 5 of the hydraulic cylinder 1, and is attached to the cylinder head 5. Heat generated in the hydraulic cylinder 1 is transmitted to the housing 20 through the cylinder head 5.

ハウジング20には、端面に開口し熱電素子15を収容する収容凹部21と、収容凹部21に開口し圧力センサ80を収容するセンサ収容穴22と、油圧シリンダ1のシリンダヘッド5に当接するハウジング20の当接面に開口すると共にセンサ収容穴22に開口する連通路23と、が形成される。連通路23は、油圧シリンダ1のシリンダヘッド5に形成されたヘッド側通路9aを通じて検出空間9に連通する。これにより、環状隙間8を通じて検出空間9に漏れ出した作動油の圧力が、ヘッド側通路9a及び連通路23を通じてセンサ収容穴22に導かれて、当該圧力が圧力センサ80によって検知される。 The housing 20 includes an accommodation recess 21 that opens at the end face and accommodates the thermoelectric element 15, a sensor accommodation hole 22 that opens in the accommodation recess 21 and accommodates the pressure sensor 80, and a housing 20 that abuts against the cylinder head 5 of the hydraulic cylinder 1. A communication path 23 is formed that opens to the contact surface of the sensor housing hole 22 and to the sensor housing hole 22 . The communication passage 23 communicates with the detection space 9 through a head-side passage 9a formed in the cylinder head 5 of the hydraulic cylinder 1. As a result, the pressure of the hydraulic oil leaking into the detection space 9 through the annular gap 8 is guided to the sensor housing hole 22 through the head side passage 9a and the communication passage 23, and the pressure is detected by the pressure sensor 80.

ハウジング20には、ハウジング20の熱を後述する熱電素子15の吸熱面15aに伝達する熱伝導部材としての第1熱伝導部材50が取り付けられる。第1熱伝導部材50は、ハウジング20と同様の材質(本実施形態では鋼材)で形成される円柱状の棒状部材であり、一端部が取付ボルト70によってハウジング20の底部に取り付けられる。取付ボルト70は、両端部にねじ部が形成されるスタッドボルト(全ねじボルト)であり、両端部がそれぞれ収容凹部21の底部及び第1熱伝導部材50の一方の端面に形成される雌ねじに螺合する。第1熱伝導部材50の他端部(先端部)には、熱電素子15が取り付けられる。 A first heat conduction member 50 is attached to the housing 20 as a heat conduction member that transmits heat of the housing 20 to a heat absorption surface 15a of a thermoelectric element 15, which will be described later. The first heat conductive member 50 is a cylindrical rod-like member made of the same material as the housing 20 (steel in this embodiment), and one end is attached to the bottom of the housing 20 with a mounting bolt 70. The mounting bolt 70 is a stud bolt (fully threaded bolt) with threaded portions formed at both ends, and both ends are female threaded at the bottom of the accommodation recess 21 and one end surface of the first thermally conductive member 50, respectively. Screw together. The thermoelectric element 15 is attached to the other end (tip) of the first heat conductive member 50.

放熱部材30は、熱伝導率に優れる材質、例えば、アルミニウム系や銅系の材料によって形成される。よって、放熱部材30は、ハウジング20よりも熱伝導性に優れる。 The heat dissipation member 30 is made of a material with excellent thermal conductivity, such as an aluminum-based or copper-based material. Therefore, the heat dissipating member 30 has better thermal conductivity than the housing 20.

放熱部材30は、一端が閉塞端として構成される有底円筒状に形成される。放熱部材30の外周には、円環状に形成される複数のフィン31aが軸方向に並んで設けられる。放熱部材30の底部には、放熱部材30の外側へ向けて軸方向に突出するボス部32が設けられる。 The heat dissipation member 30 is formed into a bottomed cylindrical shape with one end configured as a closed end. A plurality of annular fins 31a are provided on the outer periphery of the heat dissipation member 30, lining up in the axial direction. A boss portion 32 that protrudes in the axial direction toward the outside of the heat radiating member 30 is provided at the bottom of the heat radiating member 30 .

図2及び図3に示すように、放熱部材30の底部には、回路基板81が挿通するスリット32bが形成される。回路基板81の一部は、後述するハウジング20及びスペーサ40の内側の収容空間S1からスリット32bを通じて放熱部材30の内側空間S2へと突出する。なお、図3は、図2中のA矢印方向からみた放熱部材30の平面図である。 As shown in FIGS. 2 and 3, a slit 32b through which the circuit board 81 is inserted is formed at the bottom of the heat dissipation member 30. A portion of the circuit board 81 protrudes from an accommodation space S1 inside the housing 20 and the spacer 40, which will be described later, into the inner space S2 of the heat dissipation member 30 through the slit 32b. Note that FIG. 3 is a plan view of the heat radiating member 30 viewed from the direction of arrow A in FIG.

放熱部材30の内側空間S2は、回路基板81の一部及び後述する樹脂ねじ72のヘッドと共にモールド樹脂35によってポッティングされて封止される。このように、回路基板81は、金属製のハウジング20や放熱部材30の内側にすべてが収容されるのではなく、その一部がハウジング20の内側の収容空間S1の外部、具体的には熱発電装置100の外部に臨む(露出する)放熱部材30の内側空間S2に突出する。これにより、回路基板81に設けられる通信手段による無線通信を安定して行うことができる。なお、放熱部材30の内側空間S2は、モールド樹脂35によって封止されているが、樹脂は金属と比較して通信電波を妨害しにくいため、モールド樹脂35によって封止してもの充分に無線通信の安定化を行うことができる。なお、モールド樹脂35は必須の構成ではなく、内側空間S2はポッティングされていなくてもよい。 The inner space S2 of the heat radiating member 30 is potted and sealed with a mold resin 35 together with a part of the circuit board 81 and the head of a resin screw 72 which will be described later. In this way, the circuit board 81 is not entirely housed inside the metal housing 20 or the heat dissipation member 30, but a part of it is housed outside the accommodation space S1 inside the housing 20, specifically, inside the heat dissipation member 30. It protrudes into the inner space S2 of the heat dissipation member 30 facing (exposed) to the outside of the power generation device 100. Thereby, wireless communication by the communication means provided on the circuit board 81 can be performed stably. Note that the inner space S2 of the heat dissipation member 30 is sealed with a molded resin 35, but resin is less likely to interfere with communication radio waves than metal, so even if it is sealed with the molded resin 35, it is not sufficient for wireless communication. can be stabilized. Note that the mold resin 35 is not an essential component, and the inner space S2 does not need to be potted.

放熱部材30には、後述する熱電素子15の放熱面15bの熱を放熱部材30に伝達する熱伝導部材としての第2熱伝導部材51が取り付けられる。第2熱伝導部材51は、放熱部材30と同様の材質であって第1熱伝導部材50と略同径の円柱状の棒状部材である。第2熱伝導部材51は、一端部に取付ボルト71が挿入され取付ボルト71によって放熱部材30のボス部32の先端面32aに取り付けられる。取付ボルト71は、放熱部材30の底部の挿通穴30aを挿通して、第2熱伝導部材51の一端部に設けられた雌ねじに螺合する。第2熱伝導部材51の他端部(先端部)には、熱電素子15が取り付けられる。 A second heat conductive member 51 is attached to the heat dissipation member 30 as a heat conduction member that transfers heat from a heat dissipation surface 15b of the thermoelectric element 15 to the heat dissipation member 30, which will be described later. The second heat conductive member 51 is a cylindrical rod-shaped member made of the same material as the heat radiating member 30 and having approximately the same diameter as the first heat conductive member 50. A mounting bolt 71 is inserted into one end of the second heat conductive member 51, and the second heat conductive member 51 is attached to the distal end surface 32a of the boss portion 32 of the heat dissipating member 30 by the mounting bolt 71. The mounting bolt 71 is inserted through the insertion hole 30a at the bottom of the heat dissipation member 30 and is screwed into a female thread provided at one end of the second heat conduction member 51. The thermoelectric element 15 is attached to the other end (tip) of the second heat conductive member 51 .

このように、熱電素子15は、ハウジング20に取り付けられる第1熱伝導部材50と放熱部材30に取り付けられる第2熱伝導部材51とによって挟持される。 In this way, the thermoelectric element 15 is held between the first heat conductive member 50 attached to the housing 20 and the second heat conductive member 51 attached to the heat radiating member 30.

スペーサ40は、断熱性が高い樹脂材料によって形成される。スペーサ40は、その径方向の中央に中心軸に沿った貫通孔40aを有しており、熱電素子15を囲うように円筒状に形成される。スペーサ40は、ハウジング20と放熱部材30とによって挟持される。スペーサ40は、外周面がテーパ状に形成される本体部41と、ハウジング20の収容凹部21に挿入される挿入部42と、を有する。 The spacer 40 is made of a resin material with high heat insulation properties. The spacer 40 has a through hole 40a along the central axis at its radial center, and is formed in a cylindrical shape so as to surround the thermoelectric element 15. The spacer 40 is sandwiched between the housing 20 and the heat radiating member 30. The spacer 40 includes a main body portion 41 having a tapered outer circumferential surface, and an insertion portion 42 inserted into the accommodation recess 21 of the housing 20 .

挿入部42は、本体部41の端部からハウジング20に向けて軸方向に突出するように形成される。挿入部42の外径は、本体部41の端部の外径(本体部41の最小外径)よりも小さく形成され、挿入部42と本体部41との外径差により形成される段差面が、ハウジング20の端面に当接する。本体部41の外周は、スペーサ40の軸方向に沿ってハウジング20から離れるにつれて、言い換えれば、ハウジング20から放熱部材30に向かうにつれて外径が大きくなるテーパ状に形成される。 The insertion portion 42 is formed to protrude in the axial direction from the end of the main body portion 41 toward the housing 20 . The outer diameter of the insertion portion 42 is smaller than the outer diameter of the end of the main body 41 (minimum outer diameter of the main body 41), and the stepped surface formed by the difference in outer diameter between the insertion portion 42 and the main body 41 comes into contact with the end surface of the housing 20. The outer periphery of the main body portion 41 is formed in a tapered shape such that the outer diameter increases as it moves away from the housing 20 along the axial direction of the spacer 40, in other words, as it moves from the housing 20 toward the heat radiating member 30.

ハウジング20の収容凹部21とスペーサ40の貫通孔40aによって、熱電素子15を収容する収容空間S1が形成される。スペーサ40の内周面には、図4に示すように、回路基板81の両縁が挿入され回路基板81を支持するスリット40bが軸方向に延びて形成される。なお、図4は、図2中のA矢印方向からみたスペーサ40の平面図である。また、図4では、回路基板81を二点鎖線で模式的に示している。 The accommodation recess 21 of the housing 20 and the through hole 40a of the spacer 40 form an accommodation space S1 in which the thermoelectric element 15 is accommodated. As shown in FIG. 4, a slit 40b extending in the axial direction is formed in the inner peripheral surface of the spacer 40, into which both edges of the circuit board 81 are inserted and which supports the circuit board 81. Note that FIG. 4 is a plan view of the spacer 40 viewed from the direction of arrow A in FIG. Further, in FIG. 4, the circuit board 81 is schematically shown by a two-dot chain line.

また、スペーサ40の貫通孔40aの内周面には、第1熱伝導部材50及び第2熱伝導部材51が挿入される溝部としての収容溝40cが軸方向に延びて形成される。収容溝40cは、第1熱伝導部材50及び第2熱伝導部材51の外形に合わせた略半円形断面を有する溝である。また、収容溝40c、第1熱伝導部材50、及び第2熱伝導部材51は、ハウジング20の収容凹部21の中心からずれた位置に設けられている(図2及び図4参照)。収容溝40cは、熱発電装置100及びセンサ装置101の組み立ての際に、第1熱伝導部材50と第2熱伝導部材51との周方向の位置合わせの機能を発揮する。 Furthermore, an accommodation groove 40c is formed in the inner circumferential surface of the through hole 40a of the spacer 40 and extends in the axial direction as a groove portion into which the first heat conductive member 50 and the second heat conductive member 51 are inserted. The housing groove 40c is a groove having a substantially semicircular cross section that matches the outer shapes of the first heat conductive member 50 and the second heat conductive member 51. Moreover, the housing groove 40c, the first heat conductive member 50, and the second heat conductive member 51 are provided at positions shifted from the center of the housing recess 21 of the housing 20 (see FIGS. 2 and 4). The housing groove 40c functions to align the first heat conductive member 50 and the second heat conductive member 51 in the circumferential direction when the thermoelectric generator 100 and the sensor device 101 are assembled.

図2に示すように、放熱部材30のボス部32は、ハウジング20とは反対側からスペーサ40の貫通孔40aに挿入される。これにより、スペーサ40の貫通孔40aの一方の開口が、放熱部材30によって閉塞される。言い換えれば、ハウジング20の収容凹部21とスペーサ40の貫通孔40aによって形成される収容空間S1が、放熱部材30によって閉塞される。 As shown in FIG. 2, the boss portion 32 of the heat radiating member 30 is inserted into the through hole 40a of the spacer 40 from the side opposite to the housing 20. As a result, one opening of the through hole 40a of the spacer 40 is closed by the heat radiating member 30. In other words, the housing space S1 formed by the housing recess 21 of the housing 20 and the through hole 40a of the spacer 40 is closed by the heat radiating member 30.

ハウジング20と放熱部材30とは、スペーサ40を介して連結されるものであり、両者は直接接触しない。よって、ハウジング20と放熱部材30との間の熱伝導がスペーサ40によって抑制される。このように、スペーサ40は、ハウジング20と放熱部材30とを直接接触させないスペーサとしての機能に加えて、ハウジング20と放熱部材30との間の熱伝導を抑制する断熱部材としても機能する。さらに、スペーサ40は、熱電素子15を囲うように設けられ、熱電素子15を収容する収容空間S1をハウジング20と共に形成する。これにより、外気の影響による収容空間S1内の温度変化、具体的には、第1熱伝導部材50及び第2熱伝導部材51の温度変化がスペーサ40によって抑制される。 The housing 20 and the heat radiating member 30 are connected via a spacer 40, and do not come into direct contact with each other. Therefore, heat conduction between the housing 20 and the heat radiating member 30 is suppressed by the spacer 40. In this way, the spacer 40 not only functions as a spacer that prevents the housing 20 and the heat radiating member 30 from coming into direct contact, but also functions as a heat insulating member that suppresses heat conduction between the housing 20 and the heat radiating member 30. Furthermore, the spacer 40 is provided so as to surround the thermoelectric element 15 , and together with the housing 20 forms an accommodation space S<b>1 in which the thermoelectric element 15 is accommodated. Thereby, the spacer 40 suppresses temperature changes in the housing space S1 due to the influence of outside air, specifically, temperature changes in the first heat conductive member 50 and the second heat conductive member 51.

また、ハウジング20と放熱部材30は、ハウジング20に設けられ先端に雌ねじが形成される第1ねじ部材としての連結部材52と、放熱部材30を挿通し連結部材52の雌ねじに螺合する雄ねじが形成される樹脂製の第2ねじ部材としての樹脂ねじ72と、によって互いに連結される。つまり、ハウジング20と連結部材52とは、スペーサ40を介して連結されると共に、連結部材52と樹脂ねじ72によって連結されている。 The housing 20 and the heat dissipation member 30 also include a connection member 52 as a first threaded member provided in the housing 20 and having a female thread formed at its tip, and a male screw threaded through the heat dissipation member 30 and screwed into the female thread of the connection member 52. They are connected to each other by a resin screw 72 as a second screw member made of resin. That is, the housing 20 and the connecting member 52 are connected via the spacer 40 and are also connected by the connecting member 52 and the resin screw 72.

連結部材52は、円柱状の部材であり、一端がハウジング20の収容凹部21の底部に取り付けられる。連結部材52は、第1熱伝導部材50と同様に、収容凹部21の底部と連結部材52との両方に螺合するスタッドボルトなどの取付ボルト73によってハウジング20に取り付けられる。連結部材52の他端は、放熱部材30のボス部32の先端面32aには接触せずに離間している。つまり、連結部材52の軸方向において、連結部材52の先端と放熱部材30との間には隙間が形成されており、連結部材52と放熱部材30とは接触しないように構成されている。詳細な図示は省略するが、本実施形態では、3つの連結部材52がハウジング20に取り付けられる。 The connecting member 52 is a cylindrical member, and one end is attached to the bottom of the housing recess 21 of the housing 20 . Like the first heat conductive member 50, the connecting member 52 is attached to the housing 20 by a mounting bolt 73 such as a stud bolt that screws into both the bottom of the accommodation recess 21 and the connecting member 52. The other end of the connecting member 52 is spaced apart from the distal end surface 32a of the boss portion 32 of the heat dissipating member 30 without contacting it. That is, in the axial direction of the connecting member 52, a gap is formed between the tip of the connecting member 52 and the heat radiating member 30, and the connecting member 52 and the heat radiating member 30 are configured not to come into contact with each other. Although detailed illustrations are omitted, three connecting members 52 are attached to the housing 20 in this embodiment.

樹脂ねじ72は、断熱性に優れた樹脂材料によって形成される。樹脂ねじ72は、放熱部材30の底部(ボス部32)に形成される挿通孔32cを挿通して連結部材52に螺合する。挿通孔32cは、連結部材52に対応して放熱部材30の底部に3つ形成される(図3参照)樹脂ねじ72を所定の締め付け力によって締め付けることで、ハウジング20と放熱部材30とがねじ締結される。なお、樹脂ねじ72を所定の締め付け力で締め付けた状態であっても、連結部材52と放熱部材30の底部との間には隙間が存在する。 The resin screw 72 is made of a resin material with excellent heat insulation properties. The resin screw 72 is inserted through the insertion hole 32c formed in the bottom (boss portion 32) of the heat dissipation member 30 and screwed into the connection member 52. Three insertion holes 32c are formed at the bottom of the heat dissipation member 30 corresponding to the connection members 52 (see FIG. 3). By tightening the resin screws 72 with a predetermined tightening force, the housing 20 and the heat dissipation member 30 are screwed together. It is concluded. Note that even when the resin screw 72 is tightened with a predetermined tightening force, a gap exists between the connecting member 52 and the bottom of the heat radiating member 30.

熱電素子15は、互いに平行な一対の平面である吸熱面15a及び放熱面15bを有し、吸熱面15aと放熱面15bとの温度差によって起電力を生じるゼーベック素子である。熱電素子15は、第1接着材55によって吸熱面15aが第1熱伝導部材50の先端面に接着され、第2接着材56によって放熱面15bが第2熱伝導部材51によって接着される。このように、吸熱面15aは、第1接着材55及び第1熱伝導部材50を通じてハウジング20に熱的に接続されている。また、放熱面15bは、第2接着材56及び第2熱伝導部材51を通じて放熱部材30に熱的に接続されている。熱電素子15は、吸熱面15aで熱を吸熱して放熱面15bから熱を放熱することによって、内部に温度差が発生して起電力を生じる。つまり、熱電素子15は、第1熱伝導部材50を通じて吸熱面15aに伝達されるハウジング20の温度と、第2熱伝導部材51を通じて放熱面15bに伝達される放熱部材30の温度と、の差に応じた起電力を発生させる。熱電素子15の起電力は、配線16を通じて接続される回路基板81に供給される。 The thermoelectric element 15 is a Seebeck element that has a heat absorption surface 15a and a heat radiation surface 15b, which are a pair of parallel planes, and generates an electromotive force due to a temperature difference between the heat absorption surface 15a and the heat radiation surface 15b. In the thermoelectric element 15, the heat absorption surface 15a is bonded to the distal end surface of the first heat conduction member 50 by the first adhesive 55, and the heat dissipation surface 15b is bonded to the second heat conduction member 51 by the second adhesive 56. In this way, the heat absorbing surface 15a is thermally connected to the housing 20 through the first adhesive 55 and the first heat conductive member 50. Further, the heat radiation surface 15b is thermally connected to the heat radiation member 30 through the second adhesive 56 and the second heat conductive member 51. The thermoelectric element 15 absorbs heat with its heat absorption surface 15a and radiates heat from its heat radiation surface 15b, thereby generating a temperature difference inside and generating an electromotive force. That is, the thermoelectric element 15 detects the difference between the temperature of the housing 20 that is transmitted to the heat absorption surface 15a through the first heat conduction member 50 and the temperature of the heat radiation member 30 that is transmitted to the heat radiation surface 15b through the second heat conduction member 51. Generates an electromotive force according to the The electromotive force of the thermoelectric element 15 is supplied to the circuit board 81 connected through the wiring 16.

第1接着材55は、熱伝導率に優れた熱伝導性接着材である(以下、第1接着材55を「熱伝導性接着材55」とも称する。)。熱伝導性接着材55は、弾性接着材56(第2接着材)よりも優れた熱伝導性を有することが望ましい。第1接着材55としては、例えば、シリコン系又はエポキシ系の基材に熱伝導率の高い金属又はセラミックスをフィラーとして添加して形成される接着材が利用される。 The first adhesive 55 is a thermally conductive adhesive with excellent thermal conductivity (hereinafter, the first adhesive 55 is also referred to as the "thermal conductive adhesive 55"). It is desirable that the thermally conductive adhesive 55 has better thermal conductivity than the elastic adhesive 56 (second adhesive). As the first adhesive 55, for example, an adhesive formed by adding a metal or ceramic with high thermal conductivity as a filler to a silicon-based or epoxy-based base material is used.

第2接着材56は、硬化した状態で弾性を有する弾性接着材56である(以下、第2接着材56を「弾性接着材56」とも称する。)。本実施形態における弾性接着材56は、例えば、硬化前が液状であって硬化することで弾性を発揮するシリコン系接着剤やゴム系接着剤である。また、弾性接着材56は、硬化前の状態が液状(ゲル状)の接着剤に限られず、例えばアクリル系両面テープのようなシート状の接着部材でもよい。弾性接着材56は、弾性を有しつつ熱伝導率に優れたものを採用することが望ましい。なお、第1接着材55も、硬化前が液状の接着剤であってもよいし、シート状(テープ状)の接着部材であってもよい。 The second adhesive 56 is an elastic adhesive 56 that is elastic in a hardened state (hereinafter, the second adhesive 56 is also referred to as the "elastic adhesive 56"). The elastic adhesive 56 in this embodiment is, for example, a silicone adhesive or a rubber adhesive that is liquid before hardening and exhibits elasticity when hardened. Furthermore, the elastic adhesive 56 is not limited to an adhesive that is in a liquid (gel) state before curing, but may be a sheet-like adhesive member such as an acrylic double-sided tape, for example. As the elastic adhesive material 56, it is desirable to use a material having elasticity and excellent thermal conductivity. Note that the first adhesive material 55 may also be a liquid adhesive before curing, or may be a sheet-like (tape-like) adhesive member.

本実施形態における「接着材」とは、硬化前が液状の状態である接着剤に加えて、固形の接着材や、ベースとなる部材に接着剤を含侵又は塗布して形成されるシート状の接着部材なども含むものである。つまり、本実施形態における「接着材」は、液状の接着剤に限定されるものではない。 In this embodiment, the "adhesive" refers to an adhesive that is in a liquid state before curing, as well as a solid adhesive and a sheet-like material formed by impregnating or applying an adhesive to a base member. This also includes adhesive members and the like. That is, the "adhesive" in this embodiment is not limited to liquid adhesive.

以上のように、熱発電装置100では、油圧シリンダ1で発生する熱がハウジング20から第1熱伝導部材50、熱伝導性接着材55を通じて熱電素子15の吸熱面15aに吸熱される。熱電素子15の吸熱面15aに吸熱された熱が放熱面15bから弾性接着材56、第2熱伝導部材51、及び放熱部材30を通じて放熱されることで熱電素子15によって発電される。熱発電装置100の熱電素子15が発電した電力は、回路基板81に供給され、圧力センサ80や通信回路が駆動される。このように、センサ装置101は、センシング対象である油圧シリンダ1で発生する熱を利用して発電する熱発電装置100を備えることで、外部からの電力供給を受けずに独立して駆動することができる。よって、センサ装置101へ給電するための配線をセンサ装置101や油圧シリンダ1の周囲に取り回す必要がなく、センサ装置101の取り付けが容易となる。 As described above, in the thermoelectric power generation device 100, the heat generated in the hydraulic cylinder 1 is absorbed from the housing 20 to the heat absorption surface 15a of the thermoelectric element 15 through the first heat conduction member 50 and the heat conductive adhesive 55. The heat absorbed by the heat absorption surface 15a of the thermoelectric element 15 is radiated from the heat radiation surface 15b through the elastic adhesive 56, the second heat conductive member 51, and the heat radiation member 30, and thereby the thermoelectric element 15 generates electricity. The electric power generated by the thermoelectric element 15 of the thermoelectric power generation device 100 is supplied to the circuit board 81, and the pressure sensor 80 and the communication circuit are driven. In this way, the sensor device 101 is equipped with the thermoelectric power generation device 100 that generates electricity using the heat generated in the hydraulic cylinder 1 that is the object of sensing, so that the sensor device 101 can be driven independently without receiving power from an external source. Can be done. Therefore, there is no need to route wiring for feeding power to the sensor device 101 around the sensor device 101 and the hydraulic cylinder 1, and the sensor device 101 can be easily attached.

ここで、熱発電装置を構成するハウジング、放熱部材、ケース部材、第1熱伝導部材、及び第2熱伝導部材といった各構成部品には、寸法誤差が生じることがある。よって、熱発電装置を組み立てると、第1熱伝導部材と第2熱伝導部材との間隔が設計値と異なることがある。これにより、吸熱面及び放熱面に垂直な方向に熱電素子が第1熱伝導部材及び第2熱伝導部材によって圧縮されたり、その反対に第1熱伝導部材と第2熱伝導部材とに接着される熱電素子が引っ張られたりするおそれがある。また、各構成部品は材質が異なっており、特にケース部材は熱伝導率が低い樹脂材料によって形成される。各構成部品は温度変化に対する寸法変化量が互いに異なるため、温度変化に応じて第1熱伝導部材と第2熱伝導部材との間隔が変化し、熱電素子には圧縮又は引張方向の熱応力が生じる。このようにして熱電素子に圧縮力が作用すると熱電素子が損傷するおそれがあり、熱電素子に引張力が作用すると熱電素子と第1熱伝導部材又は第2熱伝導部材との間に隙間が生じて熱伝導にロスが生じるおそれがある。 Here, dimensional errors may occur in each component such as a housing, a heat radiating member, a case member, a first heat conductive member, and a second heat conductive member that constitute the thermoelectric power generation device. Therefore, when the thermoelectric power generation device is assembled, the distance between the first heat conductive member and the second heat conductive member may differ from the designed value. As a result, the thermoelectric element is compressed by the first heat-conducting member and the second heat-conducting member in a direction perpendicular to the heat-absorbing surface and the heat-radiating surface, and vice versa. There is a risk that the thermoelectric element may be pulled. Further, each component is made of a different material, and the case member in particular is made of a resin material with low thermal conductivity. Since each component has a different amount of dimensional change due to temperature change, the distance between the first heat conductive member and the second heat conductive member changes depending on the temperature change, and thermal stress in the compressive or tensile direction is applied to the thermoelectric element. arise. If a compressive force is applied to the thermoelectric element in this way, the thermoelectric element may be damaged, and if a tensile force is applied to the thermoelectric element, a gap will be created between the thermoelectric element and the first heat conductive member or the second heat conductive member. This may cause loss in heat conduction.

これに対し、本実施形態では、熱電素子15は、硬化した状態で弾性を有する弾性接着材56により第2熱伝導部材51に接着されるため、熱発電装置100の各構成部品に生じる寸法誤差や温度変化による寸法変化量の差を弾性接着材56の弾性で吸収することができる。言い換えれば、弾性接着材56の弾性によって、寸法誤差や熱応力に起因して生じる熱電素子15への圧縮力及び引張力を吸収することができる。したがって、熱電素子15に過度な圧縮力及び引張力が作用することを防止できるため、第1熱伝導部材50及び第2熱伝導部材51と熱電素子15との間での熱伝導のロスを低減すると共に、熱電素子15の耐久性を向上させることができる。 In contrast, in the present embodiment, the thermoelectric element 15 is bonded to the second heat conductive member 51 using an elastic adhesive 56 that has elasticity in a hardened state, so that dimensional errors occur in each component of the thermoelectric generator 100. The elasticity of the elastic adhesive 56 can absorb the difference in the amount of dimensional change due to temperature change. In other words, the elasticity of the elastic adhesive 56 can absorb compressive and tensile forces on the thermoelectric element 15 caused by dimensional errors and thermal stress. Therefore, it is possible to prevent excessive compressive force and tensile force from acting on the thermoelectric element 15, thereby reducing heat conduction loss between the first heat conductive member 50 and the second heat conductive member 51 and the thermoelectric element 15. At the same time, the durability of the thermoelectric element 15 can be improved.

次に、センサ装置101の製造方法について説明する。 Next, a method for manufacturing the sensor device 101 will be described.

本実施形態では、放熱部材30、スペーサ40、熱電素子15、回路基板81、及び圧力センサ80をアセンブリ化し、このアセンブリをハウジング20に取り付けることでセンサ装置101が製造される。以下、具体的に説明する。 In this embodiment, the sensor device 101 is manufactured by assembling the heat radiating member 30, the spacer 40, the thermoelectric element 15, the circuit board 81, and the pressure sensor 80, and attaching this assembly to the housing 20. This will be explained in detail below.

まず、取付ボルト71によって第2熱伝導部材51を放熱部材30に取り付ける。 First, the second heat conductive member 51 is attached to the heat radiating member 30 using the attaching bolts 71.

次に、放熱部材30とスペーサ40とを組み立てる。具体的には、第2熱伝導部材51をスペーサ40の内周の収容溝40cに挿入しつつ放熱部材30のボス部32をスペーサ40の貫通孔40aに挿入し、放熱部材30とスペーサ40とを接着材によって接着する。 Next, the heat radiation member 30 and the spacer 40 are assembled. Specifically, while inserting the second heat conductive member 51 into the accommodation groove 40c on the inner periphery of the spacer 40, the boss portion 32 of the heat radiating member 30 is inserted into the through hole 40a of the spacer 40, and the heat radiating member 30 and the spacer 40 are connected to each other. be attached using an adhesive.

次に、配線16,82によって回路基板81に圧力センサ80と熱電素子15とを接続する。さらに、回路基板81をスペーサ40の開口から内周面のスリット40b(図4参照)に挿入し、放熱部材30のボス部32に形成されたスリット32b(図3参照)を通過させて一部を放熱部材30の内側空間S2に突出させる。このようにして、放熱部材30を含むアセンブリが構成される。 Next, the pressure sensor 80 and the thermoelectric element 15 are connected to the circuit board 81 by the wirings 16 and 82. Furthermore, the circuit board 81 is inserted from the opening of the spacer 40 into the slit 40b (see FIG. 4) on the inner peripheral surface, and is passed through the slit 32b (see FIG. 3) formed in the boss portion 32 of the heat dissipation member 30 to partially is made to protrude into the inner space S2 of the heat radiating member 30. In this way, an assembly including the heat dissipating member 30 is constructed.

次に、第2熱伝導部材51の先端に弾性接着材56を塗布する。この際、例えば図5に示すように、放熱部材30の中心軸が略水平に延び、放熱部材30に取り付けられた第2熱伝導部材51が放熱部材30の中心軸よりも鉛直方向の下方に位置するような姿勢で、第2熱伝導部材51の先端に弾性接着材56が塗布される。図5は、図中下側が鉛直方向の下方を示すものであり、左右方向が水平方向を示すものである。このようにすることで、第2熱伝導部材51の先端とスペーサ40の内周の収容溝40cとで形成される空間Cが弾性接着材56を貯留するポケットとして機能するため、第2熱伝導部材51の先端から弾性接着材56が液だれすることを抑制できる。そして、このようにして第2熱伝導部材51の先端に付着された弾性接着材56に熱電素子15を押し付けて、所定時間経過させて弾性接着材56を硬化させる。これにより、熱電素子15は、第2熱伝導部材51の先端に取り付けられる。 Next, an elastic adhesive 56 is applied to the tip of the second heat conductive member 51. At this time, for example, as shown in FIG. 5, the central axis of the heat dissipating member 30 extends substantially horizontally, and the second heat conductive member 51 attached to the heat dissipating member 30 extends vertically below the central axis of the heat dissipating member 30. The elastic adhesive 56 is applied to the tip of the second heat conductive member 51 in such a posture that the second heat conductive member 51 is positioned in the same position. In FIG. 5, the lower side of the figure shows the downward direction in the vertical direction, and the left-right direction shows the horizontal direction. By doing so, the space C formed by the tip of the second thermally conductive member 51 and the housing groove 40c on the inner circumference of the spacer 40 functions as a pocket for storing the elastic adhesive 56, so that the second thermally conductive member The elastic adhesive material 56 can be prevented from dripping from the tip of the member 51. Then, the thermoelectric element 15 is pressed against the elastic adhesive 56 attached to the tip of the second thermally conductive member 51 in this manner, and the elastic adhesive 56 is cured after a predetermined period of time. Thereby, the thermoelectric element 15 is attached to the tip of the second heat conductive member 51.

次に、取付ボルト70によってハウジング20の底部に第1熱伝導部材50を取り付けると共に、取付ボルト73によってハウジング20の底部に連結部材52を取り付ける。 Next, the first heat conductive member 50 is attached to the bottom of the housing 20 using the mounting bolts 70, and the connecting member 52 is attached to the bottom of the housing 20 using the mounting bolts 73.

次に、放熱部材30を含むアセンブリとハウジング20とを組み立てる。具体的には、まず、第1熱伝導部材50の先端に熱伝導性接着材55を付着させる。そして、第1熱伝導部材50とスペーサ40の内周の収容溝40c(図4及び図5参照)との位置を合わせるようにしてスペーサ40をハウジング20の収容凹部21に挿入する。さらに、第1熱伝導部材50の先端に付着された熱伝導性接着材55に第2熱伝導部材51の先端に取り付けられた熱電素子15を押し付けて、第1熱伝導部材50の先端に熱電素子15を接着する。また、スペーサ40をハウジング20の収容凹部21に挿入するのに伴い、圧力センサ80をハウジング20の底部のセンサ収容穴22に収容してハウジング20に取り付ける。さらに、スペーサ40とハウジング20との間にも接着材を塗布して、両者を接着材によって固定する。 Next, the assembly including the heat radiating member 30 and the housing 20 are assembled. Specifically, first, the thermally conductive adhesive 55 is attached to the tip of the first thermally conductive member 50 . Then, the spacer 40 is inserted into the housing recess 21 of the housing 20 so that the first heat conductive member 50 and the housing groove 40c (see FIGS. 4 and 5) on the inner circumference of the spacer 40 are aligned. Furthermore, the thermoelectric element 15 attached to the tip of the second thermally conductive member 51 is pressed against the thermally conductive adhesive 55 attached to the tip of the first thermally conductive member 50, and the thermoelectric element 15 is attached to the tip of the first thermally conductive member 50. The element 15 is bonded. Further, as the spacer 40 is inserted into the housing recess 21 of the housing 20, the pressure sensor 80 is housed in the sensor housing hole 22 at the bottom of the housing 20 and attached to the housing 20. Further, an adhesive is also applied between the spacer 40 and the housing 20 to fix them together.

次に、放熱部材30の内側から樹脂ねじ72をボス部32の挿通孔32cに挿入し、連結部材52と螺合させ所定の締め付け力で締結する。そして、放熱部材30の内側空間S2をモールド樹脂35によって充填する。 Next, the resin screw 72 is inserted into the insertion hole 32c of the boss portion 32 from inside the heat dissipation member 30, and is screwed together with the connecting member 52 and fastened with a predetermined tightening force. Then, the inner space S2 of the heat radiating member 30 is filled with mold resin 35.

以上の工程により、図2に示すセンサ装置101の組み立てが完了する。 Through the above steps, the assembly of the sensor device 101 shown in FIG. 2 is completed.

センサ装置101の組み立ては、上記で説明した順序に限られず、可能な限りその順序は入れ換えてよい。また、各工程は、可能な限り同時に行ってもよい。なお、例えば、熱電素子15をハウジング20の第1熱伝導部材50に接着し、圧力センサ80をハウジング20に取り付けた状態で熱電素子15及び圧力センサ80を回路基板81に接続するのは、配線作業が煩雑となる。このため、センサ装置101の組み立てを効率よく行うには、上述のように予め熱電素子15、圧力センサ80、及び回路基板81を接続してアセンブリ化しておき、当該アセンブリを放熱部材30(及びスペーサ40)に取り付けるようにすることが望ましい。 The assembly of the sensor device 101 is not limited to the order described above, and the order may be changed as much as possible. Moreover, each step may be performed simultaneously as much as possible. Note that, for example, the thermoelectric element 15 and the pressure sensor 80 are connected to the circuit board 81 with the thermoelectric element 15 bonded to the first heat conductive member 50 of the housing 20 and the pressure sensor 80 attached to the housing 20 by wiring. Work becomes complicated. Therefore, in order to efficiently assemble the sensor device 101, the thermoelectric element 15, the pressure sensor 80, and the circuit board 81 are connected in advance to form an assembly as described above, and the assembly is assembled using the heat dissipating member 30 (and the spacer). 40) is desirable.

以上の実施形態によれば、以下に示す効果を奏する。 According to the above embodiment, the following effects are achieved.

熱発電装置100では、熱電素子15が弾性接着材56により第2熱伝導部材51に接着される。このため、熱発電装置100の各構成部品の寸法誤差や熱伝導率の違いによる熱応力によって生じる熱電素子15への圧縮力及び引張力を弾性接着材56の弾性によって吸収することができる。これにより、引張力によって第1熱伝導部材50又は第2熱伝導部材51と熱電素子15との間で隙間が生じて当該隙間により熱伝導のロスが生じたり、圧縮力によって熱電素子15が損傷したりすることを抑制できる。したがって、熱発電装置100の発電効率と耐久性を向上させることができる。 In the thermoelectric power generation device 100, the thermoelectric element 15 is bonded to the second heat conductive member 51 using an elastic adhesive 56. Therefore, compressive force and tensile force on the thermoelectric element 15 caused by thermal stress due to dimensional errors and differences in thermal conductivity of each component of the thermoelectric generator 100 can be absorbed by the elasticity of the elastic adhesive 56. As a result, a gap is created between the first heat conductive member 50 or the second heat conductive member 51 and the thermoelectric element 15 due to the tensile force, and the gap causes loss of heat conduction, or the thermoelectric element 15 is damaged due to the compressive force. You can refrain from doing things. Therefore, the power generation efficiency and durability of the thermal power generation device 100 can be improved.

また、熱発電装置100では、熱電素子15を取り付ける第2接着材56そのものが弾性を発揮するため、接着材とは別の弾性部材を設け当該弾性部材によって熱電素子15を弾性支持するような構成と比較して、熱発電装置100の構成をコンパクトにすることができる。 In addition, in the thermoelectric power generation device 100, since the second adhesive material 56 to which the thermoelectric element 15 is attached exhibits elasticity, an elastic member other than the adhesive material is provided and the thermoelectric element 15 is elastically supported by the elastic member. The configuration of the thermal power generation device 100 can be made compact compared to the above.

また、熱電素子15は、弾性接着材56により第2熱伝導部材51に接着されると共に、弾性接着材56よりも熱伝導性に優れる熱伝導性接着材55により第1熱伝導部材50に接着される。これにより、熱電素子15に作用する圧縮力及び引張力を弾性接着材56により吸収しつつ、ハウジング20から熱電素子15への熱伝導を良好にすることができる。したがって、熱発電装置100の発電効率と耐久性の確保をより適切に両立させることができる。 Further, the thermoelectric element 15 is bonded to the second heat conductive member 51 with an elastic adhesive 56 and is bonded to the first heat conductive member 50 with a heat conductive adhesive 55 having better thermal conductivity than the elastic adhesive 56. be done. Thereby, compressive force and tensile force acting on the thermoelectric element 15 can be absorbed by the elastic adhesive 56, and heat conduction from the housing 20 to the thermoelectric element 15 can be improved. Therefore, it is possible to more appropriately ensure the power generation efficiency and durability of the thermal power generation device 100.

また、ハウジング20と放熱部材30とは、ハウジング20と放熱部材30とを直接螺合してねじ締結するのではなく、ハウジング20に取り付けられた連結部材52と放熱部材30を挿通する樹脂ねじ72とによってねじ締結される。これにより、ハウジング20と放熱部材30とを相対回転させずに組み付けることができるので、ハウジング20に取り付けられた第1熱伝導部材50と放熱部材30に取り付けられた第2熱伝導部材51との位置合わせが容易となる。よって、熱発電装置100の組み立て性を向上させることができる。 In addition, the housing 20 and the heat dissipation member 30 are not connected by directly screwing the housing 20 and the heat dissipation member 30 together, but by using a resin screw 72 that is inserted between the connecting member 52 attached to the housing 20 and the heat dissipation member 30. and are screwed together. Thereby, the housing 20 and the heat dissipation member 30 can be assembled without relative rotation, so that the first heat conduction member 50 attached to the housing 20 and the second heat conduction member 51 attached to the heat dissipation member 30 can be assembled together. Positioning becomes easy. Therefore, the ease of assembling the thermoelectric power generation device 100 can be improved.

また、ハウジング20と放熱部材30とを組付けた状態において、連結部材52と放熱部材30とは接触せずに離間している。よって、ハウジング20と放熱部材30との位置関係は、スペーサ40によって位置決めされる。つまり、連結部材52の寸法のばらつきが生じても連結部材52が放熱部材30に接触しないため、連結部材52は、スペーサ40によるハウジング20と放熱部材30との位置決めを阻害しない。このため、ハウジング20と放熱部材30とがスペーサ40によって適切に位置決めされる。これにより、連結部材52と放熱部材30とが接触することに起因した熱電素子15と放熱部材30(本実施形態では第2熱伝導部材51)との間での隙間の発生を防止できる。よって、熱電素子15から放熱部材30への熱伝導性が確保され、熱発電装置100の発電効率を向上させることができる。 Moreover, in the state where the housing 20 and the heat radiating member 30 are assembled, the connecting member 52 and the heat radiating member 30 are separated from each other without contacting each other. Therefore, the positional relationship between the housing 20 and the heat radiating member 30 is determined by the spacer 40. That is, even if the dimensions of the connecting member 52 vary, the connecting member 52 does not come into contact with the heat radiating member 30, so the connecting member 52 does not interfere with the positioning of the housing 20 and the heat radiating member 30 by the spacer 40. Therefore, the housing 20 and the heat radiating member 30 are properly positioned by the spacer 40. This can prevent the generation of a gap between the thermoelectric element 15 and the heat radiating member 30 (second heat conductive member 51 in this embodiment) due to contact between the connecting member 52 and the heat radiating member 30. Therefore, thermal conductivity from the thermoelectric element 15 to the heat radiation member 30 is ensured, and the power generation efficiency of the thermoelectric power generation device 100 can be improved.

また、スペーサ40の内周面には、第1熱伝導部材50及び第2熱伝導部材51が挿入される収容溝40cが形成される。これにより、第1熱伝導部材50と第2熱伝導部材51との位置合わせがより一層容易となり、熱発電装置100の組み立て性を向上させることができる。また、第2熱伝導部材51が取り付けられた放熱部材30とスペーサ40とを組付けた状態で第2熱伝導部材51の先端に弾性接着材56を塗布することで、第2熱伝導部材51の先端と収容溝40cとの間の空間Cがポケットとして機能するため、弾性接着材56を貯留して液だれを抑制できる。これにより、第2熱伝導部材51の先端への熱電素子15の接着状態を良好にすることができ、熱電素子15への圧縮力及び引張力の吸収と熱電素子15から放熱部材30への熱伝導とをより効果的に行うことができる。 Furthermore, an accommodation groove 40c into which the first heat conductive member 50 and the second heat conductive member 51 are inserted is formed in the inner peripheral surface of the spacer 40. Thereby, the alignment between the first heat conductive member 50 and the second heat conductive member 51 becomes even easier, and the ease of assembling the thermal power generation device 100 can be improved. Moreover, by applying the elastic adhesive 56 to the tip of the second heat conductive member 51 in a state where the heat dissipation member 30 to which the second heat conductive member 51 is attached and the spacer 40 are assembled, the second heat conductive member 51 Since the space C between the tip and the accommodation groove 40c functions as a pocket, the elastic adhesive 56 can be stored and dripping can be suppressed. As a result, it is possible to improve the adhesion state of the thermoelectric element 15 to the tip of the second heat conductive member 51, thereby absorbing compressive force and tensile force to the thermoelectric element 15, and dissipating heat from the thermoelectric element 15 to the heat dissipating member 30. conduction can be performed more effectively.

次に、本実施形態の変形例について説明する。以下のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせたりすることも可能である。 Next, a modification of this embodiment will be described. The following modified examples are also within the scope of the present invention, and it is also possible to combine the configuration shown in the modified example with the configuration described in the above embodiment, or to combine the configurations described in the following different modified examples. It is.

まず、図6に示す変形例について説明する。図6に示す変形例では、熱電素子15は、第1熱伝導部材50及び第2熱伝導部材51の両方に対して、熱伝導性接着材55により接着される。また、ハウジング20の底部には、第1熱伝導部材50の端部が挿入される取付穴24が形成される。 First, a modification shown in FIG. 6 will be described. In the modification shown in FIG. 6, the thermoelectric element 15 is bonded to both the first thermally conductive member 50 and the second thermally conductive member 51 using a thermally conductive adhesive 55. Furthermore, a mounting hole 24 into which an end portion of the first heat conductive member 50 is inserted is formed at the bottom of the housing 20 .

取付穴24には、取付穴24に挿入される第1熱伝導部材50の端部とハウジング20の底部とによって圧縮された状態で弾性部材としてのコイルスプリング75が収容される。コイルスプリング75は、第2熱伝導部材51(放熱部材30)に向けて第1熱伝導部材50の軸方向に沿って第1熱伝導部材50を付勢する。また、取付穴24には、弾性接着材56が充填される。弾性接着材56によって第1熱伝導部材50がハウジング20に取り付けられる。 A coil spring 75 as an elastic member is accommodated in the attachment hole 24 in a compressed state by the end of the first heat conductive member 50 inserted into the attachment hole 24 and the bottom of the housing 20 . The coil spring 75 urges the first heat conductive member 50 along the axial direction of the first heat conductive member 50 toward the second heat conductive member 51 (heat radiating member 30). Further, the attachment hole 24 is filled with an elastic adhesive 56. First thermally conductive member 50 is attached to housing 20 by elastic adhesive 56 .

これにより、熱発電装置100の各構成の寸法誤差や熱応力によって生じる熱電素子15への圧縮力や引張力を取付穴24内の弾性接着材56及びコイルスプリング75の弾性によって吸収することができる。よって、このような変形例であっても、上記実施形態と同様の作用効果を奏する。 As a result, compressive force and tensile force on the thermoelectric element 15 caused by dimensional errors and thermal stress in each component of the thermoelectric generator 100 can be absorbed by the elastic adhesive 56 in the mounting hole 24 and the elasticity of the coil spring 75. . Therefore, even with such a modification, the same effects as those of the above embodiment can be achieved.

また、図6に示す変形例では、第1熱伝導部材50及び熱電素子15は、弾性接着材56に加えて、コイルスプリング75によっても弾性支持されるため、熱電素子15を支持する弾性力は、弾性接着材56とコイルスプリング75とによる弾性力の合力となる。このようにコイルスプリング75を設けることで、熱電素子15を支持する弾性力を調整することができ、熱発電装置100の発電効率と耐久性とを両立しやすくなる。 Further, in the modification shown in FIG. 6, the first heat conductive member 50 and the thermoelectric element 15 are elastically supported by the coil spring 75 in addition to the elastic adhesive 56, so that the elastic force supporting the thermoelectric element 15 is , which is the resultant force of the elastic forces of the elastic adhesive 56 and the coil spring 75. By providing the coil spring 75 in this manner, the elastic force that supports the thermoelectric element 15 can be adjusted, making it easier to achieve both power generation efficiency and durability of the thermoelectric power generation device 100.

なお、取付穴24、コイルスプリング75、及び取付穴24に充填される弾性接着材56の構成は、図6に示すようなハウジング20及び第1熱伝導部材50に対して適用されるものに限られず、図示は省略するが放熱部材30及び第2熱伝導部材51に対して適用されてもよい。 Note that the configurations of the mounting hole 24, the coil spring 75, and the elastic adhesive 56 filled in the mounting hole 24 are limited to those that are applied to the housing 20 and the first heat conductive member 50 as shown in FIG. Although not shown, it may be applied to the heat dissipation member 30 and the second heat conduction member 51.

次に、その他の変形例について説明する。 Next, other modified examples will be explained.

上記実施形態では、熱電素子15は、熱伝導性接着材55によって第1熱伝導部材50に接着され、弾性接着材56によって第2熱伝導部材51に接着される。これに対し、上記実施形態とは反対に、熱電素子15は、弾性接着材56によって第1熱伝導部材50又はハウジング20に接着され、熱伝導性接着材55によって第2熱伝導部材51又は放熱部材30に接着されてもよい。 In the embodiment described above, the thermoelectric element 15 is bonded to the first thermally conductive member 50 by a thermally conductive adhesive 55 and to the second thermally conductive member 51 by an elastic adhesive 56. On the other hand, contrary to the above embodiment, the thermoelectric element 15 is bonded to the first heat conductive member 50 or the housing 20 by the elastic adhesive 56, and is bonded to the second heat conductive member 51 or the heat dissipation member by the heat conductive adhesive 55. It may also be bonded to member 30.

また、第1熱伝導部材50及び第2熱伝導部材51は、必須の構成ではなく、いずれか一方又は両方が設けられなくてもよい。つまり、熱電素子15は、ハウジング20及び/又は放熱部材30に対して直接取り付けられてもよい。この場合、熱電素子15は、弾性接着材56によってハウジング20又は放熱部材30に直接接触されてもよいし、ハウジング20及び放熱部材30の一方と弾性接着材56で接着される場合には、他方とは弾性接着材56以外の接着材によって直接接着されてもよい。換言すれば、熱電素子15は、ハウジング20と放熱部材30との間で直接又は間接的に挟まれるように設けられて、ハウジング20及び放熱部材30と熱交換可能に構成されていればよい。 Further, the first heat conductive member 50 and the second heat conductive member 51 are not essential configurations, and either one or both may not be provided. That is, the thermoelectric element 15 may be directly attached to the housing 20 and/or the heat dissipation member 30. In this case, the thermoelectric element 15 may be brought into direct contact with the housing 20 or the heat radiating member 30 using the elastic adhesive 56, or when the thermoelectric element 15 is bonded to one of the housing 20 and the heat radiating member 30 using the elastic adhesive 56, the other and may be directly bonded with an adhesive other than the elastic adhesive 56. In other words, the thermoelectric element 15 may be provided so as to be directly or indirectly sandwiched between the housing 20 and the heat radiating member 30 and configured to be able to exchange heat with the housing 20 and the heat radiating member 30.

以上のように、熱電素子15が弾性を有する弾性接着材56によってハウジング20又は放熱部材30に取り付けられるとは、熱電素子15が弾性接着材56によってハウジング20又は放熱部材30に直接接着されることに加えて、熱電素子15が第1熱伝導部材50や第2熱伝導部材51といった他の部材に弾性接着材56によって接着され、当該他の部材を介してハウジング20又は放熱部材30に取り付けられる構成も含む意味である。つまり、熱電素子15は、ハウジング20及び放熱部材30の少なくとも一方に対して、直接的に、又は、熱伝導部材を介して間接的に、弾性接着材56により接着されていればよい。例えば、第1熱伝導部材50又は第2熱伝導部材51に弾性接着材56によって接着され第1熱伝導部材50又は第2熱伝導部材51がハウジング20又は放熱部材30に取り付けられる構成でもよい。また、熱電素子15は、弾性接着材56による接着以外の方法で第1熱伝導部材50又は第2熱伝導部材51に取り付けられ、第1熱伝導部材50又は第2熱伝導部材51が弾性接着材56によってハウジング20又は放熱部材30に取り付けられてもよい。このように、熱電素子15をハウジング20に取り付けるための構成、及び、熱電素子15を放熱部材30に取り付けるための構成、の少なくともいずれかに弾性接着材56が含まれていればよい。 As described above, when the thermoelectric element 15 is attached to the housing 20 or the heat radiating member 30 using the elastic adhesive 56, it means that the thermoelectric element 15 is directly bonded to the housing 20 or the heat radiating member 30 using the elastic adhesive 56. In addition, the thermoelectric element 15 is bonded to other members such as the first heat conducting member 50 and the second heat conducting member 51 with an elastic adhesive 56, and is attached to the housing 20 or the heat dissipating member 30 via the other member. The meaning also includes the composition. That is, the thermoelectric element 15 may be bonded to at least one of the housing 20 and the heat dissipating member 30 directly or indirectly via the heat conductive member using the elastic adhesive 56. For example, a configuration may be adopted in which the first heat conductive member 50 or the second heat conductive member 51 is attached to the housing 20 or the heat radiating member 30 by being bonded to the first heat conductive member 50 or the second heat conductive member 51 with an elastic adhesive 56. Furthermore, the thermoelectric element 15 is attached to the first heat conductive member 50 or the second heat conductive member 51 by a method other than adhesion using the elastic adhesive 56, and the first heat conductive member 50 or the second heat conductive member 51 is attached to the elastic adhesive. It may be attached to the housing 20 or the heat dissipation member 30 by the material 56. In this way, the elastic adhesive 56 may be included in at least one of the configuration for attaching the thermoelectric element 15 to the housing 20 and the configuration for attaching the thermoelectric element 15 to the heat dissipation member 30.

また、上記実施形態では、熱電素子15は、熱伝導性接着材55により第1熱伝導部材50に接着される。熱電素子15に対する熱伝導を良好にするには、弾性接着材56よりも熱伝導に優れる熱伝導性接着材55により第1熱伝導部材50に接着することが望ましいが、熱電素子15と第1熱伝導部材50との間の接着材はこれに限定されるものではない。また、熱電素子15と第2熱伝導部材51とを接着する弾性接着材56を熱電素子15と第1熱伝導部材50との接着に用いてもよい。また、接着材を用いずに、熱電素子15と第1熱伝導部材50とを単に接触させるのみであってもよい。 Further, in the embodiment described above, the thermoelectric element 15 is bonded to the first thermally conductive member 50 using a thermally conductive adhesive 55. In order to improve heat conduction to the thermoelectric element 15, it is preferable to bond it to the first thermal conductive member 50 using a thermally conductive adhesive 55, which has better thermal conductivity than the elastic adhesive 56. The adhesive material between the heat conductive member 50 is not limited to this. Further, the elastic adhesive 56 for bonding the thermoelectric element 15 and the second heat conductive member 51 may be used for bonding the thermoelectric element 15 and the first heat conductive member 50. Alternatively, the thermoelectric element 15 and the first heat conductive member 50 may be simply brought into contact without using an adhesive.

また、上記実施形態では、熱発電装置100は、油圧シリンダ1で生じる油漏れを検知するセンサ装置101に利用される。これに対し、熱発電装置100は、センサ装置101に限定されず、その他の装置に利用されるものでもよい。 Further, in the embodiment described above, the thermoelectric power generation device 100 is used as a sensor device 101 that detects oil leakage occurring in the hydraulic cylinder 1. On the other hand, the thermoelectric power generation device 100 is not limited to the sensor device 101, and may be used in other devices.

以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。 Hereinafter, the configuration, operation, and effects of the embodiments of the present invention will be collectively described.

熱発電装置100は、ケース10と、ケース10に収容され吸熱面15aと放熱面15bとの温度差に応じて起電力を生じる熱電素子15と、を備え、ケース10は、熱電素子15の吸熱面15aと熱的に接続されるハウジング20と、熱電素子15の放熱面15bと熱的に接続される放熱部材30と、ハウジング20と放熱部材30とに挟まれて設けられハウジング20と放熱部材30とを断熱する樹脂製のスペーサ40と、を有し、熱電素子は、弾性を有する弾性接着材56によってハウジング20又は放熱部材30に取り付けられる。 The thermoelectric power generation device 100 includes a case 10 and a thermoelectric element 15 that is housed in the case 10 and generates an electromotive force according to a temperature difference between a heat absorption surface 15a and a heat radiation surface 15b. a housing 20 thermally connected to the surface 15a; a heat radiation member 30 thermally connected to the heat radiation surface 15b of the thermoelectric element 15; and a housing 20 and the heat radiation member provided sandwiched between the housing 20 and the heat radiation member 30. The thermoelectric element is attached to the housing 20 or the heat radiating member 30 with an elastic adhesive 56 having elasticity.

この構成では、熱電素子15は、弾性を有する弾性接着材56によってハウジング20又は放熱部材30に取り付けられるため、ハウジング20、放熱部材30、スペーサ40に寸法誤差や温度変化に伴う寸法変化が生じても、弾性接着材56の弾性により寸法誤差や寸法変化を吸収することができる。これにより、熱電素子15とハウジング20又は放熱部材30との間での隙間の発生や、ハウジング20と放熱部材30とにより熱電素子15が圧縮されることを抑制することができる。したがって、熱発電装置100の発電効率と耐久性が向上する。 In this configuration, the thermoelectric element 15 is attached to the housing 20 or the heat radiating member 30 by the elastic adhesive 56, so that dimensional errors or dimensional changes due to temperature changes occur in the housing 20, the heat radiating member 30, and the spacer 40. Also, dimensional errors and dimensional changes can be absorbed by the elasticity of the elastic adhesive 56. Thereby, generation of a gap between the thermoelectric element 15 and the housing 20 or the heat radiating member 30 and compression of the thermoelectric element 15 by the housing 20 and the heat radiating member 30 can be suppressed. Therefore, the power generation efficiency and durability of the thermal power generation device 100 are improved.

また、熱発電装置100では、熱電素子15は、弾性接着材56によってハウジング20及び放熱部材30の一方に接着され、弾性接着材56よりも熱伝導性に優れた熱伝導性接着材55によってハウジング20及び放熱部材30の他方に接着される。 Further, in the thermoelectric power generation device 100, the thermoelectric element 15 is bonded to one of the housing 20 and the heat dissipation member 30 by an elastic adhesive 56, and the thermoelectric element 15 is bonded to the housing 20 and the heat dissipating member 30 by a thermally conductive adhesive 55 that has better thermal conductivity than the elastic adhesive 56. 20 and the other of the heat dissipating member 30.

この構成では、熱電素子15に作用する圧縮力及び引張力を弾性接着材56により吸収しつつ、ハウジング20及び放熱部材30の他方から熱電素子15への熱伝導を良好にすることができる。したがって、熱発電装置100の発電効率と耐久性の確保をより適切に両立させることができる。 With this configuration, compressive force and tensile force acting on the thermoelectric element 15 can be absorbed by the elastic adhesive 56, while good heat conduction from the other of the housing 20 and the heat dissipation member 30 to the thermoelectric element 15 can be achieved. Therefore, it is possible to more appropriately ensure the power generation efficiency and durability of the thermal power generation device 100.

また、熱発電装置100は、ハウジング20及び放熱部材30の一方に設けられ雌ねじが形成される連結部材52と、ハウジング20及び放熱部材30の他方を挿通し連結部材52に螺合する雄ねじが形成される樹脂製の樹脂ねじ72と、をさらに備え、連結部材52と、樹脂ねじ72が挿通するハウジング20及び放熱部材30の他方とは、互いに接触せずに離間している。 The thermoelectric power generation device 100 also includes a connecting member 52 provided on one of the housing 20 and the heat radiating member 30 and having a female thread, and a male thread that is inserted through the other of the housing 20 and the heat radiating member 30 and screwed into the connecting member 52. The connecting member 52 and the other of the housing 20 and the heat radiating member 30 through which the resin screw 72 is inserted are spaced apart without contacting each other.

この構成では、連結部材52が放熱部材30と接触しないため、ハウジング20と放熱部材30との位置関係は、スペーサ40によって位置決めされる。つまり、連結部材52の寸法のばらつきが生じても連結部材52が放熱部材30に接触しないため、連結部材52は、スペーサ40によるハウジング20と放熱部材30との位置決めを阻害しない。これにより、ハウジング20と放熱部材30とはスペーサ40によって適切に位置決めされ、連結部材52が放熱部材30に接触することで熱電素子15と放熱部材30(第2熱伝導部材51)との間に隙間が生じることを防止できる。これにより、熱電素子15から放熱部材30への熱伝導性が確保され、熱発電装置100の発電効率を向上させることができる。 In this configuration, since the connecting member 52 does not come into contact with the heat radiating member 30, the positional relationship between the housing 20 and the heat radiating member 30 is determined by the spacer 40. That is, even if the dimensions of the connecting member 52 vary, the connecting member 52 does not come into contact with the heat radiating member 30, so the connecting member 52 does not interfere with the positioning of the housing 20 and the heat radiating member 30 by the spacer 40. As a result, the housing 20 and the heat dissipation member 30 are properly positioned by the spacer 40, and the connection member 52 comes into contact with the heat dissipation member 30, thereby creating a space between the thermoelectric element 15 and the heat dissipation member 30 (second heat conduction member 51). This can prevent gaps from forming. Thereby, thermal conductivity from the thermoelectric element 15 to the heat radiation member 30 is ensured, and the power generation efficiency of the thermoelectric power generation device 100 can be improved.

また、熱発電装置100は、一端がハウジング20及び放熱部材30の一方に取り付けられ、他端に熱電素子15が弾性接着材56によって接着され、他端とハウジング20及び放熱部材30の他方との間で熱電素子15を支持する第2熱伝導部材51をさらに備え、スペーサ40の内周には、第2熱伝導部材51が挿入される収容溝40cが形成される。 In addition, the thermoelectric generator 100 has one end attached to one of the housing 20 and the heat radiating member 30, the thermoelectric element 15 bonded to the other end with an elastic adhesive 56, and the other end attached to the other of the housing 20 and the heat radiating member 30. The spacer 40 further includes a second heat conductive member 51 that supports the thermoelectric element 15 therebetween, and an accommodation groove 40c into which the second heat conductive member 51 is inserted is formed in the inner periphery of the spacer 40.

この構成では、第2熱伝導部材51が取り付けられた放熱部材30とスペーサ40とを組付けた状態で第2熱伝導部材51の先端に弾性接着材56を塗布することで、第2熱伝導部材51の先端と収容溝40cとの間の空間Cがポケットとして機能する。このため、第2熱伝導部材51の先端に弾性接着材56を貯留して先端からの液だれを抑制できる。これにより、第2熱伝導部材51の先端への熱電素子15の接着状態を良好にすることができ、熱電素子15への圧縮力及び引張力の吸収と熱電素子15から放熱部材30への熱伝導とを効果的に行うことができる。 In this configuration, the elastic adhesive 56 is applied to the tip of the second heat conductive member 51 in a state where the heat dissipating member 30 to which the second heat conductive member 51 is attached and the spacer 40 are assembled. A space C between the tip of the member 51 and the accommodation groove 40c functions as a pocket. Therefore, the elastic adhesive 56 can be stored at the tip of the second heat conductive member 51 to suppress dripping from the tip. As a result, it is possible to improve the adhesion state of the thermoelectric element 15 to the tip of the second heat conductive member 51, thereby absorbing compressive force and tensile force to the thermoelectric element 15, and dissipating heat from the thermoelectric element 15 to the heat dissipating member 30. conduction can be performed effectively.

また、変形例に係る熱発電装置100は、一端がハウジング20及び放熱部材30の一方に取り付けられ、他端が熱電素子15を支持する第1熱伝導部材50をさらに備え、第1熱伝導部材50が取り付けられるハウジング20及び放熱部材30の一方には、第1熱伝導部材50の端部が収容される取付穴24が形成され、取付穴24には、第1熱伝導部材50をハウジング20及び放熱部材30の他方に向けて付勢するコイルスプリング75が設けられ、第1熱伝導部材50は、コイルスプリング75と共に取付穴24に充填される弾性接着材56によってハウジング20及び放熱部材30の一方に取り付けられる。 The thermal power generation device 100 according to the modification further includes a first heat conductive member 50 whose one end is attached to one of the housing 20 and the heat dissipation member 30 and whose other end supports the thermoelectric element 15. A mounting hole 24 is formed in one of the housing 20 and the heat dissipation member 30 to which the first heat conduction member 50 is attached. The first heat conductive member 50 is provided with a coil spring 75 that biases the housing 20 and the heat dissipating member 30 toward the other side. Attached to one side.

この構成では、第1熱伝導部材50及び熱電素子15は、弾性接着材56に加えて、コイルスプリング75によっても弾性支持される。これにより、熱電素子15を支持する弾性力は、弾性接着材56とコイルスプリング75とによる弾性力の合力となる。このようにコイルスプリング75を設けることで、熱電素子15を支持する弾性力を調整することができ、熱発電装置100の発電効率と耐久性とを両立しやすくなる。 In this configuration, the first heat conductive member 50 and the thermoelectric element 15 are elastically supported by the coil spring 75 in addition to the elastic adhesive 56. As a result, the elastic force supporting the thermoelectric element 15 becomes the resultant force of the elastic forces of the elastic adhesive 56 and the coil spring 75. By providing the coil spring 75 in this manner, the elastic force that supports the thermoelectric element 15 can be adjusted, making it easier to achieve both power generation efficiency and durability of the thermoelectric power generation device 100.

ハウジング20と放熱部材30との温度差を電力に変換する熱電素子15を備える熱発電装置100の製造方法は、ハウジング20の熱を伝導する第1熱伝導部材50をハウジング20に取り付ける工程と、放熱部材30の熱を伝導する第2熱伝導部材51を放熱部材30に取り付ける工程と、樹脂製のスペーサ40を放熱部材30に取り付ける工程と、第2熱伝導部材51の先端に弾性接着材56を付着させ、予め回路基板81に電気的に接続される熱電素子15を弾性接着材56によって第2熱伝導部材51に取り付ける工程と、ハウジング20に取り付けられた第1熱伝導部材50の先端に熱伝導性接着材55を付着させる工程と、第2熱伝導部材51に取り付けられた熱電素子15をハウジング20に取り付けられた第1熱伝導部材50に付着される熱伝導性接着材55により第1熱伝導部材50に接着させつつ、スペーサ40をハウジング20に取り付ける工程と、を備える。 A method for manufacturing a thermoelectric power generation device 100 including a thermoelectric element 15 that converts the temperature difference between the housing 20 and the heat dissipation member 30 into electric power includes a step of attaching a first heat conduction member 50 that conducts heat of the housing 20 to the housing 20; A step of attaching a second heat conductive member 51 that conducts the heat of the heat dissipating member 30 to the heat dissipating member 30, a step of attaching a resin spacer 40 to the heat dissipating member 30, and a step of attaching an elastic adhesive 56 to the tip of the second heat conductive member 51. and attaching the thermoelectric element 15, which is electrically connected to the circuit board 81 in advance, to the second heat conductive member 51 using the elastic adhesive 56; A step of attaching a thermally conductive adhesive 55 and a step of attaching the thermoelectric element 15 attached to the second thermally conductive member 51 to the first thermally conductive member 50 attached to the housing 20 by the thermally conductive adhesive 55 attached to the first thermally conductive member 50 attached to the housing 20. 1. Attaching the spacer 40 to the housing 20 while adhering it to the heat conductive member 50.

この構成では、熱電素子15は、予め回路基板81に電気的に接続された状態で放熱部材30に組付けられてアセンブリ化され、その後当該アセンブリとハウジング20とが組付けられる。この構成によれば、熱電素子15と回路基板81とを個別にハウジング20又は放熱部材30に取り付けた状態で熱電素子15と回路基板81とを電気的に配線する場合と比較して、配線作業を容易に行うことができる。よって、熱発電装置100を容易に製造することができる。 In this configuration, the thermoelectric element 15 is electrically connected to the circuit board 81 in advance and assembled to the heat dissipation member 30 to form an assembly, and then the assembly and the housing 20 are assembled. According to this configuration, the wiring work is easier compared to the case where the thermoelectric element 15 and the circuit board 81 are electrically wired with the thermoelectric element 15 and the circuit board 81 individually attached to the housing 20 or the heat dissipation member 30. can be easily done. Therefore, the thermal power generation device 100 can be easily manufactured.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments merely show a part of the application examples of the present invention, and are not intended to limit the technical scope of the present invention to the specific configurations of the above embodiments. do not have.

10…ケース、15…熱電変換素子、15a…吸熱面、15b…放熱面、20…ハウジング(第1部材)、30…放熱部材(第2部材)、40…スペーサ(断熱部材)、50…第1熱伝導部材(熱伝導部材)、51…第2熱伝導部材(熱伝導部材)、52…連結部材(第1ねじ部材)、55…第1接着材(熱伝導性接着材)、56…第2接着材(弾性接着材)、72…樹脂ねじ(第2ねじ部材)、75…コイルスプリング(弾性部材)、81…回路基板、100…熱発電装置 DESCRIPTION OF SYMBOLS 10... Case, 15... Thermoelectric conversion element, 15a... Heat absorption surface, 15b... Heat radiation surface, 20... Housing (first member), 30... Heat radiation member (second member), 40... Spacer (insulation member), 50... Third 1 heat conductive member (thermal conductive member), 51... second heat conductive member (thermal conductive member), 52... connecting member (first screw member), 55... first adhesive material (thermal conductive adhesive material), 56... Second adhesive (elastic adhesive), 72... Resin screw (second screw member), 75... Coil spring (elastic member), 81... Circuit board, 100... Thermoelectric generator

Claims (3)

ケースと、
前記ケースに収容され吸熱面と放熱面との温度差に応じて起電力を生じる熱電変換素子と、を備え、
前記ケースは、
前記熱電変換素子の前記吸熱面と熱的に接続される第1部材と、
前記熱電変換素子の前記放熱面と熱的に接続される第2部材と、
前記第1部材と前記第2部材とに挟まれて設けられ前記第1部材と前記第2部材とを断熱する樹脂製の断熱部材と、を有し、
前記熱電変換素子は、弾性を有する弾性接着材によって前記第1部材又は前記第2部材に取り付けられ、
一端が前記第1部材及び前記第2部材の一方に取り付けられ、他端に前記熱電変換素子が前記弾性接着材によって接着され、前記他端と前記第1部材及び前記第2部材の他方との間で前記熱電変換素子を支持する熱伝導部材が設けられ、
前記断熱部材の内周には、前記熱伝導部材が挿入される溝部が形成されることを特徴とする熱発電装置。
case and
a thermoelectric conversion element that is housed in the case and generates an electromotive force according to a temperature difference between a heat absorption surface and a heat radiation surface,
The case is
a first member thermally connected to the endothermic surface of the thermoelectric conversion element;
a second member thermally connected to the heat radiation surface of the thermoelectric conversion element;
a resin-made heat insulating member that is provided between the first member and the second member and insulates the first member and the second member;
The thermoelectric conversion element is attached to the first member or the second member with an elastic adhesive having elasticity,
One end is attached to one of the first member and the second member, the thermoelectric conversion element is attached to the other end with the elastic adhesive, and the other end is attached to the other of the first member and the second member. A thermally conductive member supporting the thermoelectric conversion element is provided between the
A thermal power generation device characterized in that a groove portion into which the heat conductive member is inserted is formed on the inner periphery of the heat insulating member .
前記第1部材及び前記第2部材の一方に設けられ雌ねじが形成される第1ねじ部材と、
前記第1部材及び前記第2部材の他方を挿通し前記第1ねじ部材の前記雌ねじに螺合する雄ねじが形成される第2ねじ部材と、をさらに備え、
前記第1ねじ部材と、前記第2ねじ部材が挿通する前記第1部材及び前記第2部材の他方とは、互いに接触せずに離間していることを特徴とする請求項1に記載の熱発電装置。
a first threaded member provided on one of the first member and the second member and formed with a female thread;
further comprising a second threaded member formed with a male thread that is inserted through the other of the first member and the second member and screwed into the female thread of the first threaded member,
The heat exchanger according to claim 1, wherein the first screw member and the other of the first member and the second member through which the second screw member is inserted are spaced apart without contacting each other. Power generation equipment.
記熱伝導部材が取り付けられる前記第1部材及び前記第2部材の一方には、前記熱伝導部材の前記一端が収容される取付穴が形成され、
前記取付穴には、前記熱伝導部材を前記第1部材及び前記第2部材の他方に向けて付勢する弾性部材が設けられ、
前記熱伝導部材は、前記弾性部材と共に前記取付穴に充填される前記弾性接着材によって前記第1部材及び前記第2部材の一方に取り付けられることを特徴とする請求項1または2に記載の熱発電装置。
A mounting hole is formed in one of the first member and the second member to which the heat conductive member is attached, and the one end of the heat conductive member is accommodated in the mounting hole;
The mounting hole is provided with an elastic member that biases the heat conductive member toward the other of the first member and the second member,
The thermal conductive member according to claim 1 or 2, wherein the heat conductive member is attached to one of the first member and the second member by the elastic adhesive filled in the attachment hole together with the elastic member. Power generation equipment.
JP2020109799A 2020-06-25 2020-06-25 thermal power generation device Active JP7421425B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020109799A JP7421425B2 (en) 2020-06-25 2020-06-25 thermal power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020109799A JP7421425B2 (en) 2020-06-25 2020-06-25 thermal power generation device

Publications (2)

Publication Number Publication Date
JP2022007084A JP2022007084A (en) 2022-01-13
JP7421425B2 true JP7421425B2 (en) 2024-01-24

Family

ID=80110995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020109799A Active JP7421425B2 (en) 2020-06-25 2020-06-25 thermal power generation device

Country Status (1)

Country Link
JP (1) JP7421425B2 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050661A (en) 1998-07-23 2000-02-18 Nishinomiya Kinzoku Kogyo Kk Power generator
JP2002257961A (en) 2001-03-01 2002-09-11 Citizen Watch Co Ltd Thermoelectric power generation watch
US20120192574A1 (en) 2009-07-17 2012-08-02 Uttam Ghoshal Heat Pipes And Thermoelectric Cooling Devices
JP2014008569A (en) 2012-06-29 2014-01-20 Nabtesco Corp Lubricant state sensor for industrial robot and industrial robot remote monitoring system
CN210183244U (en) 2019-09-18 2020-03-24 苏州启创新材料科技有限公司 Solar energy temperature difference power generation device
JP2020089211A (en) 2018-11-30 2020-06-04 株式会社Kelk Thermoelectric generation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050661A (en) 1998-07-23 2000-02-18 Nishinomiya Kinzoku Kogyo Kk Power generator
JP2002257961A (en) 2001-03-01 2002-09-11 Citizen Watch Co Ltd Thermoelectric power generation watch
US20120192574A1 (en) 2009-07-17 2012-08-02 Uttam Ghoshal Heat Pipes And Thermoelectric Cooling Devices
JP2014008569A (en) 2012-06-29 2014-01-20 Nabtesco Corp Lubricant state sensor for industrial robot and industrial robot remote monitoring system
JP2020089211A (en) 2018-11-30 2020-06-04 株式会社Kelk Thermoelectric generation device
CN210183244U (en) 2019-09-18 2020-03-24 苏州启创新材料科技有限公司 Solar energy temperature difference power generation device

Also Published As

Publication number Publication date
JP2022007084A (en) 2022-01-13

Similar Documents

Publication Publication Date Title
JP5675933B2 (en) Control device housing
JP5644706B2 (en) Electronic component fixing structure for electric compressor
JP3533826B2 (en) Heat conversion device
JP2005183644A (en) Electric circuit module
US20140196758A1 (en) Thermoelectric power generation unit
CN105265031A (en) Electrical control device
KR20120038370A (en) Semiconductor device
JP4169561B2 (en) Electronic control unit
CN102792034B (en) For connecting connection set and the electric control device of electrical assembly and housing parts
JP7421425B2 (en) thermal power generation device
JP6021253B2 (en) Electronics
CN107509365B (en) Ultrathin microwave assembly and heat pipe radiating device
JP2006222776A (en) Imaging apparatus
CN103947095A (en) Power converter
JP7469967B2 (en) Thermoelectric power generation device
JP2009194254A (en) Electronic circuit device
JP4196214B2 (en) Heat dissipation structure, package assembly, and heat dissipation sheet
WO2013084417A1 (en) Power conversion apparatus
WO2015198893A1 (en) Cooling device
JPWO2019064899A1 (en) motor
CN109425156B (en) Liquid storage device assembly, compressor assembly and air conditioner
JP7075309B2 (en) Sensor device
JP6800319B2 (en) Power converter
JP6941989B2 (en) Semiconductor mounting structure and charger
JP2021099283A (en) Sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20231219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240112

R151 Written notification of patent or utility model registration

Ref document number: 7421425

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151