JP7469967B2 - Thermoelectric power generation device - Google Patents

Thermoelectric power generation device Download PDF

Info

Publication number
JP7469967B2
JP7469967B2 JP2020109806A JP2020109806A JP7469967B2 JP 7469967 B2 JP7469967 B2 JP 7469967B2 JP 2020109806 A JP2020109806 A JP 2020109806A JP 2020109806 A JP2020109806 A JP 2020109806A JP 7469967 B2 JP7469967 B2 JP 7469967B2
Authority
JP
Japan
Prior art keywords
heat
housing
heat dissipation
thermoelectric
heat conducting
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020109806A
Other languages
Japanese (ja)
Other versions
JP2022007086A (en
Inventor
克道 杉原
瞭平 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KYB Corp
Original Assignee
KYB Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KYB Corp filed Critical KYB Corp
Priority to JP2020109806A priority Critical patent/JP7469967B2/en
Publication of JP2022007086A publication Critical patent/JP2022007086A/en
Application granted granted Critical
Publication of JP7469967B2 publication Critical patent/JP7469967B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、熱発電装置に関するものである。 The present invention relates to a thermoelectric power generation device.

特許文献1には、高温側と低温側との温度差によって起電力を発生させる熱発電装置が開示されている。特許文献1の熱発電装置は、高温側の一端と低温側の他端との温度差により起電力が生じる熱電変換素子と、熱電変換素子を封止する封止部材と、を備える。 Patent document 1 discloses a thermoelectric power generation device that generates electromotive force due to the temperature difference between a high-temperature side and a low-temperature side. The thermoelectric power generation device of Patent document 1 includes a thermoelectric conversion element that generates electromotive force due to the temperature difference between one end of the high-temperature side and the other end of the low-temperature side, and a sealing member that seals the thermoelectric conversion element.

封止部材は、第1部材及び第2部材からなる。封止部材の第1部材は、熱電変換素子の一端に対向する当接部材を有する。熱電変換素子の他端と封止部材の第2部材との間には熱伝導部材が設けられており、熱伝導部材は第2部材を介して冷却手段により冷却される。封止部材の内部に熱伝導部材が備えられていることにより、封止部材の厚みをある程度確保することができ、封止部材の熱変形が各部材間の熱伝達に及ぼす影響を緩和することができる。 The sealing member is composed of a first member and a second member. The first member of the sealing member has an abutment member that faces one end of the thermoelectric conversion element. A thermally conductive member is provided between the other end of the thermoelectric conversion element and the second member of the sealing member, and the thermally conductive member is cooled by the cooling means via the second member. By providing a thermally conductive member inside the sealing member, it is possible to ensure a certain degree of thickness of the sealing member, and to mitigate the effect of thermal deformation of the sealing member on heat transfer between each member.

特開2018-10908号公報JP 2018-10908 A

特許文献1に開示される第1部材、第2部材、及び熱伝導部材のように熱電変換素子との間で熱伝導が生じる構成部品は、一般に、重量やコストを考慮しつつ熱伝導率が優れた金属で構成される。 The components that generate heat conduction between the thermoelectric conversion element, such as the first member, second member, and heat-conducting member disclosed in Patent Document 1, are generally made of metals that have excellent thermal conductivity while taking into consideration weight and cost.

熱発電装置において各構成部品に異なる金属材料が用いられる場合、材質が異なる部品同士が接触すると、両者の間で電蝕が生じるおそれがある。このような電蝕の発生により、熱発電装置の耐久性が低下するおそれがある。 When different metal materials are used for each component of a thermoelectric power generation device, there is a risk of electrical corrosion occurring between the components made of different materials when they come into contact with each other. This electrical corrosion may reduce the durability of the thermoelectric power generation device.

本発明は、上記の問題点に鑑みてなされたものであり、熱発電装置の耐久性を向上させることを目的とする。 The present invention was made in consideration of the above problems, and aims to improve the durability of thermoelectric power generation devices.

本発明は、熱発電装置であって、互いに異なる金属からなる第1部材及び第2部材と、第1部材及び第2部材のそれぞれに熱的に接続され第1部材と第2部材との温度差を電力に変換する熱電変換素子と、第1部材に設けられ熱電変換素子を支持する第1熱伝導部材と、第2部材に設けられ第1熱伝導部材と共に熱電変換素子を支持する第2熱伝導部材と、を備え、第1熱伝導部材は、第1部材と同じ金属からなり、第2熱伝導部材は、第2部材と同じ金属からなり、第1熱伝導部材と第2熱伝導部材とは、棒状に形成され、それぞれの端部において前記熱電変換素子を支持することを特徴とする。 The present invention is a thermoelectric power generation device comprising a first member and a second member made of different metals, a thermoelectric conversion element thermally connected to each of the first member and the second member and converting the temperature difference between the first member and the second member into electric power, a first heat conduction member provided on the first member and supporting the thermoelectric conversion element, and a second heat conduction member provided on the second member and supporting the thermoelectric conversion element together with the first heat conduction member, wherein the first heat conduction member is made of the same metal as the first member and the second heat conduction member is made of the same metal as the second member, and the first heat conduction member and the second heat conduction member are formed in a rod shape and support the thermoelectric conversion element at their respective ends .

この発明では、熱伝導部材は、第1部材に取り付けられる場合には第1部材と同じ材質とされ、第2部材に取り付けられる場合には第2部材と同じ材質とされる。このため、第1部材及び第2部材と熱伝導部材との間での電蝕の発生が抑制される。In this invention, the heat conductive member is made of the same material as the first member when attached to the first member, and is made of the same material as the second member when attached to the second member, thereby suppressing the occurrence of electrolytic corrosion between the heat conductive member and the first and second members.

また、本発明は、第1部材は、発熱源に取り付けられ、第2部材は、第2部材の熱を大気に放熱するためのヒートシンクとして構成され、第2部材及び第2熱伝導部材は、第1熱伝導部材よりも熱伝導率が高い材料によって形成され、第2熱伝導部材の長さは、第1熱伝導部材の長さよりも長いことを特徴とする。The present invention is also characterized in that the first member is attached to a heat source, the second member is configured as a heat sink for dissipating heat from the second member to the atmosphere, the second member and the second heat conduction member are formed of a material having a higher thermal conductivity than the first heat conduction member, and the length of the second heat conduction member is longer than the length of the first heat conduction member.

また、本発明は、第1部材及び第1熱伝導部材が、鋼材によって形成され、第2部材及び第2熱伝導部材が、アルミニウム系又は銅系材料によって形成され、第1部材が、発熱源に取り付けられ、第2部材が、第2部材の熱を大気に放熱するためのヒートシンクとして構成され、第2熱伝導部材の長さが、第1熱伝導部材の長さよりも長いことを特徴とする。 The present invention is also characterized in that the first member and the first heat conduction member are formed of steel, the second member and the second heat conduction member are formed of an aluminum-based or copper-based material, the first member is attached to a heat source, the second member is configured as a heat sink for dissipating heat from the second member to the atmosphere , and the length of the second heat conduction member is longer than the length of the first heat conduction member.

これらの発明では、第1熱伝導部材よりも熱伝導率が高い第2熱伝導部材を長く構成することで、熱発電装置の発電効率を高めることができる。 In these inventions , the power generation efficiency of the thermal power generation device can be increased by configuring the second heat conductive member, which has a higher thermal conductivity than the first heat conductive member, to be long.

また、本発明は、筒状に形成され第1部材と第2部材とに挟まれて設けられる樹脂製の断熱部材を備え、第1部材と第2部材とは、断熱部材を介して互いに連結されることを特徴とする。 The present invention is also characterized in that it includes a resin insulating member that is formed into a cylindrical shape and sandwiched between a first member and a second member, and the first member and the second member are connected to each other via the insulating member.

この発明では、断熱部材によって第1部材と第2部材とが断熱される共に、両者の直接の接触が回避されて電蝕の発生が防止される。 In this invention, the first and second members are insulated from each other by the insulating member, and direct contact between the two members is avoided, preventing the occurrence of electrolytic corrosion.

また、本発明は、第1部材及び第2部材の一方に設けられ雌ねじが形成される第1ねじ部材と、第1ねじ部の雌ねじに螺合する雄ねじが形成され、第1部材及び第2部材の他方を挿通して第1ねじ部材に螺合することで第1部材と第2部材とを連結する樹脂製の第2ねじ部材と、をさらに備え、第1ねじ部材と第1部材及び第2部材の他方との間には隙間が形成され、互いに接触せずに離間していることを特徴とする。 The present invention further comprises a first screw member provided on one of the first member and the second member and having a female thread formed thereon, and a second screw member made of resin having a male thread formed thereon that screws into the female thread of the first screw portion and connects the first member and the second member by inserting the other of the first member and the second member and screwing into the first screw member, and is characterized in that a gap is formed between the first screw member and the other of the first member and the second member, so that they are separated from each other without contacting each other.

この発明では、樹脂製の樹脂ねじによって第1部材と第2部材とが連結されるため、金属製のねじ部材を利用することによる電蝕の発生が防止される。また、連結部材と第1部材及び第2部材の他方との接触による電蝕の発生が防止される。 In this invention, the first member and the second member are connected by a resin screw made of resin, so that the occurrence of electrolytic corrosion caused by using a metal screw member is prevented. In addition, the occurrence of electrolytic corrosion caused by contact between the connecting member and the other of the first member and the second member is prevented.

本発明によれば、熱発電装置の耐久性が向上する。 The present invention improves the durability of the thermoelectric power generation device.

本発明の実施形態に係る熱発電装置が取り付けられる油圧シリンダの一部断面図である。1 is a partial cross-sectional view of a hydraulic cylinder to which a thermoelectric power generating device according to an embodiment of the present invention is attached. 本発明の実施形態に係る熱発電装置が取り付けられる油圧シリンダの部分拡大断面図である。2 is a partially enlarged cross-sectional view of a hydraulic cylinder to which a thermoelectric power generating device according to an embodiment of the present invention is attached. FIG. 本発明の実施形態に係る熱発電装置の放熱部材の平面図である。3 is a plan view of a heat dissipation member of a thermoelectric power generating device according to an embodiment of the present invention. FIG. 本発明の実施形態に係る熱発電装置のスペーサの平面図である。3 is a plan view of a spacer of a thermoelectric power generating device according to an embodiment of the present invention. FIG. 本発明の実施形態に係る熱発電装置の製造方法を説明するための断面図であり、放熱部材とスペーサとがアセンブリ化された状態を示す図である。1A and 1B are cross-sectional views for explaining a method for manufacturing a thermoelectric power generating device according to an embodiment of the present invention, showing a state in which a heat dissipation member and a spacer are assembled. 本発明の実施形態の変形例に係る熱発電装置を示す断面図である。FIG. 11 is a cross-sectional view showing a thermoelectric power generating device according to a modified example of an embodiment of the present invention.

以下、図面を参照して、本発明の実施形態に係る熱発電装置100について説明する。 The following describes a thermoelectric power generation device 100 according to an embodiment of the present invention with reference to the drawings.

熱発電装置100は、例えば、建設機械(油圧ショベルなど)の流体圧システムに設けられるセンサ装置101の電源として用いられる。 The thermoelectric power generation device 100 is used, for example, as a power source for a sensor device 101 installed in the fluid pressure system of a construction machine (such as a hydraulic excavator).

まず、図1を参照して、熱発電装置100が適用されるセンサ装置101について説明する。 First, referring to FIG. 1, we will explain the sensor device 101 to which the thermal power generation device 100 is applied.

以下では、センサ装置101が、ブーム,アーム,及びバケットといった駆動対象(図示省略)を駆動する流体圧システムの油圧シリンダ1(流体圧シリンダ)で生じる作動油の漏れを検出する油漏れセンサである場合を説明する。 The following describes the case where the sensor device 101 is an oil leak sensor that detects hydraulic oil leakage that occurs in a hydraulic cylinder 1 (fluid pressure cylinder) of a fluid pressure system that drives a drive object (not shown) such as a boom, arm, and bucket.

図1に示すように、油圧シリンダ1は、筒状のシリンダチューブ2と、シリンダチューブ2に挿入されるピストンロッド3と、ピストンロッド3の基端に設けられるピストン4と、を備える。ピストン4は、シリンダチューブ2の内周面に沿って摺動自在に設けられる。シリンダチューブ2の内部は、ピストン4によってロッド側室2aと反ロッド側室2bとに区画される。 As shown in FIG. 1, the hydraulic cylinder 1 comprises a cylindrical cylinder tube 2, a piston rod 3 inserted into the cylinder tube 2, and a piston 4 provided at the base end of the piston rod 3. The piston 4 is provided so as to be able to slide freely along the inner circumferential surface of the cylinder tube 2. The inside of the cylinder tube 2 is divided by the piston 4 into a rod side chamber 2a and an anti-rod side chamber 2b.

ピストンロッド3は、先端がシリンダチューブ2の開口端から延出している。図示しない油圧源からロッド側室2a又は反ロッド側室2bに選択的に作動油が導かれると、ピストンロッド3は、シリンダチューブ2に対して移動する。これにより、油圧シリンダ1は伸縮作動する。 The tip of the piston rod 3 extends from the open end of the cylinder tube 2. When hydraulic oil is selectively introduced from a hydraulic source (not shown) into the rod side chamber 2a or the anti-rod side chamber 2b, the piston rod 3 moves relative to the cylinder tube 2. This causes the hydraulic cylinder 1 to expand and contract.

シリンダチューブ2の開口端には、ピストンロッド3が挿通するシリンダヘッド5が設けられる。シリンダヘッド5は、複数のボルト6を用いてシリンダチューブ2の開口端に締結される。シリンダチューブ2及びシリンダヘッド5は、鉄系材料、具体的には、鋼材によって形成される。 A cylinder head 5 through which the piston rod 3 is inserted is provided at the open end of the cylinder tube 2. The cylinder head 5 is fastened to the open end of the cylinder tube 2 using a number of bolts 6. The cylinder tube 2 and the cylinder head 5 are made of an iron-based material, specifically, steel.

図2に示すように、シリンダヘッド5には、ピストンロッド3の外周面とシリンダヘッド5の内周面との間の環状の隙間(以下、「環状隙間8」と称する。)を封止するロッドシール7aと、環状隙間8を封止し、ロッドシール7aと共に検出空間9を区画する検出シール7bと、ピストンロッド3を摺動自在に支持するブッシュ7cと、ピストンロッド3の外周面に付着するダストをかき出して、外部からシリンダチューブ2内へのダストの侵入を防止するダストシール7dと、が設けられる。 As shown in FIG. 2, the cylinder head 5 is provided with a rod seal 7a that seals the annular gap (hereinafter referred to as the "annular gap 8") between the outer peripheral surface of the piston rod 3 and the inner peripheral surface of the cylinder head 5, a detection seal 7b that seals the annular gap 8 and defines a detection space 9 together with the rod seal 7a, a bush 7c that slidably supports the piston rod 3, and a dust seal 7d that scrapes off dust adhering to the outer peripheral surface of the piston rod 3 and prevents dust from entering the cylinder tube 2 from the outside.

センサ装置101は、油圧シリンダ1のシリンダヘッド5の外周部に取り付けられ、ピストンロッド3の外周面とシリンダヘッド5の内周面との間の環状隙間8から漏れ出す作動油の圧力を検出する。センサ装置101の検出結果は、コントローラ102に無線通信によって送信される。コントローラ102は、センサ装置101の検出結果に基づいて、油圧シリンダ1における油漏れの有無を判定する。 The sensor device 101 is attached to the outer periphery of the cylinder head 5 of the hydraulic cylinder 1, and detects the pressure of the hydraulic oil leaking from the annular gap 8 between the outer periphery of the piston rod 3 and the inner periphery of the cylinder head 5. The detection result of the sensor device 101 is transmitted to the controller 102 by wireless communication. The controller 102 determines the presence or absence of oil leakage in the hydraulic cylinder 1 based on the detection result of the sensor device 101.

センサ装置101は、第1部材としてのハウジング20と第2部材としての放熱部材30との温度差によって発電する熱発電装置100と、油圧シリンダ1のロッド側室2aから環状隙間8に漏れ出した作動油の圧力を検出するセンサ部としての圧力センサ80と、それぞれ配線16,82を通じて熱発電装置100及び圧力センサ80が電気的に接続される回路基板81と、を備える。回路基板81には、熱発電装置100が発電した電力を圧力センサ80に供給する電源回路と、圧力センサ80の検出結果をコントローラ102に無線送信する通信回路と、が実装される。 The sensor device 101 includes a thermoelectric generator 100 that generates electricity using the temperature difference between the housing 20 as a first member and the heat dissipation member 30 as a second member, a pressure sensor 80 as a sensor unit that detects the pressure of hydraulic oil leaking from the rod side chamber 2a of the hydraulic cylinder 1 into the annular gap 8, and a circuit board 81 to which the thermoelectric generator 100 and the pressure sensor 80 are electrically connected via wiring 16, 82, respectively. The circuit board 81 is equipped with a power supply circuit that supplies the power generated by the thermoelectric generator 100 to the pressure sensor 80, and a communication circuit that wirelessly transmits the detection result of the pressure sensor 80 to the controller 102.

熱発電装置100は、ケース10と、ケース10に収容され吸熱面15aと放熱面15bとの温度差に応じて起電力を生じる熱電変換素子(以下、単に「熱電素子15」と称する。)と、を備える。 The thermoelectric power generation device 100 comprises a case 10 and a thermoelectric conversion element (hereinafter simply referred to as "thermoelectric element 15") that is housed in the case 10 and generates an electromotive force in response to the temperature difference between the heat absorption surface 15a and the heat dissipation surface 15b.

ケース10は、油圧シリンダ1のシリンダヘッド5に取り付けられるハウジング20と、外周に複数のフィン31aを備えるヒートシンクとして構成される放熱部材30と、ハウジング20と放熱部材30とに挟まれて熱電素子15を囲う樹脂製の断熱部材としてのスペーサ40と、を有する。 The case 10 has a housing 20 attached to the cylinder head 5 of the hydraulic cylinder 1, a heat dissipation member 30 configured as a heat sink with multiple fins 31a on its outer periphery, and a spacer 40 as a resin insulating member that is sandwiched between the housing 20 and the heat dissipation member 30 and surrounds the thermoelectric element 15.

ハウジング20は、油圧シリンダ1のシリンダヘッド5と同様の鉄系材料(より具体的には鋼材)によって形成され、シリンダヘッド5に取り付けられる。ハウジング20が鋼材によって形成されることで、ハウジング20(ひいてはケース10)の耐久性が確保されると共に、取付対象であるシリンダヘッド5との間での電蝕の発生を防止することができる。ハウジング20には、発熱源である油圧シリンダ1で発生する熱がシリンダヘッド5を通じて伝達される。 The housing 20 is made of the same iron-based material (more specifically, steel) as the cylinder head 5 of the hydraulic cylinder 1, and is attached to the cylinder head 5. By making the housing 20 out of steel, the durability of the housing 20 (and thus the case 10) is ensured, and the occurrence of electrolytic corrosion between the housing 20 and the cylinder head 5 to which it is attached can be prevented. Heat generated in the hydraulic cylinder 1, which is the heat source, is transferred to the housing 20 through the cylinder head 5.

ハウジング20には、端面に開口し熱電素子15を収容する収容凹部21と、収容凹部21に開口し圧力センサ80を収容するセンサ収容穴22と、油圧シリンダ1のシリンダヘッド5に当接するハウジング20の当接面に開口すると共にセンサ収容穴22に開口する連通路23と、が形成される。連通路23は、油圧シリンダ1のシリンダヘッド5に形成されたヘッド側通路9aを通じて検出空間9に連通する。これにより、環状隙間8を通じて検出空間9に漏れ出した作動油の圧力が、ヘッド側通路9a及び連通路23を通じてセンサ収容穴22に導かれて、当該圧力が圧力センサ80によって検知される。 The housing 20 is formed with an accommodating recess 21 that opens on the end face and accommodates the thermoelectric element 15, a sensor accommodating hole 22 that opens into the accommodating recess 21 and accommodates the pressure sensor 80, and a communication passage 23 that opens into the abutment surface of the housing 20 that abuts against the cylinder head 5 of the hydraulic cylinder 1 and also opens into the sensor accommodating hole 22. The communication passage 23 communicates with the detection space 9 through a head-side passage 9a formed in the cylinder head 5 of the hydraulic cylinder 1. As a result, the pressure of the hydraulic oil that has leaked into the detection space 9 through the annular gap 8 is guided to the sensor accommodating hole 22 through the head-side passage 9a and the communication passage 23, and the pressure is detected by the pressure sensor 80.

ハウジング20には、ハウジング20の熱を熱電素子15の吸熱面15aに伝達する熱伝導部材としての第1熱伝導部材50が取り付けられる。第1熱伝導部材50は、ハウジング20と同様の材質(本実施形態では鋼材)で形成される円柱状の棒状部材であり、一端部が取付ボルト70によってハウジング20の収容凹部21の底部に取り付けられる。取付ボルト70は、両端部にねじ部が形成されるスタッドボルト(全ねじボルト)であり、両端部がそれぞれ収容凹部21の底部及び第1熱伝導部材50の一方の端面に形成される雌ねじに螺合する。第1熱伝導部材50の他端部(先端部)には、接着剤55によって熱電素子15が取り付けられる。なお、接着剤55は、熱伝導性に優れた液状の接着剤である。接着剤55は、液状のものに限られず、固体状のものやシート状の接着テープのようなものでもよい。 The housing 20 is fitted with a first heat conducting member 50 as a heat conducting member that transfers heat from the housing 20 to the heat absorbing surface 15a of the thermoelectric element 15. The first heat conducting member 50 is a cylindrical rod-shaped member made of the same material as the housing 20 (steel in this embodiment), and one end is attached to the bottom of the housing recess 21 of the housing 20 by a mounting bolt 70. The mounting bolt 70 is a stud bolt (fully threaded bolt) with threads formed at both ends, and both ends are screwed into the bottom of the housing recess 21 and the female threads formed on one end face of the first heat conducting member 50, respectively. The thermoelectric element 15 is attached to the other end (tip) of the first heat conducting member 50 by an adhesive 55. The adhesive 55 is a liquid adhesive with excellent thermal conductivity. The adhesive 55 is not limited to a liquid adhesive, and may be a solid adhesive or a sheet-like adhesive tape.

放熱部材30は、熱伝導率に優れる材質、例えば、アルミニウム系又は銅系材料によって形成される。このように、放熱部材30は、鋼材であるハウジング20とは異なる金属で形成されており、ハウジング20よりも熱伝導性に優れている。 The heat dissipation member 30 is made of a material with excellent thermal conductivity, such as an aluminum-based or copper-based material. In this way, the heat dissipation member 30 is made of a metal different from the housing 20, which is made of steel, and has better thermal conductivity than the housing 20.

放熱部材30は、一端が閉塞端として構成される有底円筒状に形成される。放熱部材30の外周には、円環状に形成される複数のフィン31aが軸方向に並んで設けられる。放熱部材30の底部には、放熱部材30の外側へ向けて軸方向に突出するボス部32が設けられる。 The heat dissipation member 30 is formed in a cylindrical shape with one end closed. A plurality of annular fins 31a are arranged in the axial direction on the outer periphery of the heat dissipation member 30. A boss portion 32 is provided at the bottom of the heat dissipation member 30, protruding in the axial direction toward the outside of the heat dissipation member 30.

図2及び図3に示すように、放熱部材30の底部には、回路基板81が挿通するスリット32bが形成される。回路基板81の一部は、後述するハウジング20及びスペーサ40の内側の収容空間S1からスリット32bを通じて放熱部材30の内側空間S2へと突出する。なお、図3は、図2中のA矢印方向からみた放熱部材30の平面図である。 As shown in Figures 2 and 3, a slit 32b through which the circuit board 81 is inserted is formed in the bottom of the heat dissipation member 30. A part of the circuit board 81 protrudes from the storage space S1 inside the housing 20 and spacer 40 described below through the slit 32b into the inner space S2 of the heat dissipation member 30. Note that Figure 3 is a plan view of the heat dissipation member 30 as viewed from the direction of the arrow A in Figure 2.

放熱部材30の内側空間S2は、回路基板81の一部及び後述する樹脂ねじ72のヘッドと共にモールド樹脂35によってポッティングされて封止される。このように、回路基板81は、金属製のハウジング20や放熱部材30の内側にすべてが収容されるのではなく、その一部がハウジング20の内側の収容空間S1の外部、具体的には熱発電装置100の外部に臨む(露出する)放熱部材30の内側空間S2に突出する。これにより、回路基板81に設けられる通信手段による無線通信を安定して行うことができる。なお、放熱部材30の内側空間S2は、モールド樹脂35によって封止されているが、樹脂は金属と比較して通信電波を妨害しにくいため、モールド樹脂35によって封止してもの充分に無線通信の安定化を行うことができる。なお、モールド樹脂35は必須の構成ではなく、内側空間S2はポッティングされていなくてもよい。 The inner space S2 of the heat dissipation member 30 is potted and sealed with molded resin 35 together with a part of the circuit board 81 and the head of a resin screw 72 described later. In this way, the circuit board 81 is not entirely housed inside the metal housing 20 or heat dissipation member 30, but a part of it protrudes outside the storage space S1 inside the housing 20, specifically into the inner space S2 of the heat dissipation member 30 facing (exposed) to the outside of the thermal power generation device 100. This allows wireless communication to be stably performed by the communication means provided on the circuit board 81. The inner space S2 of the heat dissipation member 30 is sealed with molded resin 35, but since resin is less likely to interfere with communication radio waves than metal, sealing with molded resin 35 can sufficiently stabilize wireless communication. The molded resin 35 is not an essential component, and the inner space S2 does not have to be potted.

放熱部材30には、熱電素子15の放熱面15bの熱を放熱部材30に伝達する熱伝導部材としての第2熱伝導部材51が取り付けられる。第2熱伝導部材51は、放熱部材30と同様の材質であって第1熱伝導部材50と略同径の円柱状の棒状部材である。第2熱伝導部材51は、一端部に取付ボルト71が挿入され取付ボルト71によって放熱部材30のボス部32の先端面32aに取り付けられる。取付ボルト71は、放熱部材30の底部の挿通穴30aを挿通して、第2熱伝導部材51の一端部に設けられた雌ねじに螺合する。第2熱伝導部材51の他端部(先端部)には、接着剤55によって熱電素子15が取り付けられる。 A second heat conducting member 51 is attached to the heat dissipation member 30 as a heat conducting member that transfers heat from the heat dissipation surface 15b of the thermoelectric element 15 to the heat dissipation member 30. The second heat conducting member 51 is a cylindrical rod-shaped member made of the same material as the heat dissipation member 30 and has approximately the same diameter as the first heat conducting member 50. The second heat conducting member 51 has an attachment bolt 71 inserted into one end and is attached to the tip surface 32a of the boss portion 32 of the heat dissipation member 30 by the attachment bolt 71. The attachment bolt 71 is inserted through the insertion hole 30a at the bottom of the heat dissipation member 30 and screwed into the female thread provided at one end of the second heat conducting member 51. The thermoelectric element 15 is attached to the other end (tip) of the second heat conducting member 51 by adhesive 55.

このように、熱電素子15は、ハウジング20に取り付けられる第1熱伝導部材50と放熱部材30に取り付けられる第2熱伝導部材51とによって挟持(支持)される。 In this way, the thermoelectric element 15 is sandwiched (supported) between the first heat conducting member 50 attached to the housing 20 and the second heat conducting member 51 attached to the heat dissipation member 30.

スペーサ40は、断熱性が高い樹脂材料によって形成される。スペーサ40は、その径方向の中央に中心軸に沿った貫通孔40aを有しており、熱電素子15を囲うように円筒状に形成される。スペーサ40は、ハウジング20と放熱部材30とによって挟持され、図示しない接着剤によりハウジング20と放熱部材30とに連結される。スペーサ40は、外周面がテーパ状に形成される本体部41と、ハウジング20の収容凹部21に挿入される挿入部42と、を有する。 The spacer 40 is made of a resin material with high thermal insulation properties. The spacer 40 has a through hole 40a along the central axis at its radial center, and is formed in a cylindrical shape to surround the thermoelectric element 15. The spacer 40 is sandwiched between the housing 20 and the heat dissipation member 30, and is connected to the housing 20 and the heat dissipation member 30 by an adhesive (not shown). The spacer 40 has a main body portion 41 whose outer peripheral surface is formed in a tapered shape, and an insertion portion 42 that is inserted into the accommodation recess 21 of the housing 20.

本体部41の外周は、スペーサ40の軸方向に沿ってハウジング20から離れるにつれて、言い換えれば、ハウジング20から放熱部材30に向かうにつれて外径が大きくなるテーパ状に形成される。挿入部42は、本体部41の端部からハウジング20に向けて軸方向に突出するように形成される。挿入部42の外径は、本体部41の端部の外径(本体部41の最小外径)よりも小さく形成され、挿入部42と本体部41との外径差により形成される段差面が、ハウジング20の端面に当接する。 The outer periphery of the main body 41 is tapered so that the outer diameter increases as it moves away from the housing 20 along the axial direction of the spacer 40, in other words, from the housing 20 toward the heat dissipation member 30. The insertion portion 42 is formed so as to protrude axially from the end of the main body 41 toward the housing 20. The outer diameter of the insertion portion 42 is smaller than the outer diameter of the end of the main body 41 (the minimum outer diameter of the main body 41), and a step surface formed by the difference in outer diameter between the insertion portion 42 and the main body 41 abuts against the end face of the housing 20.

ハウジング20の収容凹部21とスペーサ40の貫通孔40aによって、熱電素子15を収容する収容空間S1が形成される。スペーサ40の内周面には、図4に示すように、回路基板81の両縁が挿入され回路基板81を支持するスリット40bが軸方向に延びて形成される。なお、図4は、図2中のA矢印方向からみたスペーサ40の平面図である。また、図4では、回路基板81を二点鎖線で模式的に示している。 The storage recess 21 of the housing 20 and the through hole 40a of the spacer 40 form a storage space S1 that stores the thermoelectric element 15. As shown in FIG. 4, the inner peripheral surface of the spacer 40 is formed with axially extending slits 40b into which both edges of the circuit board 81 are inserted to support the circuit board 81. Note that FIG. 4 is a plan view of the spacer 40 as viewed from the direction of the arrow A in FIG. 2. Also, in FIG. 4, the circuit board 81 is shown diagrammatically by a two-dot chain line.

また、スペーサ40の貫通孔40aの内周面には、第1熱伝導部材50及び第2熱伝導部材51が挿入される溝部としての収容溝40cが軸方向に延びて形成される。収容溝40cは、第1熱伝導部材50及び第2熱伝導部材51の外形に合わせた略半円形断面を有する溝である。また、収容溝40c、第1熱伝導部材50、及び第2熱伝導部材51は、ハウジング20の収容凹部21の中心からずれた位置に設けられている(図2及び図4参照)。収容溝40cは、熱発電装置100及びセンサ装置101の組み立ての際に、第1熱伝導部材50と第2熱伝導部材51との周方向の位置合わせの機能を発揮する。 The inner circumferential surface of the through hole 40a of the spacer 40 is formed with an axially extending accommodation groove 40c into which the first heat conducting member 50 and the second heat conducting member 51 are inserted. The accommodation groove 40c has a substantially semicircular cross section that matches the outer shape of the first heat conducting member 50 and the second heat conducting member 51. The accommodation groove 40c, the first heat conducting member 50, and the second heat conducting member 51 are provided at positions offset from the center of the accommodation recess 21 of the housing 20 (see Figures 2 and 4). The accommodation groove 40c serves to circumferentially align the first heat conducting member 50 and the second heat conducting member 51 when assembling the thermal power generation device 100 and the sensor device 101.

図2に示すように、放熱部材30のボス部32は、ハウジング20とは反対側からスペーサ40の貫通孔40aに挿入される。これにより、スペーサ40の貫通孔40aの一方の開口が、放熱部材30によって閉塞される。言い換えれば、ハウジング20の収容凹部21とスペーサ40の貫通孔40aによって形成される収容空間S1が、放熱部材30によって閉塞される。 As shown in FIG. 2, the boss portion 32 of the heat dissipation member 30 is inserted into the through hole 40a of the spacer 40 from the side opposite the housing 20. As a result, one opening of the through hole 40a of the spacer 40 is blocked by the heat dissipation member 30. In other words, the storage space S1 formed by the storage recess 21 of the housing 20 and the through hole 40a of the spacer 40 is blocked by the heat dissipation member 30.

ハウジング20と放熱部材30とは、スペーサ40を介して互いに連結されるものであり、両者は直接接触しない。よって、ハウジング20と放熱部材30との間の熱伝導がスペーサ40によって抑制される。さらに、互いに材質が異なるハウジング20と放熱部材30との直接の接触が樹脂製のスペーサ40によって回避されるため、ハウジング20と放熱部材30との接触による電蝕の発生を防止することができる。 The housing 20 and the heat dissipation member 30 are connected to each other via the spacer 40, and are not in direct contact with each other. Therefore, the spacer 40 suppresses heat conduction between the housing 20 and the heat dissipation member 30. Furthermore, the resin spacer 40 prevents direct contact between the housing 20 and the heat dissipation member 30, which are made of different materials, and therefore prevents the occurrence of electrolytic corrosion due to contact between the housing 20 and the heat dissipation member 30.

このように、スペーサ40は、ハウジング20と放熱部材30とを直接接触させないスペーサとしての機能に加えて、ハウジング20と放熱部材30との間の熱伝導を抑制する断熱部材としても機能する。さらに、スペーサ40は、熱電素子15を囲うように設けられ、熱電素子15を収容する収容空間S1をハウジング20と共に形成する。これにより、外気の影響による収容空間S1内の温度変化、具体的には、第1熱伝導部材50及び第2熱伝導部材51の温度変化がスペーサ40によって抑制される。 In this way, the spacer 40 not only functions as a spacer that prevents direct contact between the housing 20 and the heat dissipation member 30, but also functions as a heat insulating member that suppresses heat conduction between the housing 20 and the heat dissipation member 30. Furthermore, the spacer 40 is provided to surround the thermoelectric element 15, and together with the housing 20 forms the accommodation space S1 that accommodates the thermoelectric element 15. As a result, the spacer 40 suppresses temperature changes in the accommodation space S1 due to the influence of the outside air, specifically, temperature changes in the first heat conduction member 50 and the second heat conduction member 51.

また、ハウジング20と放熱部材30は、ハウジング20に設けられ先端に雌ねじが形成される第1ねじ部材としての連結部材52と、放熱部材30を挿通し連結部材52の雌ねじに螺合する雄ねじが形成される樹脂製の第2ねじ部材としての樹脂ねじ72と、によって互いに連結される。つまり、ハウジング20と連結部材52とは、スペーサ40を介して連結されると共に、連結部材52と樹脂ねじ72とによって連結されている。 The housing 20 and the heat dissipation member 30 are connected to each other by a connecting member 52 as a first screw member provided on the housing 20 and having a female thread at its tip, and a resin screw 72 as a second screw member made of resin and having a male thread that passes through the heat dissipation member 30 and screws into the female thread of the connecting member 52. In other words, the housing 20 and the connecting member 52 are connected via the spacer 40, and are also connected by the connecting member 52 and the resin screw 72.

連結部材52は、ハウジング20と同様の材質(鋼材)によって形成される円柱状の部材であり、一端がハウジング20の収容凹部21の底部に取り付けられる。ハウジング20に取り付けられる連結部材52がハウジング20と同様の材質で形成されることで、ハウジング20と連結部材52との間の電蝕の発生が防止される。 The connecting member 52 is a cylindrical member made of the same material (steel) as the housing 20, and one end is attached to the bottom of the accommodation recess 21 of the housing 20. By making the connecting member 52 attached to the housing 20 out of the same material as the housing 20, the occurrence of electrolytic corrosion between the housing 20 and the connecting member 52 is prevented.

連結部材52は、第1熱伝導部材50と同様に、収容凹部21の底部と連結部材52との両方に螺合するスタッドボルトなどの取付ボルト73によってハウジング20に取り付けられる。連結部材52の他端は、放熱部材30のボス部32の先端面32aには接触せずに離間している。つまり、連結部材52の軸方向において、連結部材52の先端と放熱部材30との間には隙間が形成されており、連結部材52と放熱部材30とは接触しないように構成されている。詳細な図示は省略するが、本実施形態では、3つの連結部材52がハウジング20に取り付けられる。 The connecting member 52, like the first heat conduction member 50, is attached to the housing 20 by a mounting bolt 73 such as a stud bolt that screws into both the bottom of the accommodating recess 21 and the connecting member 52. The other end of the connecting member 52 is separated from the tip surface 32a of the boss portion 32 of the heat dissipation member 30 without contacting it. In other words, in the axial direction of the connecting member 52, a gap is formed between the tip of the connecting member 52 and the heat dissipation member 30, and the connecting member 52 and the heat dissipation member 30 are configured not to come into contact with each other. Although detailed illustration is omitted, in this embodiment, three connecting members 52 are attached to the housing 20.

樹脂ねじ72は、断熱性に優れた樹脂材料によって形成される。樹脂ねじ72は、放熱部材30の底部(ボス部32)に形成される挿通孔32cを挿通して連結部材52に螺合する。挿通孔32cは、連結部材52に対応して放熱部材30の底部に3つ形成される(図3参照)樹脂ねじ72を所定の締め付け力によって締め付けることで、ハウジング20と放熱部材30とがねじ締結される。なお、樹脂ねじ72を所定の締め付け力で締め付けた状態であっても、連結部材52と放熱部材30の底部との間には隙間が存在する。 The resin screw 72 is made of a resin material with excellent heat insulating properties. The resin screw 72 is inserted through an insertion hole 32c formed in the bottom (boss portion 32) of the heat dissipation member 30 and screwed into the connecting member 52. Three insertion holes 32c are formed in the bottom of the heat dissipation member 30 corresponding to the connecting members 52 (see FIG. 3). The housing 20 and the heat dissipation member 30 are screwed together by tightening the resin screw 72 with a predetermined tightening force. Note that even when the resin screw 72 is tightened with a predetermined tightening force, a gap exists between the connecting member 52 and the bottom of the heat dissipation member 30.

熱電素子15は、互いに平行な一対の平面である吸熱面15a及び放熱面15bを有し、吸熱面15aと放熱面15bとの温度差によって起電力を生じるゼーベック素子である。熱電素子15は、接着剤55によって吸熱面15aが第1熱伝導部材50の先端面に接着され、放熱面15bが第2熱伝導部材51の先端面に接着される。このように、吸熱面15aは、第1熱伝導部材50を通じてハウジング20に熱的に接続されている。また、放熱面15bは、第2熱伝導部材51を通じて放熱部材30に熱的に接続されている。接着剤55は、熱伝導率に優れたものを使用することが望ましい。 The thermoelectric element 15 is a Seebeck element that has a heat absorption surface 15a and a heat dissipation surface 15b that are a pair of parallel flat surfaces, and generates an electromotive force due to the temperature difference between the heat absorption surface 15a and the heat dissipation surface 15b. The thermoelectric element 15 has the heat absorption surface 15a bonded to the tip surface of the first heat conduction member 50 by adhesive 55, and the heat dissipation surface 15b bonded to the tip surface of the second heat conduction member 51. In this way, the heat absorption surface 15a is thermally connected to the housing 20 through the first heat conduction member 50. Also, the heat dissipation surface 15b is thermally connected to the heat dissipation member 30 through the second heat conduction member 51. It is desirable to use an adhesive 55 with excellent thermal conductivity.

熱電素子15は、吸熱面15aで熱を吸熱して放熱面15bから熱を放熱することによって、内部に温度差が発生して起電力を生じる。つまり、熱電素子15は、第1熱伝導部材50を通じて吸熱面15aに伝達されるハウジング20の温度と、第2熱伝導部材51を通じて放熱面15bに伝達される放熱部材30の温度と、の差に応じた起電力を発生させる。熱電素子15の起電力は、配線16を通じて接続される回路基板81に供給される。 The thermoelectric element 15 absorbs heat on the heat absorption surface 15a and dissipates heat from the heat dissipation surface 15b, which generates a temperature difference inside and generates an electromotive force. In other words, the thermoelectric element 15 generates an electromotive force according to the difference between the temperature of the housing 20 transferred to the heat absorption surface 15a through the first heat conductive member 50 and the temperature of the heat dissipation member 30 transferred to the heat dissipation surface 15b through the second heat conductive member 51. The electromotive force of the thermoelectric element 15 is supplied to the circuit board 81 connected through the wiring 16.

以上のように、熱発電装置100では、油圧シリンダ1で発生する熱がハウジング20から第1熱伝導部材50を通じて熱電素子15の吸熱面15aに吸熱される。熱電素子15の吸熱面15aに吸熱された熱が放熱面15bから第2熱伝導部材51及び放熱部材30を通じて大気中に放熱されることで熱電素子15によって発電される。熱発電装置100の熱電素子15が発電した電力は、回路基板81に供給され、圧力センサ80や通信回路が駆動される。このように、センサ装置101は、センシング対象である油圧シリンダ1で発生する熱を利用して発電する熱発電装置100を備えることで、外部からの電力供給を受けずに独立して駆動することができる。よって、センサ装置101へ給電するための配線をセンサ装置101や油圧シリンダ1の周囲に取り回す必要がなく、センサ装置101の取り付けが容易となる。 As described above, in the thermal power generation device 100, heat generated in the hydraulic cylinder 1 is absorbed from the housing 20 through the first heat conductive member 50 to the heat absorption surface 15a of the thermoelectric element 15. The heat absorbed by the heat absorption surface 15a of the thermoelectric element 15 is dissipated from the heat dissipation surface 15b through the second heat conductive member 51 and the heat dissipation member 30 into the atmosphere, generating electricity by the thermoelectric element 15. The power generated by the thermoelectric element 15 of the thermal power generation device 100 is supplied to the circuit board 81, which drives the pressure sensor 80 and the communication circuit. In this way, the sensor device 101 can be driven independently without receiving power supply from the outside by including the thermal power generation device 100 that generates electricity using heat generated in the hydraulic cylinder 1, which is the sensing target. Therefore, there is no need to route wiring for supplying power to the sensor device 101 around the sensor device 101 and the hydraulic cylinder 1, making it easy to install the sensor device 101.

また、ハウジング20に取り付けられる第1熱伝導部材50の軸方向の長さL1は、放熱部材30に取り付けられる第2熱伝導部材51の軸方向の長さL2よりも短く形成される。また、上述のように、第1熱伝導部材50と第2熱伝導部材51とは、略同径の円柱状に形成される。相対的に熱伝導率に優れる第2熱伝導部材51を第1熱伝導部材50よりも長く構成することで、熱発電装置100の発電効率を高めることができる。 The axial length L1 of the first heat conduction member 50 attached to the housing 20 is shorter than the axial length L2 of the second heat conduction member 51 attached to the heat dissipation member 30. As described above, the first heat conduction member 50 and the second heat conduction member 51 are formed into cylindrical shapes of approximately the same diameter. By configuring the second heat conduction member 51, which has relatively excellent thermal conductivity, to be longer than the first heat conduction member 50, the power generation efficiency of the thermal power generation device 100 can be improved.

次に、センサ装置101の製造方法について説明する。 Next, we will explain the manufacturing method of the sensor device 101.

本実施形態では、放熱部材30、スペーサ40、熱電素子15、回路基板81、及び圧力センサ80をアセンブリ化し、このアセンブリをハウジング20に取り付けることでセンサ装置101が製造される。以下、具体的に説明する。 In this embodiment, the heat dissipation member 30, the spacer 40, the thermoelectric element 15, the circuit board 81, and the pressure sensor 80 are assembled, and the assembly is attached to the housing 20 to manufacture the sensor device 101. A detailed description is given below.

まず、取付ボルト71によって第2熱伝導部材51を放熱部材30に取り付ける。 First, the second heat conducting member 51 is attached to the heat dissipation member 30 using the mounting bolts 71.

次に、放熱部材30とスペーサ40とを組み立てる。具体的には、第2熱伝導部材51をスペーサ40の内周の収容溝40cに挿入しつつ放熱部材30のボス部32をスペーサ40の貫通孔40aに挿入し、放熱部材30とスペーサ40とを接着剤によって接着する。 Next, the heat dissipation member 30 and the spacer 40 are assembled. Specifically, the second heat conduction member 51 is inserted into the receiving groove 40c on the inner circumference of the spacer 40 while the boss portion 32 of the heat dissipation member 30 is inserted into the through hole 40a of the spacer 40, and the heat dissipation member 30 and the spacer 40 are bonded together with an adhesive.

次に、配線16,82によって回路基板81に圧力センサ80と熱電素子15とを接続する。さらに、回路基板81をスペーサ40の開口から内周面のスリット40b(図4参照)に挿入し、放熱部材30のボス部32に形成されたスリット32b(図3参照)を通過させて一部を放熱部材30の内側空間S2に突出させる。このようにして、放熱部材30を含むアセンブリが構成される。 Next, the pressure sensor 80 and the thermoelectric element 15 are connected to the circuit board 81 by the wiring 16, 82. Furthermore, the circuit board 81 is inserted from the opening of the spacer 40 into the slit 40b (see FIG. 4) on the inner circumferential surface, and passed through the slit 32b (see FIG. 3) formed in the boss portion 32 of the heat dissipation member 30, with a portion of it protruding into the inner space S2 of the heat dissipation member 30. In this manner, an assembly including the heat dissipation member 30 is constructed.

次に、第2熱伝導部材51の先端に接着剤55を塗布する。この際、例えば図5に示すように、放熱部材30の中心軸が略水平に延び、放熱部材30に取り付けられた第2熱伝導部材51が放熱部材30の中心軸よりも鉛直方向の下方に位置するような姿勢で、第2熱伝導部材51の先端に接着剤55が塗布される。図5は、図中下側が鉛直方向の下方を示すものであり、左右方向が水平方向を示すものである。このようにすることで、第2熱伝導部材51の先端とスペーサ40の内周の収容溝40cとで形成される空間Cが接着剤55を貯留するポケットとして機能するため、第2熱伝導部材51の先端から接着剤55が液だれすることを抑制できる。そして、このようにして第2熱伝導部材51の先端に付着された接着剤55に熱電素子15を押し付けて、所定時間経過させて接着剤55を硬化させる。これにより、熱電素子15は、第2熱伝導部材51の先端に取り付けられる。 Next, adhesive 55 is applied to the tip of the second heat conducting member 51. At this time, as shown in FIG. 5, for example, the central axis of the heat dissipation member 30 extends substantially horizontally, and the second heat conducting member 51 attached to the heat dissipation member 30 is positioned vertically below the central axis of the heat dissipation member 30, and the adhesive 55 is applied to the tip of the second heat conducting member 51 in such a position. In FIG. 5, the lower side in the figure indicates the vertically downward direction, and the left and right directions indicate the horizontal direction. In this way, the space C formed by the tip of the second heat conducting member 51 and the accommodation groove 40c on the inner circumference of the spacer 40 functions as a pocket for storing the adhesive 55, so that the adhesive 55 can be prevented from dripping from the tip of the second heat conducting member 51. Then, the thermoelectric element 15 is pressed against the adhesive 55 attached to the tip of the second heat conducting member 51 in this way, and the adhesive 55 is cured after a predetermined time has elapsed. As a result, the thermoelectric element 15 is attached to the tip of the second heat conducting member 51.

次に、取付ボルト70によってハウジング20の底部に第1熱伝導部材50を取り付けると共に、取付ボルト73によってハウジング20の底部に連結部材52を取り付ける。 Next, the first heat transfer member 50 is attached to the bottom of the housing 20 with the mounting bolts 70, and the connecting member 52 is attached to the bottom of the housing 20 with the mounting bolts 73.

次に、放熱部材30を含むアセンブリとハウジング20とを組み立てる。具体的には、まず、第1熱伝導部材50の先端に接着剤55を付着させる。そして、第1熱伝導部材50とスペーサ40の内周の収容溝40c(図4及び図5参照)との位置を合わせるようにしてスペーサ40をハウジング20の収容凹部21に挿入する。さらに、第1熱伝導部材50の先端に付着された接着剤55に第2熱伝導部材51の先端に取り付けられた熱電素子15を押し付けて、第1熱伝導部材50の先端に熱電素子15を接着する。また、スペーサ40をハウジング20の収容凹部21に挿入するのに伴い、圧力センサ80をハウジング20の底部のセンサ収容穴22に収容してハウジング20に取り付ける。さらに、スペーサ40とハウジング20との間にも接着剤を塗布して、両者を接着剤によって固定する。 Next, the assembly including the heat dissipation member 30 is assembled with the housing 20. Specifically, first, adhesive 55 is applied to the tip of the first heat conductive member 50. Then, the spacer 40 is inserted into the housing recess 21 of the housing 20 so as to align the positions of the first heat conductive member 50 and the housing groove 40c (see Figures 4 and 5) on the inner circumference of the spacer 40. Furthermore, the thermoelectric element 15 attached to the tip of the second heat conductive member 51 is pressed against the adhesive 55 applied to the tip of the first heat conductive member 50, and the thermoelectric element 15 is bonded to the tip of the first heat conductive member 50. In addition, as the spacer 40 is inserted into the housing recess 21 of the housing 20, the pressure sensor 80 is accommodated in the sensor accommodation hole 22 at the bottom of the housing 20 and attached to the housing 20. Furthermore, adhesive is also applied between the spacer 40 and the housing 20, and the two are fixed by the adhesive.

次に、放熱部材30の内側から樹脂ねじ72をボス部32の挿通孔32cに挿入し、連結部材52と螺合させ所定の締め付け力で締結する。そして、放熱部材30の内側空間S2をモールド樹脂35によって充填する。 Next, the resin screw 72 is inserted into the through hole 32c of the boss portion 32 from inside the heat dissipation member 30 and screwed into the connecting member 52 to fasten it with a predetermined tightening force. Then, the inner space S2 of the heat dissipation member 30 is filled with the molded resin 35.

以上の工程により、図2に示すセンサ装置101の組み立てが完了する。 The above steps complete the assembly of the sensor device 101 shown in Figure 2.

センサ装置101の組み立ては、上記で説明した順序に限られず、可能な限りその順序は入れ換えてよい。また、各工程は、可能な限り同時に行ってもよい。なお、例えば、熱電素子15をハウジング20の第1熱伝導部材50に接着し、圧力センサ80をハウジング20に取り付けた状態で熱電素子15及び圧力センサ80を回路基板81に接続するのは、配線作業が煩雑となる。このため、センサ装置101の組み立てを効率よく行うには、上述のように予め熱電素子15、圧力センサ80、及び回路基板81を接続してアセンブリ化しておき、当該アセンブリを放熱部材30(及びスペーサ40)に取り付けるようにすることが望ましい。 The assembly of the sensor device 101 is not limited to the order described above, and the order may be changed as far as possible. In addition, each process may be performed simultaneously as far as possible. For example, it is cumbersome to connect the thermoelectric element 15 and the pressure sensor 80 to the circuit board 81 while adhering the thermoelectric element 15 to the first heat conductive member 50 of the housing 20 and attaching the pressure sensor 80 to the housing 20. For this reason, in order to efficiently assemble the sensor device 101, it is desirable to connect the thermoelectric element 15, the pressure sensor 80, and the circuit board 81 in advance as described above to form an assembly, and then attach the assembly to the heat dissipation member 30 (and the spacer 40).

以上の実施形態によれば、以下に示す効果を奏する。 The above embodiment provides the following advantages:

熱発電装置100では、ハウジング20に取り付けられる第1熱伝導部材50はハウジング20と同様の材質である鋼材によって形成され、放熱部材30に取り付けられる第2熱伝導部材51は放熱部材30と同様の材質であるアルミニウム系又は銅系材料によって形成される。このため、ハウジング20と第1熱伝導部材50との間、及び、放熱部材30と第2熱伝導部材51との間における電蝕の発生を防止できる。これにより、熱発電装置100の耐久性を向上させることができる。 In the thermal power generation device 100, the first heat conduction member 50 attached to the housing 20 is made of steel, which is the same material as the housing 20, and the second heat conduction member 51 attached to the heat dissipation member 30 is made of an aluminum-based or copper-based material, which is the same material as the heat dissipation member 30. This makes it possible to prevent the occurrence of electrical corrosion between the housing 20 and the first heat conduction member 50, and between the heat dissipation member 30 and the second heat conduction member 51. This makes it possible to improve the durability of the thermal power generation device 100.

また、ハウジング20と放熱部材30とは、スペーサ40を介して互いに連結され、互いに直接接触しない。これにより、ハウジング20と放熱部材30との接触による電蝕を防止することができる。 In addition, the housing 20 and the heat dissipation member 30 are connected to each other via a spacer 40 and do not come into direct contact with each other. This makes it possible to prevent electrolytic corrosion caused by contact between the housing 20 and the heat dissipation member 30.

また、ハウジング20と放熱部材30とは、ハウジング20に設けられる連結部材52と放熱部材30を挿通する樹脂ねじ72とによってねじ締結される。金属製ではなく樹脂製の樹脂ねじ72が利用されるため、連結部材52と樹脂ねじ72との電蝕の発生を防止できる。 The housing 20 and the heat dissipation member 30 are fastened together by a connecting member 52 provided on the housing 20 and a resin screw 72 that passes through the heat dissipation member 30. Because the resin screw 72 is made of resin rather than metal, the occurrence of electrolytic corrosion between the connecting member 52 and the resin screw 72 can be prevented.

また、連結部材52と放熱部材30とは接触せず、両者の間には隙間が形成される。これにより、連結部材52を通じたハウジング20と放熱部材30との熱伝導を抑制すると共に、連結部材52と放熱部材30との間での電蝕の発生を防止できる。 In addition, the connecting member 52 and the heat dissipation member 30 do not come into contact with each other, and a gap is formed between them. This suppresses heat conduction between the housing 20 and the heat dissipation member 30 through the connecting member 52, and prevents the occurrence of electrolytic corrosion between the connecting member 52 and the heat dissipation member 30.

また、油圧シリンダ1のシリンダヘッド5に取り付けられるハウジング20及びハウジング20に取り付けられる第1熱伝導部材50は、シリンダヘッド5と同様の材質である鋼材によって形成される。また、放熱部材30及び第2熱伝導部材51は、熱伝導性に優れるアルミニウム系又は銅系材料で形成される。そして、第2熱伝導部材51は、第1熱伝導部材50よりも長い。このように、相対的に熱伝導率に優れた第2熱伝導部材51を第1熱伝導部材50よりも長く構成することで、熱発電装置100の発電効率を高めることができる。 The housing 20 attached to the cylinder head 5 of the hydraulic cylinder 1 and the first heat conduction member 50 attached to the housing 20 are made of steel, which is the same material as the cylinder head 5. The heat dissipation member 30 and the second heat conduction member 51 are made of an aluminum-based or copper-based material that has excellent thermal conductivity. The second heat conduction member 51 is longer than the first heat conduction member 50. In this way, by configuring the second heat conduction member 51, which has relatively excellent thermal conductivity, to be longer than the first heat conduction member 50, the power generation efficiency of the thermal power generation device 100 can be improved.

次に、本実施形態の変形例について説明する。以下のような変形例も本発明の範囲内であり、変形例に示す構成と上述の実施形態で説明した構成を組み合わせたり、以下の異なる変形例で説明する構成同士を組み合わせたりすることも可能である。 Next, modified examples of this embodiment will be described. The following modified examples are also within the scope of the present invention, and it is possible to combine the configuration shown in the modified example with the configuration described in the above embodiment, or to combine the configurations described in the different modified examples below.

熱伝導部材(第1熱伝導部材50,第2熱伝導部材51)は、ハウジング20又は放熱部材30とは別体に形成され、ハウジング20又は放熱部材30に取り付けられる部材を指すものであり、ハウジング20又は放熱部材30と一体に形成される(言い換えれば、熱伝導部材がハウジング20又は放熱部材30の一部である)形態を含むものではない。 The heat conducting members (first heat conducting member 50, second heat conducting member 51) refer to members that are formed separately from the housing 20 or heat dissipation member 30 and are attached to the housing 20 or heat dissipation member 30, and do not include a form in which the heat conducting members are formed integrally with the housing 20 or heat dissipation member 30 (in other words, the heat conducting members are part of the housing 20 or heat dissipation member 30).

また、第1熱伝導部材50及び第2熱伝導部材51は、両方設けられることが必須の構成ではなく、少なくとも一方が設けられていればよい。例えば、図6に示す変形例では、熱発電装置100は、第2熱伝導部材51を備える一方で、上記実施形態のような第1熱伝導部材50を備えておらず、熱電素子15は、接着剤55によってハウジング20に直接取り付けられる。また、図示は省略するが、熱発電装置100は、第1熱伝導部材50を備える一方で、第2熱伝導部材51を備えていないものでもよい。 In addition, it is not essential that both the first heat conducting member 50 and the second heat conducting member 51 are provided; it is sufficient that at least one of them is provided. For example, in the modified example shown in FIG. 6, the thermoelectric power generating device 100 includes the second heat conducting member 51 but does not include the first heat conducting member 50 as in the above embodiment, and the thermoelectric element 15 is directly attached to the housing 20 by adhesive 55. Although not shown in the figures, the thermoelectric power generating device 100 may include the first heat conducting member 50 but not the second heat conducting member 51.

また、連結部材52及び樹脂ねじ72は、必須の構成ではなく、ハウジング20と放熱部材30との連結にその他の手段が用いられてもよい。 In addition, the connecting member 52 and the plastic screw 72 are not essential components, and other means may be used to connect the housing 20 and the heat dissipation member 30.

また、上記実施形態では、熱発電装置100は、油圧シリンダ1で生じる油漏れを検知するセンサ装置101に利用される。これに対し、熱発電装置100は、センサ装置101に限定されず、その他の装置に利用されるものでもよい。 In addition, in the above embodiment, the thermoelectric power generation device 100 is used in a sensor device 101 that detects oil leakage occurring in the hydraulic cylinder 1. In contrast, the thermoelectric power generation device 100 is not limited to being used as a sensor device 101, and may be used in other devices.

以下、本発明の実施形態の構成、作用、及び効果をまとめて説明する。 The configuration, operation, and effects of the embodiment of the present invention are summarized below.

熱発電装置100は、互いに異なる金属からなるハウジング20及び放熱部材30と、ハウジング20及び放熱部材30のそれぞれに熱的に接続されハウジング20と放熱部材30との温度差に応じて起電力を生じる熱電素子15と、ハウジング20及び放熱部材30の一方に設けられ熱電素子15を支持する熱伝導部材(第1熱伝導部材50,第2熱伝導部材51)と、を備え、熱伝導部材は、当該熱伝導部材が設けられるハウジング20及び放熱部材30の一方と同じ金属からなる。 The thermoelectric power generation device 100 comprises a housing 20 and a heat dissipation member 30 made of different metals, a thermoelectric element 15 that is thermally connected to each of the housing 20 and the heat dissipation member 30 and generates an electromotive force in response to the temperature difference between the housing 20 and the heat dissipation member 30, and a heat conduction member (first heat conduction member 50, second heat conduction member 51) that is provided on one of the housing 20 and the heat dissipation member 30 and supports the thermoelectric element 15, and the heat conduction member is made of the same metal as one of the housing 20 and the heat dissipation member 30 on which the heat conduction member is provided.

また、熱発電装置100は、互いに異なる金属からなるハウジング20及び放熱部材30と、ハウジング20及び放熱部材30のそれぞれに熱的に接続されハウジング20と放熱部材30との温度差に応じて起電力を生じる熱電素子15と、ハウジング20に取り付けられ熱電素子15を支持する第1熱伝導部材50と、放熱部材30に取り付けられ第1熱伝導部材50と共に熱電素子15を支持する第2熱伝導部材51と、を備え、第1熱伝導部材50は、ハウジング20と同じ金属からなり、第2熱伝導部材51は、放熱部材30と同じ金属からなる。 The thermoelectric power generation device 100 also includes a housing 20 and a heat dissipation member 30 made of different metals, a thermoelectric element 15 that is thermally connected to the housing 20 and the heat dissipation member 30 and generates an electromotive force in response to the temperature difference between the housing 20 and the heat dissipation member 30, a first heat conduction member 50 attached to the housing 20 and supporting the thermoelectric element 15, and a second heat conduction member 51 attached to the heat dissipation member 30 and supporting the thermoelectric element 15 together with the first heat conduction member 50, where the first heat conduction member 50 is made of the same metal as the housing 20, and the second heat conduction member 51 is made of the same metal as the heat dissipation member 30.

これらの構成では、熱伝導部材は、ハウジング20に取り付けられる場合にはハウジング20と同じ材質とされ、放熱部材30に取り付けられる場合には放熱部材30と同じ材質とされる。このため、ハウジング20又は放熱部材30と熱伝導部材との間での電蝕の発生が抑制される。したがって、熱発電装置100の耐久性が向上する。 In these configurations, when the heat conducting member is attached to the housing 20, it is made of the same material as the housing 20, and when the heat conducting member is attached to the heat dissipation member 30, it is made of the same material as the heat dissipation member 30. This prevents electrolytic corrosion from occurring between the housing 20 or heat dissipation member 30 and the heat conducting member. This improves the durability of the thermoelectric generator 100.

また、熱発電装置100では、ハウジング20及び第1熱伝導部材50は、鋼材によって形成され、放熱部材30及び第2熱伝導部材51は、アルミニウム系又は銅系材料によって形成され、ハウジング20は、発熱源(油圧シリンダ1)に取り付けられ、放熱部材30は、放熱部材30の熱を大気に放熱するためのヒートシンクとして構成され、第1熱伝導部材50と第2熱伝導部材51とは、棒状に形成され、第2熱伝導部材51の長さL2は、第1熱伝導部材50の長さL1よりも長い。 In the thermal power generation device 100, the housing 20 and the first heat conducting member 50 are made of steel, the heat dissipation member 30 and the second heat conducting member 51 are made of aluminum or copper-based materials, the housing 20 is attached to the heat source (hydraulic cylinder 1), the heat dissipation member 30 is configured as a heat sink for dissipating heat from the heat dissipation member 30 to the atmosphere, the first heat conducting member 50 and the second heat conducting member 51 are formed in a rod shape, and the length L2 of the second heat conducting member 51 is longer than the length L1 of the first heat conducting member 50.

この構成では、相対的に熱伝導率に優れる第2熱伝導部材51を第1熱伝導部材50よりも長くなるように構成することで、熱発電装置100の発電効率を高めることができる。 In this configuration, the second heat conducting member 51, which has a relatively high thermal conductivity, is configured to be longer than the first heat conducting member 50, thereby improving the power generation efficiency of the thermoelectric power generating device 100.

また、熱発電装置100は、筒状に形成されハウジング20と放熱部材30とによって挟まれて設けられる樹脂製のスペーサ40をさらに備え、ハウジング20と放熱部材30とは、ハウジング20と放熱部材30とを断熱する樹脂製のスペーサ40を介して互いに連結される。 The thermoelectric generator 100 further includes a resin spacer 40 that is formed into a cylindrical shape and sandwiched between the housing 20 and the heat dissipation member 30, and the housing 20 and the heat dissipation member 30 are connected to each other via the resin spacer 40 that insulates the housing 20 and the heat dissipation member 30.

この構成では、スペーサ40によってハウジング20と放熱部材30とが断熱される共に、両者の直接の接触が回避されて電蝕の発生が防止される。 In this configuration, the spacer 40 insulates the housing 20 from the heat dissipation member 30, and prevents direct contact between the two, preventing the occurrence of electrolytic corrosion.

また、熱発電装置100は、ハウジング20及び放熱部材30の一方に設けられ雌ねじが形成される連結部材52と、連結部材52に螺合する雄ねじが形成され、ハウジング20及び放熱部材30の他方を挿通してハウジング20と放熱部材30とを連結する樹脂製の樹脂ねじ72と、をさらに備え、連結部材52と放熱部材30との間には隙間が形成され、互いに接触せずに離間している。 The thermoelectric generator 100 further includes a connecting member 52 that is provided on one of the housing 20 and the heat dissipation member 30 and has a female thread, and a resin screw 72 that is formed with a male thread that screws into the connecting member 52 and passes through the other of the housing 20 and the heat dissipation member 30 to connect the housing 20 and the heat dissipation member 30. A gap is formed between the connecting member 52 and the heat dissipation member 30, and they are separated from each other without touching each other.

この構成では、樹脂製の樹脂ねじ72によってハウジング20と放熱部材30とが連結されるため、金属製のねじ部材を利用することによる電蝕の発生が防止される。また、連結部材52と放熱部材30との接触による電蝕の発生が防止される。 In this configuration, the housing 20 and the heat dissipation member 30 are connected by resin screws 72, which prevents the occurrence of electrolytic corrosion caused by the use of metal screw members. In addition, the occurrence of electrolytic corrosion caused by contact between the connecting member 52 and the heat dissipation member 30 is prevented.

以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 Although the embodiments of the present invention have been described above, the above embodiments merely show some of the application examples of the present invention, and are not intended to limit the technical scope of the present invention to the specific configurations of the above embodiments.

1…油圧シリンダ(発熱源)、15…熱電変換素子、20…ハウジング(第1部材)、30…放熱部材(第2部材)、40…スペーサ(断熱部材)、50…第1熱伝導部材(熱伝導部材)、51…第2熱伝導部材(熱伝導部材)、52…連結部材(第1ねじ部材)、72…樹脂ねじ(第2ねじ部材)、100…熱発電装置 1...hydraulic cylinder (heat source), 15...thermoelectric conversion element, 20...housing (first member), 30...heat dissipation member (second member), 40...spacer (insulating member), 50...first heat conductive member (heat conductive member), 51...second heat conductive member (heat conductive member), 52...connecting member (first screw member), 72...plastic screw (second screw member), 100...thermoelectric power generation device

Claims (5)

互いに異なる金属からなる第1部材及び第2部材と、
前記第1部材及び前記第2部材のそれぞれに熱的に接続され前記第1部材と前記第2部材との温度差を電力に変換する熱電変換素子と、
前記第1部材に設けられ前記熱電変換素子を支持する第1熱伝導部材と、
前記第2部材に設けられ前記第1熱伝導部材と共に前記熱電変換素子を支持する第2熱伝導部材と、を備え、
前記第1熱伝導部材は、前記第1部材と同じ金属からなり、
前記第2熱伝導部材は、前記第2部材と同じ金属からなり、
前記第1熱伝導部材と前記第2熱伝導部材とは、棒状に形成され、それぞれの端部において前記熱電変換素子を支持することを特徴とする熱発電装置。
A first member and a second member made of different metals;
a thermoelectric conversion element thermally connected to each of the first member and the second member, the thermoelectric conversion element converting a temperature difference between the first member and the second member into electric power;
a first thermal conductive member provided on the first member and supporting the thermoelectric conversion element;
a second heat conducting member provided on the second member and supporting the thermoelectric conversion element together with the first heat conducting member,
the first thermally conductive member is made of the same metal as the first member;
the second thermally conductive member is made of the same metal as the second member;
A thermoelectric power generating device, characterized in that the first heat conducting member and the second heat conducting member are formed in a rod shape and support the thermoelectric conversion element at their respective ends .
前記第1部材は、発熱源に取り付けられ、
前記第2部材は、前記第2部材の熱を大気に放熱するためのヒートシンクとして構成され、
前記第2部材及び前記第2熱伝導部材は、前記第1熱伝導部材よりも熱伝導率が高い材料によって形成され、
前記第2熱伝導部材の長さは、前記第1熱伝導部材の長さよりも長いことを特徴とする請求項1に記載の熱発電装置。
The first member is attached to a heat source,
The second member is configured as a heat sink for dissipating heat of the second member to the atmosphere,
the second member and the second thermal conductive member are formed of a material having a higher thermal conductivity than the first thermal conductive member,
The thermoelectric power generating device according to claim 1 , wherein the second heat conducting member is longer in length than the first heat conducting member.
前記第1部材及び前記第1熱伝導部材は、鋼材によって形成され、
前記第2部材及び前記第2熱伝導部材は、アルミニウム系又は銅系材料によって形成され、
前記第1部材は、発熱源に取り付けられ、
前記第2部材は、前記第2部材の熱を大気に放熱するためのヒートシンクとして構成され、
前記第2熱伝導部材の長さは、前記第1熱伝導部材の長さよりも長いことを特徴とする請求項1に記載の熱発電装置。
the first member and the first thermal conductive member are formed of a steel material,
the second member and the second thermal conductive member are formed of an aluminum-based or copper-based material,
The first member is attached to a heat source,
The second member is configured as a heat sink for dissipating heat of the second member to the atmosphere,
The thermoelectric power generating device according to claim 1 , wherein the second heat conducting member is longer in length than the first heat conducting member.
筒状に形成され、前記第1部材と前記第2部材とに挟まれて設けられる樹脂製の断熱部材を備え、
前記第1部材と前記第2部材とは、前記断熱部材を介して互いに連結されることを特徴とする請求項1から3のいずれか一つに記載の熱発電装置。
a resin heat insulating member formed in a cylindrical shape and sandwiched between the first member and the second member;
4. The thermoelectric generator according to claim 1, wherein the first member and the second member are connected to each other via the heat insulating member.
前記第1部材及び前記第2部材の一方に設けられ雌ねじが形成される第1ねじ部材と、
前記第1ねじ部材の前記雌ねじに螺合する雄ねじが形成され、前記第1部材及び前記第2部材の他方を挿通して前記第1ねじ部材に螺合することで前記第1部材と前記第2部材とを連結する樹脂製の第2ねじ部材と、をさらに備え、
前記第1ねじ部材と前記第1部材及び前記第2部材の他方との間には隙間が形成され、互いに接触せずに離間していることを特徴とする請求項1から4のいずれか一つに記載の熱発電装置。
a first threaded member provided on one of the first member and the second member and having a female thread;
a second screw member made of resin, the second screw member having a male thread that screws into the female thread of the first screw member, and the second screw member being inserted through the other of the first member and the second member and screwed into the first screw member to connect the first member and the second member;
A thermoelectric generator according to any one of claims 1 to 4, characterized in that a gap is formed between the first screw member and the other of the first member and the second member, and the first screw member and the second member are spaced apart without contacting each other.
JP2020109806A 2020-06-25 2020-06-25 Thermoelectric power generation device Active JP7469967B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020109806A JP7469967B2 (en) 2020-06-25 2020-06-25 Thermoelectric power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020109806A JP7469967B2 (en) 2020-06-25 2020-06-25 Thermoelectric power generation device

Publications (2)

Publication Number Publication Date
JP2022007086A JP2022007086A (en) 2022-01-13
JP7469967B2 true JP7469967B2 (en) 2024-04-17

Family

ID=80110938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020109806A Active JP7469967B2 (en) 2020-06-25 2020-06-25 Thermoelectric power generation device

Country Status (1)

Country Link
JP (1) JP7469967B2 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050661A (en) 1998-07-23 2000-02-18 Nishinomiya Kinzoku Kogyo Kk Power generator
WO2006075571A1 (en) 2005-01-12 2006-07-20 Showa Denko K.K. Waste heat recovery system and thermoelectric conversion unit
JP2007019260A (en) 2005-07-07 2007-01-25 Toshiba Corp Thermoelectric conversion system
US20120192574A1 (en) 2009-07-17 2012-08-02 Uttam Ghoshal Heat Pipes And Thermoelectric Cooling Devices
JP2014008569A (en) 2012-06-29 2014-01-20 Nabtesco Corp Lubricant state sensor for industrial robot and industrial robot remote monitoring system
JP2019145656A (en) 2018-02-20 2019-08-29 昭和電工株式会社 Thermoelectric conversion device mounting method, thermoelectric conversion system, and thermoelectric conversion device
CN210183244U (en) 2019-09-18 2020-03-24 苏州启创新材料科技有限公司 Solar energy temperature difference power generation device
JP2020089211A (en) 2018-11-30 2020-06-04 株式会社Kelk Thermoelectric generation device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000050661A (en) 1998-07-23 2000-02-18 Nishinomiya Kinzoku Kogyo Kk Power generator
WO2006075571A1 (en) 2005-01-12 2006-07-20 Showa Denko K.K. Waste heat recovery system and thermoelectric conversion unit
JP2007019260A (en) 2005-07-07 2007-01-25 Toshiba Corp Thermoelectric conversion system
US20120192574A1 (en) 2009-07-17 2012-08-02 Uttam Ghoshal Heat Pipes And Thermoelectric Cooling Devices
JP2014008569A (en) 2012-06-29 2014-01-20 Nabtesco Corp Lubricant state sensor for industrial robot and industrial robot remote monitoring system
JP2019145656A (en) 2018-02-20 2019-08-29 昭和電工株式会社 Thermoelectric conversion device mounting method, thermoelectric conversion system, and thermoelectric conversion device
JP2020089211A (en) 2018-11-30 2020-06-04 株式会社Kelk Thermoelectric generation device
CN210183244U (en) 2019-09-18 2020-03-24 苏州启创新材料科技有限公司 Solar energy temperature difference power generation device

Also Published As

Publication number Publication date
JP2022007086A (en) 2022-01-13

Similar Documents

Publication Publication Date Title
KR100455924B1 (en) Cooling and Heating Apparatus Utlizing Thermoelectric Module
JP5751261B2 (en) Thermoelectric power generation unit
US8875779B2 (en) Heat dissipation element with mounting structure
CN102792034B (en) For connecting connection set and the electric control device of electrical assembly and housing parts
JP2009284659A (en) Motor unit
JPH10234194A (en) Waste-heat power generation apparatus
US20160252280A1 (en) Stirling refrigerator
JP7469967B2 (en) Thermoelectric power generation device
CN107509365B (en) Ultrathin microwave assembly and heat pipe radiating device
JP6021253B2 (en) Electronics
JP2014165360A (en) Servo amplifier including cooling structure part including heat sink
CN103999343A (en) Power conversion apparatus
US8985196B2 (en) Heat dissipation device with mounting structure
CN103947095A (en) Power converter
JP7421425B2 (en) thermal power generation device
WO2023179283A1 (en) Controller
WO2020110833A1 (en) Thermoelectric power generation device
US10184518B2 (en) Rotor bearing temperature sensor
CN109425156B (en) Liquid storage device assembly, compressor assembly and air conditioner
CN115037092A (en) Energy storage flywheel and energy storage equipment with interior vacuum environment capable of dissipating heat
US11018074B2 (en) Energy supply
JP7075309B2 (en) Sensor device
TWI672846B (en) Battery module
US20150343724A1 (en) Puncture Repair Device
JP2021099283A (en) Sensor device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230929

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231003

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240405

R150 Certificate of patent or registration of utility model

Ref document number: 7469967

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150