JP4832137B2 - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP4832137B2
JP4832137B2 JP2006091495A JP2006091495A JP4832137B2 JP 4832137 B2 JP4832137 B2 JP 4832137B2 JP 2006091495 A JP2006091495 A JP 2006091495A JP 2006091495 A JP2006091495 A JP 2006091495A JP 4832137 B2 JP4832137 B2 JP 4832137B2
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
lead terminal
conversion element
insulating substrate
end side
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006091495A
Other languages
Japanese (ja)
Other versions
JP2007266444A5 (en
JP2007266444A (en
Inventor
俊貴 坂本
憲彦 金塚
努 田牧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2006091495A priority Critical patent/JP4832137B2/en
Publication of JP2007266444A publication Critical patent/JP2007266444A/en
Publication of JP2007266444A5 publication Critical patent/JP2007266444A5/ja
Application granted granted Critical
Publication of JP4832137B2 publication Critical patent/JP4832137B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Description

本発明は、例えば光通信用のLD(レーザダイオード)光源、半導体製造装置、医療バイオ関連装置、高密度実装された盤内のクーラー、工業用レーザーの冷却等に用いられる熱電変換モジュールや、ゼーベック効果を利用して発電を行う熱電変換モジュールに関するものである。   The present invention includes, for example, an LD (laser diode) light source for optical communication, a semiconductor manufacturing apparatus, a medical bio-related apparatus, a cooler in a board mounted with high density, a thermoelectric conversion module used for cooling an industrial laser, Seebeck, etc. The present invention relates to a thermoelectric conversion module that generates power using the effect.

ペルチェモジュール等の熱電変換モジュールが、光通信分野等の様々な分野に用いられており、様々な熱電変換モジュールの構成が提案されている。ペルチェモジュールは、冷却も加熱もでき、精密な温度コントロール、高速冷却・加熱が可能、小型が可能、フロンガスを使用しない等の大きな長所があり、その適用は拡大している。   Thermoelectric conversion modules such as Peltier modules are used in various fields such as the optical communication field, and various configurations of thermoelectric conversion modules have been proposed. Peltier modules can be cooled and heated, and have significant advantages such as precise temperature control, high-speed cooling and heating, miniaturization, and the absence of chlorofluorocarbon.

には、代表的な熱電変換モジュールの構造の一例が示されている。この熱電変換モジュールはペルチェモジュールであり、図、図に示すような、複数の素子嵌合孔3を有する絶縁性基板(絶縁支持板)30の素子嵌合孔3に、熱電変換素子5(5a,5b)を貫通嵌合して形成されている(例えば特許文献1、2、参照。)。 FIG. 6 shows an example of the structure of a typical thermoelectric conversion module. The thermoelectric conversion module is a Peltier module, FIG. 5, as shown in FIG. 6, the element fitting hole 3 of the plurality insulating substrate having an element fitting hole 3 of the (insulating support plates) 30, the thermoelectric conversion element 5 (5a, 5b) is formed by penetrating and fitting (for example, see Patent Documents 1 and 2).

に示すようなペルチェモジュールの熱電変換素子5(5a,5b)は、ペルチェ素子として一般的に知られており、P型半導体により形成されたP型の熱電変換素子5aと、N型半導体により形成されたN型の熱電変換素子5bとを有する。P型およびN型の熱電変換素子5(5a,5b)は、例えば長さが0.5〜3.0mm程度のビスマス・テルル等の半導体単結晶で構成されている。例えば、P型の熱電変換素子5aにはアンチモンがドープされ、N型の熱電変換素子5bにはセレンがドープされる。 A thermoelectric conversion element 5 (5a, 5b) of a Peltier module as shown in FIG. 6 is generally known as a Peltier element, and a P-type thermoelectric conversion element 5a formed of a P-type semiconductor and an N-type semiconductor. And an N-type thermoelectric conversion element 5b. The P-type and N-type thermoelectric conversion elements 5 (5a, 5b) are made of a semiconductor single crystal such as bismuth tellurium having a length of about 0.5 to 3.0 mm, for example. For example, the P-type thermoelectric conversion element 5a is doped with antimony, and the N-type thermoelectric conversion element 5b is doped with selenium.

前記絶縁性基板30は、例えば厚さが0.2〜1.0mm程度の電気絶縁物の板、例えばガラスエポキシ板により構成されており、この絶縁性基板30の上下両側にそれぞれ、熱電変換素子5(5a,5b)が、例えば0.1〜1.6mm程度突出するように、P型の熱電変換素子5aとN型の熱電変換素子5bが、それぞれ、対応する素子嵌合孔3に貫通嵌合されて交互に配置されている。   The insulating substrate 30 is made of, for example, an electrically insulating plate having a thickness of about 0.2 to 1.0 mm, for example, a glass epoxy plate. Thermoelectric conversion elements are respectively provided on the upper and lower sides of the insulating substrate 30. 5 (5a, 5b) protrudes about 0.1 to 1.6 mm, for example, so that the P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b penetrate the corresponding element fitting holes 3, respectively. They are fitted and arranged alternately.

P型とN型の熱電変換素子5(5a,5b)の素子嵌合孔3への貫通方向の一端側(ここでは上側)と他端側(ここでは下側)には、それぞれ電極2が配置され、これらの電極2は、半田4を介して熱電変換素子5(5a,5b)に接合されている。   Electrodes 2 are respectively provided at one end side (upper side here) and the other end side (lower side here) of the P-type and N-type thermoelectric conversion elements 5 (5a, 5b) in the penetrating direction to the element fitting hole 3. These electrodes 2 are joined to thermoelectric conversion elements 5 (5a, 5b) via solder 4.

また、電極2は、対応するP型の熱電変換素子5aの端面とN型の熱電変換素子5bの端面と同一方向に伸張し、熱電変換素子5(5a,5b)の端面間に掛け渡して設けられ、前記P型とN型の熱電変換素子5(5a,5b)を直列に接続しており、これら熱電変換素子5(5a,5b)と電極2とによって熱電変換素子5(5a,5b)の回路(PN素子対)が形成されている。   The electrode 2 extends in the same direction as the end face of the corresponding P-type thermoelectric conversion element 5a and the end face of the N-type thermoelectric conversion element 5b, and spans between the end faces of the thermoelectric conversion elements 5 (5a, 5b). The P-type and N-type thermoelectric conversion elements 5 (5a, 5b) are connected in series, and the thermoelectric conversion elements 5 (5a, 5b) are connected by the thermoelectric conversion elements 5 (5a, 5b) and the electrode 2. ) Circuit (PN element pair).

熱電変換素子5(5a,5b)の回路の始端側に配置された電極2(2a)と終端側に配置された電極2(2b)には、それぞれカシメ端子等で形成された金属製のリード端子7の一端側が半田4により接続されて、該リード端子7の他端側は絶縁性基板30に固定されている。この固定部には前記熱電変換素子5(5a,5b)の回路と外部の電源回路等とを接続するリード線28の一端側が半田10によって固定されている。   Metal leads formed by crimping terminals or the like on the electrode 2 (2a) arranged on the start end side of the circuit of the thermoelectric conversion element 5 (5a, 5b) and the electrode 2 (2b) arranged on the end side, respectively. One end side of the terminal 7 is connected by the solder 4, and the other end side of the lead terminal 7 is fixed to the insulating substrate 30. One end side of a lead wire 28 connecting the circuit of the thermoelectric conversion element 5 (5a, 5b) and an external power supply circuit or the like is fixed to the fixing portion by solder 10.

この熱電変換モジュールにおいて、上記電源回路からリード線28とリード端子7を介して熱電変換素子5(5a,5b)の回路に電流を流すと、P型の熱電変換素子5aとN型の熱電変換素子5bに電極2を介して電流が流れて、熱電変換素子5(5a,5b)と電極2との接合部(界面)で冷却・加熱効果が生じる。つまり、前記接合部を流れる電流の方向によって熱電変換素子5(5a,5b)の一方の端部が発熱せしめられると共に他方の端部が冷却せしめられるいわゆるペルチェ効果が生じる。   In this thermoelectric conversion module, when a current is passed from the power supply circuit to the circuit of the thermoelectric conversion element 5 (5a, 5b) via the lead wire 28 and the lead terminal 7, the P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion are performed. A current flows through the element 5b via the electrode 2, and a cooling / heating effect is produced at the junction (interface) between the thermoelectric conversion element 5 (5a, 5b) and the electrode 2. That is, a so-called Peltier effect is generated in which one end portion of the thermoelectric conversion element 5 (5a, 5b) is heated while the other end portion is cooled depending on the direction of the current flowing through the junction.

このペルチェ効果によって熱電変換素子5(5a,5b)の一方の端部、例えば上端部が発熱せしめられると、この熱がペルチェモジュールの上側に設けられた部材に伝えられ、この部材の加熱が行われる。また、その逆に、ペルチェ効果によって熱電変換素子5(5a,5b)の例えば上端部が冷却せしめられると、ペルチェモジュールの上側に設けられた部材の冷却(吸熱)が行われる。   When one end, for example, the upper end, of the thermoelectric conversion element 5 (5a, 5b) is caused to generate heat by the Peltier effect, this heat is transmitted to a member provided on the upper side of the Peltier module, and this member is heated. Is called. On the contrary, when the upper end portion of the thermoelectric conversion element 5 (5a, 5b) is cooled by the Peltier effect, the member provided on the upper side of the Peltier module is cooled (heat absorption).

また、ペルチェモジュールの別の例として、図に示すように、上下に互いに間隔を介して対向配置された2枚の絶縁性基板16,17の対向面に複数の電極2を互いに間隔を介して形成または固着し、前記絶縁性基板16,17間に立設配置した複数の熱電変換素子5(5a,5b)の一端側と他端側を、それぞれ対応する前記電極2に半田等を用いて固着したタイプのモジュールがある。このタイプのペルチェモジュールにおいても、図に示したタイプのペルチェモジュールと同様の加熱・冷却動作が行われる。 Further, as another example of the Peltier module, as shown in FIG. 7 , a plurality of electrodes 2 are arranged on the opposing surfaces of two insulating substrates 16 and 17 that are opposed to each other with a gap therebetween. One end side and the other end side of the plurality of thermoelectric conversion elements 5 (5a, 5b) which are formed or fixed and are arranged upright between the insulating substrates 16 and 17 are respectively soldered to the corresponding electrodes 2. There is a fixed type module. Also in this type of Peltier module, the same heating and cooling operations as those of the type of Peltier module shown in FIG. 6 are performed.

特開平9−181362号公報JP-A-9-181362 特開平10−178216号公報JP-A-10-178216

ところで、図に示したような、絶縁性基板16,17と電極2と熱電変換素子5(5a,5b)とを固着して成る電極・基板固着型のペルチェモジュールは、モジュール寸法が大きくなるにつれ、その信頼性が著しく低下するという問題があった。 Incidentally, as shown in FIG. 7 , the electrode / substrate fixing type Peltier module in which the insulating substrates 16 and 17, the electrode 2, and the thermoelectric conversion element 5 (5 a, 5 b) are fixed increases the module size. As a result, there has been a problem that the reliability is remarkably lowered.

これは、ペルチェモジュールが前記ペルチェ効果によって熱電変換素子5(5a,5b)の一端側の面の温度を上げ、他端側の面の温度を下げる場合に、熱電変換素子5(5a,5b)や電極2の熱膨張収縮が発生するので、絶縁性基板16,17と電極2と熱電変換素子5(5a,5b)とが固着されていると、熱電変換素子5(5a,5b)と電極2との接続部が熱歪を吸収しきれなくなって、時に接続不良を起こすためである。   This is because when the Peltier module increases the temperature of the one end surface of the thermoelectric conversion element 5 (5a, 5b) and decreases the temperature of the other end surface by the Peltier effect, the thermoelectric conversion element 5 (5a, 5b). Since the thermal expansion and contraction of the electrode 2 and the electrode 2 occur, if the insulating substrates 16 and 17, the electrode 2, and the thermoelectric conversion element 5 (5 a, 5 b) are fixed, the thermoelectric conversion element 5 (5 a, 5 b) and the electrode This is because the connection portion with 2 cannot absorb the thermal strain and sometimes causes a connection failure.

それに対し、図に示したような、いわゆるスケルトンタイプと呼ばれているペルチェモジュールは、電極2が個々に独立しているので、熱電変換素子5(5a,5b)と電極2との接続部における熱歪が分散され、この接続部が熱ストレスを受けることが極めて少なくなる。そのため、図に示したような、電極・基板固着型のペルチェモジュールに比べると、図に示したようなタイプのペルチェモジュールは、はるかに長期的な信頼性を確保できるというメリットがある。 On the other hand, in the Peltier module called the so-called skeleton type as shown in FIG. 6 , since the electrodes 2 are independent from each other, the connection part between the thermoelectric conversion elements 5 (5 a, 5 b) and the electrode 2. The thermal strain is dispersed and the connection portion is extremely less subject to thermal stress. Therefore, as shown in FIG. 7, compared to the electrode-substrate fixed type Peltier module, the type of the Peltier module as illustrated in Figure 6, there is a merit that much can ensure long-term reliability.

なお、本発明者は、スケルトンタイプのペルチェモジュールにおいて、以下に示すような、熱歪みに対する耐久性能の試験を行い、従来のペルチェモジュールの使用温度における耐久性を調べた。この耐久性の試験は、図(a)の断面図に示すような実験系を用いて行っており、同図において、ペルチェモジュールには符号1を付してある。 In addition, the inventor conducted a durability test against thermal strain as shown below in a skeleton type Peltier module, and investigated the durability of the conventional Peltier module at the use temperature. The durability test is conducted using an experimental system as shown in the sectional view of FIG. 3 (a), in the figure, the Peltier module are denoted by the reference numeral 1.

同図に示すように、上記耐久性の試験は、ペルチェモジュール1を、熱伝導シート(図示せず)を介してヒートシンク20とアルミブロック21で挟み込み、アルミブロック21内にサーミスタ19を設けてアルミブロック21の温度を測定し、リード線28に流す電流を交互に反転させることにより、アルミブロック21の測温点の温度が、図(b)に示すような温度変化の周期で25℃〜80℃になるように、ペルチェモジュール1によるアルミブロック21の加熱・冷却を繰り返し行うものである。温度上昇は、ペルチェモジュール1にマイナスの直流電流を、温度下降はペルチェモジュールにプラスの直流電流を与えて行われる。 As shown in the figure, in the durability test, the Peltier module 1 is sandwiched between a heat sink 20 and an aluminum block 21 via a heat conductive sheet (not shown), and a thermistor 19 is provided in the aluminum block 21 to form aluminum. measuring the temperature of the block 21, by reversing the current applied to the lead wire 28 alternately, the temperature of the temperature measuring points of the aluminum block 21, 25 ° C. ~ in a cycle of temperature change as shown in FIG. 3 (b) The aluminum block 21 is repeatedly heated and cooled by the Peltier module 1 so that the temperature becomes 80 ° C. The temperature rise is performed by applying a negative DC current to the Peltier module 1 and the temperature decrease by applying a positive DC current to the Peltier module.

上記実験により得られた、ペルチェモジュール1の熱サイクルに対する代表的な耐久性を示すデータを図(a)に示す。この図において、横軸はサイクル数、縦軸はペルチェモジュール1の導体抵抗(熱電変換素子5(5a,5b)の回路の導体抵抗)を示す。熱サイクル数が増えても、導体抵抗は安定しており、熱サイクルに対する長期耐久性能があることが確認された。なお、耐久性に問題がある場合は、前記導体抵抗が増加し、最終的には熱電変換素子5(5a,5b)の回路の破断に至る。 The obtained experimentally, show data indicating typical durability against thermal cycle of the Peltier module 1 in Figure 4 (a). In this figure, the horizontal axis represents the number of cycles, and the vertical axis represents the conductor resistance of the Peltier module 1 (the conductor resistance of the circuit of the thermoelectric conversion elements 5 (5a, 5b)). It was confirmed that the conductor resistance was stable even when the number of thermal cycles increased, and that it had long-term durability against thermal cycles. When there is a problem in durability, the conductor resistance increases, and eventually the circuit of the thermoelectric conversion element 5 (5a, 5b) is broken.

しかしながら、近年、半導体分野等で、さらに温度範囲の厳しい条件が要求されており、例えば半導体チップの検査を行うハンドラー装置等では、温度範囲が−40〜+120℃程度が要求されるようになった。   However, in recent years, more severe conditions in the temperature range are required in the semiconductor field and the like. For example, in a handler apparatus for inspecting a semiconductor chip, a temperature range of about −40 to + 120 ° C. is required. .

そこで、本発明者は、熱歪みに対して、さらに厳しい熱サイクル試験をペルチェモジュール1に対して実施した。この実験は、図(a)に示した実験系を用い、アルミブロック21の測温点の温度が、図(b)に示した周期と同じ周期で−40℃〜+120℃になるように、ペルチェモジュール1によるアルミブロック21の加熱・冷却を繰り返し行ったものである。 Therefore, the inventor conducted a more severe thermal cycle test on the Peltier module 1 against thermal distortion. This experiment using the experimental system shown in FIG. 3 (a), so that the temperature of the temperature measuring points of the aluminum block 21, becomes -40 ℃ ~ + 120 ℃ in the same cycle as that shown in FIG. 3 (b) In addition, the aluminum block 21 is repeatedly heated and cooled by the Peltier module 1.

その結果を図(b)に示す。この試験の結果、約6200サイクル付近から熱電変換素子5(5a,5b)の回路の導体抵抗が増加し、約6700サイクルで、熱電変換素子5(5a,5b)の回路の破断に至った。 The results are shown in Figure 4 (b). As a result of this test, the conductor resistance of the circuit of the thermoelectric conversion element 5 (5a, 5b) increased from about 6200 cycles, and the circuit of the thermoelectric conversion element 5 (5a, 5b) was broken in about 6700 cycles.

そして、破断箇所を調べたところ、破断箇所は、リード端子7に接続されている電極2a,2bと、電極2a,2bに半田4で接続された熱電変換素子5(5a,5b)との接続部であった。これは、金属製のリード端子7が熱サイクルに応じて伸張・収縮を繰り返し、その歪みが電極2a,2bを介して電極2a,2bと熱電変換素子5との接続部に過大な応力が加わり、破断したものである。   And when the fracture | rupture location was investigated, a fracture location is the connection of the electrodes 2a and 2b connected to the lead terminal 7, and the thermoelectric conversion element 5 (5a and 5b) connected to the electrodes 2a and 2b with the solder 4. Was part. This is because the metal lead terminal 7 repeatedly expands and contracts in accordance with the thermal cycle, and the distortion causes excessive stress to be applied to the connection portion between the electrodes 2a and 2b and the thermoelectric conversion element 5 via the electrodes 2a and 2b. It has been broken.

つまり、このタイプのペルチェモジュール1において、熱電変換素子5にはそれぞれ半田付けのみで電極2が固定されているだけであり、熱電変換素子5(5a,5b)の回路の始端側と終端側の電極2a,2bには、柔軟性に乏しく、しかも、熱膨張収縮の割合が大きいリード端子7が直接半田付けされているため、熱電変換素子5(5a,5b)および絶縁性基板30の熱膨張収縮の割合とリード端子7の熱膨張収縮の割合との違い等に起因して、リード端子7に接続されている電極2a,2bと、該電極2a,2bに接続された熱電変換素子5(5a,5b)との接続部に大きな応力がかかり、この接続部で断線が生じやすいと考えられる。   That is, in this type of Peltier module 1, the electrodes 2 are only fixed to the thermoelectric conversion elements 5 only by soldering, and the start side and the end side of the circuit of the thermoelectric conversion elements 5 (5a, 5b). Since the electrodes 2a and 2b are soldered directly to the lead terminals 7 which are poor in flexibility and have a high rate of thermal expansion and contraction, the thermal expansion of the thermoelectric conversion elements 5 (5a and 5b) and the insulating substrate 30 is performed. Due to the difference between the shrinkage ratio and the thermal expansion / shrinkage ratio of the lead terminal 7, the electrodes 2a, 2b connected to the lead terminal 7 and the thermoelectric conversion element 5 (connected to the electrodes 2a, 2b) It is considered that a large stress is applied to the connection portion with 5a, 5b), and disconnection is likely to occur at this connection portion.

また、スケルトンタイプのペルチェモジュールにおいて、例えばペルチェモジュールの持ち運びや取り付け時に、リード端子7に機械的応力が加えられたときにも、リード端子7に接続されている電極2a,2bと、該電極2a,2bに接続された熱電変換素子5(5a,5b)との接続部に大きな応力がかかる可能性があるので、本発明者は、ペルチェモジュールの信頼性を高めるためには、リード端子7に加えられる機械的応力にも、上記熱変動にも強い構成が必要であると考えた。   Further, in the skeleton type Peltier module, for example, when mechanical stress is applied to the lead terminal 7 when the Peltier module is carried or attached, the electrodes 2a and 2b connected to the lead terminal 7 and the electrode 2a , 2b, a large stress may be applied to the connection portion with the thermoelectric conversion element 5 (5a, 5b). Therefore, in order to increase the reliability of the Peltier module, the present inventor It was considered that a structure strong against the applied mechanical stress and the above-described thermal fluctuation was necessary.

本発明は、上記課題を解決するために成されたものであり、その目的は、例えば−40℃〜+120℃といった広範囲の温度変化が生じても、リード端子に多少の機械的応力が加えられたりしても、リード端子に接続されている電極と、該電極に接続された熱電変換素子との接続部が破断することを防止でき、長期信頼性の高い熱電変換モジュールを提供することにある。   The present invention has been made to solve the above-described problems, and its purpose is to apply some mechanical stress to the lead terminals even when a wide range of temperature changes, for example, −40 ° C. to + 120 ° C. occurs. In other words, it is possible to prevent the connection portion between the electrode connected to the lead terminal and the thermoelectric conversion element connected to the electrode from being broken, and to provide a thermoelectric conversion module with high long-term reliability. .

上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、第1の発明は、複数の素子嵌合孔を形成した絶縁性基板を有し、P型とN型の熱電変換素子が前記絶縁性基板の対応する素子嵌合孔にそれぞれ貫通嵌合されて貫通方向の一端側と他端側がそれぞれ前記絶縁性基板から突き出しており、前記熱電変換素子の素子嵌合孔への貫通方向の一端側と他端側にはそれぞれ、対応する前記P型の熱電変換素子の端面と前記N型の熱電変換素子の端面間に掛け渡して前記P型とN型の熱電変換素子を直列に接続する複数の電極が形成されており、これらの電極と前記P型の熱電変換素子とN型の熱電変換素子とによって熱電変換素子の回路が形成されており、該熱電変換素子の回路の始端側と終端側に配置された熱電変換素子の電極はその電極面の一端側に熱電変換素子の端面が接続固定され該電極面の他端側にはそれぞれリード端子の一端側が接続されて該リード端子の他端側は前記絶縁性基板に固定されて該リード端子の他端側に外部のリード線が接続される構成と成しており、前記リード端子の一端側から他端側に至る途中位置となる前記絶縁性基板の部位には前記リード端子が隙間を有して貫通するリード端子貫通用の孔が形成され、前記リード端子は前記熱電変換素子の端面が接続固定された電極面との接続位置の一端側から前記絶縁性基板に向って伸長して前記リード端子貫通用の孔を非固定の状態で貫通して前記絶縁性基板から突き出し伸長した後に屈曲部と撓み部の少なくとも一方を介して前記絶縁性基板に向けて折り返してその折り返しの端部となる他端側が前記絶縁性基板に固定されており、前記リード端子の、一端側からリード端子貫通用の孔を通り前記屈曲部と撓み部の少なくとも一方を介して折り返してリード端子の他端側に至る区間熱電変換モジュールの熱変動に伴う前記熱電変換素子の伸縮変位および前記絶縁性基板の伸縮変位に応じて、さらにはリード端子に機械的応力が加えられたときの荷重に応じて、前記リード端子自身が変形することで、該リード端子に接続されている電極と該電極に接続された前記熱電変換素子との接続部に生じる応力を緩和する応力緩和構成形成ている構成をもって課題を解決する手段としている。 In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first invention has an insulating substrate in which a plurality of element fitting holes are formed, and P-type and N-type thermoelectric conversion elements are respectively fitted through the corresponding element fitting holes of the insulating substrate. One end side and the other end side in the penetrating direction protrude from the insulating substrate , respectively, and one end side and the other end side in the penetrating direction to the element fitting hole of the thermoelectric conversion element respectively correspond to the corresponding P type A plurality of electrodes are formed between the end face of the thermoelectric conversion element and the end face of the N-type thermoelectric conversion element to connect the P-type and N-type thermoelectric conversion elements in series. The circuit of the thermoelectric conversion element is formed by the P-type thermoelectric conversion element and the N-type thermoelectric conversion element, and the electrodes of the thermoelectric conversion elements arranged on the start end side and the end end side of the circuit of the thermoelectric conversion element are the electrodes. The end face of the thermoelectric conversion element is connected and fixed to one end side of the face. The other end of the pole surface is connected to one end of the lead terminals each constituting the external lead wire to the other end of the other end of said lead terminal is fixed to the insulating substrate said lead terminals are connected The lead terminal penetrating hole through which the lead terminal penetrates with a gap is formed in a portion of the insulating substrate that is in the middle from the one end side to the other end side of the lead terminal. The lead terminal extends from one end side of the connection position with the electrode surface to which the end face of the thermoelectric conversion element is connected and fixed toward the insulating substrate and penetrates the lead terminal penetration hole in an unfixed state. Then, after protruding and extending from the insulating substrate, the other end side that is turned to the insulating substrate through at least one of the bent portion and the bent portion and becomes the folded end portion is fixed to the insulating substrate. , Of the lead terminal, Section extending from the end side to the other end of the lead terminal is folded over at least one of the flexures as the bent portion of the holes for through-lead terminal, expansion and contraction of the thermoelectric conversion element due to thermal fluctuations in the thermoelectric conversion module The lead terminal itself is deformed according to the displacement and the expansion / contraction displacement of the insulating substrate, and further according to the load when mechanical stress is applied to the lead terminal, so that the lead terminal is connected to the lead terminal. A configuration in which a stress relaxation configuration is formed to relieve stress generated at a connection portion between the electrode and the thermoelectric conversion element connected to the electrode is a means for solving the problem.

本発明は、絶縁性基板の対応する素子嵌合孔にそれぞれ貫通嵌合された熱電変換素子の素子嵌合孔への貫通方向の一端側と他端側にはそれぞれ、P型とN型の熱電変換素子を直列に接続する複数の電極が形成されて、これらの電極と前記P型の熱電変換素子とN型の熱電変換素子とによって熱電変換素子の回路が形成されているが、該熱電変換素子の回路の始端側に配置された電極と終端側に配置された電極にそれぞれ接続されたリード端子には、リード端子に接続されている電極と該電極に接続された前記熱電変換素子との接続部に生じる応力を緩和する応力緩和構成が形成されている。   The present invention provides a P-type and an N-type on one end side and the other end side in the penetrating direction to the element fitting hole of the thermoelectric conversion element respectively fitted and fitted to the corresponding element fitting hole of the insulating substrate. A plurality of electrodes for connecting the thermoelectric conversion elements in series are formed, and a circuit of the thermoelectric conversion element is formed by these electrodes, the P-type thermoelectric conversion element, and the N-type thermoelectric conversion element. The lead terminal connected to the electrode arranged on the start side and the electrode arranged on the end side of the circuit of the conversion element respectively includes an electrode connected to the lead terminal and the thermoelectric conversion element connected to the electrode A stress relaxation structure is formed to relieve stress generated in the connection portion.

この応力緩和構成は、リード端子に加えられる熱電変換モジュールの熱変動に伴う前記熱電変換素子及び絶縁性基板の伸縮変位に応じて、更にはリード端子に機械的応力が加えられたときの荷重に応じて、リード端子自身を変形させることにより、リード端子に接続されている電極と該電極に接続された熱電変換素子との接続部に生じる応力の緩和を行い、前記リード端子に接続されている電極と該電極に接続された前記熱電変換素子との接続部に生じる応力を緩和するものである。   This stress relaxation configuration is applied to the load when mechanical stress is applied to the lead terminal according to the expansion / contraction displacement of the thermoelectric conversion element and the insulating substrate accompanying the thermal fluctuation of the thermoelectric conversion module applied to the lead terminal. Accordingly, the lead terminal itself is deformed to relieve stress generated in the connection portion between the electrode connected to the lead terminal and the thermoelectric conversion element connected to the electrode, and is connected to the lead terminal. The stress generated in the connection portion between the electrode and the thermoelectric conversion element connected to the electrode is relieved.

この応力緩和構成を設けることにより、本発明の熱電変換モジュールは、広範囲の温度変化が生じても、この温度変化に伴う熱電変換素子および絶縁性基板の伸縮変位量とリード端子における絶縁性基板の固定部と電極接続部との高さ方向および長さ方向の変位量の差を小さくすることができるし、リード端子に機械的応力が加えられても、そのときにリード端子自身が変形して、リード端子に接続されている電極と、該電極に接続された熱電変換素子との接続部に生じる応力を的確に緩和でき、前記接続部が破断することを防止できる。   By providing this stress relaxation configuration, the thermoelectric conversion module according to the present invention is capable of expanding and contracting the thermoelectric conversion element and the insulating substrate accompanying the temperature change and the insulating substrate in the lead terminal even if a wide range of temperature changes occur. The difference in displacement in the height direction and length direction between the fixed part and the electrode connection part can be reduced, and even if mechanical stress is applied to the lead terminal, the lead terminal itself is deformed at that time. The stress generated in the connection portion between the electrode connected to the lead terminal and the thermoelectric conversion element connected to the electrode can be relaxed accurately, and the connection portion can be prevented from breaking.

つまり、従来の熱電変換モジュールにおいては、熱電変換モジュールに大きな温度変化が生じると、熱電変換素子および絶縁性基板の熱膨張収縮の割合とリード端子の熱膨張収縮の割合との違い等に起因して、リード端子に接続されている電極と、該電極に接続された熱電変換素子との接続部に大きな応力がかかり、また、リード端子に機械的な応力が加わると、同様に、リード端子に接続されている電極と、該電極に接続された熱電変換素子との接続部に大きな応力がかかり、前記接続部で破断が生じやすかったと考えられる。   In other words, in a conventional thermoelectric conversion module, when a large temperature change occurs in the thermoelectric conversion module, it is caused by a difference in the rate of thermal expansion and contraction of the thermoelectric conversion element and the insulating substrate and the rate of thermal expansion and contraction of the lead terminal. When a large stress is applied to the connection portion between the electrode connected to the lead terminal and the thermoelectric conversion element connected to the electrode, and when mechanical stress is applied to the lead terminal, It is considered that a large stress was applied to the connection portion between the connected electrode and the thermoelectric conversion element connected to the electrode, and the connection portion was easily broken.

それに対し、本発明の熱電変換モジュールは、リード端子自身が変形することにより、前記の如く、リード端子に接続されている電極と、該電極に接続された熱電変換素子との接続部に大きな応力がかかることを防止できるので、温度変動に伴う熱電変換素子の回路の破断を抑制でき、長期信頼性の高い熱電変換モジュールを実現することができる。   On the other hand, in the thermoelectric conversion module of the present invention, as the lead terminal itself is deformed, as described above, a large stress is applied to the connection portion between the electrode connected to the lead terminal and the thermoelectric conversion element connected to the electrode. Therefore, it is possible to suppress breakage of the circuit of the thermoelectric conversion element due to temperature fluctuation, and to realize a thermoelectric conversion module with high long-term reliability.

また、応力緩和構成を、リード端子の長手方向に撓み部と屈曲部の少なくとも一方を1つ以上形成して成る構成としたので、リード端子が熱により膨張収縮すると、それに伴い、リード端子が撓み部や屈曲部で変形することによって、上記応力緩和効果を奏することができる。 Also, the stress relaxation structure, since the bending portion in the longitudinal direction of the lead terminal and at least one of formed by forming one or more configuration of the bent portion, the lead terminal expands and contracts by heat, accordingly, deflection lead terminal The stress relieving effect can be obtained by deforming at the bent portion or the bent portion.

以下、本発明の実施の形態を、図面を参照して説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略又は簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are assigned to the same names as those in the conventional example, and the duplicate description is omitted or simplified.

図1には、本発明に係る熱電変換モジュールの第1実施形態例が模式的な断面図により示されている。本実施形態例の熱電変換モジュールはペルチェモジュールであり、本実施形態例も、図に示したようなスケルトンタイプのペルチェモジュールと同様に、互いに間隔を介して複数の素子嵌合孔3が形成された絶縁性基板30を有しており、絶縁性基板30は、厚さ6mmのガラスエポキシ製である。 FIG. 1 is a schematic sectional view showing a first embodiment of a thermoelectric conversion module according to the present invention. The thermoelectric conversion module of the embodiment is a Peltier module, the present embodiment also, similarly to the Peltier module skeleton type as shown in FIG. 6, a plurality of elements fitting hole 3 through a distance from each other forming The insulating substrate 30 is made of glass epoxy having a thickness of 6 mm.

また、本実施形態例でも、従来例と同様に、それぞれの素子嵌合孔3には、対応する熱電変換素子5(5a,5b)が貫通嵌合固定されており、各熱電変換素子5(5a,5b)は、基板面方向の断面が2mm×2mmの正方形状で、その高さは2.3mmである。   Also in the present embodiment example, similarly to the conventional example, the corresponding thermoelectric conversion elements 5 (5a, 5b) are fitted and fixed to the respective element fitting holes 3, and each thermoelectric conversion element 5 ( 5a, 5b) is a square shape with a cross section in the substrate surface direction of 2 mm × 2 mm, and its height is 2.3 mm.

本実施形態例の特徴的なことは、ペルチェモジュール1の熱変動に伴う熱電変換素子5(5a,5b)の伸縮変位および絶縁性基板30の伸縮変位に応じて、更にはリード端子7に機械的応力が加えられた荷重に応じて、リード端子7自身を変形させ、リード端子7に接続されている電極2a,2bと該電極2a,2bに接続された熱電変換素子5(5a,5b)との接続部に生じる応力を緩和する応力緩和構成8を、リード端子7に形成したことである。   The characteristic feature of the present embodiment is that the lead terminal 7 is further mechanically moved according to the expansion / contraction displacement of the thermoelectric conversion element 5 (5a, 5b) and the expansion / contraction displacement of the insulating substrate 30 due to the thermal fluctuation of the Peltier module 1. The lead terminal 7 itself is deformed in accordance with the load to which the mechanical stress is applied, and the electrodes 2a and 2b connected to the lead terminal 7 and the thermoelectric conversion elements 5 (5a and 5b) connected to the electrodes 2a and 2b That is, the stress relaxation structure 8 is formed on the lead terminal 7 to relieve the stress generated in the connection portion.

本実施形態例において、リード端子7は真鍮製であり、前記応力緩和構成8は、それぞれのリード端子7の長手方向に互いに間隔を介して形成した複数(ここでは2個)の屈曲部(折り返し部)9により形成されている。リード端子7は、幅が4mm、厚さが0.3mmの板状であり、屈曲部9による折り返し高さ(熱電変換素子5の高さ方向の長さ)は2mmと成している。   In this embodiment, the lead terminal 7 is made of brass, and the stress relaxation structure 8 includes a plurality of (here, two) bent portions (folded back) formed at intervals in the longitudinal direction of each lead terminal 7. Part) 9. The lead terminal 7 has a plate shape with a width of 4 mm and a thickness of 0.3 mm, and the folding height by the bent portion 9 (the length in the height direction of the thermoelectric conversion element 5) is 2 mm.

2つのリード端子7は、いずれも、長手方向に応力緩和構成8を設けた構造であり、その一端側がそれぞれ、前記絶縁性基板30より下側に配置された電極2a,2bに接続され、2つの屈曲部9から成る応力緩和構成8が素子嵌合孔3を通して絶縁性基板30の上側に突出した後、他端側が絶縁性基板30の下側に半田10を介して固定され、リード線28と接続されている。なお、リード端子7は、素子嵌合孔3に固定されずに挿入されている。   Each of the two lead terminals 7 has a structure in which the stress relaxation structure 8 is provided in the longitudinal direction, and one end side thereof is connected to the electrodes 2a and 2b disposed below the insulating substrate 30, respectively. After the stress relaxation structure 8 including the two bent portions 9 protrudes to the upper side of the insulating substrate 30 through the element fitting hole 3, the other end side is fixed to the lower side of the insulating substrate 30 via the solder 10, and the lead wire 28. Connected with. The lead terminal 7 is inserted in the element fitting hole 3 without being fixed.

本実施形態例は以上のように構成されており、本実施形態例も図に示したような従来の熱電変換モジュールと同様に、加熱冷却動作を行うが、本実施形態例において、リード端子7には、2つの屈曲部9を有する応力緩和構成8が形成されており、リード端子7が熱により膨張すると、それに伴い、例えば図2(a)に示すように、リード端子7が屈曲部9で変形し、リード端子7が熱により収縮すると、それに伴い、例えば図2(b)に示すように、リード端子7が屈曲部9で変形する。 This embodiment is constructed as described above, the present embodiment also as in the conventional thermoelectric conversion module shown in FIG. 6, performs the heating and cooling operation, in the present embodiment, the lead terminal 7 is formed with a stress relaxation structure 8 having two bent portions 9. When the lead terminal 7 expands due to heat, the lead terminal 7 is bent, for example, as shown in FIG. When the lead terminal 7 is deformed at 9 and contracts due to heat, the lead terminal 7 is deformed at the bent portion 9 as shown in FIG.

このことによって、本実施形態例は、熱電変換素子5(5a,5b)および絶縁性基板30の変位量とリード端子7の変位量の差を吸収でき、接合点の半田4及び半田10に特段の応力がかかることなく、リード端子7の高さHを、常に、熱電変換素子5(5a,5b)の絶縁性基板30からの下側への突出高さとほぼ同等の値に、リード端子7の、電極2a,2bとの接続部と絶縁性基板30との固定部との間の長さLを、常に、この間の絶縁性基板30の長さとほぼ同等の値にできる。   Thus, the present embodiment can absorb the difference between the displacement amount of the thermoelectric conversion element 5 (5a, 5b) and the insulating substrate 30 and the displacement amount of the lead terminal 7, and is specially applied to the solder 4 and the solder 10 at the junction point. The lead terminal 7 is always made to have a height H substantially equal to the height of the thermoelectric conversion element 5 (5a, 5b) protruding downward from the insulating substrate 30. The length L between the connection portion of the electrodes 2a and 2b and the fixed portion of the insulating substrate 30 can always be set to a value substantially equal to the length of the insulating substrate 30 therebetween.

つまり、本実施形態例では、ペルチェモジュールの熱変動に伴う熱電変換素子5(5a,5b)および絶縁性基板30の伸縮変位に応じて、リード端子7が屈曲部9で変形することによって、リード端子7における絶縁性基板30の固定部と電極接続部との高さおよび長さ方向の距離を追従変位させることができるので、リード端子7に接続されている電極2a,2bと該電極2a,2bに接続された前記熱電変換素子5(5a,5b)との接続部に生じる応力を緩和することができ、この接続部が破断することを防止することができる。   That is, in this embodiment, the lead terminal 7 is deformed at the bent portion 9 in accordance with the expansion / contraction displacement of the thermoelectric conversion element 5 (5a, 5b) and the insulating substrate 30 due to the thermal fluctuation of the Peltier module, so that the lead Since the distance between the fixed portion of the insulating substrate 30 and the electrode connecting portion in the terminal 7 and the distance in the length direction can be displaced, the electrodes 2a, 2b connected to the lead terminal 7 and the electrodes 2a, 2a, The stress generated in the connection portion with the thermoelectric conversion element 5 (5a, 5b) connected to 2b can be relaxed, and the connection portion can be prevented from breaking.

また、リード端子7に、例えばペルチェモジュールの持ち運び時等に上下方向に機械的応力が加えられたときには、屈曲部9が屈曲して、リード端子7の熱電変換素子高さ方向の変位量を小さくでき、リード端子7の高さHを、常に、熱電変換素子5(5a,5b)の絶縁性基板30からの下側への突出高さに近い値にできる。   Further, when a mechanical stress is applied to the lead terminal 7 in the vertical direction, for example, when carrying the Peltier module, the bent portion 9 is bent, and the displacement amount of the lead terminal 7 in the height direction of the thermoelectric conversion element is reduced. The height H of the lead terminal 7 can always be a value close to the height of the thermoelectric conversion element 5 (5a, 5b) protruding downward from the insulating substrate 30.

また、例えばペルチェモジュールを装置などに組み込む際、リード線28が引っ張られてリード端子7の長手方向に機械的応力が加えられたときには、屈曲部9が屈曲して、半田4および半田10に発生する応力を緩和できる。   Further, for example, when the Peltier module is incorporated in a device or the like, when the lead wire 28 is pulled and mechanical stress is applied in the longitudinal direction of the lead terminal 7, the bent portion 9 is bent and is generated in the solder 4 and the solder 10. To relieve stress.

したがって、本実施形態例の熱電変換モジュールは、熱変動に伴う熱電変換素子5(5a,5b)の回路の破断を抑制可能で、多少の機械的応力付与にも強い、長期信頼性の高い熱電変換モジュールを実現することができる。   Therefore, the thermoelectric conversion module of the present embodiment can suppress breakage of the circuit of the thermoelectric conversion element 5 (5a, 5b) due to thermal fluctuation, and is resistant to applying some mechanical stress, and has high long-term reliability. A conversion module can be realized.

なお、本発明は上記実施形態例に限定されることはなく、様々な実施の態様を採り得る。例えば、上記第1実施形態例では、それぞれのリード端子7に2つの屈曲部9を形成したが、屈曲部9の形成個数は特に限定されるものでなく適宜設定されるものであり、例えば屈曲部9は1つのみ形成してもよいし、3つ以上形成してもよい。また、屈曲部9の代わりに撓み部をリード端子7の長手方向に互いに間隔を介して1つ以上形成してもよいし、屈曲部9と撓み部の両方を1つ以上形成してもよい。 In addition, this invention is not limited to the said embodiment example, Various aspects can be taken. For example, in the first implementation embodiment has formed the respective lead terminals 7 to the two bent portions 9, formed the number of the bent portion 9 is intended to be appropriately set not particularly limited, for example, Only one bent portion 9 may be formed, or three or more bent portions 9 may be formed. Further, instead of the bent portion 9, one or more bent portions may be formed in the longitudinal direction of the lead terminal 7 with a space therebetween, or one or more of the bent portion 9 and the bent portion may be formed. .

さらに、上記各実施形態例では、絶縁性基板30はその平面形状を矩形状に形成したが、絶縁性基板30の形状は特に限定されるものでなく、適宜設定されるものであり、例えば平面形状を略円形状としてもよい。また、絶縁性基板30の形成材料も特に限定されるものでなく、適宜設定されるものである。   Further, in each of the above embodiments, the planar shape of the insulating substrate 30 is formed in a rectangular shape. However, the shape of the insulating substrate 30 is not particularly limited and is appropriately set. The shape may be a substantially circular shape. Further, the material for forming the insulating substrate 30 is not particularly limited, and is appropriately set.

さらに、上記実施形態例では、熱電変換素子5(5a,5b)を断面形状が矩形状の素子としたが、熱電変換素子5(5a,5b)の形状は特に限定されるものでなく、適宜設定されるものであり、例えば、その断面形状が円形状の素子としてもよいし、他の形状の素子としてもよいし、その形成材料も、例えばシリコン系の材料等、適宜設定されるものである。   Furthermore, in the above embodiment, the thermoelectric conversion element 5 (5a, 5b) is an element having a rectangular cross-sectional shape, but the shape of the thermoelectric conversion element 5 (5a, 5b) is not particularly limited, and may be appropriately selected. For example, the cross-sectional shape may be an element having a circular shape, or an element having another shape, and the formation material thereof may be appropriately set, for example, a silicon-based material. is there.

さらに、上記説明は熱電変換モジュールとしてのペルチェモジュールの構造について例を挙げて説明したが、本発明の熱電変換モジュールの構造は、ゼーベック効果を利用して発電を行う熱電変換モジュールの構造にも適用できる。   Furthermore, although the above description has been given by taking an example of the structure of the Peltier module as the thermoelectric conversion module, the structure of the thermoelectric conversion module of the present invention is also applicable to the structure of a thermoelectric conversion module that generates power using the Seebeck effect. it can.

本発明に係る熱電変換モジュールの第1実施形態例を模式的に示す説明図である。It is explanatory drawing which shows typically the 1st Example of the thermoelectric conversion module which concerns on this invention. 上記実施形態例の熱電変換モジュールの熱変動に伴うリード端子の変形動作を、その変形量を大きく誇張図示して模式的に示す説明図である。It is explanatory drawing which shows the deformation | transformation operation | movement of the lead terminal accompanying the thermal fluctuation of the thermoelectric conversion module of the said embodiment example, exaggeratingly showing the deformation amount greatly. ペルチェモジュールの温度変動による耐久試験の実験系を示す説明図(a)と、この実験系により変化させる温度変化を示すグラフ(b)である。It is explanatory drawing (a) which shows the experimental system of the endurance test by the temperature fluctuation of a Peltier module, and the graph (b) which shows the temperature change changed with this experimental system. ペルチェモジュールの温度変動による耐久試験の結果例を示すグラフである。It is a graph which shows the example of a result of the endurance test by the temperature fluctuation of a Peltier module. 熱電変換モジュールに適用される絶縁性基板の平面構成例を示す説明図である。It is explanatory drawing which shows the plane structural example of the insulating board | substrate applied to a thermoelectric conversion module. 従来のスケルトン型ペルチェモジュールの一例を側面図により示す説明図である。It is explanatory drawing which shows an example of the conventional skeleton type | mold Peltier module with a side view. 従来のペルチェモジュールの他の例を側面図により示す説明図である。It is explanatory drawing which shows the other example of the conventional Peltier module with a side view.

符号の説明Explanation of symbols

2 電極
3 素子嵌合孔
5,5a,5b 熱電変換素子
6 切り欠き部
7 リード端子
8 応力緩和構成
9 屈曲部
28 リード線
30 絶縁性基板
2 Electrode 3 Element fitting hole 5, 5a, 5b Thermoelectric conversion element 6 Notch part 7 Lead terminal 8 Stress relaxation structure 9 Bending part 28 Lead wire 30 Insulating substrate

Claims (1)

複数の素子嵌合孔を形成した絶縁性基板を有し、P型とN型の熱電変換素子が前記絶縁性基板の対応する素子嵌合孔にそれぞれ貫通嵌合されて貫通方向の一端側と他端側がそれぞれ前記絶縁性基板から突き出しており、前記熱電変換素子の素子嵌合孔への貫通方向の一端側と他端側にはそれぞれ、対応する前記P型の熱電変換素子の端面と前記N型の熱電変換素子の端面間に掛け渡して前記P型とN型の熱電変換素子を直列に接続する複数の電極が形成されており、これらの電極と前記P型の熱電変換素子とN型の熱電変換素子とによって熱電変換素子の回路が形成されており、該熱電変換素子の回路の始端側と終端側に配置された熱電変換素子の電極はその電極面の一端側に熱電変換素子の端面が接続固定され該電極面の他端側にはそれぞれリード端子の一端側が接続されて該リード端子の他端側は前記絶縁性基板に固定されて該リード端子の他端側に外部のリード線が接続される構成と成しており、前記リード端子の一端側から他端側に至る途中位置となる前記絶縁性基板の部位には前記リード端子が隙間を有して貫通するリード端子貫通用の孔が形成され、前記リード端子は前記熱電変換素子の端面が接続固定された電極面との接続位置の一端側から前記絶縁性基板に向って伸長して前記リード端子貫通用の孔を非固定の状態で貫通して前記絶縁性基板から突き出し伸長した後に屈曲部と撓み部の少なくとも一方を介して前記絶縁性基板に向けて折り返してその折り返しの端部となる他端側が前記絶縁性基板に固定されており、前記リード端子の、一端側からリード端子貫通用の孔を通り前記屈曲部と撓み部の少なくとも一方を介して折り返してリード端子の他端側に至る区間熱電変換モジュールの熱変動に伴う前記熱電変換素子の伸縮変位および前記絶縁性基板の伸縮変位に応じて、さらにはリード端子に機械的応力が加えられたときの荷重に応じて、前記リード端子自身が変形することで、該リード端子に接続されている電極と該電極に接続された前記熱電変換素子との接続部に生じる応力を緩和する応力緩和構成形成ていることを特徴とする熱電変換モジュール。 An insulating substrate having a plurality of element fitting holes is formed, and P-type and N-type thermoelectric conversion elements are respectively fitted through the corresponding element fitting holes of the insulating substrate, and one end side in the penetrating direction is provided. The other end side protrudes from the insulating substrate, and the end face of the P-type thermoelectric conversion element corresponding to the one end side and the other end side in the penetration direction to the element fitting hole of the thermoelectric conversion element respectively A plurality of electrodes are formed between the end faces of the N-type thermoelectric conversion elements so as to connect the P-type and N-type thermoelectric conversion elements in series. These electrodes, the P-type thermoelectric conversion element, and the N-type thermoelectric conversion element The thermoelectric conversion element circuit is formed by the thermoelectric conversion element of the type, and the electrodes of the thermoelectric conversion elements arranged on the start end side and the end end side of the circuit of the thermoelectric conversion element are on one end side of the electrode surface. it the end of the other end face is connected fixed in the electrode surface of the One end is connected the other end of the lead terminals of the lead terminals are forms a structure in which an external lead wire to the other end of the lead terminals are fixed to the insulating substrate is connected, the lead terminals A hole for penetrating the lead terminal through which the lead terminal penetrates with a gap is formed in a portion of the insulating substrate that is in the middle from one end side to the other end side, and the lead terminal is the thermoelectric conversion element The end surface of the lead wire extends from one end side of the connection position with the electrode surface to which the connection is fixed to the insulating substrate, extends through the lead terminal penetration hole in an unfixed state, and protrudes from the insulating substrate. After that, the other end side which is folded back toward the insulating substrate through at least one of the bent portion and the bent portion and becomes an end portion of the folded portion is fixed to the insulating substrate, and from the one end side of the lead terminal Lead terminal penetration The hole of the flexures as the bent portion section leading to the other end of the lead terminal is folded over at least one is of the thermoelectric conversion element due to thermal fluctuations in the thermoelectric conversion module expansion displacement and the insulating substrate The lead terminal itself is deformed according to the expansion / contraction displacement and further according to the load when mechanical stress is applied to the lead terminal, so that the electrode connected to the lead terminal is connected to the electrode. A thermoelectric conversion module characterized in that a stress relaxation structure is formed to relieve stress generated at a connection portion with the thermoelectric conversion element.
JP2006091495A 2006-03-29 2006-03-29 Thermoelectric conversion module Expired - Fee Related JP4832137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006091495A JP4832137B2 (en) 2006-03-29 2006-03-29 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006091495A JP4832137B2 (en) 2006-03-29 2006-03-29 Thermoelectric conversion module

Publications (3)

Publication Number Publication Date
JP2007266444A JP2007266444A (en) 2007-10-11
JP2007266444A5 JP2007266444A5 (en) 2009-02-26
JP4832137B2 true JP4832137B2 (en) 2011-12-07

Family

ID=38639116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006091495A Expired - Fee Related JP4832137B2 (en) 2006-03-29 2006-03-29 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP4832137B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR112013005978A2 (en) * 2010-09-13 2016-06-07 Tempronics Inc distributed thermoelectric cord and insulation panel applications for local heating, local cooling, and heat power generation
CN104115294B (en) * 2012-02-27 2016-11-23 Kelk株式会社 Electrothermal module, thermoelectric generating device and thermoelectric generator
JP6171513B2 (en) * 2013-04-10 2017-08-02 日立化成株式会社 Thermoelectric conversion module and manufacturing method thereof
CN106463602B (en) 2014-03-14 2019-08-02 捷温有限责任公司 Insulator and connector for thermoelectric device in thermoelectric components
JP6607394B2 (en) * 2016-02-15 2019-11-20 株式会社タイセー Peltier module and peltier module device
JP6909062B2 (en) 2017-06-14 2021-07-28 株式会社Kelk Thermoelectric module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63201361A (en) * 1987-02-17 1988-08-19 Diesel Kiki Co Ltd Distribution type fuel injection pump
JPH0793459B2 (en) * 1987-03-02 1995-10-09 小松エレクトロニクス株式会社 Thermoelectric device
JP3920403B2 (en) * 1997-05-16 2007-05-30 株式会社エコ・トゥエンティーワン Thermoelectric converter
JP2000228469A (en) * 1999-02-08 2000-08-15 Ricoh Co Ltd Heat radiating cover
JP2004119736A (en) * 2002-09-26 2004-04-15 Kyocera Corp Method of manufacturing thermoelectric module
JP4344600B2 (en) * 2003-12-22 2009-10-14 京セラ株式会社 Thermoelectric module

Also Published As

Publication number Publication date
JP2007266444A (en) 2007-10-11

Similar Documents

Publication Publication Date Title
JP4832137B2 (en) Thermoelectric conversion module
KR100697166B1 (en) Thermoelectric device and method of manufacturing the same
JP4728745B2 (en) Thermoelectric device and thermoelectric module
JP6114398B2 (en) Thermoelectric module
US20060042675A1 (en) Thermoelectric device and method of manufacturing the same
JPWO2009013960A1 (en) Thermoelectric conversion module
JP2005277206A (en) Thermoelectric converter
JP2006319262A (en) Thermoelectric conversion module
JP2007184416A (en) Thermoelectric conversion module
JP2000050661A (en) Power generator
JP2010287729A (en) Heating/cooling test apparatus
US20210217945A1 (en) Thermoelectric conversion module, and cooling device, temperature measuring device, heat flux sensor, or power generating device including same
JP2015056507A (en) Thermoelectric module
US10236430B2 (en) Thermoelectric module
JP4294965B2 (en) Thermoelectric conversion module
JP6595320B2 (en) Thermoelectric module assembly
JP2001308397A (en) Peltier module
JP6136161B2 (en) Heating equipment storage device
JP2006005154A (en) Thermoelectric conversion module
JP7281715B2 (en) Thermoelectric conversion module
JP5196135B2 (en) Thermoelectric conversion module
JP3199527U (en) Peltier module
JP2006120670A (en) Thermoelectric transformation module
JP4242118B2 (en) Thermoelectric conversion module
JP2006032849A (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090108

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110420

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110621

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110920

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140930

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees