JP2006005154A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP2006005154A
JP2006005154A JP2004179874A JP2004179874A JP2006005154A JP 2006005154 A JP2006005154 A JP 2006005154A JP 2004179874 A JP2004179874 A JP 2004179874A JP 2004179874 A JP2004179874 A JP 2004179874A JP 2006005154 A JP2006005154 A JP 2006005154A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
conversion element
insulating substrate
flexible insulating
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2004179874A
Other languages
Japanese (ja)
Inventor
Yasuhiro Suzuki
康弘 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okano Electric Wire Co Ltd
Original Assignee
Okano Electric Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okano Electric Wire Co Ltd filed Critical Okano Electric Wire Co Ltd
Priority to JP2004179874A priority Critical patent/JP2006005154A/en
Publication of JP2006005154A publication Critical patent/JP2006005154A/en
Ceased legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module that can be easily assembled and is low in cost. <P>SOLUTION: P- and n-type thermoelectric conversion elements 5 (5a, 5b) are respectively inserted into the corresponding element engaging holes 3 of an insulating substrate 30 and they are engaged with them, and a flexible insulating substrate 7 wherein a plurality of electrodes 2 are arranged at any interval with each other on its surface is respectively provided one end side (upper side) and the other end side (lower side) in the penetration direction to the element engaging hole 3 of the thermoelectric conversion element 5. The electrode 2 is formed flexibly deformable together with the flexible insulting substrate 7, and the p-type thermoelectric conversion element 5a and the n-type thermoelectric conversion element 5b are electrically connected with each other through the electrode 2, thereby forming the circuit of the thermoelectric conversion element. The respective electrodes 2 are flexibly deformed together with the flexible insulating substrate 7 to the side of the thermoelectric conversion element 5, so that they are press-fitted to the ends of the corresponding thermoelectric conversion elements 5 by contact pressure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば光通信用部品、理化学機器、携帯用クーラ、半導体プロセス中でのプロセス温度管理等に用いられて冷却や加熱を行う熱電変換モジュールや、ゼーベック効果を利用して発電を行う熱電変換モジュールに関するものである。   The present invention includes, for example, optical communication parts, physics and chemistry equipment, portable coolers, thermoelectric conversion modules that are used for process temperature management in semiconductor processes and the like, and thermoelectric modules that generate electricity using the Seebeck effect. It concerns the conversion module.

ペルチェモジュール等の熱電変換モジュールが、光通信分野等の様々な分野に用いられており、様々な熱電変換モジュールの構成が提案されている。図7には、代表的な熱電変換モジュールの構造の一例が示されており、この熱電変換モジュールはペルチェモジュールであり、複数の素子嵌合孔3を有する絶縁性基板(絶縁支持板)30の素子嵌合孔3に、熱電変換素子5(5a,5b)を貫通嵌合して形成されている(例えば特許文献1、2、参照。)。   Thermoelectric conversion modules such as Peltier modules are used in various fields such as the optical communication field, and various configurations of thermoelectric conversion modules have been proposed. FIG. 7 shows an example of the structure of a typical thermoelectric conversion module. This thermoelectric conversion module is a Peltier module, and includes an insulating substrate (insulating support plate) 30 having a plurality of element fitting holes 3. A thermoelectric conversion element 5 (5a, 5b) is formed through the element fitting hole 3 (see, for example, Patent Documents 1 and 2).

ペルチェモジュールの熱電変換素子5(5a,5b)は、ペルチェ素子として一般的に知られており、P型半導体により形成されたP型(p型)の熱電変換素子5aと、N型半導体により形成されたN型(n型)の熱電変換素子5bとを有する。P型およびN型の熱電変換素子5(5a,5b)は、例えば長さが0.5〜3.0mm程度のビスマス・テルル等の半導体単結晶で構成されている。   The Peltier module thermoelectric conversion element 5 (5a, 5b) is generally known as a Peltier element, and is formed of a P-type (p-type) thermoelectric conversion element 5a formed of a P-type semiconductor and an N-type semiconductor. N-type (n-type) thermoelectric conversion element 5b. The P-type and N-type thermoelectric conversion elements 5 (5a, 5b) are made of a semiconductor single crystal such as bismuth tellurium having a length of about 0.5 to 3.0 mm, for example.

前記絶縁性基板30は、例えば厚さが0.2〜1.0mm程度の電気絶縁物の板、例えばガラスエポキシ板により構成されており、この絶縁性基板30の上下側に、熱電変換素子5(5a,5b)が、例えば0.1〜1.6mm程度突出するように、P型の熱電変換素子5aとN型の熱電変換素子5bが、それぞれ、対応する素子嵌合孔3に貫通嵌合固定されて交互に配置されている。   The insulating substrate 30 is made of, for example, an electrically insulating plate having a thickness of about 0.2 to 1.0 mm, for example, a glass epoxy plate, and the thermoelectric conversion element 5 is formed on the upper and lower sides of the insulating substrate 30. The P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b are respectively inserted into the corresponding element fitting holes 3 so that (5a, 5b) protrudes, for example, by about 0.1 to 1.6 mm. They are fixed and alternately arranged.

P型とN型の熱電変換素子5(5a,5b)の素子嵌合孔3への貫通方向の一端側(ここでは上側)と他端側(ここでは下側)には、それぞれ電極2が配置されている。これらの電極2はいずれも半田付けにより熱電変換素子5(5a,5b)に接合されており、この接合により、熱電変換素子5(5a,5b)は、対応する電極2を介して電気的に直列に接続されて熱電変換素子5(5a,5b)の回路(PN素子対)が形成されている。なお、図7において、半田は示されていない。また、熱電変換素子5(5a,5b)の回路は、図示されていないリード端子とリード線を介して電源回路等に接続されている。   Electrodes 2 are respectively provided at one end side (upper side here) and the other end side (lower side here) of the P-type and N-type thermoelectric conversion elements 5 (5a, 5b) in the penetrating direction to the element fitting hole 3. Is arranged. All of these electrodes 2 are joined to the thermoelectric conversion elements 5 (5a, 5b) by soldering, and the thermoelectric conversion elements 5 (5a, 5b) are electrically connected via the corresponding electrodes 2 by this joining. A circuit (PN element pair) of the thermoelectric conversion elements 5 (5a, 5b) is formed in series. In FIG. 7, solder is not shown. Moreover, the circuit of the thermoelectric conversion element 5 (5a, 5b) is connected to a power supply circuit etc. via the lead terminal and lead wire which are not illustrated.

上記熱電変換素子5(5a,5b)の回路に電流を流すと、P型の熱電変換素子5aとN型の熱電変換素子5bに電極2を介して電流が流れて、熱電変換素子5(5a,5b)と電極2との接合部(界面)で冷却・加熱効果が生じる。つまり、前記接合部を流れる電流の方向によって熱電変換素子5(5a,5b)の一方の端部が発熱せしめられると共に他方の端部が冷却せしめられるいわゆるペルチェ効果が生じる。   When a current flows through the circuit of the thermoelectric conversion element 5 (5a, 5b), a current flows through the electrode 2 to the P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b, and the thermoelectric conversion element 5 (5a , 5b) and a cooling / heating effect at the junction (interface) between the electrode 2 and the electrode 2. That is, a so-called Peltier effect is generated in which one end portion of the thermoelectric conversion element 5 (5a, 5b) is heated while the other end portion is cooled depending on the direction of the current flowing through the junction.

このペルチェ効果によって熱電変換素子5(5a,5b)の一方の端部、例えば上端部が発熱せしめられると、この熱がペルチェモジュールの上側に設けられた部材に伝えられ、この部材の加熱が行われる。また、その逆に、ペルチェ効果によって熱電変換素子5(5a,5b)の例えば上端部が冷却せしめられると、ペルチェモジュールの上側に設けられた部材の冷却(吸熱)が行われる。   When one end, for example, the upper end of the thermoelectric conversion element 5 (5a, 5b) is caused to generate heat by this Peltier effect, this heat is transmitted to the member provided on the upper side of the Peltier module, and this member is heated. Is called. On the contrary, when the upper end portion of the thermoelectric conversion element 5 (5a, 5b) is cooled by the Peltier effect, the member provided on the upper side of the Peltier module is cooled (heat absorption).

特開平9−181362JP-A-9-181362 特願平8−354136号Japanese Patent Application No. 8-354136

しかしながら、上記のように、絶縁性基板30に熱電変換素子5(5a,5b)を貫通固定して成るタイプの熱電変換モジュールにおいて、それぞれの熱電変換素子5(5a,5b)の一端側と他端側とに対応する電極2を複数配置して、それぞれ半田付けにより熱電変換素子5(5a,5b)に接合する操作は大変である。そのため、熱電変換モジュールの製造に時間がかかるし、半田付けを的確に行えないこともあるために、製造歩留まりの低下やコストアップを招くといったことや、また、半田付け部は電極2と熱電変換素子5間に熱疲労によるひび割れが生じることがあるといった問題があった。   However, in the thermoelectric conversion module of the type in which the thermoelectric conversion elements 5 (5a, 5b) are fixed to the insulating substrate 30 as described above, one end side of each thermoelectric conversion element 5 (5a, 5b) and the other The operation of arranging a plurality of electrodes 2 corresponding to the end sides and joining them to the thermoelectric conversion elements 5 (5a, 5b) by soldering is difficult. For this reason, it takes time to manufacture the thermoelectric conversion module, and soldering may not be performed accurately, leading to a decrease in manufacturing yield and an increase in cost, and the soldering portion is connected to the electrode 2 and thermoelectric conversion. There is a problem that cracks due to thermal fatigue may occur between the elements 5.

本発明は、上記課題を解決するために成されたものであり、その目的は、組み立てが容易で、安価な熱電変換モジュールを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide an inexpensive thermoelectric conversion module that is easy to assemble.

上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、第1の発明は、複数の素子嵌合孔を形成した絶縁性基板を有し、P型とN型の熱電変換素子が前記絶縁性基板の対応する素子嵌合孔にそれぞれ貫通嵌合されており、前記熱電変換素子の素子嵌合孔への貫通方向の一端側と他端側にはそれぞれ、表面に互いに間隔を介して複数の電極を配列形成したフレキシブル絶縁基板が前記電極の形成面側を前記熱電変換素子側に向けて配設されており、前記電極は前記フレキシブル絶縁基板と共にフレキシブルに変形可能と成しており、前記熱電変換素子の貫通方向の一端側に配置されたフレキシブル絶縁基板の電極と他端側に配置されたフレキシブル絶縁基板の電極とは互いに位置をずらした状態と成して、前記電極を介して前記P型の熱電変換素子とN型の熱電変換素子とが電気的に接続されて熱電変換素子の回路が形成されており、前記それぞれの電極は前記フレキシブル絶縁基板と共に前記熱電変換素子側にフレキシブルに変形することにより前記熱電変換素子側への接触圧によって対応する熱電変換素子の端部にそれぞれ圧接されている構成をもって課題を解決する手段としている。   In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first invention has an insulating substrate in which a plurality of element fitting holes are formed, and P-type and N-type thermoelectric conversion elements are respectively fitted through the corresponding element fitting holes of the insulating substrate. A flexible insulating substrate in which a plurality of electrodes are arranged on the surface of each of the one end side and the other end side in the penetration direction of the thermoelectric conversion element into the element fitting hole is formed on the surface. The surface side is arranged toward the thermoelectric conversion element side, the electrode is configured to be flexibly deformable together with the flexible insulating substrate, and is arranged on one end side in the penetration direction of the thermoelectric conversion element. The electrode of the insulating substrate and the electrode of the flexible insulating substrate disposed on the other end side are shifted from each other, and the P-type thermoelectric conversion element and the N-type thermoelectric conversion element Is electrically connected The circuit of the thermoelectric conversion element is formed, and each of the electrodes is flexibly deformed to the thermoelectric conversion element side together with the flexible insulating substrate, thereby corresponding to the thermoelectric conversion element by the contact pressure to the thermoelectric conversion element side. Each of the end portions is pressed against each other as means for solving the problem.

また、第2の発明は、上記第1の発明の構成に加え、前記表面に互いに間隔を介して複数の電極を配列形成した1枚のフレキシブル絶縁基板がその電極形成面側が内側になるように折り曲げられ、前記フレキシブル絶縁基板の電極形成面によって熱電変換素子を一端側と他端側から挟んで形成されている構成をもって課題を解決する手段としている。   In addition to the configuration of the first invention, the second invention is such that one flexible insulating substrate in which a plurality of electrodes are arranged on the surface with a space therebetween is such that the electrode forming surface side is on the inside. The thermoelectric conversion element is formed by being bent and sandwiched from one end side and the other end side by the electrode forming surface of the flexible insulating substrate.

さらに、第3の発明は、上記第1または第2の発明の構成に加え、前記フレキシブル絶縁基板の電極形成面と反対側の面側には、熱伝導弾性部材により形成された弾性シートが設けられている構成をもって課題を解決する手段としている。   Furthermore, in a third aspect of the invention, in addition to the configuration of the first or second aspect of the invention, an elastic sheet formed of a heat conductive elastic member is provided on the surface of the flexible insulating substrate opposite to the electrode forming surface. It is a means to solve the problem with the structure.

さらに、第4の発明は、上記第1または第2または第3の発明の構成に加え、前記熱電変換素子の両端側にそれぞれ配置されたフレキシブル絶縁基板のうち少なくとも一方は、熱電変換素子に電気的に接続される複数電極の形成領域と、該電極と前記熱電変換素子との接続回路に接続される電気回路の形成領域とを有し、前記複数電極の形成領域が前記熱電変換素子の配設領域に配置されて熱電変換素子の端部に導通接触している構成をもって課題を解決する手段としている。   Furthermore, in the fourth invention, in addition to the configuration of the first, second, or third invention, at least one of the flexible insulating substrates respectively disposed on both ends of the thermoelectric conversion element is electrically connected to the thermoelectric conversion element. A plurality of electrode formation regions connected to each other, and an electric circuit formation region connected to a connection circuit between the electrodes and the thermoelectric conversion element, the plurality of electrode formation regions being arranged on the thermoelectric conversion element. It is a means for solving the problems with a configuration that is arranged in the installation region and is in conductive contact with the end of the thermoelectric conversion element.

本発明によれば、熱電変換素子の素子嵌合孔への貫通方向の一端側と他端側には、表面に互いに間隔を介して複数の電極を配列形成したフレキシブル絶縁基板が前記電極の形成面側を前記熱電変換素子側に向けて配設され、前記電極は前記フレキシブル絶縁基板と共にフレキシブルに変形可能と成しているので、対応する熱電変換素子同士を接続する態様で電極を個々に設ける場合と異なり、フレキシブル絶縁基板の配設によって、電極を一括して対応する熱電変換素子の端部に対向配置できる。   According to the present invention, on one end side and the other end side of the thermoelectric conversion element into the element fitting hole, a flexible insulating substrate in which a plurality of electrodes are arranged on the surface with an interval is formed on the surface. Since the surface side is arranged toward the thermoelectric conversion element side, and the electrodes can be deformed flexibly together with the flexible insulating substrate, the electrodes are individually provided in such a manner that the corresponding thermoelectric conversion elements are connected to each other. Unlike the case, by arranging the flexible insulating substrate, the electrodes can be collectively disposed opposite to the end portions of the corresponding thermoelectric conversion elements.

また、本発明において、それぞれの電極は、フレキシブル絶縁基板と共に前記熱電変換素子側にフレキシブルに変形することにより前記熱電変換素子側への接触圧によって対応する熱電変換素子の端部にそれぞれ圧接されているので、半田付け等により電極部を固定しなくても熱電変換素子と電極部との導通を良好に行えるようになり、非常に容易に組み立てられるので、製造歩留まりを向上させることができるし、コストも安くできる。   Further, in the present invention, each electrode is pressed against the corresponding end portion of the thermoelectric conversion element by the contact pressure to the thermoelectric conversion element side by being deformed flexibly to the thermoelectric conversion element side together with the flexible insulating substrate. Therefore, even if the electrode part is not fixed by soldering or the like, conduction between the thermoelectric conversion element and the electrode part can be performed satisfactorily and can be assembled very easily, so that the manufacturing yield can be improved, Cost can be reduced.

また、本発明において、表面に互いに間隔を介して複数の電極を配列形成した1枚のフレキシブル絶縁基板がその電極形成面側が内側になるように折り曲げられ、前記フレキシブル絶縁基板の電極形成面によって熱電変換素子を一端側と他端側から挟んで形成されている構成によれば、熱電変換モジュールの部品点数を少なくでき、より製造しやすい熱電変換モジュールを実現できる。   In the present invention, one flexible insulating substrate having a plurality of electrodes arranged on the surface with a space between each other is bent so that the electrode forming surface side is inward, and the thermoelectric power is formed by the electrode forming surface of the flexible insulating substrate. According to the structure formed by sandwiching the conversion element from the one end side and the other end side, the number of parts of the thermoelectric conversion module can be reduced, and a thermoelectric conversion module that is easier to manufacture can be realized.

さらに、本発明において、フレキシブル絶縁基板の電極形成面と反対側の面側には、熱伝導弾性部材により形成された弾性シートが設けられている構成によれば、弾性シートの弾性変形によって、それぞれの電極を対応する熱電変換素子の端部にそれぞれより的確に圧接できるので、より一層製造歩留まりが高く、使い勝手の良い熱電変換モジュールを実現できる。   Furthermore, in the present invention, according to the configuration in which the elastic sheet formed of the heat conductive elastic member is provided on the surface side opposite to the electrode forming surface of the flexible insulating substrate, These electrodes can be more accurately pressed against the end portions of the corresponding thermoelectric conversion elements, so that a thermoelectric conversion module with higher manufacturing yield and ease of use can be realized.

さらに、本発明において、熱電変換素子の両端側にそれぞれ配置されたフレキシブル絶縁基板のうち少なくとも一方が、複数電極の形成領域と該電極と前記熱電変換素子との接続回路に接続される電気回路の形成領域とを有して、前記複数電極の形成領域が前記熱電変換素子の端部に導通接触している構成によれば、電極と熱電変換素子との接続回路に接続される電気回路を熱電変換モジュールと別個に設けずに一体化でき、前記接続回路と電気回路との接続も行いやすい熱電変換モジュールを実現できる。   Furthermore, in the present invention, at least one of the flexible insulating substrates respectively disposed on both ends of the thermoelectric conversion element is an electric circuit connected to a formation circuit of a plurality of electrodes and a connection circuit between the electrode and the thermoelectric conversion element. And forming the plurality of electrodes in conductive contact with the end portion of the thermoelectric conversion element, the electric circuit connected to the connection circuit between the electrode and the thermoelectric conversion element is connected to the thermoelectric conversion element. A thermoelectric conversion module that can be integrated without being provided separately from the conversion module and can easily connect the connection circuit and the electric circuit can be realized.

以下、本発明の実施の形態を、図面を参照して説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略又は簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are assigned to the same names as those in the conventional example, and the duplicate description is omitted or simplified.

図1には、本発明に係る熱電変換モジュールの一実施形態例が模式的な断面図により示されている。同図に示すように、本実施形態例の熱電変換モジュール1も、図7に示した熱電変換モジュールと同様に、絶縁性基板30を有している。   FIG. 1 is a schematic sectional view showing an embodiment of a thermoelectric conversion module according to the present invention. As shown in the figure, the thermoelectric conversion module 1 of the present embodiment also has an insulating substrate 30 as in the thermoelectric conversion module shown in FIG.

図3に示すように、該絶縁性基板30には、複数の素子嵌合孔3が互いに間隔を介して形成されており、これらの素子嵌合孔3には、図1に示したように、それぞれ対応する熱電変換素子5(5a,5b)を貫通嵌合固定されている。なお、絶縁性基板30は、例えばガラス繊維強化のエポキシ樹脂製の板により形成されており、素子嵌合孔3への熱電変換素子5(5a,5b)の固定方法は、例えば接着剤を用いる等、適宜の方法が用いられる。   As shown in FIG. 3, a plurality of element fitting holes 3 are formed in the insulating substrate 30 with a space therebetween, and these element fitting holes 3 are formed as shown in FIG. The corresponding thermoelectric conversion elements 5 (5a, 5b) are fitted and fixed. The insulating substrate 30 is formed of, for example, a glass fiber reinforced epoxy resin plate, and the thermoelectric conversion element 5 (5a, 5b) is fixed to the element fitting hole 3 using, for example, an adhesive. An appropriate method is used.

また、本実施形態例は、以下に示すように、従来例と異なる特徴的な構成を有している。つまり、図1に示すように、熱電変換素子5(5a,5b)の素子嵌合孔3への貫通方向の一端側(ここでは上側)と他端側(ここでは下側)には、それぞれ、表面に互いに間隔を介して複数の電極2を配列形成したポリイミド製のフレキシブル絶縁基板7が配設されている。このフレキシブル絶縁基板7は、シート状に形成されている。   Further, the present embodiment example has a characteristic configuration different from that of the conventional example as described below. That is, as shown in FIG. 1, one end side (upper side here) and the other end side (lower side here) of the thermoelectric conversion element 5 (5a, 5b) in the penetrating direction to the element fitting hole 3 are respectively A flexible insulating substrate 7 made of polyimide in which a plurality of electrodes 2 are arranged on the surface with a space between each other is disposed. The flexible insulating substrate 7 is formed in a sheet shape.

本実施形態例において、フレキシブル絶縁基板7は、図2に示すように、表面に互いに間隔を介して複数の電極2を配列形成した1枚のフレキシブル絶縁基板であり、電極2aはリード端子とリード線とが接続される電極である。電極2は膜状に形成されており、フレキシブル絶縁基板7と共にフレキシブルに変形可能と成している。   In this embodiment, the flexible insulating substrate 7 is a single flexible insulating substrate in which a plurality of electrodes 2 are arranged on the surface at intervals, as shown in FIG. 2, and the electrode 2a is a lead terminal and a lead. An electrode to which a line is connected. The electrode 2 is formed in a film shape and can be flexibly deformed together with the flexible insulating substrate 7.

また、フレキシブル絶縁基板7は、図1に示したように、電極2の形成面側が内側になるように折り曲げられている。そして、フレキシブル絶縁基板7の電極形成面によって熱電変換素子5(5a,5b)を一端側と他端側から挟んでおり、フレキシブル絶縁基板7の電極2の形成面側が前記熱電変換素子5(5a,5b)側に向けて配設されている。   In addition, as shown in FIG. 1, the flexible insulating substrate 7 is bent so that the surface on which the electrode 2 is formed is inward. And the thermoelectric conversion element 5 (5a, 5b) is pinched | interposed from the one end side and the other end side by the electrode formation surface of the flexible insulating substrate 7, and the formation surface side of the electrode 2 of the flexible insulating substrate 7 is the said thermoelectric conversion element 5 (5a). , 5b) side.

また、図1に示すように、熱電変換素子5(5a,5b)の貫通方向の一端側(ここでは上側)に配置されたフレキシブル絶縁基板7の電極2と他端側(ここでは下側)に配置されたフレキシブル絶縁基板7の電極2とは互いに位置をずらした状態と成して、対応する電極2を介して前記P型の熱電変換素子5aとN型の熱電変換素子5bとが電気的に接続されて熱電変換素子5(5a,5b)の回路が形成されている。この熱電変換素子5(5a,5b)の回路は、図示されていないリード端子とリード線を介し、電源回路等の適宜の電気回路に接続されている。   Moreover, as shown in FIG. 1, the electrode 2 and the other end side (here lower side) of the flexible insulating substrate 7 arrange | positioned at the one end side (here upper side) of the penetration direction of the thermoelectric conversion element 5 (5a, 5b). The electrode 2 of the flexible insulating substrate 7 arranged in the position is shifted from each other, and the P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b are electrically connected via the corresponding electrode 2. Thus, a circuit of the thermoelectric conversion elements 5 (5a, 5b) is formed. The circuit of the thermoelectric conversion element 5 (5a, 5b) is connected to an appropriate electric circuit such as a power supply circuit via lead terminals and lead wires (not shown).

本実施形態例では、それぞれの電極2は前記フレキシブル絶縁基板7と共に前記熱電変換素子5(5a,5b)側にフレキシブルに変形することにより、熱電変換素子5(5a,5b)側への接触圧によって対応する熱電変換素子5(5a,5b)の端部にそれぞれ圧接(ここでは、圧接固定)されている。   In this embodiment, each electrode 2 together with the flexible insulating substrate 7 is flexibly deformed to the thermoelectric conversion element 5 (5a, 5b) side, so that the contact pressure to the thermoelectric conversion element 5 (5a, 5b) side is obtained. Are respectively pressed to the end portions of the corresponding thermoelectric conversion elements 5 (5a, 5b) (here, fixed by pressing).

特に、本実施形態例では、フレキシブル絶縁基板7の電極形成面と反対側の面側には、熱伝導弾性部材により形成された弾性シート8が設けられて、この弾性シート8の弾性変形によって、前記電極2の熱電変換素子5(5a,5b)側への接触圧を高めている。   In particular, in the present embodiment, an elastic sheet 8 formed of a heat conductive elastic member is provided on the surface of the flexible insulating substrate 7 opposite to the electrode forming surface, and the elastic sheet 8 is elastically deformed. The contact pressure of the electrode 2 on the thermoelectric conversion element 5 (5a, 5b) side is increased.

本実施形態例は以上のように構成されており、この熱電変換モジュール1を製造するときは、それぞれの熱電変換素子5(5a,5b)を形成する。なお、熱電変換素子5(5a,5b)の両端部(電極部9との接触部)にメッキ処理等の表面処理を施す。この表面処理は、電極部9との導通を行いやすくするために行われるものであり、例えばニッケルメッキの母剤の上に金メッキ層や半田メッキ層を積層する等、適宜の処理が行われる。   The present embodiment is configured as described above. When the thermoelectric conversion module 1 is manufactured, each thermoelectric conversion element 5 (5a, 5b) is formed. In addition, surface treatments, such as a plating process, are given to the both ends (contact part with the electrode part 9) of the thermoelectric conversion element 5 (5a, 5b). This surface treatment is performed for facilitating electrical connection with the electrode portion 9, and an appropriate treatment such as laminating a gold plating layer or a solder plating layer on a nickel plating base material is performed.

そして、図4(a)に示すように、絶縁性基板30の素子嵌合孔3にそれぞれ、対応する熱電変換素子5(5a,5b)を貫通嵌合固定する。その後、図4(b)に示すように、フレキシブル絶縁基板7を折り曲げて、熱電変換素子5(5a,5b)の上下両側(前記素子嵌合孔3への貫通方向の一端側と他端側)からフレキシブル絶縁基板7により熱電変換素子5(5a,5b)を挟む。   And as shown to Fig.4 (a), the thermoelectric conversion element 5 (5a, 5b) corresponding to each in the element fitting hole 3 of the insulating board | substrate 30 is penetration-fitted and fixed. Thereafter, as shown in FIG. 4B, the flexible insulating substrate 7 is bent, and both the upper and lower sides of the thermoelectric conversion element 5 (5a, 5b) (one end side and the other end side in the penetration direction to the element fitting hole 3). ) To sandwich the thermoelectric conversion element 5 (5a, 5b) by the flexible insulating substrate 7.

そして、フレキシブル絶縁基板7の電極形成面(電極2の形成面)側を熱電変換素子5(5a,5b)側に向け、その反対側から熱電変換素子5(5a,5b)側に向けて圧力を加え、電極2をフレキシブル絶縁基板7と共に変形させて熱電変換素子5(5a,5b)への接触圧により圧接する。また、フレキシブル絶縁基板7の電極形成面と反対側の面側には、図1に示したように、弾性シート8を設ける。   Then, the electrode forming surface (electrode 2 forming surface) side of the flexible insulating substrate 7 is directed to the thermoelectric conversion element 5 (5a, 5b) side, and pressure is directed from the opposite side to the thermoelectric conversion element 5 (5a, 5b) side. In addition, the electrode 2 is deformed together with the flexible insulating substrate 7 and is brought into pressure contact with the thermoelectric conversion element 5 (5a, 5b). Further, an elastic sheet 8 is provided on the surface of the flexible insulating substrate 7 opposite to the electrode forming surface, as shown in FIG.

なお、弾性シート8は、電極2を熱電変換素子5(5a,5b)側に圧接する前に設け、弾性シート8をフレキシブル絶縁基板7と共に弾性変形して電極2を圧接すると、電極2の熱電変換素子5(5a,5b)への圧接固定をより確実に行うことができる。   The elastic sheet 8 is provided before the electrode 2 is pressed against the thermoelectric conversion element 5 (5a, 5b) side. When the elastic sheet 8 is elastically deformed together with the flexible insulating substrate 7 and the electrode 2 is pressed, the thermoelectric of the electrode 2 is obtained. The pressure contact fixing to the conversion element 5 (5a, 5b) can be performed more reliably.

また、必要に応じ、例えば図1の破線に示すように、熱電変換モジュール1の上側に金属プレート11を設け、熱電変換モジュール1の下側にヒートシンク12を設けて、金属プレート11とヒートシンク12とをねじ部材13で固定して用いる。なお、ヒートシンク12の代わりに、熱電変換モジュール1の下側にも金属プレートを設けることもできる。   Further, as necessary, for example, as shown by a broken line in FIG. 1, a metal plate 11 is provided on the upper side of the thermoelectric conversion module 1, and a heat sink 12 is provided on the lower side of the thermoelectric conversion module 1. Is fixed with a screw member 13 for use. Instead of the heat sink 12, a metal plate can also be provided on the lower side of the thermoelectric conversion module 1.

この例のような配置で金属プレート11とヒートシンク12とを設ける場合、金属プレート11に被冷却部材(図示せず)を搭載し、この被冷却部材を熱電変換モジュール1により冷却すると、熱電変換モジュール1の下側(熱電変換素子5の下端側)は加熱面となるので、ヒートシンク12により冷却すれば、より効率的に、熱電変換モジュール1による被冷却部材の冷却が行われる。   When the metal plate 11 and the heat sink 12 are provided in the arrangement as in this example, when a member to be cooled (not shown) is mounted on the metal plate 11 and the member to be cooled is cooled by the thermoelectric conversion module 1, the thermoelectric conversion module is obtained. Since the lower side of 1 (the lower end side of the thermoelectric conversion element 5) serves as a heating surface, if the heat sink 12 cools the member to be cooled by the thermoelectric conversion module 1 is more efficiently cooled.

本実施形態例によれば、上記のように、フレキシブル絶縁基板7の表面に電極2を複数配列形成して電極形成面側を熱電変換素子5(5a,5b)側に向けて配設しており、このフレキシブル絶縁基板7に適宜の圧力を加えて、電極2をフレキシブル絶縁基板7と共にフレキシブルに変形させてその接触圧で対応する熱電変換素子5(5a,5b)の端部に圧接固定しているので、電極2を個々に設ける場合と異なり、フレキシブル絶縁基板7の配設によって電極2を一括して配設できるし、半田等を設けて固定しなくても電極2と熱電変換素子5(5a,5b)との導通を良好に行えるようになり、非常に容易に組み立てることができる。   According to the present embodiment example, as described above, a plurality of electrodes 2 are arranged on the surface of the flexible insulating substrate 7, and the electrode forming surface side is arranged facing the thermoelectric conversion element 5 (5a, 5b) side. Appropriate pressure is applied to the flexible insulating substrate 7 so that the electrode 2 is flexibly deformed together with the flexible insulating substrate 7 and is press-fixed to the corresponding thermoelectric conversion element 5 (5a, 5b) by the contact pressure. Therefore, unlike the case where the electrodes 2 are individually provided, the electrodes 2 can be collectively disposed by disposing the flexible insulating substrate 7, and the electrode 2 and the thermoelectric conversion element 5 can be disposed without fixing by soldering or the like. (5a, 5b) can be conducted well and can be assembled very easily.

したがって、本実施形態例は、製造歩留まりの向上とコストダウンを確実に図ることができる熱電変換モジュールを実現できる。   Therefore, the present embodiment can realize a thermoelectric conversion module that can reliably improve the manufacturing yield and reduce the cost.

また、本実施形態例によれば、フレキシブル絶縁基板7の電極形成面と反対側の面側には、熱伝導弾性部材により形成された弾性シート8が設けられているので、弾性シート8の弾性変形によって、それぞれの電極2を対応する熱電変換素子5(5a,5b)の端部にそれぞれより的確に圧接でき、使い勝手の良い熱電変換モジュールを実現できる。   Further, according to the present embodiment example, the elastic sheet 8 formed of the heat conductive elastic member is provided on the surface of the flexible insulating substrate 7 opposite to the electrode forming surface. Due to the deformation, each electrode 2 can be more accurately pressed against the end of the corresponding thermoelectric conversion element 5 (5a, 5b), and an easy-to-use thermoelectric conversion module can be realized.

さらに、図1の破線に示したように、金属プレート11とヒートシンク12とにより熱電変換モジュール1を挟み込んで用いると、熱電変換モジュール1の電極部9と熱電変換素子5(5a,5b)との圧接固定を、より確実に行うことができ、さらに、金属プレート11の上に搭載される被冷却部材の配置も、より安定したものにできる。   Further, as shown by the broken line in FIG. 1, when the thermoelectric conversion module 1 is sandwiched between the metal plate 11 and the heat sink 12, the electrode portion 9 of the thermoelectric conversion module 1 and the thermoelectric conversion elements 5 (5a, 5b) are connected. The pressure contact fixing can be performed more reliably, and the arrangement of the member to be cooled mounted on the metal plate 11 can be made more stable.

なお、本発明は上記実施形態例に限定されることはなく、様々な実施の態様を採り得る。例えば、上記実施形態例では、表面に互いに間隔を介して複数の電極2を配列形成した1枚のフレキシブル絶縁基板7を折り曲げて熱電変換素子5(5a,5b)の上下両側に設けたが、上側に配置するフレキシブル絶縁基板7と下側に配置するフレキシブル絶縁基板7とは、別個のフレキシブル絶縁基板7としてもよい。   In addition, this invention is not limited to the said embodiment example, Various aspects can be taken. For example, in the above-described embodiment, a single flexible insulating substrate 7 in which a plurality of electrodes 2 are arranged on the surface with a space between each other is bent and provided on both upper and lower sides of the thermoelectric conversion elements 5 (5a, 5b). The flexible insulating substrate 7 disposed on the upper side and the flexible insulating substrate 7 disposed on the lower side may be separate flexible insulating substrates 7.

また、フレキシブル絶縁基板7の材質や厚み、電極2の材質や厚み等は、特に限定されるものでなく、適宜設定されるものである。   In addition, the material and thickness of the flexible insulating substrate 7 and the material and thickness of the electrode 2 are not particularly limited, and are appropriately set.

さらに、上記実施形態例では、フレキシブル絶縁基板7の電極形成面と反対側の面に弾性シート8を設けたが、図5に示すように、弾性シート8は省略してもよい。   Furthermore, in the above embodiment, the elastic sheet 8 is provided on the surface of the flexible insulating substrate 7 opposite to the electrode forming surface, but the elastic sheet 8 may be omitted as shown in FIG.

さらに、熱電変換素子5(5a,5b)の両端側にそれぞれ配置されたフレキシブル絶縁基板7のうち少なくとも一方は、熱電変換素子5(5a,5b)に電気的に接続される複数電極2の形成領域と、該電極2と前記熱電変換素子5(5a,5b)との接続回路に接続される電気回路の形成領域とを有するものとしてもよい。   Furthermore, at least one of the flexible insulating substrates 7 disposed on both ends of the thermoelectric conversion elements 5 (5a, 5b) is formed with a plurality of electrodes 2 that are electrically connected to the thermoelectric conversion elements 5 (5a, 5b). It is good also as what has an area | region and the formation area of the electric circuit connected to the connection circuit of this electrode 2 and the said thermoelectric conversion element 5 (5a, 5b).

この場合、例えば、図6に示すように、フレキシブル絶縁基板7を形成し、熱電変換素子5(5a,5b)に電気的に接続される複数電極2の形成領域15と、該電極2と前記熱電変換素子5(5a,5b)との接続回路に接続される電気回路の形成領域16とを形成する。そして、このフレキシブル絶縁基板7を図の破線Aで折り曲げて複数電極2の形成領域15を熱電変換素子5(5a,5b)の配設領域に配置し、熱電変換素子5(5a,5b)の端部に導通接触して熱電変換モジュール1を形成することができる。   In this case, for example, as shown in FIG. 6, a flexible insulating substrate 7 is formed, and a formation region 15 of a plurality of electrodes 2 electrically connected to the thermoelectric conversion elements 5 (5a, 5b), the electrodes 2 and the An electric circuit formation region 16 connected to a connection circuit with the thermoelectric conversion element 5 (5a, 5b) is formed. Then, the flexible insulating substrate 7 is bent along the broken line A in the figure, and the formation region 15 of the plurality of electrodes 2 is arranged in the region where the thermoelectric conversion elements 5 (5a, 5b) are arranged, and the thermoelectric conversion elements 5 (5a, 5b) are arranged. The thermoelectric conversion module 1 can be formed in conductive contact with the end.

さらに、上記実施形態例では、熱電変換モジュール1は、絶縁性基板30の平面形状を略四角形状に形成したが、平面形状が略円形状の絶縁性基板30を適用した熱電変換モジュール1としてもよいし、絶縁性基板30の形状、厚み、材質等は特に限定されるものでなく、適宜設定されるものである。   Further, in the above embodiment, the thermoelectric conversion module 1 has the planar shape of the insulating substrate 30 formed in a substantially square shape. However, the thermoelectric conversion module 1 to which the insulating substrate 30 having a substantially circular planar shape is applied may be used. In addition, the shape, thickness, material, and the like of the insulating substrate 30 are not particularly limited, and are appropriately set.

さらに、上記実施形態例では、熱電変換素子5(5a,5b)を断面形状が矩形状の素子としたが、熱電変換素子5(5a,5b)の形状は特に限定されるものでなく、適宜設定されるものであり、例えば、その断面形状が円形状の素子としてもよいし、他の形状の素子としてもよい。   Furthermore, in the above embodiment, the thermoelectric conversion element 5 (5a, 5b) is an element having a rectangular cross-sectional shape, but the shape of the thermoelectric conversion element 5 (5a, 5b) is not particularly limited, and may be appropriately selected. For example, an element having a circular cross-sectional shape or an element having another shape may be used.

さらに、上記説明は熱電変換モジュールとしてのペルチェモジュールの構造について例を挙げて説明したが、本発明の熱電変換モジュールの構造は、ゼーベック効果を利用して発電を行う熱電変換モジュールの構造にも適用できる。   Furthermore, although the above description has been given by taking an example of the structure of the Peltier module as the thermoelectric conversion module, the structure of the thermoelectric conversion module of the present invention is also applicable to the structure of a thermoelectric conversion module that generates power using the Seebeck effect. it can.

本発明に係る熱電変換モジュールの構造の一実施形態例を模式的に示す説明図である。It is explanatory drawing which shows typically one embodiment of the structure of the thermoelectric conversion module which concerns on this invention. 上記実施形態例の熱電変換モジュールに適用されているフレキシブル絶縁基板を電極形成面側から見た平面図により示す説明図である。It is explanatory drawing shown by the top view which looked at the flexible insulated substrate applied to the thermoelectric conversion module of the said embodiment example from the electrode formation surface side. 上記実施形態例の熱電変換モジュールに適用されている絶縁性基板の平面説明図である。It is a plane explanatory view of the insulating substrate applied to the thermoelectric conversion module of the above-mentioned embodiment. 上記実施形態例の熱電変換モジュールの製造工程例を示す説明図である。It is explanatory drawing which shows the example of a manufacturing process of the thermoelectric conversion module of the said embodiment example. 本発明に係る熱電変換モジュールの他の実施形態例を模式的に示す説明図である。It is explanatory drawing which shows typically the other embodiment example of the thermoelectric conversion module which concerns on this invention. 本発明に係る熱電変換モジュールの他の実施形態例に適用されるフレキシブル絶縁基板の例を示す説明図である。It is explanatory drawing which shows the example of the flexible insulated substrate applied to the other embodiment example of the thermoelectric conversion module which concerns on this invention. 従来の熱電変換モジュールの一例を示す説明図である。It is explanatory drawing which shows an example of the conventional thermoelectric conversion module.

符号の説明Explanation of symbols

1 熱電変換モジュール
2 電極
3 素子嵌合孔
5,5a,5b 熱電変換素子
7 フレキシブル絶縁基板
8 弾性シート
15 複数電極の形成領域
16 電気回路の形成領域
30 絶縁性基板
DESCRIPTION OF SYMBOLS 1 Thermoelectric conversion module 2 Electrode 3 Element fitting hole 5, 5a, 5b Thermoelectric conversion element 7 Flexible insulating board 8 Elastic sheet 15 Formation area of multiple electrodes 16 Formation area of electric circuit 30 Insulating board

Claims (4)

複数の素子嵌合孔を形成した絶縁性基板を有し、P型とN型の熱電変換素子が前記絶縁性基板の対応する素子嵌合孔にそれぞれ貫通嵌合されており、前記熱電変換素子の素子嵌合孔への貫通方向の一端側と他端側にはそれぞれ、表面に互いに間隔を介して複数の電極を配列形成したフレキシブル絶縁基板が前記電極の形成面側を前記熱電変換素子側に向けて配設されており、前記電極は前記フレキシブル絶縁基板と共にフレキシブルに変形可能と成しており、前記熱電変換素子の貫通方向の一端側に配置されたフレキシブル絶縁基板の電極と他端側に配置されたフレキシブル絶縁基板の電極とは互いに位置をずらした状態と成して、前記電極を介して前記P型の熱電変換素子とN型の熱電変換素子とが電気的に接続されて熱電変換素子の回路が形成されており、前記それぞれの電極は前記フレキシブル絶縁基板と共に前記熱電変換素子側にフレキシブルに変形することにより前記熱電変換素子側への接触圧によって対応する熱電変換素子の端部にそれぞれ圧接されていることを特徴とする熱電変換モジュール。   The thermoelectric conversion element includes an insulating substrate having a plurality of element fitting holes, and P-type and N-type thermoelectric conversion elements are respectively fitted through the corresponding element fitting holes of the insulating substrate. A flexible insulating substrate in which a plurality of electrodes are arranged on the surface of each of the one end side and the other end side in the penetrating direction to the element fitting hole is arranged on the thermoelectric conversion element side. The electrode is arranged to be flexibly deformable together with the flexible insulating substrate, and the electrode and the other end side of the flexible insulating substrate arranged on one end side in the penetration direction of the thermoelectric conversion element The electrodes of the flexible insulating substrate arranged in the position are shifted from each other, and the P-type thermoelectric conversion element and the N-type thermoelectric conversion element are electrically connected via the electrodes to Circuit of conversion element Each of the electrodes is pressed into contact with the end of the corresponding thermoelectric conversion element by contact pressure to the thermoelectric conversion element side by flexibly deforming to the thermoelectric conversion element side together with the flexible insulating substrate. A thermoelectric conversion module characterized by comprising: 表面に互いに間隔を介して複数の電極を配列形成した1枚のフレキシブル絶縁基板がその電極形成面側が内側になるように折り曲げられ、前記フレキシブル絶縁基板の電極形成面によって熱電変換素子を一端側と他端側から挟んで形成されていることを特徴とする請求項1記載の熱電変換モジュール。   One flexible insulating substrate having a plurality of electrodes arranged on the surface with a space between each other is bent so that the electrode forming surface side is inward, and the thermoelectric conversion element is connected to one end side by the electrode forming surface of the flexible insulating substrate. The thermoelectric conversion module according to claim 1, wherein the thermoelectric conversion module is formed so as to be sandwiched from the other end side. フレキシブル絶縁基板の電極形成面と反対側の面側には、熱伝導弾性部材により形成された弾性シートが設けられていることを特徴とする請求項1または請求項2記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1 or 2, wherein an elastic sheet formed of a heat conductive elastic member is provided on a surface of the flexible insulating substrate opposite to the electrode forming surface. 熱電変換素子の両端側にそれぞれ配置されたフレキシブル絶縁基板のうち少なくとも一方は、熱電変換素子に電気的に接続される複数電極の形成領域と、該電極と前記熱電変換素子との接続回路に接続される電気回路の形成領域とを有し、前記複数電極の形成領域が前記熱電変換素子の配設領域に配置されて熱電変換素子の端部に導通接触していることを特徴とする請求項1または請求項2または請求項3記載の熱電変換モジュール。   At least one of the flexible insulating substrates respectively disposed on both ends of the thermoelectric conversion element is connected to a formation region of a plurality of electrodes electrically connected to the thermoelectric conversion element and a connection circuit between the electrode and the thermoelectric conversion element And a plurality of electrode formation regions arranged in the thermoelectric conversion element arrangement region and in electrical contact with the end portions of the thermoelectric conversion elements. The thermoelectric conversion module according to claim 1 or claim 2 or claim 3.
JP2004179874A 2004-06-17 2004-06-17 Thermoelectric conversion module Ceased JP2006005154A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004179874A JP2006005154A (en) 2004-06-17 2004-06-17 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004179874A JP2006005154A (en) 2004-06-17 2004-06-17 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2006005154A true JP2006005154A (en) 2006-01-05

Family

ID=35773268

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004179874A Ceased JP2006005154A (en) 2004-06-17 2004-06-17 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2006005154A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413133B2 (en) 2009-01-08 2022-08-16 Rotation Medical, Inc. Implantable tendon protection systems and related kits and methods
US11457916B2 (en) 2014-11-04 2022-10-04 Rotation Medical, Inc. Medical implant delivery system and related methods

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181362A (en) * 1995-12-26 1997-07-11 Union Material Kk Flexible thermoelectric device and cooler/heater employing it
JPH1012934A (en) * 1996-06-25 1998-01-16 Technova:Kk Thermoelectric converter
JPH10163537A (en) * 1996-11-29 1998-06-19 Matsushita Electric Works Ltd Thermoelectric converter
JP2001156343A (en) * 1999-11-30 2001-06-08 Morix Co Ltd Thermoelectric element and method of manufacturing the same
JP2002208741A (en) * 2001-01-11 2002-07-26 Nok Corp Thermoelectric semiconductor device, cooler-heater using thermoelectric semiconductor device and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09181362A (en) * 1995-12-26 1997-07-11 Union Material Kk Flexible thermoelectric device and cooler/heater employing it
JPH1012934A (en) * 1996-06-25 1998-01-16 Technova:Kk Thermoelectric converter
JPH10163537A (en) * 1996-11-29 1998-06-19 Matsushita Electric Works Ltd Thermoelectric converter
JP2001156343A (en) * 1999-11-30 2001-06-08 Morix Co Ltd Thermoelectric element and method of manufacturing the same
JP2002208741A (en) * 2001-01-11 2002-07-26 Nok Corp Thermoelectric semiconductor device, cooler-heater using thermoelectric semiconductor device and manufacturing method therefor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11413133B2 (en) 2009-01-08 2022-08-16 Rotation Medical, Inc. Implantable tendon protection systems and related kits and methods
US11457916B2 (en) 2014-11-04 2022-10-04 Rotation Medical, Inc. Medical implant delivery system and related methods

Similar Documents

Publication Publication Date Title
RU2173007C2 (en) Thermoelectric device
KR100697166B1 (en) Thermoelectric device and method of manufacturing the same
JP4728745B2 (en) Thermoelectric device and thermoelectric module
JP6114398B2 (en) Thermoelectric module
US20060042675A1 (en) Thermoelectric device and method of manufacturing the same
JP2006269721A (en) Thermoelectric module and its manufacturing method
US20110139206A1 (en) Thermoelectric device and thermoelectric module
US20160315242A1 (en) Thermoelectric conversion module
JP2006319262A (en) Thermoelectric conversion module
JP4832137B2 (en) Thermoelectric conversion module
JP2007184416A (en) Thermoelectric conversion module
JP2006005154A (en) Thermoelectric conversion module
US10236430B2 (en) Thermoelectric module
JP2005235958A (en) Thermoelectric transducer
JP2010287729A (en) Heating/cooling test apparatus
JP2010021410A (en) Thermo-module
US20060219286A1 (en) Thermoelectric transducer and manufacturing method for the same
JP2005353833A (en) Thermoelectric conversion module
JP2003017763A (en) Substrate for thermo-electric module, method of fabricating the same module and thermo-electric module utilizing substrate for thermo-electric module
JP2006032849A (en) Thermoelectric conversion module
JP4294965B2 (en) Thermoelectric conversion module
JP2020145375A (en) Thermoelectric module and manufacturing method thereof
JP2006120671A (en) Thermoelectric conversion module
JP2006120670A (en) Thermoelectric transformation module
JP2006032848A (en) Thermoelectric conversion module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091007

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091013

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20100223