JP2006120671A - Thermoelectric conversion module - Google Patents

Thermoelectric conversion module Download PDF

Info

Publication number
JP2006120671A
JP2006120671A JP2004303769A JP2004303769A JP2006120671A JP 2006120671 A JP2006120671 A JP 2006120671A JP 2004303769 A JP2004303769 A JP 2004303769A JP 2004303769 A JP2004303769 A JP 2004303769A JP 2006120671 A JP2006120671 A JP 2006120671A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
insulating substrate
conversion element
type
solder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004303769A
Other languages
Japanese (ja)
Inventor
Yasuhiro Suzuki
康弘 鈴木
Hiroshi Sato
浩 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okano Electric Wire Co Ltd
Original Assignee
Okano Electric Wire Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okano Electric Wire Co Ltd filed Critical Okano Electric Wire Co Ltd
Priority to JP2004303769A priority Critical patent/JP2006120671A/en
Publication of JP2006120671A publication Critical patent/JP2006120671A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an easy-to-manufacture thermoelectric conversion module and its manufacturing process. <P>SOLUTION: P type and N type thermoelectric conversion elements 5(5a, 5b) are fitted in corresponding element fitting holes 3 of an insulating substrate 30, respectively, and a plurality of electrodes 2 are provided, while spaced apart from each other, on the upper and lower sides of the thermoelectric conversion element 5(5a, 5b) through a solder 9. The P type thermoelectric conversion element 5a and the N type thermoelectric conversion element 5b corresponding to each other through the electrode 2 are connected electrically, one by one, at connecting positions shifted on the upper and lower sides thus forming the circuit of the thermoelectric conversion element 5(5a, 5b). The solder 9 provided between each electrode 2 and the corresponding P type or N type thermoelectric conversion element 5(5a, 5b) is projected to the insulating substrate 30 side and its projecting end side is brought into contact with the side face of the insulating substrate 30. The thermoelectric conversion element 5(5a, 5b) is supported on the insulating substrate 30 while regulating the interval between the insulating substrate 30 and each electrode 2 at a preset interval S. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えば光通信用部品、理化学機器、携帯用クーラ、半導体プロセス中でのプロセス温度管理等に用いられて冷却や加熱を行う熱電変換モジュールや、ゼーベック効果を利用して発電を行う熱電変換モジュールに関するものである。   The present invention includes, for example, optical communication parts, physics and chemistry equipment, portable coolers, thermoelectric conversion modules that are used for process temperature management in semiconductor processes and the like, and thermoelectric modules that generate electricity using the Seebeck effect. It concerns the conversion module.

ペルチェモジュール等の熱電変換モジュールが、光通信分野等の様々な分野に用いられており、様々な熱電変換モジュールの構成が提案されている。図4には、代表的な熱電変換モジュールの構造の一例が示されている。この熱電変換モジュールはペルチェモジュールであり、複数の素子嵌合孔3を有する絶縁性基板(絶縁支持板)30の素子嵌合孔3に、熱電変換素子5(5a,5b)を貫通嵌合して形成されている(例えば特許文献1、2、参照。)。   Thermoelectric conversion modules such as Peltier modules are used in various fields such as the optical communication field, and various configurations of thermoelectric conversion modules have been proposed. FIG. 4 shows an example of the structure of a typical thermoelectric conversion module. This thermoelectric conversion module is a Peltier module, and thermoelectric conversion elements 5 (5a, 5b) are inserted through the element fitting holes 3 of an insulating substrate (insulating support plate) 30 having a plurality of element fitting holes 3. (For example, refer to Patent Documents 1 and 2).

ペルチェモジュールの熱電変換素子5(5a,5b)は、ペルチェ素子として一般的に知られており、P型半導体により形成されたP型(p型)の熱電変換素子5aと、N型半導体により形成されたN型(n型)の熱電変換素子5bとを有する。P型およびN型の熱電変換素子5(5a,5b)は、例えば長さが0.5〜3.0mm程度のビスマス・テルル等の半導体単結晶で構成されている。   The Peltier module thermoelectric conversion element 5 (5a, 5b) is generally known as a Peltier element, and is formed of a P-type (p-type) thermoelectric conversion element 5a formed of a P-type semiconductor and an N-type semiconductor. N-type (n-type) thermoelectric conversion element 5b. The P-type and N-type thermoelectric conversion elements 5 (5a, 5b) are made of a semiconductor single crystal such as bismuth tellurium having a length of about 0.5 to 3.0 mm, for example.

前記絶縁性基板30は、例えば厚さが0.2〜1.0mm程度の電気絶縁物の板、例えばガラスエポキシ板により構成されており、この絶縁性基板30の上下側に、熱電変換素子5(5a,5b)が、例えば0.1〜1.6mm程度突出するように、P型の熱電変換素子5aとN型の熱電変換素子5bが、それぞれ、対応する素子嵌合孔3に貫通嵌合固定されて交互に配置されている。   The insulating substrate 30 is made of, for example, an electrically insulating plate having a thickness of about 0.2 to 1.0 mm, for example, a glass epoxy plate, and the thermoelectric conversion element 5 is formed on the upper and lower sides of the insulating substrate 30. The P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b are respectively inserted into the corresponding element fitting holes 3 so that (5a, 5b) protrudes, for example, by about 0.1 to 1.6 mm. They are fixed and alternately arranged.

絶縁性基板30の素子嵌合孔3の内径は、熱電変換素子5(5a,5b)の外径より大きめに形成されており、それにより、熱電変換素子5(5a,5b)の素子嵌合孔3への挿入作業が容易に行えるようになっている。そして、例えば図5(a)、(b)に示すように、素子嵌合孔3に挿入された熱電変換素子5(5a,5b)と素子嵌合孔3との隙間を埋めるように、熱電変換素子5(5a,5b)と絶縁性基板30とに介設された接着剤15によって、それぞれの熱電変換素子5(5a,5b)が対応する素子嵌合孔3に固定されている。   The inner diameter of the element fitting hole 3 of the insulating substrate 30 is formed larger than the outer diameter of the thermoelectric conversion element 5 (5a, 5b), whereby the element fitting of the thermoelectric conversion element 5 (5a, 5b) is performed. The insertion operation into the hole 3 can be easily performed. For example, as shown in FIGS. 5A and 5B, the thermoelectric conversion element 5 (5a, 5b) inserted into the element fitting hole 3 and the element fitting hole 3 are filled so as to fill the gap. Each thermoelectric conversion element 5 (5a, 5b) is fixed to the corresponding element fitting hole 3 by an adhesive 15 interposed between the conversion element 5 (5a, 5b) and the insulating substrate 30.

また、図4に示したように、P型とN型の熱電変換素子5(5a,5b)の素子嵌合孔3への貫通方向の一端側(上側)と他端側(下側)には、それぞれ電極2が配置されている。これらの電極2はいずれも半田(同図には図示せず)を介して接合されて設けられており、電極2により熱電変換素子5(5a,5b)を上下に挟む態様と成している。   Further, as shown in FIG. 4, the P-type and N-type thermoelectric conversion elements 5 (5a, 5b) are provided on one end side (upper side) and the other end side (lower side) in the penetration direction to the element fitting hole 3. Are each provided with an electrode 2. All of these electrodes 2 are joined and provided via solder (not shown in the figure), and the thermoelectric conversion element 5 (5a, 5b) is sandwiched between the electrodes 2 up and down. .

それぞれの電極2を介し、対応する前記P型の熱電変換素子5aとN型の熱電変換素子5bとが1つずつ上側と下側とで互いに位置をずらした接続位置で電気的に直列に接続され、熱電変換素子5(5a,5b)の回路(PN素子対)が形成されている。また、熱電変換素子5(5a,5b)の回路は、図示されていないリード端子とリード線を介して電源回路等に接続されている。   The corresponding P-type thermoelectric conversion elements 5a and N-type thermoelectric conversion elements 5b are electrically connected in series via the respective electrodes 2 at the connection positions shifted from each other on the upper side and the lower side. Thus, a circuit (PN element pair) of the thermoelectric conversion elements 5 (5a, 5b) is formed. Moreover, the circuit of the thermoelectric conversion element 5 (5a, 5b) is connected to a power supply circuit etc. via the lead terminal and lead wire which are not illustrated.

上記熱電変換素子5(5a,5b)の回路に電流を流すと、P型の熱電変換素子5aとN型の熱電変換素子5bに電極2を介して電流が流れて、熱電変換素子5(5a,5b)と電極2との接合部(界面)で冷却・加熱効果が生じる。つまり、前記接合部を流れる電流の方向によって熱電変換素子5(5a,5b)の一方の端部が発熱せしめられると共に他方の端部が冷却せしめられるいわゆるペルチェ効果が生じる。   When a current flows through the circuit of the thermoelectric conversion element 5 (5a, 5b), a current flows through the electrode 2 to the P-type thermoelectric conversion element 5a and the N-type thermoelectric conversion element 5b, and the thermoelectric conversion element 5 (5a , 5b) and a cooling / heating effect at the junction (interface) between the electrode 2 and the electrode 2. That is, a so-called Peltier effect is generated in which one end portion of the thermoelectric conversion element 5 (5a, 5b) is heated while the other end portion is cooled depending on the direction of the current flowing through the junction.

このペルチェ効果によって熱電変換素子5(5a,5b)の一方の端部、例えば上端部が発熱せしめられると、この熱がペルチェモジュールの上側に設けられた部材に伝えられ、この部材の加熱が行われる。また、その逆に、ペルチェ効果によって熱電変換素子5(5a,5b)の例えば上端部が冷却せしめられると、ペルチェモジュールの上側に設けられた部材の冷却(吸熱)が行われる。   When one end, for example, the upper end of the thermoelectric conversion element 5 (5a, 5b) is caused to generate heat by this Peltier effect, this heat is transmitted to the member provided on the upper side of the Peltier module, and this member is heated. Is called. On the contrary, when the upper end portion of the thermoelectric conversion element 5 (5a, 5b) is cooled by the Peltier effect, the member provided on the upper side of the Peltier module is cooled (heat absorption).

特開平9−181362号公報JP-A-9-181362 特開平10−178216号公報JP-A-10-178216

しかしながら、上記のように、従来の熱電変換モジュールは、接着剤15を用いて、絶縁性基板30の素子嵌合孔3に熱電変換素子5(5a,5b)を固定しており、この接着剤15による固定を良好に行うためには、接着剤15を均一に塗布して均一に乾燥させなければならないために、その作業が容易でなく、製造歩留まりの低下やコストアップを招くといった問題があった。   However, as described above, the conventional thermoelectric conversion module uses the adhesive 15 to fix the thermoelectric conversion element 5 (5a, 5b) in the element fitting hole 3 of the insulating substrate 30, and this adhesive In order to perform the fixing with 15 well, the adhesive 15 must be uniformly applied and dried uniformly, so that the operation is not easy and there is a problem that the production yield is reduced and the cost is increased. It was.

本発明は、上記課題を解決するために成されたものであり、その目的は、製造が容易で、安価な熱電変換モジュールおよびその製造方法を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a thermoelectric conversion module that is easy to manufacture and inexpensive, and a method for manufacturing the same.

上記目的を達成するために、本発明は次のような構成をもって課題を解決するための手段としている。すなわち、第1の発明は、複数の素子嵌合孔を形成した絶縁性基板を有し、P型とN型の熱電変換素子が前記絶縁性基板の対応する素子嵌合孔にそれぞれ貫通嵌合されており、前記熱電変換素子の素子嵌合孔への貫通方向の一端側と他端側にはそれぞれ、互いに間隔を介して配置された複数の電極が半田を介して設けられて前記電極により前記熱電変換素子を上下に挟む態様と成しており、前記電極を介して対応する前記P型の熱電変換素子とN型の熱電変換素子とが1つずつ上側と下側とで互いに位置をずらした接続位置で電気的に接続されて熱電変換素子の回路が形成されており、前記それぞれの電極と対応するP型とN型の熱電変換素子との間に設けられた半田のうち前記熱電変換素子の上側に設けられた半田の少なくとも1つと前記熱電変換素子の下側に設けられた半田の少なくとも1つがそれぞれ、前記絶縁性基板側に突出してその突出先端側が前記絶縁性基板側の面に当接して該絶縁性基板と前記各電極との間隔を予め定めた設定間隔に規制している構成をもって課題を解決する手段としている。   In order to achieve the above object, the present invention has the following configuration as means for solving the problems. That is, the first invention has an insulating substrate in which a plurality of element fitting holes are formed, and P-type and N-type thermoelectric conversion elements are respectively fitted through the corresponding element fitting holes of the insulating substrate. A plurality of electrodes arranged at intervals from each other on one end side and the other end side in the penetration direction to the element fitting hole of the thermoelectric conversion element are provided via solder. The thermoelectric conversion element is sandwiched vertically, and the P-type thermoelectric conversion element and the N-type thermoelectric conversion element corresponding to each other via the electrodes are positioned one above the other on the upper side and one on the lower side. A circuit of a thermoelectric conversion element is formed by being electrically connected at a shifted connection position, and the thermoelectric power is included in the solder provided between the P-type and N-type thermoelectric conversion elements corresponding to the respective electrodes. At least one of the solder provided on the upper side of the conversion element and the above-mentioned At least one of the solders provided on the lower side of the electric conversion element protrudes to the insulating substrate side, and the protruding tip side abuts on the surface of the insulating substrate side so that the insulating substrate and each electrode A configuration in which the interval is regulated to a predetermined set interval serves as a means for solving the problem.

また、第2の発明は、上記第1の発明の構成に加え、絶縁性基板は矩形状に形成され、少なくとも前記絶縁性基板の四角部に設けられた熱電変換素子と対応する電極との間に設けられた半田がそれぞれ、前記絶縁性基板側に突出してその突出先端側が前記絶縁性基板側の面に当接している構成をもって課題を解決する手段としている。   According to a second aspect of the invention, in addition to the configuration of the first aspect of the invention, the insulating substrate is formed in a rectangular shape, and at least between the thermoelectric conversion element provided in the rectangular portion of the insulating substrate and the corresponding electrode. Each of the solders provided on the substrate protrudes toward the insulating substrate and the protruding tip is in contact with the surface of the insulating substrate.

本発明によれば、熱電変換素子の上下に半田を介して設けられた電極を介して、対応する前記P型の熱電変換素子とN型の熱電変換素子とが1つずつ上側と下側とで互いに位置をずらした接続位置で電気的に接続されているが、それぞれの電極と対応するP型とN型の熱電変換素子との間に設けられた半田のうち、熱電変換素子の上側と下側のそれぞれ1つ以上が前記絶縁性基板側に突出しており、その突出先端側が前記絶縁性基板側の面に当接して該絶縁性基板と前記各電極との間隔を予め定めた設定間隔に規制しているので、熱電変換素子の絶縁性基板への貫通方向の位置を規制でき、熱電変換素子を絶縁性基板に固定しなくても支持できる。   According to the present invention, the corresponding P-type thermoelectric conversion element and N-type thermoelectric conversion element are respectively connected to the upper side and the lower side via electrodes provided via solder on the upper and lower sides of the thermoelectric conversion element. In the solder provided between the P-type and N-type thermoelectric conversion elements corresponding to the respective electrodes, the upper side of the thermoelectric conversion elements Each one or more of the lower side protrudes to the insulating substrate side, and the protruding tip side abuts on the surface of the insulating substrate side so that the interval between the insulating substrate and each electrode is set in advance. Therefore, the position of the thermoelectric conversion element in the penetrating direction to the insulating substrate can be restricted, and the thermoelectric conversion element can be supported without being fixed to the insulating substrate.

したがって、本発明によれば、それぞれの熱電変換素子を接着剤によって対応する素子嵌合孔に固定する場合に必要な接着剤の均一塗布や均一乾燥の手間が必要なく、非常に容易に組み立てられるので、製造歩留まりを向上させることができるし、コストも安くできる。   Therefore, according to the present invention, it is very easy to assemble without the need for uniform application and uniform drying of the adhesive necessary for fixing each thermoelectric conversion element to the corresponding element fitting hole with an adhesive. Therefore, the manufacturing yield can be improved and the cost can be reduced.

また、本発明において、絶縁性基板は矩形状に形成され、少なくとも前記絶縁性基板の四角部に設けられた熱電変換素子と対応する電極との間に設けられた半田がそれぞれ、前記絶縁性基板側に突出してその突出先端側が前記絶縁性基板側の面に当接している構成によれば、絶縁性基板と前各電極との間隔を予め定めた設定間隔に規制しやすいので、より一層、製造歩留まりを向上させることができる。   Further, in the present invention, the insulating substrate is formed in a rectangular shape, and solder provided between at least the thermoelectric conversion element provided in the square portion of the insulating substrate and the corresponding electrode is provided on the insulating substrate. According to the configuration in which the protruding tip side is in contact with the surface on the insulating substrate side and protrudes to the side, it is easy to regulate the interval between the insulating substrate and each of the previous electrodes to a predetermined set interval. The production yield can be improved.

以下、本発明の実施の形態を、図面を参照して説明する。なお、本実施形態例の説明において、従来例と同一名称部分には同一符号を付し、その重複説明は省略又は簡略化する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the description of the present embodiment, the same reference numerals are assigned to the same names as those in the conventional example, and the duplicate description is omitted or simplified.

図1には、本発明に係る熱電変換モジュールの一実施形態例が模式的な側面図により示されている。同図に示すように、本実施形態例の熱電変換モジュール1も、図4に示した熱電変換モジュールと同様に、例えばガラス繊維強化のエポキシ樹脂により形成された絶縁性基板30を有しており、該絶縁性基板30には互いに間隔を介して複数の素子嵌合孔3が形成されている。なお、図3には、絶縁性基板30の平面図が示されている。   FIG. 1 is a schematic side view showing an embodiment of a thermoelectric conversion module according to the present invention. As shown in the figure, the thermoelectric conversion module 1 of the present embodiment also has an insulating substrate 30 formed of, for example, a glass fiber reinforced epoxy resin, similarly to the thermoelectric conversion module shown in FIG. A plurality of element fitting holes 3 are formed in the insulating substrate 30 at intervals. FIG. 3 shows a plan view of the insulating substrate 30.

また、本実施形態例でも、従来例と同様に、それぞれの素子嵌合孔3には、対応する熱電変換素子5(5a,5b)が貫通嵌合固定されており、熱電変換素子5(5a,5b)の素子嵌合孔3への貫通方向の一端側と他端側にはそれぞれ、従来例と同様の配置態様で互いに間隔を介して配置された複数の電極2が、半田9を介して設けられているが、本実施形態例は、以下に示すような特徴的な構成を有している。   Also in the present embodiment example, as in the conventional example, the corresponding thermoelectric conversion elements 5 (5a, 5b) are fitted and fixed in the respective element fitting holes 3, and the thermoelectric conversion elements 5 (5a) are fixed. , 5b), a plurality of electrodes 2 are arranged on one end side and the other end side in the penetrating direction to the element fitting hole 3 in the same manner as in the conventional example with a gap therebetween. However, the present embodiment has a characteristic configuration as shown below.

すなわち、本実施形態例では、それぞれの電極2と対応する各組のP型とN型の熱電変換素子5(5a,5b)との間に設けられた半田9は、前記絶縁性基板30側に突出しており、その突出先端側が前記絶縁性基板30側の面に当接して該絶縁性基板30と前記各電極2との間隔Sを予め定めた設定間隔に規制していることを特徴とする。なお、間隔Sの大きさは特に限定されるものでなく、適宜設定されるものであるが、本実施形態例では、例えば0.15mmとしている。   That is, in this embodiment, the solder 9 provided between each pair of P-type and N-type thermoelectric conversion elements 5 (5a, 5b) corresponding to each electrode 2 is connected to the insulating substrate 30 side. And the protruding tip side abuts against the surface on the insulating substrate 30 side to regulate the interval S between the insulating substrate 30 and each electrode 2 to a predetermined set interval. To do. Note that the size of the interval S is not particularly limited and is set as appropriate. In the present embodiment, for example, the size is set to 0.15 mm.

また、本実施形態例では、それぞれの電極2と対応するP型とN型の熱電変換素子5(5a,5b)との間に設けられた半田9のうち、殆どの半田9が絶縁性基板30側に突出してその突出先端側が前記絶縁性基板30側の面に当接しているが、絶縁性基板30側に突出する半田9の数は、適宜設定される。   In this embodiment, most of the solders 9 among the solders 9 provided between the P-type and N-type thermoelectric conversion elements 5 (5a, 5b) corresponding to the respective electrodes 2 are insulated substrates. The protrusion 9 protrudes toward the side 30 and the protruding tip side is in contact with the surface on the insulating substrate 30 side. The number of solders 9 protruding toward the insulating substrate 30 is appropriately set.

つまり、それぞれの電極2と対応するP型とN型の熱電変換素子5(5a,5b)との間に設けられた半田9のうち熱電変換素子5(5a,5b)の上側に設けられた半田9の少なくとも1つと、前記熱電変換素子5(5a,5b)の下側に設けられた半田9の少なくとも1つがそれぞれ、前記絶縁性基板30側に突出してその突出先端側が前記絶縁性基板30側の面に当接していれば、絶縁性基板30と前記各電極2との間隔Sを予め定めた設定間隔に規制することができる。   That is, the solder 9 provided between the P-type and N-type thermoelectric conversion elements 5 (5a, 5b) corresponding to the respective electrodes 2 is provided above the thermoelectric conversion elements 5 (5a, 5b). At least one of the solder 9 and at least one of the solder 9 provided on the lower side of the thermoelectric conversion element 5 (5a, 5b) protrude to the insulating substrate 30 side, and the protruding tip side is the insulating substrate 30. If it is in contact with the side surface, the distance S between the insulating substrate 30 and each of the electrodes 2 can be regulated to a predetermined set interval.

また、絶縁性基板30を矩形状に形成し、少なくとも前記絶縁性基板30の四角部に設けられた熱電変換素子5(5a,5b)と対応する電極2との間に設けられた半田9をそれぞれ、前記絶縁性基板30側に突出させてその突出先端側を前記絶縁性基板30側の面に当接させると、絶縁性基板30と前各電極2との間隔Sを予め定めた設定間隔に規制しやすいので好ましい。   Further, the insulating substrate 30 is formed in a rectangular shape, and solder 9 provided between the thermoelectric conversion elements 5 (5a, 5b) provided in at least the square portions of the insulating substrate 30 and the corresponding electrodes 2 is provided. When each of the protrusions protrudes toward the insulating substrate 30 and the leading end of the protrusion is brought into contact with the surface of the insulating substrate 30, the interval S between the insulating substrate 30 and the front electrodes 2 is set in advance. It is preferable because it is easy to regulate.

本実施形態例は以上のように構成されており、次に、本実施形態例の熱電変換モジュールの製造方法について説明する。まず、図2(a)に示すように、P型とN型の熱電変換素子5(5a,5b)を絶縁性基板30の対応する素子嵌合孔3にそれぞれ貫通嵌合する。この際、例えば、凹部16を有する治具17に絶縁性基板30を固定し、凹部16に熱電変換素子5(5a,5b)を支持する。   The present embodiment is configured as described above. Next, a method for manufacturing the thermoelectric conversion module of the present embodiment will be described. First, as shown in FIG. 2A, P-type and N-type thermoelectric conversion elements 5 (5 a, 5 b) are respectively fitted through the corresponding element fitting holes 3 of the insulating substrate 30. At this time, for example, the insulating substrate 30 is fixed to the jig 17 having the recess 16, and the thermoelectric conversion element 5 (5 a, 5 b) is supported by the recess 16.

なお、熱電変換素子5(5a,5b)の両端部(電極2との接触部)には、例えば予めメッキ処理等の表面処理を施しておく。この表面処理は、電極2との導通を行いやすくするために行われるものであり、例えばニッケルメッキの母剤の上に金メッキ層や半田メッキ層を積層する等、適宜の処理が行われる。   In addition, surface treatments, such as a plating process, are given beforehand to the both ends (contact part with the electrode 2) of the thermoelectric conversion element 5 (5a, 5b), for example. This surface treatment is performed for facilitating electrical connection with the electrode 2. For example, an appropriate treatment such as laminating a gold plating layer or a solder plating layer on a nickel plating base material is performed.

そして、前記熱電変換素子5(5a,5b)の素子嵌合孔3への挿入の後、図2(b)に示すように、耐熱テープ18の表面に間隔を介して配列固定した複数の電極2を、半田9を介して熱電変換素子5(5a,5b)の上側に設ける。なお、半田9は、電極2の表面に印刷等により設けておく。この半田9の量と、半田9を溶融固化させたときの絶縁性基板30側への突出量との関係を、予め実験等により求めておき、突出量が前記間隔Sと等しい値になるように、半田9の量を設定する。   Then, after the thermoelectric conversion element 5 (5a, 5b) is inserted into the element fitting hole 3, as shown in FIG. 2 (b), a plurality of electrodes arranged and fixed on the surface of the heat-resistant tape 18 with a gap therebetween. 2 is provided on the upper side of the thermoelectric conversion element 5 (5a, 5b) through the solder 9. The solder 9 is provided on the surface of the electrode 2 by printing or the like. The relationship between the amount of the solder 9 and the amount of protrusion toward the insulating substrate 30 when the solder 9 is melted and solidified is obtained in advance by experiments or the like so that the amount of protrusion is equal to the interval S. Then, the amount of solder 9 is set.

次に、加熱炉等により、半田9を加熱して溶融し、図2(c)に示すように、半田9を絶縁性基板30の表面13側に突出させた後、冷却して固化する。その後、前記耐熱テープ18を剥がし、図2(d)に示すように、絶縁性基板30を裏返して、上記と同様の作業を行い、図2(e)に示すように、絶縁性基板30の裏面14側にも、半田9を突出させる。その後、耐熱テープ18を剥がし、図1に示すように、リード端子27とリード線28とを接続し、熱電変換モジュールを完成させる。   Next, the solder 9 is heated and melted in a heating furnace or the like, and as shown in FIG. 2C, the solder 9 is projected to the surface 13 side of the insulating substrate 30, and then cooled and solidified. Thereafter, the heat-resistant tape 18 is peeled off, and the insulating substrate 30 is turned over as shown in FIG. 2D, and the same operation as described above is performed. As shown in FIG. The solder 9 is also projected on the back surface 14 side. Thereafter, the heat-resistant tape 18 is peeled off and the lead terminals 27 and the lead wires 28 are connected as shown in FIG. 1 to complete the thermoelectric conversion module.

本実施形態例は、以上のように、熱電変換素子5(5a,5b)の上下にそれぞれ設けられた電極2と対応するP型とN型の熱電変換素子5(5a,5b)との間に半田9を設け、この半田9を絶縁性基板30側に突出させてその突出先端側を絶縁性基板30側の面(表面13および裏面14)に当接させ、絶縁性基板30と前記各電極2との間隔を予め定めた設定間隔Sに規制しているので、熱電変換素子5(5a,5b)の絶縁性基板30への貫通方向の位置を規制できる。   In this embodiment, as described above, between the P-type and N-type thermoelectric conversion elements 5 (5a, 5b) corresponding to the electrodes 2 respectively provided above and below the thermoelectric conversion elements 5 (5a, 5b). The solder 9 is provided on the insulating substrate 30, and the solder 9 is protruded toward the insulating substrate 30 and the protruding tip side is brought into contact with the surface (the front surface 13 and the back surface 14) on the insulating substrate 30 side. Since the distance from the electrode 2 is regulated to a predetermined set distance S, the position of the thermoelectric conversion element 5 (5a, 5b) in the penetration direction to the insulating substrate 30 can be regulated.

なお、熱電変換素子5(5a,5b)と絶縁性基板30の素子嵌合孔3との間隔は、非常に小さいので、電極2に固定された熱電変換素子5(5a,5b)が絶縁性基板30の面方向に動くことは殆ど無い。   In addition, since the space | interval of the thermoelectric conversion element 5 (5a, 5b) and the element fitting hole 3 of the insulating substrate 30 is very small, the thermoelectric conversion element 5 (5a, 5b) fixed to the electrode 2 is insulative. There is almost no movement in the surface direction of the substrate 30.

そのため、熱電変換素子5(5a,5b)の絶縁性基板30への貫通方向の位置が規制されれば、熱電変換素子5(5a,5b)の絶縁性基板30への固定を行わなくても、熱電変換素子5(5a,5b)を絶縁性基板30に支持できるので、本実施形態例では、それぞれの熱電変換素子5(5a,5b)を接着剤15によって素子嵌合孔3に固定する必要が無く、接着剤15の均一塗布や均一乾燥の手間を省け、非常に容易に組み立てられるので、製造歩留まりを向上させることができるし、コストも安くできる。   Therefore, if the position of the thermoelectric conversion element 5 (5a, 5b) in the penetration direction to the insulating substrate 30 is restricted, the thermoelectric conversion element 5 (5a, 5b) is not fixed to the insulating substrate 30. Since the thermoelectric conversion elements 5 (5a, 5b) can be supported on the insulating substrate 30, in this embodiment, each thermoelectric conversion element 5 (5a, 5b) is fixed to the element fitting hole 3 by the adhesive 15. This eliminates the need for uniform application and uniform drying of the adhesive 15, and is very easy to assemble, so that the manufacturing yield can be improved and the cost can be reduced.

なお、本発明は上記実施形態例に限定されることはなく、様々な実施の態様を採り得る。例えば、上記実施形態例では、熱電変換素子5(5a,5b)を断面形状が矩形状の素子としたが、熱電変換素子5(5a,5b)の形状は特に限定されるものでなく、適宜設定されるものであり、例えば、その断面形状が円形状の素子としてもよいし、他の形状の素子としてもよい。   In addition, this invention is not limited to the said embodiment example, Various aspects can be taken. For example, in the embodiment described above, the thermoelectric conversion element 5 (5a, 5b) is an element having a rectangular cross-sectional shape, but the shape of the thermoelectric conversion element 5 (5a, 5b) is not particularly limited, and may be appropriately selected. For example, an element having a circular cross-sectional shape or an element having another shape may be used.

また、熱電変換素子5(5a,5b)の高さ(上下方向の長さ)や絶縁性基板30の厚み等は特に限定されるものでなく、適宜設定されるものでる。そして、この絶縁性基板30の厚みと熱電変換素子5(5a,5b)の高さとによって決定される熱電変換素子5(5a,5b)の上下の(絶縁性基板30への貫通方向の)突出長により、電極2と絶縁性基板30の表面との間隔Sが決定されるので、この間隔Sに対応させて、電極2と熱電変換素子5(5a,5b)との間に設ける半田9の量を適宜設定するとよい。   Moreover, the height (length in the vertical direction) of the thermoelectric conversion element 5 (5a, 5b), the thickness of the insulating substrate 30, and the like are not particularly limited and can be set as appropriate. The protrusions above and below the thermoelectric conversion elements 5 (5a, 5b) (in the penetration direction to the insulating substrate 30) determined by the thickness of the insulating substrate 30 and the height of the thermoelectric conversion elements 5 (5a, 5b). Since the distance S between the electrode 2 and the surface of the insulating substrate 30 is determined by the length, the solder 9 provided between the electrode 2 and the thermoelectric conversion element 5 (5a, 5b) corresponding to this distance S The amount may be set appropriately.

さらに、上記実施形態例では、熱電変換モジュールは、いずれも平面形状を略四角形状に形成したが、熱電変換モジュールの形状は特に芸呈されるものでなく、適宜設定されるものであり、例えば平面形状が略円形状の熱電変換モジュールとしてもよい。   Furthermore, in the above embodiment example, each of the thermoelectric conversion modules is formed in a substantially quadrangular planar shape, but the shape of the thermoelectric conversion module is not particularly presented and is appropriately set, for example, A thermoelectric conversion module having a substantially circular planar shape may be used.

さらに、上記説明は熱電変換モジュールとしてのペルチェモジュールの構造について例を挙げて説明したが、本発明の熱電変換モジュールの構造は、ゼーベック効果を利用して発電を行う熱電変換モジュールの構造にも適用できる。   Furthermore, although the above description has been given by taking an example of the structure of the Peltier module as the thermoelectric conversion module, the structure of the thermoelectric conversion module of the present invention is also applicable to the structure of a thermoelectric conversion module that generates power using the Seebeck effect. it can.

本発明に係る熱電変換モジュールの構造の一実施形態例を側面図により模式的に示す説明図である。It is explanatory drawing which shows typically one Embodiment of the structure of the thermoelectric conversion module which concerns on this invention with a side view. 上記実施形態例の熱電変換モジュールの製造工程例を示す説明図である。It is explanatory drawing which shows the example of a manufacturing process of the thermoelectric conversion module of the said embodiment example. 上記熱電変換モジュールに適用される絶縁性基板の一例を示す説明図である。It is explanatory drawing which shows an example of the insulating board | substrate applied to the said thermoelectric conversion module. 従来の熱電変換モジュールの一例を側面図により示す説明図である。It is explanatory drawing which shows an example of the conventional thermoelectric conversion module with a side view. 従来の熱電変換モジュールにおける絶縁性基板への熱電変換素子固定方法例を示す断面説明図である。It is sectional explanatory drawing which shows the example of the thermoelectric conversion element fixing method to the insulating board | substrate in the conventional thermoelectric conversion module.

符号の説明Explanation of symbols

2 電極
3 素子嵌合孔
5,5a,5b 熱電変換素子
9 半田
30 絶縁性基板
2 Electrode 3 Element fitting hole 5, 5a, 5b Thermoelectric conversion element 9 Solder 30 Insulating substrate

Claims (2)

複数の素子嵌合孔を形成した絶縁性基板を有し、P型とN型の熱電変換素子が前記絶縁性基板の対応する素子嵌合孔にそれぞれ貫通嵌合されており、前記熱電変換素子の素子嵌合孔への貫通方向の一端側と他端側にはそれぞれ、互いに間隔を介して配置された複数の電極が半田を介して設けられて前記電極により前記熱電変換素子を上下に挟む態様と成しており、前記電極を介して対応する前記P型の熱電変換素子とN型の熱電変換素子とが1つずつ上側と下側とで互いに位置をずらした接続位置で電気的に接続されて熱電変換素子の回路が形成されており、前記それぞれの電極と対応するP型とN型の熱電変換素子との間に設けられた半田のうち前記熱電変換素子の上側に設けられた半田の少なくとも1つと前記熱電変換素子の下側に設けられた半田の少なくとも1つがそれぞれ、前記絶縁性基板側に突出してその突出先端側が前記絶縁性基板側の面に当接して該絶縁性基板と前記各電極との間隔を予め定めた設定間隔に規制していることを特徴とする熱電変換モジュール。   The thermoelectric conversion element includes an insulating substrate having a plurality of element fitting holes, and P-type and N-type thermoelectric conversion elements are respectively fitted through the corresponding element fitting holes of the insulating substrate. A plurality of electrodes arranged with a gap between each other are provided on one end side and the other end side in the penetrating direction to the element fitting hole, and the thermoelectric conversion element is sandwiched vertically by the electrodes. The P-type thermoelectric conversion element and the N-type thermoelectric conversion element corresponding to each other via the electrodes are electrically connected at a connection position in which the positions are shifted from each other on the upper side and the lower side, respectively. The circuit of the thermoelectric conversion element is formed by being connected, and is provided on the upper side of the thermoelectric conversion element among the solders provided between the P-type and N-type thermoelectric conversion elements corresponding to the respective electrodes. At least one of the solder and provided below the thermoelectric conversion element At least one of the solders is projected to the insulating substrate side, and the leading end side of the solder is in contact with the surface of the insulating substrate side so that the distance between the insulating substrate and each electrode is set to a predetermined set interval. A thermoelectric conversion module that is regulated. 絶縁性基板は矩形状に形成され、少なくとも前記絶縁性基板の四角部に設けられた熱電変換素子と対応する電極との間に設けられた半田がそれぞれ、前記絶縁性基板側に突出してその突出先端側が前記絶縁性基板側の面に当接していることを特徴とする請求項1記載の熱電変換モジュール。   The insulating substrate is formed in a rectangular shape, and at least the solder provided between the thermoelectric conversion element provided in the square portion of the insulating substrate and the corresponding electrode protrudes toward the insulating substrate and protrudes from the insulating substrate. The thermoelectric conversion module according to claim 1, wherein a tip side is in contact with a surface on the insulating substrate side.
JP2004303769A 2004-10-19 2004-10-19 Thermoelectric conversion module Pending JP2006120671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004303769A JP2006120671A (en) 2004-10-19 2004-10-19 Thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004303769A JP2006120671A (en) 2004-10-19 2004-10-19 Thermoelectric conversion module

Publications (1)

Publication Number Publication Date
JP2006120671A true JP2006120671A (en) 2006-05-11

Family

ID=36538308

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004303769A Pending JP2006120671A (en) 2004-10-19 2004-10-19 Thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP2006120671A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082541A1 (en) * 2009-01-15 2010-07-22 住友化学株式会社 Thermoelectric conversion module

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010082541A1 (en) * 2009-01-15 2010-07-22 住友化学株式会社 Thermoelectric conversion module
JP2010165842A (en) * 2009-01-15 2010-07-29 Sumitomo Chemical Co Ltd Thermoelectric conversion module
CN102282689A (en) * 2009-01-15 2011-12-14 住友化学株式会社 Thermoelectric conversion module

Similar Documents

Publication Publication Date Title
RU2173007C2 (en) Thermoelectric device
US20060042676A1 (en) Thermoelectric device and method of manufacturing the same
JP2005333083A (en) Thermoelectric transducer module manufacturing method and thermoelectric transducer module
JP2000058930A (en) Thermoelement, and its manufacture
US9412929B2 (en) Thermoelectric conversion module
JP4832137B2 (en) Thermoelectric conversion module
JP2007184416A (en) Thermoelectric conversion module
JP2000050661A (en) Power generator
JP2006120671A (en) Thermoelectric conversion module
JP2006319262A (en) Thermoelectric conversion module
JP2003017763A (en) Substrate for thermo-electric module, method of fabricating the same module and thermo-electric module utilizing substrate for thermo-electric module
US10236430B2 (en) Thermoelectric module
US20190334074A1 (en) Thermoelectric module
JP6595320B2 (en) Thermoelectric module assembly
JP2006005154A (en) Thermoelectric conversion module
JP2006032849A (en) Thermoelectric conversion module
JPH1187787A (en) Production of thermoelectrtc module
JP2005353833A (en) Thermoelectric conversion module
JP2006005153A (en) Thermoelectric conversion module and its manufacturing method
JP2001257389A (en) Producing method for thermoelectric element
JP2006120670A (en) Thermoelectric transformation module
JP4294965B2 (en) Thermoelectric conversion module
JP2006114554A (en) Thermoelectric conversion module and manufacturing method thereof
JP2006210806A (en) Thermoelectric conversion module manufacturing method and insulating substrate applied to the manufacturing method
JP7373353B2 (en) Thermoelectric module and method for manufacturing posts for thermoelectric module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071009

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090602

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091104