JP2003258322A - Lanthanum sulfide sintered compact for thermoelectric conversion material and method of manufacturing the same - Google Patents

Lanthanum sulfide sintered compact for thermoelectric conversion material and method of manufacturing the same

Info

Publication number
JP2003258322A
JP2003258322A JP2002056559A JP2002056559A JP2003258322A JP 2003258322 A JP2003258322 A JP 2003258322A JP 2002056559 A JP2002056559 A JP 2002056559A JP 2002056559 A JP2002056559 A JP 2002056559A JP 2003258322 A JP2003258322 A JP 2003258322A
Authority
JP
Japan
Prior art keywords
lanthanum sulfide
type
thermoelectric conversion
sintered body
metallic palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002056559A
Other languages
Japanese (ja)
Other versions
JP3877060B2 (en
Inventor
Youichiro Kamimura
揚一郎 上村
Mamoru Mitomo
護 三友
Satoyuki Nishimura
聡之 西村
Shinji Hirai
伸治 平井
Kazunobu Shimakage
和宜 嶋影
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
National Institute for Materials Science
Original Assignee
National Institute for Materials Science
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute for Materials Science, Japan Science and Technology Corp filed Critical National Institute for Materials Science
Priority to JP2002056559A priority Critical patent/JP3877060B2/en
Publication of JP2003258322A publication Critical patent/JP2003258322A/en
Application granted granted Critical
Publication of JP3877060B2 publication Critical patent/JP3877060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To develop a material for thermoelectric conversion device having a big Seebeck coefficient and a big figure of merit which is acquired by adding electric conductivity. <P>SOLUTION: A lanthanum sulfide sintered compact comprises a β type crystal structure, in which β type lanthanum sulfide powder and metallic palladium particle are mixed and sintered as major constituents, and a trace of γ type ingredient, wherein the sintered compact contains 1-5 percent by mass of metallic palladium and specific resistance is 100 kΩcm or below. It can be manufactured by mixing high purity β type lanthanum sulfide powder containing oxygen as an impurity of 1.1 weight percent or below and metallic palladium particle with particle diameter of 10 μm or below, and after compression molding with a pressure of 25 MPa or over at ordinary temperatures, sintering it at temperatures ranging from 1200°C to 1500°C in a vacuum or an inert gas for more than 30 minutes. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、特に、熱電変換材
料として有用な、比抵抗が小さく大きな熱起電力を有す
る硫化ランタン焼結体およびその製造方法に関する。
TECHNICAL FIELD The present invention relates to a lanthanum sulfide sintered body having a small specific resistance and a large thermoelectromotive force, which is particularly useful as a thermoelectric conversion material, and a method for producing the same.

【0002】[0002]

【従来の技術】熱電変換材料の応用は、多岐に亘ってい
る。熱エネルギーを電気エネルギーに変換するクリーン
エネルギー源としての利用が最も期待されるところであ
るが、ペルチェ効果を利用するものとして小型冷凍器、
放熱板、恒温槽、電熱用等が考えられ、また実現されて
いる。
2. Description of the Related Art Applications of thermoelectric conversion materials are wide-ranging. It is most expected to be used as a clean energy source that converts heat energy into electric energy, but a small refrigerator that utilizes the Peltier effect,
Heat sinks, thermostats, electric heaters, etc. have been conceived and realized.

【0003】熱起電力は、2種の電気伝導体を接合した
とき2接点間の温度差ΔTにより発生する電圧Vで、そ
れらの間にはV=αΔTの関係がある。このαのことを
ゼーベック係数という。この熱起電力を利用して、熱エ
ネルギーを電気エネルギーに変換する際に、熱電材料の
有効性を示す指標として、電気伝導度σ、熱伝導度κを
使って、式、Z=α2 σ/κ、で示される性能指数Zが
用いられている。このZの値の大きい材料ほど優れた熱
電材料となる。
Thermoelectromotive force is a voltage V generated by a temperature difference ΔT between two contacts when two kinds of electric conductors are joined, and there is a relation of V = αΔT between them. This α is called the Seebeck coefficient. When this thermal electromotive force is used to convert thermal energy into electrical energy, the electrical conductivity σ and thermal conductivity κ are used as an index showing the effectiveness of the thermoelectric material, and the equation Z = α 2 σ is used. A performance index Z represented by / κ is used. The larger the value of Z, the better the thermoelectric material.

【0004】既に報告され、または利用されている熱電
材料は多く、現在最も大きい性能指数が得られているの
はBi−Te系の物質で、約3×10-3(/K)の値を
示しているが、それらの物質のゼーベック係数の値は、
約200(μV/K)程度である(「実用新素材技術便
覧」通産資料調査会、1996、904)。
Many thermoelectric materials have been reported or used, and the largest figure of merit at present is the Bi-Te type substance, which has a value of about 3 × 10 -3 (/ K). As shown, the Seebeck coefficient values for these substances are
It is about 200 (μV / K) ("Practical New Material and Technology Handbook", Intermittent Document Survey Committee, 1996, 904).

【0005】希土類元素の硫化物は、大きなゼーベック
係数を持ち、ランタノイド三二硫化物の中でもLaから
Ndまでの硫化物は、低温安定相である斜方晶のα相か
ら正方晶のβ相、さらに、高温安定相である立方晶Th
3 4 型のγ相へと不可逆変態し、特に、La2
3 は、373Kで+354μv・deg-1、Ce2 3
は、373Kで+574μv・deg-1のゼーべック係
数を有する熱電材料であることが報告されている(ゲ・
ヴェ・サムソノフ他:「硫化物便覧」、日・ソ通信社、
1974、p108)。
Rare earth element sulfides have a large Seebeck coefficient, and among lanthanoid tridisulfides, sulfides from La to Nd are rhombic α-phase to tetragonal β-phase, which are stable phases at low temperature, Furthermore, cubic Th, which is a stable phase at high temperature,
3 irreversible transformation to P 4 type γ-phase, in particular, La 2 S
3 is +373 μK at +354 μv · deg −1 , Ce 2 S 3
Is a thermoelectric material having a Seebeck coefficient of +574 μv · deg −1 at 373 K (Ge ·
Ve Samsonov and others: "Sulfide Handbook", Sino-Japan News Agency,
1974, p108).

【0006】また、硫化ランタンLa3-x 4 およびL
a−A−S系(AはCaまたはBa)において、最大
2.9×10-4(/K)の性能指数が得られたことが報
告されている(勝山 茂他「熱電変換シンポジウム´9
9論文集」、1999、56)。しかし、そこで報告さ
れているゼーベック係数は最大値で約100(μV/
K)である。
Also, lanthanum sulfide La 3-x S 4 and L
It has been reported that a maximum of 2.9 × 10 −4 (/ K) figure of merit was obtained in the aAS system (A is Ca or Ba) (Shigeru Katsuyama et al. “Thermoelectric conversion symposium '9.
9 articles ”, 1999, 56). However, the Seebeck coefficient reported there has a maximum value of about 100 (μV /
K).

【0007】本発明者らは、ランタン硫化物系において
従来報告されていたゼーベック係数よりも約一桁大きい
ゼーベック係数を有する物質を見出し、特許出願した
(特開2001−335367号公報)。この物質は、
組成がLa23 で示され、結晶構造がβとγの混合相
からなり、ゼーベック係数がγ単相のときより大きい値
を有することを特徴とする硫化ランタン焼結体であり、
ゼーベック係数が60℃で1000(μV/K)以上の
値を有する。
The inventors of the present invention have found a substance having a Seebeck coefficient which is about an order of magnitude larger than the Seebeck coefficient reported in the lanthanum sulfide system, and applied for a patent (Japanese Patent Laid-Open No. 2001-335367). This substance is
A lanthanum sulfide sintered body having a composition represented by La 2 S 3 , a crystal structure consisting of a mixed phase of β and γ, and a Seebeck coefficient having a larger value when it is a γ single phase,
The Seebeck coefficient has a value of 1000 (μV / K) or more at 60 ° C.

【0008】[0008]

【発明が解決しようとする課題】熱電変換材料の上述の
性能指数Zを求める式において、3種の物理的性質がそ
の値を決定しているが、ゼーベック係数αの値は2乗で
Zの値を大きくすることから、このα値の大きな物質が
より優れた熱電材料となり得る。本発明者が先に発明し
た上記の硫化ランタン焼結体は、大きなゼーベック係数
αを持ち、高い性能指数Zを持つ材料であるが、電気抵
抗が大きく、性能指数の値も小さかった。
In the equation for determining the above-mentioned figure of merit Z of the thermoelectric conversion material, three physical properties determine the value, but the value of the Seebeck coefficient α is the square of Z. Since the value is increased, the substance having a large α value can be a better thermoelectric material. The above-mentioned lanthanum sulfide sintered body invented by the present inventor is a material having a large Seebeck coefficient α and a high figure of merit Z, but has a large electric resistance and a small figure of merit.

【0009】熱電変換材料は、放熱板として電子機器の
冷却、センサー等、その応用範囲は広く、地球上に限ら
ず、人工衛星においても存在する温度差を電気エネルギ
ーとして利用することは、究極のクリーンエネルギー源
であり、地球環境の悪化を考えるとき、その開発は急務
である。
The thermoelectric conversion material has a wide range of applications such as cooling of electronic devices and sensors as a heat dissipation plate, and it is ultimate to use the temperature difference existing not only on the earth but also in artificial satellites as electric energy. It is a clean energy source, and its development is urgent when considering the deterioration of the global environment.

【0010】熱電変換素子を利用したクリーンエネルギ
ーの実用化が実現すれば、その効果は非常に大きい。ま
た、放熱板等への応用はICの集積度緻密化による発熱
問題を解決し、小型化、高集積化等この方面での一層の
進展が期待される。そこで、本発明は、大きなゼーベッ
ク係数を持ち、電気伝導性を付加することで、比抵抗が
小さく大きな性能指数を有する熱電変換素子用材料を開
発することを目的とする。
If the practical application of clean energy using a thermoelectric conversion element is realized, the effect will be very large. Further, application to a heat sink or the like solves the heat generation problem due to the dense integration of ICs, and further progress in this direction such as miniaturization and high integration is expected. Therefore, an object of the present invention is to develop a material for a thermoelectric conversion element that has a large Seebeck coefficient and electrical conductivity, and has a small specific resistance and a large figure of merit.

【0011】[0011]

【課題を解決するための手段】本発明者らは、種々の金
属元素の添加により電気伝導度の改善を検討した結果、
パラジウム金属の添加によって、上記の課題が解決でき
ることを見出した。
Means for Solving the Problems As a result of studying improvement of electric conductivity by adding various metal elements, the present inventors have found that
It has been found that the above problems can be solved by adding palladium metal.

【0012】すなわち、本発明は、β型硫化ランタン粉
末と金属パラジウム粒を混合して焼結した結晶構造がβ
型を主成分とし、微量のγ型成分を有する硫化ランタン
焼結体であって、1〜5質量%の金属パラジウムを含有
し、比抵抗が100kΩ・cm以下であることを特徴と
する熱電変換材料用硫化ランタン焼結体である。
That is, according to the present invention, the crystal structure obtained by mixing and sintering β-type lanthanum sulfide powder and metallic palladium particles is β
A lanthanum sulfide sintered body containing a mold as a main component and a slight amount of a γ-type component, containing 1 to 5 mass% of metallic palladium, and having a specific resistance of 100 kΩ · cm or less. It is a lanthanum sulfide sintered body for materials.

【0013】硫化ランタン焼結体中のパラジウム金属の
含有量に関しては、少ないと電気抵抗が大きく、多いと
電気抵抗は低くなるが、ゼーベック係数が小さくなり、
性能指数も減少する。パラジウムは、硫化ランタンのβ
相からγ相への転移温度とされている約1300℃以上
の融点を持ち、硫黄と化合物を作らない。
Regarding the content of palladium metal in the lanthanum sulfide sinter, when the content is low, the electrical resistance is high, and when the content is high, the electrical resistance is low, but the Seebeck coefficient is low.
The figure of merit also decreases. Palladium is β of lanthanum sulfide
It has a melting point above 1300 ° C, which is considered to be the transition temperature from the phase to the γ phase, and does not form compounds with sulfur.

【0014】また、本発明は、不純物としての酸素含有
量が1.1重量%以下の高純度β型硫化ランタン粉末と
粒径が10μm以下の金属パラジウム粒を混合し、常温
において、25MPa以上の圧力で圧縮成型した後、1
200℃から1500℃の温度範囲で、真空中または不
活性ガス中で30分以上焼成することを特徴とする熱電
変換材料用硫化ランタン焼結体の製造方法である。
Further, according to the present invention, high-purity β-type lanthanum sulfide powder having an oxygen content of 1.1% by weight or less as an impurity and metallic palladium particles having a particle size of 10 μm or less are mixed, and at room temperature, it is 25 MPa or more. 1 after compression molding with pressure
A method for producing a lanthanum sulfide sintered body for a thermoelectric conversion material, which comprises firing in a temperature range of 200 ° C. to 1500 ° C. in vacuum or in an inert gas for 30 minutes or more.

【0015】硫化ランタン粉末の酸素濃度が1.1重量
%を上回ると、γ相が生成せずに、電気的に絶縁体とな
ってしまう。金属パラジウム粒の粒径が10μmを超え
ると、パラジウムが偏析して、電気抵抗が1×10Ω
・cm以上に大きくなり、好ましくない。圧縮成型の圧
力が25MPa未満では、焼結体はポーラスで電気抵抗
が1×10Ω・cm以上に大きくなり、不適当であ
る。圧力の上限は特に限定されないが、必要以上に大き
くする必要はなく、好ましくは150MPa程度以下と
する。
When the oxygen concentration of the lanthanum sulfide powder exceeds 1.1% by weight, the γ-phase is not generated and it becomes an electrical insulator. When the particle size of the metal palladium particles exceeds 10 μm, the palladium segregates and the electric resistance is 1 × 10 6 Ω.
・ It is not preferable because it becomes larger than cm. If the pressure for compression molding is less than 25 MPa, the sintered body is porous and has an electric resistance of 1 × 10 6 Ω · cm or more, which is inappropriate. The upper limit of the pressure is not particularly limited, but it is not necessary to increase it more than necessary and is preferably about 150 MPa or less.

【0016】焼成温度が1200℃未満では、γ相が生
成せず、焼結体は電気的に絶縁体のままであり、150
0℃を超えると、β相が減少し、ゼーベック係数が小さ
くなり不適当である。焼成時間が30分未満では、焼結
体のγ相の生成、または焼き固まりが十分でなく、不適
当である。焼成時間は長くても2時間程度まででよい。
このように、常圧焼結を採用することにより結晶構造が
β型を主成分とし、微量のγ型成分を有する硫化ランタ
ン焼結体が得られる。この方法により、焼結体の脆さや
電気的性質が改善され、比抵抗が100kΩ・cm以下
を実現することができる。
If the firing temperature is less than 1200 ° C., the γ phase is not generated, and the sintered body remains an electrically insulating material.
If the temperature exceeds 0 ° C, the β phase decreases and the Seebeck coefficient decreases, which is unsuitable. If the firing time is less than 30 minutes, the production of the γ phase of the sintered body or the firing and solidification is not sufficient, which is unsuitable. The firing time may be up to 2 hours at the longest.
Thus, by adopting the normal pressure sintering, a lanthanum sulfide sintered body having a β-type crystal structure as a main component and a slight amount of a γ-type component can be obtained. By this method, the brittleness and electrical properties of the sintered body are improved and a specific resistance of 100 kΩ · cm or less can be realized.

【0017】本発明の硫化ランタン焼結体は、例えば、
温度差を利用したクリーンエネルギーの発電材料とし
て、宇宙船等での補助電源、熱電対温度計、ペルチェ効
果を利用した、電熱器、小型冷凍機、吸熱板、放熱板、
恒温槽などに利用される。
The lanthanum sulfide sintered body of the present invention is, for example,
As a clean energy power generation material using temperature difference, auxiliary power source in spacecraft etc., thermocouple thermometer, electric heater, small refrigerator, heat absorption plate, heat dissipation plate using Peltier effect,
Used for constant temperature baths.

【0018】[0018]

【実施例】実施例1 純度99.99質量%、平均粒径1.77μmのLa
粉末を石英ボートに乗せて電気炉内に挿入し、Ar
雰囲気中で温度1023Kに加熱し、CS溶液中から
気化させたCSガスをAr搬送ガスを用いて導入し、
8時間の硫化を行った。反応後の粉末はMgOを内部標
準としたX線回折法によりβ相単相であることを確認し
た。組成については、希土類金属をキレート滴定法によ
り、また硫黄、炭素、酸素をLECO社製の同時分析装置に
より求めた。その結果、それらの組成はLa2.13
0.13の値であった。なお炭素は検出限界以下で
あった。
EXAMPLES Example 1 La 2 having a purity of 99.99 mass% and an average particle size of 1.77 μm.
Place the O 3 powder on a quartz boat and insert it into an electric furnace.
In an atmosphere, heated to a temperature of 1023K, the CS 2 gas vaporized from the CS 2 solution is introduced using an Ar carrier gas,
Sulfurization was carried out for 8 hours. The powder after the reaction was confirmed to be a β-phase single phase by an X-ray diffraction method using MgO as an internal standard. Regarding the composition, a rare earth metal was determined by a chelate titration method, and sulfur, carbon, and oxygen were determined by a simultaneous analyzer made by LECO. As a result, their composition was La 2.13 S.
The value was 3 O 0.13 . The carbon content was below the detection limit.

【0019】この粉末に、粒径が1.0μm以下のパラ
ジウム金属粒を1.75質量%混合し、これらを六方晶
窒化ホウ素で内部を被覆した黒鉛ジグに入れ、常温で5
0MPaの圧力を加えて圧縮成型した。この成型体を真
空中で1500℃、1時間保持することで、焼成を行っ
た。この試料をX線回折法で測定した結果、β相が主
で、微量のγ型成分が認められた。SEM−EDXによ
る局所分析の結果では、パラジウムは粒として存在して
いるものもあるが、硫化ランタンの粒界に沿っても存在
しており、これが電気的性質の変化をもたらしているも
のと推察される。この試料のゼーベック係数、比抵抗、
性能指数の値は、それぞれ1570(μV/K)、41
kΩ・cm、0.1×10−3であった。
1.75% by mass of palladium metal particles having a particle size of 1.0 μm or less was mixed with this powder, which was placed in a graphite jig whose inside was coated with hexagonal boron nitride, and the mixture was allowed to stand at room temperature for 5 minutes.
A pressure of 0 MPa was applied for compression molding. Firing was performed by holding this molded body in vacuum at 1500 ° C. for 1 hour. As a result of measuring this sample by the X-ray diffraction method, the β phase was mainly present, and a trace amount of the γ type component was observed. According to the results of local analysis by SEM-EDX, although some palladium is present as grains, it is also present along the grain boundaries of lanthanum sulfide, which is presumed to cause a change in electrical properties. To be done. Seebeck coefficient, resistivity,
The figures of merit are 1570 (μV / K) and 41, respectively.
It was kΩ · cm and 0.1 × 10 −3 .

【0020】実施例2 実施例1と同様の方法及び条件でパラジウム金属粒を3
質量%混合した試料を焼成した。この試料のゼーベック
係数、比抵抗、性能指数の値は、それぞれ940(μV
/K)、3.44kΩ・cm、0.04×10−3であ
った。
Example 2 Palladium metal particles were mixed with the same method and conditions as in Example 1.
The sample mixed by mass% was fired. The Seebeck coefficient, the specific resistance and the figure of merit of this sample are 940 (μV
/ K) was 3.44 kΩ · cm and 0.04 × 10 −3 .

【0021】比較例1 実施例1と同じ条件で作製した硫化ランタン粉末を六方
晶窒化ホウ素で内部を被覆した黒鉛ジグに入れ、常温で
50MPaの圧力を加えて圧縮成型した。この成型体を
真空中で1500℃、1時間保持することで、焼成を行
った。この試料をX線回折法で測定した結果、β相を主
とし、γ相を共存させた焼結体で、ゼーベック係数の値
はおよそ2000(μV/K)、比抵抗は1×10Ω
・cmであった。
Comparative Example 1 A lanthanum sulfide powder produced under the same conditions as in Example 1 was placed in a graphite jig whose inside was coated with hexagonal boron nitride, and compression molded at room temperature under a pressure of 50 MPa. Firing was performed by holding this molded body in vacuum at 1500 ° C. for 1 hour. As a result of measuring this sample by an X-ray diffraction method, it was a sintered body in which the β phase was mainly present and the γ phase coexisted, and the Seebeck coefficient was about 2000 (μV / K) and the specific resistance was 1 × 10 6 Ω.
・ It was cm.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI テーマコート゛(参考) H01L 35/34 H02N 11/00 A H02N 11/00 C01F 17/00 E // C01F 17/00 C04B 35/00 T (72)発明者 西村 聡之 茨城県つくば市竹園3−106−205 (72)発明者 平井 伸治 北海道室蘭市寿町1−13−13 (72)発明者 嶋影 和宜 北海道室蘭市水元町31−1−203 Fターム(参考) 4G030 AA55 AA61 BA01 BA12 BA21 CA04 GA11 GA22 GA24 GA27 4G076 AA03 AA18 AB03 AB16 BA38 DA30 4K018 AD20 DA21 KA32 ─────────────────────────────────────────────────── ─── Continuation of front page (51) Int.Cl. 7 Identification code FI theme code (reference) H01L 35/34 H02N 11/00 A H02N 11/00 C01F 17/00 E // C01F 17/00 C04B 35 / 00 T (72) Inventor Satoshi Nishimura 3-106-205 Takezono, Tsukuba-shi, Ibaraki (72) Inventor Shinji Hirai 1-1-13-13, Kotobuki, Muroran-shi, Hokkaido (72) Inventor Kazunori Shimakage 31 Mizumoto-cho, Muroran-shi, Hokkaido -1-203 F term (reference) 4G030 AA55 AA61 BA01 BA12 BA21 CA04 GA11 GA22 GA24 GA27 4G076 AA03 AA18 AB03 AB16 BA38 DA30 4K018 AD20 DA21 KA32

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 β型硫化ランタン粉末と金属パラジウム
粒を混合して焼結した結晶構造がβ型を主成分とし、微
量のγ型成分を有する硫化ランタン焼結体であって、1
〜5質量%の金属パラジウムを含有し、比抵抗が100
kΩ・cm以下であることを特徴とする熱電変換材料用
硫化ランタン焼結体。
1. A lanthanum sulfide sintered body having a β-type main component with a crystal structure obtained by mixing and sintering β-type lanthanum sulfide powder and metallic palladium particles, which comprises a trace amount of γ-type component.
Contains ~ 5% by mass of metallic palladium and has a specific resistance of 100.
A lanthanum sulfide sintered body for thermoelectric conversion material, which is kΩ · cm or less.
【請求項2】 不純物としての酸素含有量が1.1重量
%以下の高純度β型硫化ランタン粉末と粒径が10μm
以下の金属パラジウム粒を混合し、常温において、25
MPa以上の圧力で圧縮成型した後、1200℃から1
500℃の温度範囲で、真空中または不活性ガス中で3
0分以上焼成することを特徴とする熱電変換材料用硫化
ランタン焼結体の製造方法。
2. A high-purity β-type lanthanum sulfide powder having an oxygen content of 1.1% by weight or less as an impurity and a particle size of 10 μm.
The following metal palladium particles are mixed, and at room temperature, 25
After compression molding at a pressure of MPa or higher, 1200 ° C to 1
3 in vacuum or inert gas in the temperature range of 500 ° C
A method for producing a lanthanum sulfide sintered body for a thermoelectric conversion material, which comprises firing for 0 minutes or more.
JP2002056559A 2002-03-01 2002-03-01 Lanthanum sulfide sintered body for thermoelectric conversion material and method for producing the same Expired - Lifetime JP3877060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002056559A JP3877060B2 (en) 2002-03-01 2002-03-01 Lanthanum sulfide sintered body for thermoelectric conversion material and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002056559A JP3877060B2 (en) 2002-03-01 2002-03-01 Lanthanum sulfide sintered body for thermoelectric conversion material and method for producing the same

Publications (2)

Publication Number Publication Date
JP2003258322A true JP2003258322A (en) 2003-09-12
JP3877060B2 JP3877060B2 (en) 2007-02-07

Family

ID=28667089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002056559A Expired - Lifetime JP3877060B2 (en) 2002-03-01 2002-03-01 Lanthanum sulfide sintered body for thermoelectric conversion material and method for producing the same

Country Status (1)

Country Link
JP (1) JP3877060B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108480A (en) * 2004-10-07 2006-04-20 Japan Aerospace Exploration Agency Self-power-generation type panel
JP2019110181A (en) * 2017-12-18 2019-07-04 国立大学法人室蘭工業大学 Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber, and paint

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108480A (en) * 2004-10-07 2006-04-20 Japan Aerospace Exploration Agency Self-power-generation type panel
JP2019110181A (en) * 2017-12-18 2019-07-04 国立大学法人室蘭工業大学 Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber, and paint
JP7176714B2 (en) 2017-12-18 2022-11-22 国立大学法人室蘭工業大学 Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber and paint

Also Published As

Publication number Publication date
JP3877060B2 (en) 2007-02-07

Similar Documents

Publication Publication Date Title
KR20060125789A (en) A method of preparation for the high performance thermoelectric material indium-cobalt-antimony
Lee et al. Thermoelectric properties of Spark Plasma Sintered InxYbyLa0. 3-x-yCo4Sb12 skutterudite system
Wang et al. Solid solution Pb 1− x Eu x Te: constitution and thermoelectric behavior
JP4078414B2 (en) Lanthanum sulfide sintered body and manufacturing method thereof
Tani et al. Thermoelectric properties of β-Fe1-xCoxSi2 semiconductors
JP2003258322A (en) Lanthanum sulfide sintered compact for thermoelectric conversion material and method of manufacturing the same
Yang et al. Synthesis and electronic transport of hydrothermally synthesized p-type Na-doped SnSe
JP3541549B2 (en) Thermoelectric material for high temperature and method for producing the same
JP3476343B2 (en) Thermoelectric conversion material
KR101322779B1 (en) Bismuth doped Magnesium Silicide composition for thermoelectric material and the manufacturing method of the same
JP4070110B2 (en) Thermoelectric conversion material comprising Ln2S3 sintered body and method for producing the same
Dong et al. High Power Factor of HPHT-Sintered GeTe-AgSbTe 2 Alloys
JP4756282B2 (en) Cerium sulfide sintered body and method for producing the same
Lee et al. Thermoelectric properties of p-type Bi 0.5 Sb 1.5 Te 3 compounds fabricated by spark plasma sintering
Du et al. Thermoelectric properties of n-type half-Heusler compounds synthesized by the induction melting method
JP4070109B2 (en) Method for producing thermoelectric conversion material comprising Ln2S3 powder sintered body
Chen et al. Multi-filling approach for the improvement of thermoelectric properties of skutterudites
JP3088039B2 (en) Thermoelectric semiconductor element
Allevato et al. Thermoelectric Properties of Semiconducting Iridium Suicides
Kojima et al. Study on the formation of Fe1− xMnxSi2 from the sintered FeSi-Fe2Si5 eutectic alloy doped with manganese
Qigao et al. Transport properties of Zintl phase Yb1–xCaxCd2Sb2 at low temperature
JP2003218410A (en) Thermoelectric material, its manufacturing method, and thermoelectric conversion device
Snyder et al. Thermoelectric properties of the incommensurate layered semiconductor Ge x NbTe 2
JP4208983B2 (en) Manufacturing method of semiconductor thermoelectric material
Sonne et al. Improvement of Niobium Doped SrTiO3 by Nanostructuring

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20031031

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040115

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20040129

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061025

R150 Certificate of patent or registration of utility model

Ref document number: 3877060

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term