JP7176714B2 - Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber and paint - Google Patents

Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber and paint Download PDF

Info

Publication number
JP7176714B2
JP7176714B2 JP2017241539A JP2017241539A JP7176714B2 JP 7176714 B2 JP7176714 B2 JP 7176714B2 JP 2017241539 A JP2017241539 A JP 2017241539A JP 2017241539 A JP2017241539 A JP 2017241539A JP 7176714 B2 JP7176714 B2 JP 7176714B2
Authority
JP
Japan
Prior art keywords
electromagnetic wave
wave absorbing
powder
rare earth
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017241539A
Other languages
Japanese (ja)
Other versions
JP2019110181A (en
Inventor
伸治 平井
英次 中村
洋平 久保田
貴志夫 日高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Original Assignee
NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY filed Critical NATIONAL UNIVERSITY CORPORATION MURORAN INSTITUTE OF TECHNOLOGY
Priority to JP2017241539A priority Critical patent/JP7176714B2/en
Publication of JP2019110181A publication Critical patent/JP2019110181A/en
Application granted granted Critical
Publication of JP7176714B2 publication Critical patent/JP7176714B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Paints Or Removers (AREA)
  • Powder Metallurgy (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

特許法第30条第2項適用 平成29年6月18日に28th Rare Earth Research Conference概要集にて公開Application of Article 30, Paragraph 2 of the Patent Act Released on June 18, 2017 in the abstract of the 28th Rare Earth Research Conference

特許法第30条第2項適用 平成29年6月18日~22日に開催された28th Rare Earth Research Conferenceにて発表Application of Article 30, Paragraph 2 of the Patent Law Presented at the 28th Rare Earth Research Conference held from June 18 to 22, 2017

特許法第30条第2項適用 平成29年8月23日に日本金属学会講演概要集にて公開Article 30, Paragraph 2 of the Patent Act applies.

特許法第30条第2項適用 平成29年9月6日~8日に開催された日本金属学会2017年秋期講演大会にて発表Article 30, Paragraph 2 of the Patent Act applies.

特許法第30条第2項適用 平成29年9月26日に資源・素材&EARTH大会プログラム・要旨集にて公開Article 30, Paragraph 2 of the Patent Act applies Published on September 26, 2017 in Resources, Materials & EARTH Conference Program/Abstracts

特許法第30条第2項適用 平成29年9月26日~28日に開催された資源・素材&EARTH2017にて発表Article 30, Paragraph 2 of the Patent Act applied Presented at Resources, Materials & EARTH 2017 held from September 26th to 28th, 2017

本発明は、電磁波吸収粉末、電磁波吸収組成物、電磁波吸収体および塗料に関する。 TECHNICAL FIELD The present invention relates to an electromagnetic wave absorbing powder, an electromagnetic wave absorbing composition, an electromagnetic wave absorber and a paint.

従来、電磁波吸収特性を示す電磁波吸収粉末が知られている(例えば、特許文献1を参照)。 Conventionally, electromagnetic wave absorbing powders exhibiting electromagnetic wave absorbing properties are known (see, for example, Patent Document 1).

特開2012-84577号公報JP 2012-84577 A

本発明は、新規な電磁波吸収粉末を提供することを目的とする。
更に、本発明は、上記電磁波吸収粉末を用いた電磁波吸収組成物、電磁波吸収体および塗料を提供することも目的とする。
An object of the present invention is to provide a novel electromagnetic wave absorbing powder.
A further object of the present invention is to provide an electromagnetic wave absorbing composition, an electromagnetic wave absorber and a paint using the electromagnetic wave absorbing powder.

本発明者らは、鋭意検討した結果、下記構成を採用することにより、上記目的が達成されることを見出した。 As a result of intensive studies, the inventors of the present invention have found that the above object can be achieved by adopting the following configuration.

すなわち、本発明は、以下の[1]~[12]を提供する。
[1]希土類元素、硫黄元素および酸素元素を含有し、X線回折スペクトルが希土類硫化物のピークを示す、電磁波吸収粉末。
[2]上記希土類元素が、軽希土類元素である、上記[1]に記載の電磁波吸収粉末。
[3]上記希土類元素が、ランタン、セリウムおよびプラセオジムからなる群から選ばれる少なくとも1種である、上記[1]または[2]に記載の電磁波吸収粉末。
[4]少なくとも0.05~20GHzの周波数帯域において電磁波吸収特性を有する、上記[1]~[3]のいずれかに記載の電磁波吸収粉末。
[5]上記酸素元素の含有量が、0.10~2.00質量%である、上記[1]~[4]のいずれかに記載の電磁波吸収粉末。
[6]平均粒径が、0.1~10μmである、上記[1]~[5]のいずれかに記載の電磁波吸収粉末。
[7]少なくとも0.05~20GHzの周波数帯域において、複素誘電率の虚数部の比誘電率が3.0以上かつ誘電正接が0.4以上である、上記[1]~[6]のいずれかに記載の電磁波吸収粉末。
[8]上記[1]~[7]のいずれかに記載の電磁波吸収粉末と、バインダ樹脂と、を含有する電磁波吸収組成物。
[9]更に、鉄粉を含有する、上記[8]に記載の電磁波吸収組成物。
[10]上記鉄粉の含有量が、上記電磁波吸収粉末100質量部に対して、10~80質量部である、上記[9]に記載の電磁波吸収組成物。
[11]上記[8]~[10]のいずれかに記載の電磁波吸収組成物を用いて形成された電磁波吸収体。
[12]上記[1]~[7]のいずれかに記載の電磁波吸収粉末を含有する塗料。
That is, the present invention provides the following [1] to [12].
[1] An electromagnetic wave absorbing powder containing a rare earth element, a sulfur element and an oxygen element, and having an X-ray diffraction spectrum showing a rare earth sulfide peak.
[2] The electromagnetic wave absorbing powder according to [1] above, wherein the rare earth element is a light rare earth element.
[3] The electromagnetic wave absorbing powder according to [1] or [2] above, wherein the rare earth element is at least one selected from the group consisting of lanthanum, cerium and praseodymium.
[4] The electromagnetic wave absorbing powder according to any one of [1] to [3], which has electromagnetic wave absorbing properties in at least a frequency band of 0.05 to 20 GHz.
[5] The electromagnetic wave absorbing powder according to any one of [1] to [4], wherein the content of the oxygen element is 0.10 to 2.00% by mass.
[6] The electromagnetic wave absorbing powder according to any one of [1] to [5] above, which has an average particle size of 0.1 to 10 μm.
[7] Any of the above [1] to [6], wherein the imaginary part of the complex permittivity has a relative dielectric constant of 3.0 or more and a dielectric loss tangent of 0.4 or more in at least a frequency band of 0.05 to 20 GHz. The electromagnetic wave absorbing powder according to claim 1.
[8] An electromagnetic wave absorbing composition containing the electromagnetic wave absorbing powder according to any one of [1] to [7] above and a binder resin.
[9] The electromagnetic wave absorbing composition according to [8] above, which further contains iron powder.
[10] The electromagnetic wave absorbing composition according to [9], wherein the content of the iron powder is 10 to 80 parts by mass with respect to 100 parts by mass of the electromagnetic wave absorbing powder.
[11] An electromagnetic wave absorber formed using the electromagnetic wave absorbing composition according to any one of [8] to [10] above.
[12] A paint containing the electromagnetic wave absorbing powder according to any one of [1] to [7] above.

本発明によれば、新規な電磁波吸収粉末を提供することができる。
更に、本発明によれば、上記電磁波吸収粉末を用いた電磁波吸収組成物、電磁波吸収体および塗料を提供することもできる。
According to the present invention, a novel electromagnetic wave absorbing powder can be provided.
Furthermore, according to the present invention, it is possible to provide an electromagnetic wave absorbing composition, an electromagnetic wave absorber and a paint using the electromagnetic wave absorbing powder.

試験例IのXRDスペクトルである。4 is the XRD spectrum of Test Example I. FIG. 試験例Iの電磁波吸収量(反射)を示すグラフである。4 is a graph showing the amount of electromagnetic wave absorption (reflection) of Test Example I. FIG. 試験例Iの電磁波吸収量(透過)を示すグラフである。4 is a graph showing the electromagnetic wave absorption (transmission) of Test Example I. FIG. 試験例IIのXRDスペクトルである。It is the XRD spectrum of Test Example II. 試験例IIの電磁波吸収量(反射)を示すグラフである。It is a graph which shows the electromagnetic wave absorption amount (reflection) of Test Example II. 試験例IIの電磁波吸収量(透過)を示すグラフである。It is a graph which shows the electromagnetic wave absorption amount (permeation|transmission) of Experiment II. 希土類元素に含まれるランタノイドを立体的に示す周期表である。1 is a periodic table three-dimensionally showing lanthanoids contained in rare earth elements.

[電磁波吸収粉末]
本発明の電磁波吸収粉末(以下、単に「本発明の粉末」ともいう)は、希土類元素、硫黄元素および酸素元素を含有し、かつ、X線回折(XRD)スペクトルが希土類硫化物のピークを示す(図1および図4を参照)。
このような本発明の粉末は、例えば、図2~図3および図5~図6に示すように、少なくとも0.05~20GHzの周波数帯域において電磁波吸収特性を有する。
[Electromagnetic wave absorbing powder]
The electromagnetic wave absorbing powder of the present invention (hereinafter also simply referred to as "powder of the present invention") contains a rare earth element, a sulfur element and an oxygen element, and an X-ray diffraction (XRD) spectrum shows a rare earth sulfide peak. (See Figures 1 and 4).
Such a powder of the present invention has electromagnetic wave absorption properties at least in the frequency band of 0.05 to 20 GHz, as shown in FIGS. 2 to 3 and 5 to 6, for example.

図7に周期表を示す。希土類元素は、周期表の第3族に属する元素のうち、スカンジウム(Sc)およびイットリウム(Y)の2元素に、ランタン(La)からルテチウム(Lu)までの15元素(ランタノイド)を加えた計17元素の総称である。
希土類元素は、+3価のイオンの最外殻電子配置がいずれもsの閉殻構造になっており、性質が互いに酷似している。ランタノイドは、各元素は性質がよく似ているため、図7に示すように、周期表上では、ひとまとまりにして扱われる。
FIG. 7 shows the periodic table. Among the elements belonging to Group 3 of the periodic table, the rare earth elements are scandium (Sc) and yttrium (Y), plus 15 elements (lanthanoids) from lanthanum (La) to lutetium (Lu). It is a general term for 17 elements.
Rare earth elements have a closed-shell structure in which the outermost electron configuration of +3 valence ions is s 2 p 6 , and their properties are very similar to each other. Lanthanoids are treated as a group on the periodic table, as shown in FIG. 7, because each element has similar properties.

本発明の粉末が含有する希土類元素は、軽希土類元素が好ましい。軽希土類元素は、ランタン(La)、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、プロメチウム(Pm)、サマリウム(Sm)、および、ユウロピウム(Eu)である。これらのうち、ランタン(La)、セリウム(Ce)およびプラセオジム(Pr)からなる群から選ばれる少なくとも1種が好ましく、ランタン(La)およびセリウム(Ce)からなる群から選ばれる少なくとも1種がより好ましい。 The rare earth element contained in the powder of the present invention is preferably a light rare earth element. Light rare earth elements are lanthanum (La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), and europium (Eu). Among these, at least one selected from the group consisting of lanthanum (La), cerium (Ce) and praseodymium (Pr) is preferred, and at least one selected from the group consisting of lanthanum (La) and cerium (Ce) is more preferred. preferable.

本発明の粉末において、XRDスペクトルに示される希土類硫化物の相は、β相、γ相、または、β相とγ相との混合相が好ましい。 In the powder of the present invention, the rare earth sulfide phase shown in the XRD spectrum is preferably β phase, γ phase, or a mixed phase of β phase and γ phase.

本発明の粉末が、希土類元素および硫黄元素を含有することは、XRDスペクトルが希土類硫化物のピークを示すことにより、確認できる。
本発明の粉末が、酸素元素を含有することは、XRDスペクトルが希土類酸硫化物のピークを示すことにより、確認できる。
The fact that the powder of the present invention contains a rare earth element and a sulfur element can be confirmed by the fact that the XRD spectrum shows a rare earth sulfide peak.
The fact that the powder of the present invention contains elemental oxygen can be confirmed by the fact that the XRD spectrum shows a rare earth oxysulfide peak.

X線回折(XRD)スペクトルの測定条件は、以下のとおりである。
・X線:CuKα
・管電圧:40kV
・管電流:20mA
The measurement conditions for the X-ray diffraction (XRD) spectrum are as follows.
・X-ray: CuKα
・Tube voltage: 40 kV
・Tube current: 20mA

本発明の粉末における酸素元素の含有量は、0.10~2.00質量%が好ましく、0.15~1.80質量%がより好ましい。
酸素元素の含有量は、HORIBA社製の酸素・窒素・水素分析装置EMGA-930を用いて測定される。
本発明の粉末が酸素元素を含有することは、このような測定によっても、確認することができる。
The content of oxygen element in the powder of the present invention is preferably 0.10 to 2.00% by mass, more preferably 0.15 to 1.80% by mass.
The oxygen element content is measured using an oxygen/nitrogen/hydrogen analyzer EMGA-930 manufactured by HORIBA.
It can also be confirmed by such measurements that the powder of the present invention contains elemental oxygen.

本発明の粉末の平均粒径は、0.1~10μmが好ましく、0.2~10μmがより好ましい。
平均粒径は、SHIMADZU社製のレーザー回折式粒度分布測定装置SALD-2300を用いて測定される。
The average particle size of the powder of the present invention is preferably 0.1-10 μm, more preferably 0.2-10 μm.
The average particle size is measured using a laser diffraction particle size distribution analyzer SALD-2300 manufactured by SHIMADZU.

本発明の粉末において、本発明の粉末を構成する個々の粒子にフッ素系コーティングが施されていてもよい。
フッ素コーティングとしては、例えば、ポリフッ化ビニル(PVF)コーティング、ポリテトラフルオロエチレン(PTFE)コーティング、エチレン-テトラフルオロエチレン共重合体(ETFE)コーティングなどが挙げられる。
個々の粒子にフッ素系コーティングをする方法は、特に限定されず、従来公知の方法を、適宜採用できる。
In the powder of the present invention, individual particles constituting the powder of the present invention may be coated with a fluorine-based coating.
Fluorine coatings include, for example, polyvinyl fluoride (PVF) coatings, polytetrafluoroethylene (PTFE) coatings, ethylene-tetrafluoroethylene copolymer (ETFE) coatings, and the like.
The method of applying fluorine-based coating to individual particles is not particularly limited, and conventionally known methods can be employed as appropriate.

本発明の粉末は、少なくとも0.05~20GHzの周波数帯域において、複素誘電率の虚数部の比誘電率が3.0以上かつ誘電正接が0.4以上であることが好ましい。 The powder of the present invention preferably has a relative dielectric constant of the imaginary part of the complex dielectric constant of 3.0 or more and a dielectric loss tangent of 0.4 or more at least in the frequency band of 0.05 to 20 GHz.

[電磁波吸収粉末の製造方法]
本発明の電磁波吸収粉末を製造する方法(以下、便宜的に「本発明の製造方法」ともいう)は、例えば、以下の方法1~3が好適に挙げられる。ただし、本発明の製造方法は、以下の方法に限定されない。
[Method for producing electromagnetic wave absorbing powder]
The method for producing the electromagnetic wave-absorbing powder of the present invention (hereinafter also referred to as "the production method of the present invention" for convenience) includes, for example, the following methods 1 to 3. However, the manufacturing method of the present invention is not limited to the following method.

〈方法1:パルスCVI法〉
パルスCVI(Chemical Vapor Infiltration)法を概略的に説明する。反応管内に、出発原料の粉末を設置して加熱しつつ、微量な酸素を不純物として含む反応ガス(例えば、アルゴン水素ガス)を導入する。反応管に設置された両極間に電圧を印加することにより、酸素にイオン化し、これを、出発原料の粉末中にドープする。出発原料としてγ-Ceを用いた場合、その少なくとも一部が、β-Ceに相変態する。
反応管内の減圧(真空引き)、反応管内へのガス導入、および、ガス導入後の保持を1パルスとし、これを繰り返すことにより、反応性の良い新しいガスを随時導入する。パルス数を変えることにより、生成物(粉末)のγ相、β相の相比を変更できる。
加熱温度は、例えば、1073~1473Kである。
両極間に印加する電圧は、例えば、2~8kVである。
1パルスごとの減圧時間は、例えば、1~10秒間である。
1パルスごと反応ガスの導入時間は、例えば、1~10秒間である。
1パルスごとの保持時間は、例えば、例えば、1~10秒間である。
<Method 1: Pulse CVI method>
A pulse CVI (Chemical Vapor Infiltration) method will be described schematically. A reaction gas (for example, argon-hydrogen gas) containing a small amount of oxygen as an impurity is introduced into the reaction tube while the starting material powder is placed and heated. By applying a voltage between the two electrodes installed in the reaction tube, oxygen is ionized and doped into the powder of the starting raw material. When γ-Ce 2 S 3 is used as a starting material, at least part of it undergoes phase transformation to β-Ce 2 S 3 .
Decompression (vacuum drawing) in the reaction tube, gas introduction into the reaction tube, and holding after the gas introduction are set as one pulse, and by repeating this, new gas with good reactivity is introduced as needed. By changing the number of pulses, the phase ratio of the γ phase and β phase of the product (powder) can be changed.
The heating temperature is, for example, 1073-1473K.
The voltage applied between the two electrodes is, for example, 2-8 kV.
The pressure reduction time per pulse is, for example, 1 to 10 seconds.
The introduction time of the reactive gas for each pulse is, for example, 1 to 10 seconds.
The retention time for each pulse is, for example, 1 to 10 seconds.

〈方法2:CSガス硫化法〉
CSガス硫化法は、出発原料として希土類酸化物(例えば、CeO、La、PrOなど)を用い、これを、CSを用いて硫化する方法である。これにより、酸素を含む希土類硫化物(例えば、β相)の粉末が生成する。
硫化温度は、例えば、923~1373Kである。
硫化時間は、例えば、3.6~28.8ksである。
<Method 2: CS 2 gas sulfidation method>
The CS2 gas sulfiding method is a method of using a rare earth oxide ( eg, CeO2, La2O3, PrO2 , etc.) as a starting material and sulfiding it with CS2. This produces a rare earth sulfide (eg, β-phase) powder containing oxygen.
The sulfurization temperature is, for example, 923-1373K.
The sulfurization time is, for example, 3.6-28.8ks.

〈方法3:ロータリー炉を用いる方法〉
出発原料を、ロータリー炉を用いて、不純物として微量な酸素を含むArガス中で加熱することにより、出発原料を酸化する。出発原料としては、例えば、γ-Ceを用いる。この場合、酸化によって、β-Ceに相変態する加熱条件によって、生成物(粉末)のγ相、β相の相比を変更できる。
<Method 3: Method using a rotary furnace>
The starting material is oxidized by heating it in an Ar gas containing a trace amount of oxygen as an impurity using a rotary furnace. For example, γ-Ce 2 S 3 is used as a starting material. In this case, the phase ratio of the γ phase and β phase of the product (powder) can be changed by changing the heating conditions for phase transformation to β-Ce 2 S 3 by oxidation.

本発明の製造法に関連して、Ce、LaおよびPrについて、以下のように付言しておく。 Regarding the production method of the present invention, the following additional remarks are made regarding Ce 2 S 3 , La 2 S 3 and Pr 2 S 3 .

Ceは、常温から高温にかけて、斜方晶のα-Ceから正方晶のβ-Ceに相変態し、更に、Th型立方晶のγ-Ceに相変態する。これらの相変態は可逆変態である。β-Ceからγ-Ceへの相変態は、変態温度が1573±100Kであるが、TiやCaなど酸素を奪う元素を添加すると変態温度が上がり、反対に酸素を与えると変態温度が下がる。このことから、γ-Ceをβ-Ceが安定に存在する温度に保持し、酸素を与えると、β-Ceに相変態する可能性が示唆される。 Ce 2 S 3 undergoes phase transformation from orthorhombic α-Ce 2 S 3 to tetragonal β-Ce 2 S 3 from room temperature to high temperature, and further to Th 3 P 4 type cubic γ-Ce 2 . It undergoes a phase transformation to S3 . These phase transformations are reversible transformations. The phase transformation from β-Ce 2 S 3 to γ-Ce 2 S 3 has a transformation temperature of 1573 ± 100 K, but if an element such as Ti or Ca that deprives oxygen is added, the transformation temperature rises, and on the contrary, it provides oxygen. and the transformation temperature decreases. This suggests the possibility of phase transformation to β-Ce 2 S 3 when γ-Ce 2 S 3 is maintained at a temperature at which β-Ce 2 S 3 is stable and oxygen is supplied.

Laは、923±50Kにて斜方晶のα-Laから正方晶β-Laに相変態し、更に、1573±100Kで立方晶Th型γ-Laに相変態する。β-Laからγ-Laへの相変態温度は、酸素濃度により高温側に移動する。 La 2 S 3 undergoes a phase transformation from orthorhombic α-La 2 S 3 to tetragonal β-La 2 S 3 at 923±50 K, and further transforms to cubic Th 3 P 4 type γ- at 1573±100 K. It undergoes a phase transformation to La 2 S 3 . The phase transformation temperature from β-La 2 S 3 to γ-La 2 S 3 shifts to the high temperature side depending on the oxygen concentration.

Prは、1198±75Kにて斜方晶のα-Prから正方晶β-Prに相変態し、更に、1573±200Kで立方晶Th型γ-Prに相変態する。β-Prからγ-Prへの相変態温度は、酸素濃度により高温側に移動する。 Pr 2 S 3 undergoes phase transformation from orthorhombic α-Pr 2 S 3 to tetragonal β-Pr 2 S 3 at 1198±75 K, and further transforms to cubic Th 3 P 4 type γ- at 1573±200 K. It undergoes a phase transformation to Pr 2 S 3 . The phase transformation temperature from β-Pr 2 S 3 to γ-Pr 2 S 3 shifts to the high temperature side depending on the oxygen concentration.

[電磁波吸収組成物]
本発明の電磁波吸収組成物(以下、単に「本発明の組成物」ともいう)は、上述した本発明の粉末と、バインダ樹脂と、を含有する。
[Electromagnetic wave absorbing composition]
The electromagnetic wave absorbing composition of the present invention (hereinafter also simply referred to as "the composition of the present invention") contains the powder of the present invention described above and a binder resin.

バインダ樹脂としては、特に限定されず、例えば、PMMA(ポリメタクリル酸メチル樹脂)、エポキシ樹脂などが挙げられる。硬化前のエポキシ樹脂も、バインダ樹脂に含まれるものとする。
本発明の組成物におけるバインダ樹脂の含有量は、本発明の粉末100質量部に対して、20~150質量部が好ましく、30~120質量部がより好ましい。
The binder resin is not particularly limited, and examples thereof include PMMA (polymethyl methacrylate resin) and epoxy resin. Epoxy resin before curing is also included in the binder resin.
The content of the binder resin in the composition of the present invention is preferably 20 to 150 parts by mass, more preferably 30 to 120 parts by mass, per 100 parts by mass of the powder of the present invention.

本発明の組成物は、電磁波吸収特性がより優れるという理由から、更に、鉄粉を含有することが好ましい。本発明の組成物における鉄粉の含有量は、本発明の粉末100質量部に対して、10~80質量部が好ましく、20~60質量部がより好ましい。 The composition of the present invention preferably further contains iron powder for the reason that it has better electromagnetic wave absorption properties. The content of the iron powder in the composition of the present invention is preferably 10 to 80 parts by mass, more preferably 20 to 60 parts by mass, per 100 parts by mass of the powder of the present invention.

[電磁波吸収体]
本発明の電磁波吸収体は、上述した本発明の組成物を用いて形成された電磁波吸収体である。
本発明の電磁波吸収体を製造する方法は、特に限定されず、本発明の組成物に含まれるバインダ樹脂などに応じて、適宜選択される。
バインダ樹脂としてPMMAを用いる場合、例えば、本発明の組成物を混合し、得られた混合物を、ホットプレスを用いて加圧圧縮することにより、本発明の電磁波吸収体を得る方法が挙げられる。
バインダ樹脂としてエポキシ樹脂を用いる場合、粉末および硬化前のエポキシ樹脂を含有する本発明の組成物を混合し、得られた混合物を加熱し硬化させることにより、本発明の電磁波吸収体を得る方法が挙げられる。
[Electromagnetic wave absorber]
The electromagnetic wave absorber of the present invention is an electromagnetic wave absorber formed using the composition of the present invention described above.
The method for producing the electromagnetic wave absorber of the present invention is not particularly limited, and is appropriately selected according to the binder resin and the like contained in the composition of the present invention.
When PMMA is used as the binder resin, for example, the electromagnetic wave absorber of the present invention can be obtained by mixing the composition of the present invention and compressing the resulting mixture using a hot press.
When an epoxy resin is used as the binder resin, there is a method of obtaining the electromagnetic wave absorber of the present invention by mixing the composition of the present invention containing the powder and the epoxy resin before curing, and heating and curing the resulting mixture. mentioned.

[塗料]
本発明の塗料は、上述した本発明の粉末を含有する。これにより、本発明の塗料(および、その塗膜)は、電磁波吸収特性を示す。
本発明の塗料は、更に、バインダ樹脂を含有していていもよい。バインダ樹脂としては、特に限定されず、本発明の組成物が含有するバインダ樹脂と同様のバインダ樹脂を使用できる。
本発明の塗料は、水溶性または油性の塗料であることが好ましい。このとき、本発明の塗料に含まれる本発明の粉末を構成する個々の粒子の表面は、両親媒性であることが好ましい。粒子の表面を両親媒性にする方法は、特に限定されず、従来公知の方法を適宜採用することができる。
[paint]
The paint of the present invention contains the powder of the present invention described above. As a result, the paint (and its coating film) of the present invention exhibits electromagnetic wave absorption properties.
The paint of the present invention may further contain a binder resin. The binder resin is not particularly limited, and the same binder resin as that contained in the composition of the present invention can be used.
The paint of the present invention is preferably a water-soluble or oil-based paint. At this time, it is preferable that the surfaces of individual particles constituting the powder of the present invention contained in the paint of the present invention are amphipathic. The method for making the surface of the particles amphipathic is not particularly limited, and conventionally known methods can be appropriately employed.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されない。 EXAMPLES The present invention will be specifically described below with reference to examples. However, the present invention is not limited to these.

[試験例I:パルスCVI法(Ce)]
〈電磁波吸収粉末の作製〉
出発原料として市販のγ-Ce粉末(平均粒径:7μm)を用いて、パルスCVI法により、電磁波吸収粉末(以下、単に「粉末」ともいう)を作製した。
より詳細には、反応管内の両端にステンレス鋼製の陰極および陽極を設け、陰極の手前にγ-Ce粉末を入れた多孔質アルミナ製の籠を置き、まず、両極間に電圧(4.5kV)を印加しながら反応管を1473Kに加熱した。次いで、反応管内の減圧(10秒間)、Oを不純物として含むAr-7%Hガスの導入(2秒間)、および、その後の保持(10秒間)を1パルスとして、この操作を下記表1に示す回数(パルス数)だけ行ない、粉末を得た。
[Test Example I: Pulse CVI Method (Ce)]
<Preparation of electromagnetic wave absorbing powder>
Using a commercially available γ-Ce 2 S 3 powder (average particle size: 7 μm) as a starting material, an electromagnetic wave absorbing powder (hereinafter also simply referred to as “powder”) was produced by the pulse CVI method.
More specifically, a stainless steel cathode and an anode are provided at both ends of the reaction tube, a porous alumina cage containing γ-Ce 2 S 3 powder is placed in front of the cathode, and a voltage ( 4.5 kV) was applied while the reaction tube was heated to 1473 K. Then, pressure reduction in the reaction tube (10 seconds), introduction of Ar-7% H 2 gas containing O 2 as an impurity (2 seconds), and subsequent holding (10 seconds) were defined as one pulse. A powder was obtained by performing the number of times shown in 1 (number of pulses).

〈XRDスペクトル〉
得られた粉末について、XRDスペクトルを測定した。測定結果を図1に示す。XRDスペクトルに示される相も下記表1に記載した。
<XRD spectrum>
An XRD spectrum was measured for the obtained powder. The measurement results are shown in FIG. The phases shown in the XRD spectra are also listed in Table 1 below.

〈酸素含有量および平均粒径〉
得られた粉末について、酸素元素の含有量(酸素含有量)および平均粒径を測定した。測定結果を下記表1に示す。測定しなかった場合には下記表1に「-」を記載した(以下、同様)。
<Oxygen content and average particle size>
The content of oxygen element (oxygen content) and the average particle size of the obtained powder were measured. The measurement results are shown in Table 1 below. When not measured, "-" is indicated in Table 1 below (the same shall apply hereinafter).

〈電磁波吸収特性〉
まず、得られた粉末およびバインダ樹脂を用いて、内径3mmおよび外径7mmのドーナツ状の試料(電磁波吸収体)を作製した。
バインダ樹脂としては、PMMA(ポリメタクリル酸メチル樹脂)またはエポキシ樹脂を用いた。
PMMAとしては、ALDRICH社製のPoly(methyl methacrylate)型番4457461-500G(平均粒径:7μm)を用いた(以下、同様)。
エポキシ樹脂としては、TAAB EPON 812 キット(TAAB EPON 812、DDSA、MNA、DMP-30)を用いた(以下、同様)。
<Electromagnetic wave absorption characteristics>
First, using the obtained powder and binder resin, a doughnut-shaped sample (electromagnetic wave absorber) having an inner diameter of 3 mm and an outer diameter of 7 mm was produced.
PMMA (polymethyl methacrylate resin) or epoxy resin was used as the binder resin.
As PMMA, Poly (methyl methacrylate) Model No. 4457461-500G (average particle size: 7 μm) manufactured by ALDRICH was used (hereinafter the same).
As the epoxy resin, TAAB EPON 812 kit (TAAB EPON 812, DDSA, MNA, DMP-30) was used (same below).

PMMAを用いた場合、まず、PMMAおよび粉末を、PMMA:粉末=3:7の質量比で混合した。次いで、得られた混合物を、ホットプレスを用いて加熱圧縮(温度:443K、圧力:3MPa、保持時間:600s)することにより成形した。得られた成形品を加工することにより、試料を作製した。一部の例では、更に鉄粉を混合した。その場合、質量比をPMMA:粉末:鉄粉=3:5:2とした以外は、上記と同様にして、試料を作製した。 When PMMA was used, PMMA and powder were first mixed at a mass ratio of PMMA:powder=3:7. Then, the resulting mixture was molded by hot pressing (temperature: 443 K, pressure: 3 MPa, holding time: 600 s) using a hot press. A sample was produced by processing the obtained molded article. In some cases, iron powder was also mixed. In that case, a sample was prepared in the same manner as described above, except that the mass ratio was PMMA:powder:iron powder=3:5:2.

エポキシ樹脂を用いた場合、まず、硬化前のエポキシ樹脂中に、粉末を、エポキシ樹脂:粉末=5:5の質量比で混合した。得られた混合物を、電気炉内で加熱(温度:338K、保持時間:43.2ks)することにより硬化させた。得られた硬化物を加工することにより、試料を作製した。 When an epoxy resin was used, powder was first mixed in the epoxy resin before curing at a mass ratio of epoxy resin:powder=5:5. The resulting mixture was cured by heating in an electric furnace (temperature: 338K, holding time: 43.2ks). A sample was prepared by processing the obtained cured product.

作製した試料を用いて、0.05~20GHzの周波数帯域における電磁波吸収量(単位:dB)を、同軸管法にて測定した。結果を図2~図3に示す。
同軸管法では、同軸管の中心導体に高周波信号を加えると、内部空間に電界および磁界が発生する。同軸管の中心部に試料を入れたときの電界および磁界の変化により、反射量および透過量が測定される。入射量と反射量との差が電波吸収量(反射)を表し、反射量と透過量との差が電波吸収量(透過)を表す。
Using the prepared samples, the electromagnetic wave absorption (unit: dB) in the frequency band of 0.05 to 20 GHz was measured by the coaxial tube method. The results are shown in FIGS. 2-3.
In the coaxial tube method, when a high frequency signal is applied to the center conductor of the coaxial tube, an electric field and a magnetic field are generated in the internal space. The amount of reflection and transmission is measured by changes in the electric and magnetic fields when the sample is placed in the center of the coaxial tube. The difference between the amount of incidence and the amount of reflection represents the amount of radio wave absorption (reflection), and the difference between the amount of reflection and the amount of transmission represents the amount of radio wave absorption (transmission).

Figure 0007176714000001
Figure 0007176714000001

例1に鉄粉を加えたものが例18である。したがって、例18の粉末は、例1の粉末と同じである。 Example 18 is Example 1 with iron powder added. Thus, the powder of Example 18 is the same as the powder of Example 1.

図1~図3および上記表1に示す結果から、試験例Iの粉末は、希土類元素、硫黄元素および酸素元素を含有し、X線回折スペクトルが希土類硫化物のピークを示し、かつ、少なくとも0.05~20GHzの周波数帯域において電磁波吸収特性を有することが分かった。
パルス数が増えるに従い、酸素含有量が増加する傾向が見られた。
1 to 3 and the results shown in Table 1 above, the powder of Test Example I contains rare earth elements, sulfur elements and oxygen elements, the X-ray diffraction spectrum shows a rare earth sulfide peak, and at least 0 It was found to have electromagnetic wave absorption properties in the frequency band of .05 to 20 GHz.
As the number of pulses increased, the oxygen content tended to increase.

[試験例II:CSガス硫化法(La)]
〈電磁波吸収粉末の作製〉
出発原料として市販のLa粉末(平均粒径:1μm)を用いて、CSガス硫化法により、電磁波吸収粉末(粉末)を作製した。
より詳細には、あらかじめ、La粉末を、結晶水を除去するために、大気中で、673Kおよび3.6ksの条件で加熱した。その後、La粉末を、石英ボートに乗せて電気炉内に挿入し、CS溶液中から気化させたCSガスをArキャリアガスを用いて導入しながら、下記表2に示す条件(硫化温度および硫化時間)で硫化することにより粉末を得た。
[Test Example II: CS 2 gas sulfidation method (La)]
<Preparation of electromagnetic wave absorbing powder>
Using commercially available La 2 O 3 powder (average particle size: 1 μm) as a starting material, an electromagnetic wave absorbing powder (powder) was produced by the CS 2 gas sulfidation method.
More specifically, the La 2 O 3 powder was previously heated in the atmosphere at 673 K and 3.6 ks in order to remove water of crystallization. After that, the La 2 O 3 powder was put on a quartz boat and inserted into an electric furnace, and while introducing the CS 2 gas vaporized from the CS 2 solution using an Ar carrier gas, the conditions shown in Table 2 below ( A powder was obtained by sulfidation at a sulfidation temperature and sulfidation time).

〈XRDスペクトル〉
得られた粉末について、XRDスペクトルを測定した。測定結果を図4に示す。XRDスペクトルに示される相も下記表2に記載した。
<XRD spectrum>
An XRD spectrum was measured for the obtained powder. The measurement results are shown in FIG. The phases shown in the XRD spectra are also listed in Table 2 below.

〈酸素含有量および平均粒径〉
得られた粉末について、酸素元素の含有量(酸素含有量)および平均粒径を測定した。測定結果を下記表2に示す。
<Oxygen content and average particle size>
The content of oxygen element (oxygen content) and the average particle size of the obtained powder were measured. The measurement results are shown in Table 2 below.

〈電磁波吸収特性〉
得られた粉末を用いて、試験例Iと同様にして、試料を作製し、0.05~20GHzの周波数帯域における電磁波吸収量を測定した。結果を図5~図6に示す。
<Electromagnetic wave absorption characteristics>
Using the obtained powder, a sample was prepared in the same manner as in Test Example I, and the electromagnetic wave absorption in the frequency band of 0.05 to 20 GHz was measured. The results are shown in FIGS. 5-6.

Figure 0007176714000002
Figure 0007176714000002

図4~図6および上記表2に示す結果から、試験例IIの粉末は、希土類元素、硫黄元素および酸素元素を含有し、X線回折スペクトルが希土類硫化物のピークを示し、かつ、少なくとも0.05~20GHzの周波数帯域において電磁波吸収特性を有することが分かった。
硫化温度が低くなるに従い、および、硫化時間が短くなるに従い、酸素含有量が増える傾向が見られた。
From the results shown in FIGS. 4 to 6 and Table 2 above, the powder of Test Example II contains rare earth elements, sulfur elements and oxygen elements, the X-ray diffraction spectrum shows a rare earth sulfide peak, and at least 0 It was found to have electromagnetic wave absorption properties in the frequency band of .05 to 20 GHz.
As the sulfurization temperature became lower and as the sulfurization time became shorter, the oxygen content tended to increase.

[試験例III(塗料)]
試験例I~IIで作製した電磁波吸収粉末(粉末)を用いて、塗料を調製した。
具体的には、粉末を、硬化前のエポキシ樹脂中に、粉末:エポキシ樹脂=1:4の質量比で混合することにより、塗料を得た。
得られた塗料を、ヘラを用いてSUS430の板上に塗布し、電気炉内で加熱(温度:338K)することにより、塗膜を形成した。
[Test Example III (Paint)]
A paint was prepared using the electromagnetic wave absorbing powder (powder) produced in Test Examples I and II.
Specifically, the paint was obtained by mixing the powder with the epoxy resin before curing at a mass ratio of powder:epoxy resin=1:4.
The resulting paint was applied onto a SUS430 plate using a spatula and heated in an electric furnace (temperature: 338K) to form a coating film.

Claims (11)

希土類元素、硫黄元素および酸素元素を含有し、
X線回折スペクトルが希土類硫化物のピークを示し、
前記酸素元素の含有量が、0.10質量%以上0.61質量%以下である、電磁波吸収粉末。
containing rare earth elements, sulfur elements and oxygen elements,
The X-ray diffraction spectrum shows rare earth sulfide peaks,
The electromagnetic wave absorbing powder, wherein the oxygen element content is 0.10% by mass or more and 0.61% by mass or less.
前記希土類元素が、軽希土類元素である、請求項1に記載の電磁波吸収粉末。 2. The electromagnetic wave absorbing powder according to claim 1, wherein said rare earth element is a light rare earth element. 前記希土類元素が、ランタン、セリウムおよびプラセオジムからなる群から選ばれる少なくとも1種である、請求項1または2に記載の電磁波吸収粉末。 3. The electromagnetic wave absorbing powder according to claim 1, wherein said rare earth element is at least one selected from the group consisting of lanthanum, cerium and praseodymium. 少なくとも0.05~20GHzの周波数帯域において電磁波吸収特性を有する、請求項1~3のいずれか1項に記載の電磁波吸収粉末。 The electromagnetic wave absorbing powder according to any one of claims 1 to 3, which has electromagnetic wave absorbing properties in at least a frequency band of 0.05 to 20 GHz. 平均粒径が、0.1~10μmである、請求項1~のいずれか1項に記載の電磁波吸収粉末。 The electromagnetic wave absorbing powder according to any one of claims 1 to 4 , having an average particle size of 0.1 to 10 µm. 少なくとも0.05~20GHzの周波数帯域において、複素誘電率の虚数部の比誘電率が3.0以上かつ誘電正接が0.4以上である、請求項1~のいずれか1項に記載の電磁波吸収粉末。 The dielectric constant of the imaginary part of the complex dielectric constant is 3.0 or more and the dielectric loss tangent is 0.4 or more at least in the frequency band of 0.05 to 20 GHz, according to any one of claims 1 to 5 . Electromagnetic wave absorption powder. 請求項1~のいずれか1項に記載の電磁波吸収粉末と、バインダ樹脂と、を含有する電磁波吸収組成物。 An electromagnetic wave absorbing composition containing the electromagnetic wave absorbing powder according to any one of claims 1 to 6 and a binder resin. 更に、鉄粉を含有する、請求項に記載の電磁波吸収組成物。 8. The electromagnetic wave absorbing composition according to claim 7 , further comprising iron powder. 前記鉄粉の含有量が、前記電磁波吸収粉末100質量部に対して、10~80質量部である、請求項に記載の電磁波吸収組成物。 The electromagnetic wave absorbing composition according to claim 8 , wherein the content of said iron powder is 10 to 80 parts by mass with respect to 100 parts by mass of said electromagnetic wave absorbing powder. 請求項のいずれか1項に記載の電磁波吸収組成物を用いて形成された電磁波吸収体。 An electromagnetic wave absorber formed using the electromagnetic wave absorbing composition according to any one of claims 7 to 9 . 請求項1~のいずれか1項に記載の電磁波吸収粉末を含有する塗料。 A paint containing the electromagnetic wave absorbing powder according to any one of claims 1 to 6 .
JP2017241539A 2017-12-18 2017-12-18 Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber and paint Active JP7176714B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017241539A JP7176714B2 (en) 2017-12-18 2017-12-18 Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber and paint

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017241539A JP7176714B2 (en) 2017-12-18 2017-12-18 Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber and paint

Publications (2)

Publication Number Publication Date
JP2019110181A JP2019110181A (en) 2019-07-04
JP7176714B2 true JP7176714B2 (en) 2022-11-22

Family

ID=67180123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241539A Active JP7176714B2 (en) 2017-12-18 2017-12-18 Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber and paint

Country Status (1)

Country Link
JP (1) JP7176714B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116143160A (en) * 2023-02-08 2023-05-23 包头市宏博特科技有限责任公司 Rare earth sulfide with wave absorbing characteristic and preparation method thereof

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335367A (en) 2000-05-19 2001-12-04 Japan Science & Technology Corp Lanthanum sulfide or cerium sulfide sintered compact and manufacturing method therefor
JP2003258322A (en) 2002-03-01 2003-09-12 Japan Science & Technology Corp Lanthanum sulfide sintered compact for thermoelectric conversion material and method of manufacturing the same
JP2005005286A (en) 2003-06-09 2005-01-06 Kenichi Machida FINE COMPOSITE STRUCTURE MAGNETIC SUBSTANCE ABSORBING GHz BAND RADIO WAVE AND RADIO WAVE ABSORBING MATERIAL
WO2004085339A8 (en) 2003-03-27 2005-07-28 Japan Science & Tech Agency High dielectric material composed of sintered body of rare earth sulfide

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001335367A (en) 2000-05-19 2001-12-04 Japan Science & Technology Corp Lanthanum sulfide or cerium sulfide sintered compact and manufacturing method therefor
JP2003258322A (en) 2002-03-01 2003-09-12 Japan Science & Technology Corp Lanthanum sulfide sintered compact for thermoelectric conversion material and method of manufacturing the same
WO2004085339A8 (en) 2003-03-27 2005-07-28 Japan Science & Tech Agency High dielectric material composed of sintered body of rare earth sulfide
JP2005005286A (en) 2003-06-09 2005-01-06 Kenichi Machida FINE COMPOSITE STRUCTURE MAGNETIC SUBSTANCE ABSORBING GHz BAND RADIO WAVE AND RADIO WAVE ABSORBING MATERIAL

Also Published As

Publication number Publication date
JP2019110181A (en) 2019-07-04

Similar Documents

Publication Publication Date Title
US11201350B2 (en) Solid-state electrolytes and batteries made therefrom, and methods of making solid-state electrolytes
Jin et al. Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5+ δ as cathode material for intermediate-temperature solid-oxide fuel cells
Liu et al. Synthesis and electrochemical studies of spinel phase LiMn2 O 4 cathode materials prepared by the Pechini process
Jin et al. NdBaCo2/3Fe2/3Cu2/3O5+ δ double perovskite as a novel cathode material for CeO2-and LaGaO3-based solid oxide fuel cells
CN105694810A (en) Method for preparing CuO/porous carbon composite wave-absorbing material with ZIF-67 as template
Kalinina et al. Electrophoretic deposition of a self-stabilizing suspension based on a nanosized multi-component electrolyte powder prepared by the laser evaporation method
Tsvetkova et al. Investigation of GdBaCo2− xFexO6− δ (x= 0, 0.2)–Ce0. 8Sm0. 2O2 composite cathodes for intermediate temperature solid oxide fuel cells
Helbig et al. Li/Mn-rich cathode materials with low-cobalt content and core-shell particle design for high-energy lithium ion batteries
JP7176714B2 (en) Electromagnetic wave absorbing powder, electromagnetic wave absorbing composition, electromagnetic wave absorber and paint
Jafta et al. Microwave irradiation controls the manganese oxidation states of nanostructured (Li [Li0. 2Mn0. 52Ni0. 13Co0. 13Al0. 02] O2) layered cathode materials for high-performance lithium ion batteries
Li et al. Effects of strontium doping on the structure, oxygen nonstoichiometry and electrochemical performance of Pr2− xSrxNi0. 6Cu0. 4O4+ δ (0.1≤ x≤ 0.5) cathode materials
Chen et al. La0. 7Sr0. 3FeO3− δ composite cathode enhanced by Sm0. 5Sr0. 5CoO3− δ impregnation for proton conducting SOFCs
CN108610016A (en) A kind of microwave absorbing material preparation method based on gangue
Basch et al. Preparation and characterization of core–shell battery materials for Li-ion batteries manufactured by substrate induced coagulation
CN104710171B (en) A kind of high energy storage density strontium bismuth titanate base complex phase ceramic and preparation method thereof
CA2511942C (en) Manufacturing method to improve oxygen ion conductivity
CN111010887B (en) Preparation method of anode material, anode material and lithium ion battery
ŞAHIN et al. Characterization, production and microwave absorbing properties of polyaniline-NiFe2O4: Tb composites
Lee et al. Effect of Y, Gd, Dy, and Ce doping on the microstructural and electrical properties of sol-gel-deposited ZrO2 film
Zhao et al. Effect of Ca co-dopant on the electrical conductivity of Gd-doped ceria
JP4721660B2 (en) ELECTRODE MATERIAL FOR ELECTRIC LAMP AND METHOD FOR PRODUCING THE SAME
Hirota et al. Formation, sintering, and electrical conductivity of (Nd1− xCax) CrO3 (0≤ x≤ 0.25) using citric acid as a gelling agent
KR101802067B1 (en) Synthesis method of oxide powder with perovskite structure and oxide powder formed by the synthesis method
RU2615697C1 (en) METHOD FOR PRODUCING CATHODE MATERIAL BASED ON SYSTEM Li2FeSiO4
Singh et al. Microwave processing: A potential technique for preparing NiO-YSZ composite and Ni-YSZ cermet

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180115

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20180115

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200708

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201027

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211102

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20221025

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221102

R150 Certificate of patent or registration of utility model

Ref document number: 7176714

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150