WO2016114220A1 - Thermoelectric conversion module and mounting method therefor - Google Patents

Thermoelectric conversion module and mounting method therefor Download PDF

Info

Publication number
WO2016114220A1
WO2016114220A1 PCT/JP2016/050417 JP2016050417W WO2016114220A1 WO 2016114220 A1 WO2016114220 A1 WO 2016114220A1 JP 2016050417 W JP2016050417 W JP 2016050417W WO 2016114220 A1 WO2016114220 A1 WO 2016114220A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion module
module according
heat transfer
layer
Prior art date
Application number
PCT/JP2016/050417
Other languages
French (fr)
Japanese (ja)
Inventor
宝蔵寺 裕之
雄亮 保田
守谷 浩志
茂紀 松本
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2016114220A1 publication Critical patent/WO2016114220A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N11/00Generators or motors not provided for elsewhere; Alleged perpetua mobilia obtained by electric or magnetic means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • H10N10/17Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects characterised by the structure or configuration of the cell or thermocouple forming the device

Definitions

  • the present invention relates to a thermoelectric conversion module that generates power using a temperature difference and a mounting method thereof.
  • thermoelectric conversion modules that generate power using waste heat from factories and exhaust heat from engine-driven automobiles are formed by forming p-type thermoelectric materials and n-type thermoelectric materials into prismatic shapes, and using these pairs as thermoelectric elements.
  • a thermoelectric conversion module is formed by arranging elements in parallel and wiring the elements so as to be electrically in series. In a thermoelectric conversion module that converts heat that has been discarded so far into electricity and reuses it, there is a strong demand for highly efficient conversion from heat to electricity.
  • thermoelectric circuit is formed so that the end portions of the respective semiconductors and conductors are electrically connected, and the film substrate is configured in a corrugated shape so that the conductor 1 is located in the convex portion and the conductor 2 is located in the concave portion,
  • a thermoelectric device is disclosed in which heat exchanging means in contact with the convex portion and the concave portion are installed on both sides.
  • thermoelectric conversion element molded into a film shape
  • the cross-sectional area of the element is reduced, and heat transfer from the heating part to the cooling part can be suppressed.
  • the power generation amount per unit element is reduced and a sufficient power generation amount cannot be obtained.
  • an object of the present invention is to improve the power conversion efficiency of a thermoelectric conversion module using a thin-film thermoelectric conversion element.
  • thermoelectric conversion module includes an insulating layer, a wiring layer formed on the surface of the insulating layer, a thin film P-type connected in series alternately via the wiring layer, and An N-type thermoelectric conversion element and a substrate on which the thermoelectric conversion element is mounted.
  • the thermoelectric conversion elements are such that the element surfaces of adjacent thermoelectric conversion elements face each other, and the longitudinal direction of the element surface is the heat transfer direction. It arrange
  • the power conversion efficiency of the thermoelectric conversion module using the thin film thermoelectric conversion element can be improved.
  • thermoelectric conversion module which concerns on 1st Embodiment of this invention.
  • the cross-sectional schematic of the thermoelectric conversion module which concerns on 2nd Embodiment of this invention.
  • the cross-sectional schematic of the thermoelectric conversion module which concerns on 3rd Embodiment of this invention. Sectional schematic of the thermoelectric conversion module which concerns on 4th Embodiment of this invention.
  • FIG. 1 is a schematic cross-sectional view of a thermoelectric conversion module according to the first embodiment of the present invention.
  • thermoelectric conversion module includes an insulating layer 1, a wiring layer (electrode part) 2 formed on the surface of the insulating layer, thermoelectric conversion elements 4 and 5, and a substrate 3 on which the thermoelectric conversion elements are mounted.
  • the resin 7 for sealing the thermoelectric conversion element and the heat transfer layer 8 are provided.
  • Thermoelectric conversion elements 4 and 5 are P-type and N-type semiconductor elements, respectively, and are alternately connected in series to the wiring layer 2 via a bonding material.
  • the junction 6 between the wiring layer 2 and the thermoelectric conversion elements 4 and 5 and the thermoelectric conversion element are sealed with a resin 7.
  • the insulating layer 1 is bent so that the wiring layers 2 are alternately positioned at both ends (high temperature side and low temperature side) of the thermoelectric conversion element in the heat transfer direction, and the element surfaces of the adjacent thermoelectric conversion elements face each other.
  • the heat transfer direction refers to a direction from the high temperature portion to the low temperature portion of the thermoelectric conversion module. In FIG. 1, the direction of the arrow is the heat transfer direction.
  • thermoelectric conversion elements 4 and 5 are arranged such that the longitudinal direction of the element surface is the heat transfer direction of the thermoelectric conversion element, and are joined to the wiring layer 2 at both ends in the longitudinal direction.
  • the thermoelectric conversion module and the external heat source 100 are in contact via an insulating layer.
  • the side in contact with the external heat source 100 is the high temperature side, and the other is the low temperature side.
  • the heat transfer direction refers to a direction from the high temperature side to the low temperature side of the thermoelectric conversion module.
  • the direction of the arrow is the heat transfer direction.
  • thermoelectric conversion element Z is the Seebeck coefficient
  • ⁇ T is the temperature difference between the high temperature part and the low temperature part in the thermoelectric conversion element.
  • the heat transfer layer 8 is disposed so as to be sandwiched between the bent portions of the insulating layer 1. By sandwiching the heat transfer layer 8 between the bent portions, heat loss during heat transfer from the external heat source to the thermoelectric conversion element can be reduced. It is preferable that the heat transfer layer can be in direct contact with an external heat source.
  • the insulating layer epoxy resin, phenol resin, polyimide resin, polyester resin, silicone resin, or the like can be used.
  • the insulating layer is preferably a flexible insulating film.
  • the above-mentioned insulating resin as a matrix layer, mixing polybutadiene having a functional group such as polybutadiene, epoxy group, hydroxyl group, amino group, etc., and impregnating a glass cloth with improved flexibility, followed by curing Thus, a sheet-like configuration can be obtained.
  • films such as polyethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polyimide, and polyether sulfone can be used in consideration of heat resistance and long-term reliability according to the temperature of the heat source.
  • the wiring layer 2 formed on the insulating layer 1 functions as an electrode part of the thermoelectric conversion module.
  • the wiring layer 2 needs to be thin so that it can be bent together with the insulating layer 1.
  • heat from the heat source or the cooling source is hardly transmitted, and a sufficient temperature difference cannot be formed at both ends of the thermoelectric conversion element. Therefore, by inserting the heat transfer layer 8, loss due to heat transfer to the vicinity of the thermoelectric conversion element can be reduced, and a temperature difference between the elements can be secured.
  • the bonding material constituting the bonding portion 6 It is effective to use a material with little deterioration even in a high-temperature atmosphere as the bonding material constituting the bonding portion 6.
  • a nanometer-sized gold, silver, or copper particle surface is bonded with a nanoparticle coated with an organic substance that can be decomposed at the bonding temperature, or a micrometer-sized silver and copper oxide and reducing agent are blended.
  • the substrate 3 and the sealing resin 7 those which do not deteriorate in the thermoelectric conversion module mounting environment can be used.
  • the thermal conductivity of the substrate 3 and the sealing resin 7 is preferably smaller than the thermal conductivity of the thermoelectric conversion elements 4 and 5.
  • the heat energy to be converted into electric energy from the heating part to the cooling part suppresses heat radiation and secures a temperature difference in the thermoelectric conversion element part. Therefore, as the substrate on which the thermoelectric conversion element is mounted, a material having high heat resistance and low thermal conductivity such as silicon dioxide and zirconia can be used.
  • the resin epoxy resin, phenol resin, polyimide resin, polyester resin, silicone resin, or the like can be used.
  • FIG. 2 is a perspective view of a thermoelectric conversion module according to a modification of the first embodiment.
  • the substrate on which the thermoelectric conversion elements 4 and 5 are mounted and the insulating layer on which the wiring layer 2 is formed are integrated as an insulating substrate 1 ′.
  • the insulating substrate 1 ′ is shaped such that the wiring layer 2 is in contact with the high temperature portion and the low temperature portion of the external heat source with the heat transfer layer 8 interposed therebetween.
  • thermoelectric conversion module is transferred to the thermoelectric conversion element provided between the high temperature part and the cooling part of the thermoelectric conversion module by moving heat in the surface direction of the thin film thermoelectric conversion element. Can improve heat transferability. Furthermore, by arranging the elements long along the temperature gradient of the thermoelectric conversion module, it becomes possible to give the thermoelectric conversion elements a temperature difference necessary for power generation. Further, even if the thermoelectric conversion element is difficult to be formed into a square shape, the same level of power as that of the square molded body can be supplied by integrating the thin film thermoelectric conversion elements.
  • FIG. 3 is a schematic cross-sectional view showing a thermoelectric conversion module according to the second embodiment.
  • the insulating layer 11 and the wiring layer 22 are separated for each thermoelectric conversion element to be mounted.
  • the separated wiring layers are connected to each other through the heat transfer layer 8.
  • FIG. 4 is a schematic cross-sectional view showing a thermoelectric conversion module according to the third embodiment.
  • positioned at the one end side of the heat transfer direction of the thermoelectric conversion element is provided with the fin 9 for heat radiation differs from Embodiment 2.
  • FIG. 4 By providing the radiation fins on the heat transfer layer on the cooling side, the cooling efficiency on the cooling side of the thermoelectric conversion element can be improved, and the temperature difference of the thermoelectric conversion element part can be increased. As a result, the potential difference obtained can be increased and the heat conversion efficiency can be improved.
  • the fourth embodiment relates to a method for mounting the thermoelectric conversion module according to the second embodiment on a heat source.
  • FIG. 5 is a schematic sectional view showing the fourth embodiment.
  • the thermoelectric conversion module according to the present invention has moderate flexibility because the thermoelectric conversion element portion is not fixed.
  • the thing (external heat source) expected to be equipped with a thermoelectric conversion module is the exhaust heat area around the exhaust part of an automobile having an internal combustion engine, or a waste heat part from a factory or a large building. In many cases, these portions are not a flat surface but a curved surface of the pipe surface.
  • a heat transfer layer can be made to contact along the shape of an external heat source.
  • the heat transfer layer 8 can be installed along the curved surface of the external heat source.
  • the thermoelectric conversion module according to the present invention is effective in improving the heat transfer efficiency and reducing the size of the installation part.
  • thermoelectric conversion module embodiment according to the present invention.
  • this invention is not limited to the range described in the Example, It can change in the range which does not deviate from the meaning.

Abstract

The objective of the present invention is to improve the power conversion efficiency of a thermoelectric conversion module using thin-film-type thermoelectric conversion elements. The present invention has, for example, the following configuration. A thermoelectric power conversion module provided with an insulating layer, a wiring layer formed on the surface of the insulating layer, thin-film-type P-and N-type thermoelectric conversion elements connected alternatingly in series with the wiring layer interposed therebetween, and a substrate on which the thermoelectric conversion elements are mounted, wherein: the thermoelectric conversion elements are disposed such that the element faces of adjacent thermoelectric conversion elements face each other, and the longitudinal direction of the element faces is the heat conduction direction; and the wiring layer is disposed on both end sides in the heat conduction direction of the thermoelectric conversion elements.

Description

熱電変換モジュールおよびその搭載方法Thermoelectric conversion module and mounting method thereof
 本発明は、温度差を利用して発電する熱電変換モジュールおよびその搭載方法に関する。 The present invention relates to a thermoelectric conversion module that generates power using a temperature difference and a mounting method thereof.
 工場の廃熱やエンジン駆動の自動車の排熱を利用して発電する熱電変換モジュールは、p型熱電材料およびn型熱電材料をそれぞれ角柱型に成形し、これら一対を熱電素子として、多数の熱電素子を並列に配置し、さらに電気的に直列になるように素子間を配線したものを熱電変換モジュールとしている。これまで廃棄されていた熱を電気に変換して再利用する熱電変換モジュールでは、熱から電気への高効率な変換が強く求められている。 Thermoelectric conversion modules that generate power using waste heat from factories and exhaust heat from engine-driven automobiles are formed by forming p-type thermoelectric materials and n-type thermoelectric materials into prismatic shapes, and using these pairs as thermoelectric elements. A thermoelectric conversion module is formed by arranging elements in parallel and wiring the elements so as to be electrically in series. In a thermoelectric conversion module that converts heat that has been discarded so far into electricity and reuses it, there is a strong demand for highly efficient conversion from heat to electricity.
 特許文献1には、接触抵抗及び半導体内への熱流を抑制するために、絶縁性フィルム基板上の面方向に、N型半導体、第1の導電体、P型半導体、第2の導電体の順に、各半導体・導電体の端部が電気的に導通するように熱電回路を形成し、導電体1を凸部に導電体2を凹部に位置するようにフィルム基板をコルゲート状に構成し、前記凸部および凹部と接触する熱交換手段を双方に設置した熱電装置が開示されている。 In Patent Document 1, an N-type semiconductor, a first conductor, a P-type semiconductor, and a second conductor are arranged in a surface direction on an insulating film substrate in order to suppress contact resistance and heat flow into the semiconductor. In order, the thermoelectric circuit is formed so that the end portions of the respective semiconductors and conductors are electrically connected, and the film substrate is configured in a corrugated shape so that the conductor 1 is located in the convex portion and the conductor 2 is located in the concave portion, A thermoelectric device is disclosed in which heat exchanging means in contact with the convex portion and the concave portion are installed on both sides.
特開平4-30586号公報JP-A-4-30586
 特許文献1ように、膜状に成型した熱電変換素子を用いることで素子の断面積が小さくなり加熱部から冷却部への熱伝達を抑えることが可能である。しかし、薄膜状の熱電変換素子は厚膜化が困難であることから単位素子当たりの発電量が低下し、充分な発電量が得られないという問題がある。 As in Patent Document 1, by using a thermoelectric conversion element molded into a film shape, the cross-sectional area of the element is reduced, and heat transfer from the heating part to the cooling part can be suppressed. However, since it is difficult to increase the thickness of a thin-film thermoelectric conversion element, there is a problem in that the power generation amount per unit element is reduced and a sufficient power generation amount cannot be obtained.
 そこで、本発明は、薄膜状の熱電変換素子を用いた熱電変換モジュールの電力変換効率を向上することを目的とする。 Therefore, an object of the present invention is to improve the power conversion efficiency of a thermoelectric conversion module using a thin-film thermoelectric conversion element.
 上記の課題を解決するため、本発明に係る熱電変換モジュールは、絶縁層と、絶縁層の表面に形成された配線層と、配線層を介して交互に直列接続された薄膜状のP型及びN型熱電変換素子と、熱電変換素子が搭載される基板と、を備え、熱電変換素子は、隣り合う熱電変換素子の素子面が対向し、素子面の長手方向が熱伝達方向となるように配置しており、配線層は、熱電変換素子の熱伝達方向の両端側に配置していることを特徴とする。 In order to solve the above-described problems, a thermoelectric conversion module according to the present invention includes an insulating layer, a wiring layer formed on the surface of the insulating layer, a thin film P-type connected in series alternately via the wiring layer, and An N-type thermoelectric conversion element and a substrate on which the thermoelectric conversion element is mounted. The thermoelectric conversion elements are such that the element surfaces of adjacent thermoelectric conversion elements face each other, and the longitudinal direction of the element surface is the heat transfer direction. It arrange | positions and the wiring layer is arrange | positioned at the both ends of the heat transfer direction of the thermoelectric conversion element, It is characterized by the above-mentioned.
 本発明によれば、薄膜状の熱電変換素子を用いた熱電変換モジュールの電力変換効率を向上できる。 According to the present invention, the power conversion efficiency of the thermoelectric conversion module using the thin film thermoelectric conversion element can be improved.
本発明の第1実施形態に係る熱電変換モジュールの断面概略図。The cross-sectional schematic of the thermoelectric conversion module which concerns on 1st Embodiment of this invention. 本発明の第1実施形態の変形例に係る熱電変換モジュールの斜視図。The perspective view of the thermoelectric conversion module which concerns on the modification of 1st Embodiment of this invention. 本発明の第2実施形態に係る熱電変換モジュールの断面概略図。The cross-sectional schematic of the thermoelectric conversion module which concerns on 2nd Embodiment of this invention. 本発明の第3実施形態に係る熱電変換モジュールの断面概略図。The cross-sectional schematic of the thermoelectric conversion module which concerns on 3rd Embodiment of this invention. 本発明の第4実施形態に係る熱電変換モジュールの断面概略図。Sectional schematic of the thermoelectric conversion module which concerns on 4th Embodiment of this invention.
 以下、本発明の実施の形態について、図面を参照し説明する。
(第1実施形態)
 図1は、本発明の第1実施形態に係る熱電変換モジュールの断面概略図である。
Embodiments of the present invention will be described below with reference to the drawings.
(First embodiment)
FIG. 1 is a schematic cross-sectional view of a thermoelectric conversion module according to the first embodiment of the present invention.
 第1実施形態の熱電変換モジュールは、絶縁層1と、絶縁層の表面に形成された配線層(電極部)2と、熱電変換素子4、5と、熱電変換素子が搭載される基板3と、熱電変換素子を封止する樹脂7と、熱伝達層8と、を備える。 The thermoelectric conversion module according to the first embodiment includes an insulating layer 1, a wiring layer (electrode part) 2 formed on the surface of the insulating layer, thermoelectric conversion elements 4 and 5, and a substrate 3 on which the thermoelectric conversion elements are mounted. The resin 7 for sealing the thermoelectric conversion element and the heat transfer layer 8 are provided.
 熱電変換素子4、5は、それぞれP型、N型の半導体素子であり、接合材を介して交互に配線層2に直列接続される。配線層2と熱電変換素子4、5の接合部6、及び熱電変換素子は樹脂7で封止されている。絶縁層1は、熱電変換素子の熱伝達方向の両端(高温側と低温側)に配線層2が交互に位置するように折り曲げられ、隣り合う熱電変換素子の素子面が対向した構造となっている。ここで、熱伝達方向とは、熱電変換モジュールの高温部から低温部へ向かう方向をいう。図1において、矢印の方向が熱伝達方向である。 Thermoelectric conversion elements 4 and 5 are P-type and N-type semiconductor elements, respectively, and are alternately connected in series to the wiring layer 2 via a bonding material. The junction 6 between the wiring layer 2 and the thermoelectric conversion elements 4 and 5 and the thermoelectric conversion element are sealed with a resin 7. The insulating layer 1 is bent so that the wiring layers 2 are alternately positioned at both ends (high temperature side and low temperature side) of the thermoelectric conversion element in the heat transfer direction, and the element surfaces of the adjacent thermoelectric conversion elements face each other. Yes. Here, the heat transfer direction refers to a direction from the high temperature portion to the low temperature portion of the thermoelectric conversion module. In FIG. 1, the direction of the arrow is the heat transfer direction.
 熱電変換素子4、5は、素子面の長手方向が熱電変換素子の熱伝達方向となるように配置され、長手方向の両端部で配線層2に接合されている。図1において、熱電変換モジュールと外部熱源100は、絶縁層を介して接触している。外部熱源100と接触する方が高温側、他方が低温側である。ここで、熱伝達方向とは、熱電変換モジュールの高温側から低温側へ向かう方向をいう。図1において、矢印の方向が熱伝達方向である。熱電変換により発電される電位差ΔVは、ΔV=Z*ΔT で表わされる。ここでZはゼーベック係数、ΔTは熱電変換素子における高温部と低温部の温度差である。高い電位を得るためには、ゼーベック係数の高い材料を選定し、それらを温度差の大きい状態にすることが必要である。したがって、熱電変換素子をより温度差が生じるように並べることにより、素子両端(図1において上下方向の端部)の温度差が大きくなる。その結果、大きな電位差を得られ、電力変換効率を向上できる。 The thermoelectric conversion elements 4 and 5 are arranged such that the longitudinal direction of the element surface is the heat transfer direction of the thermoelectric conversion element, and are joined to the wiring layer 2 at both ends in the longitudinal direction. In FIG. 1, the thermoelectric conversion module and the external heat source 100 are in contact via an insulating layer. The side in contact with the external heat source 100 is the high temperature side, and the other is the low temperature side. Here, the heat transfer direction refers to a direction from the high temperature side to the low temperature side of the thermoelectric conversion module. In FIG. 1, the direction of the arrow is the heat transfer direction. The potential difference ΔV generated by thermoelectric conversion is represented by ΔV = Z * ΔT. Here, Z is the Seebeck coefficient, and ΔT is the temperature difference between the high temperature part and the low temperature part in the thermoelectric conversion element. In order to obtain a high potential, it is necessary to select materials having a high Seebeck coefficient and to make them have a large temperature difference. Therefore, by arranging the thermoelectric conversion elements so that a temperature difference is further generated, the temperature difference between both ends of the element (ends in the vertical direction in FIG. 1) is increased. As a result, a large potential difference can be obtained and the power conversion efficiency can be improved.
 熱伝達層8は、絶縁層1の折り曲げ部に挟むように配置されている。折り曲げ部に熱伝達層8を挟むことにより、外部熱源から熱電変換素子までの熱伝達時の熱損失を低減できる。なお、熱伝達層は外部熱源と直接接触可能であることが好ましい。 The heat transfer layer 8 is disposed so as to be sandwiched between the bent portions of the insulating layer 1. By sandwiching the heat transfer layer 8 between the bent portions, heat loss during heat transfer from the external heat source to the thermoelectric conversion element can be reduced. It is preferable that the heat transfer layer can be in direct contact with an external heat source.
 絶縁層には、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、シリコーン樹脂等を用いることができる。また、絶縁層を折り曲げ可能な形状とするために、絶縁層は可撓性の絶縁フィルムであることが好ましい。例えば、上述の絶縁樹脂をマトリックス層とし、ポリブタジエンやエポキシ基および水酸基、アミノ基等の官能基を有するポリジメチルシロキサンを混合し、可撓性を向上させたものをガラスクロスに含浸後硬化することによりシート状の構成とすることができる。さらに、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンスルファイド、ポリイミド、ポリエーテルスルフォン等のフィルムが熱源の温度に応じて耐熱性や長期信頼性を考慮して使用することも可能である。 For the insulating layer, epoxy resin, phenol resin, polyimide resin, polyester resin, silicone resin, or the like can be used. In order to make the insulating layer bendable, the insulating layer is preferably a flexible insulating film. For example, using the above-mentioned insulating resin as a matrix layer, mixing polybutadiene having a functional group such as polybutadiene, epoxy group, hydroxyl group, amino group, etc., and impregnating a glass cloth with improved flexibility, followed by curing Thus, a sheet-like configuration can be obtained. Furthermore, films such as polyethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polyimide, and polyether sulfone can be used in consideration of heat resistance and long-term reliability according to the temperature of the heat source.
 絶縁層1に形成された配線層2は、熱電変換モジュールの電極部として機能する。配線層2は、絶縁層1と共に折り曲げ可能とするために薄くする必要がある。一方、配線層2が薄いと熱源あるいは冷却源からの熱が伝わりにくく、熱電変換素子両端に充分な温度差を形成できなくなる。そこで、熱伝達層8を挿入することにより、熱電変換素子近傍までの熱伝達による損失を低減させ、素子の温度差を確保できる。熱伝達層には熱伝導率が高い材料を用いることが望ましい。例えば、銅、アルミニウム、それらの合金、カーボン、グラフェン等を用いることが可能である。 The wiring layer 2 formed on the insulating layer 1 functions as an electrode part of the thermoelectric conversion module. The wiring layer 2 needs to be thin so that it can be bent together with the insulating layer 1. On the other hand, if the wiring layer 2 is thin, heat from the heat source or the cooling source is hardly transmitted, and a sufficient temperature difference cannot be formed at both ends of the thermoelectric conversion element. Therefore, by inserting the heat transfer layer 8, loss due to heat transfer to the vicinity of the thermoelectric conversion element can be reduced, and a temperature difference between the elements can be secured. It is desirable to use a material with high thermal conductivity for the heat transfer layer. For example, copper, aluminum, an alloy thereof, carbon, graphene, or the like can be used.
 接合部6を構成する接合材には、高温雰囲気でも劣化の少ない材料を用いることが有効である。例えば、ナノメートルサイズの金、銀、銅粒子の表面を接合温度で分解可能な有機物で被覆したナノ粒子を用いた接合材料や、マイクロメートルサイズの銀および銅の酸化物と還元剤を配合した金属酸化物系の接合材料、錫と銅、あるいは亜鉛とアルミニウムを主成分とする接合時に高融点の合金を形成する接合材料を用いることが可能である。 It is effective to use a material with little deterioration even in a high-temperature atmosphere as the bonding material constituting the bonding portion 6. For example, a nanometer-sized gold, silver, or copper particle surface is bonded with a nanoparticle coated with an organic substance that can be decomposed at the bonding temperature, or a micrometer-sized silver and copper oxide and reducing agent are blended. It is possible to use a metal oxide-based bonding material, or a bonding material that forms a high-melting-point alloy at the time of bonding mainly composed of tin and copper or zinc and aluminum.
 基板3および封止用の樹脂7は、熱電変換モジュールの搭載環境に置いて劣化をしない物が使用可能である。また、基板3や封止樹脂7の熱伝導率は、熱電変換素子4、5の熱伝導率よりも小さいことが好ましい。特に、加熱部分から冷却部に対し、電気エネルギーに変換されるべき熱エネルギーが放熱を抑制し、熱電変換素子部の温度差を確保するためである。したがって、熱電変換素子を搭載する基板としては、二酸化珪素やジルコニア等の耐熱性が高く熱伝導率の小さい材料が使用可能である。樹脂には、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、ポリエステル樹脂、シリコーン樹脂等を使用可能である。 As the substrate 3 and the sealing resin 7, those which do not deteriorate in the thermoelectric conversion module mounting environment can be used. The thermal conductivity of the substrate 3 and the sealing resin 7 is preferably smaller than the thermal conductivity of the thermoelectric conversion elements 4 and 5. In particular, the heat energy to be converted into electric energy from the heating part to the cooling part suppresses heat radiation and secures a temperature difference in the thermoelectric conversion element part. Therefore, as the substrate on which the thermoelectric conversion element is mounted, a material having high heat resistance and low thermal conductivity such as silicon dioxide and zirconia can be used. As the resin, epoxy resin, phenol resin, polyimide resin, polyester resin, silicone resin, or the like can be used.
 図2は、第1実施形態の変形例に係る熱電変換モジュールの斜視要図である。図2の熱電変換モジュールにおいては、熱電変換素子4、5を搭載する基板と、配線層2が形成される絶縁層と、が絶縁基板1´として一体となっている。絶縁基板1´は、熱伝達層8を挟み配線層2が外部熱源の高温部および低温部とそれぞれ接するよう成形されている。 FIG. 2 is a perspective view of a thermoelectric conversion module according to a modification of the first embodiment. In the thermoelectric conversion module of FIG. 2, the substrate on which the thermoelectric conversion elements 4 and 5 are mounted and the insulating layer on which the wiring layer 2 is formed are integrated as an insulating substrate 1 ′. The insulating substrate 1 ′ is shaped such that the wiring layer 2 is in contact with the high temperature portion and the low temperature portion of the external heat source with the heat transfer layer 8 interposed therebetween.
 以上のように、本実施形態に係る熱電変換モジュールは、薄膜状の熱電変換素子の面方向に熱を移動させることにより、熱電変換モジュールの高温部と冷却部の間に設けた熱電変換素子への熱伝達性を向上できる。さらに、熱電変換モジュールの温度勾配に沿って素子を長く配置させることにより、発電に必要な温度差を熱電変換素子に与えることが可能になる。また、角型の成型が困難な熱電変換素子であっても薄膜状の熱電変換素子を集積化することにより角型成型体と同程度の電力が供給可能となる。 As described above, the thermoelectric conversion module according to the present embodiment is transferred to the thermoelectric conversion element provided between the high temperature part and the cooling part of the thermoelectric conversion module by moving heat in the surface direction of the thin film thermoelectric conversion element. Can improve heat transferability. Furthermore, by arranging the elements long along the temperature gradient of the thermoelectric conversion module, it becomes possible to give the thermoelectric conversion elements a temperature difference necessary for power generation. Further, even if the thermoelectric conversion element is difficult to be formed into a square shape, the same level of power as that of the square molded body can be supplied by integrating the thin film thermoelectric conversion elements.
(第2実施形態)
 図3は、第2の実施形態に係る熱電変換モジュールを示す断面概略図である。以下、第1の実施形態と同様の構成は説明を省略する。本実施形態では絶縁層11および配線層22は、搭載する熱電変換素子毎に個片化されている。個片化された配線層同士は熱伝達層8を介して接続されている。熱電素子毎に個片化することにより、接合時の不具合等により正常に配線層と熱電変換素子の接合ができなかった物を試験により選別することが可能となる。その結果、熱電変換モジュールの組立歩留まりの向上が可能になる。
(Second Embodiment)
FIG. 3 is a schematic cross-sectional view showing a thermoelectric conversion module according to the second embodiment. Hereinafter, the description of the same configuration as that of the first embodiment will be omitted. In this embodiment, the insulating layer 11 and the wiring layer 22 are separated for each thermoelectric conversion element to be mounted. The separated wiring layers are connected to each other through the heat transfer layer 8. By separating each thermoelectric element, it is possible to select by testing the items that could not normally be bonded between the wiring layer and the thermoelectric conversion element due to problems during bonding. As a result, the assembly yield of the thermoelectric conversion module can be improved.
(第3実施形態)
 図4は、第3の実施形態に係る熱電変換モジュールを示す断面概略図である。図4において、熱電変換素子の熱伝達方向の一端側に配置された熱伝達層が放熱のためのフィン9を備える点が実施形態2と異なっている。冷却側の熱伝達層に放熱フィンを設けることにより、熱電変換素子の冷却側の冷却効率を向上させ、熱電変換素子部の温度差を大きくできる。その結果、得られる電位差を増加させ、熱変換効率の向上が可能となる。
(Third embodiment)
FIG. 4 is a schematic cross-sectional view showing a thermoelectric conversion module according to the third embodiment. In FIG. 4, the point from which the heat transfer layer arrange | positioned at the one end side of the heat transfer direction of the thermoelectric conversion element is provided with the fin 9 for heat radiation differs from Embodiment 2. FIG. By providing the radiation fins on the heat transfer layer on the cooling side, the cooling efficiency on the cooling side of the thermoelectric conversion element can be improved, and the temperature difference of the thermoelectric conversion element part can be increased. As a result, the potential difference obtained can be increased and the heat conversion efficiency can be improved.
(第4実施形態)
 第4の実施形態は、第2の実施形態に係る熱電変換モジュールの熱源への搭載方法に関するものである。図5は、第4の実施形態を示す断面概略図である。本発明に係る熱電変換モジュールは、熱電変換素子部分が固定されていないため、適度な屈曲性を有する。熱電変換モジュールの搭載が期待される物(外部熱源)は、内燃機関を有する自動車の排気部周辺や、工場や大型ビルからの廃熱部である。これらの部位は平面では無くパイプ表面の曲面となっている場合が多い。本発明に係る熱電変換モジュールのように屈曲性に優れている熱電変換モジュールであれば、外部熱源の形状に沿って熱伝達層を接触させることができる。例えば、図5に示すように、熱伝達層8を外部熱源の曲面に沿って設置可能である。このように、本発明に係る熱電変換モジュールは、熱伝達効率の向上および設置部分の小型化に有効である。
(Fourth embodiment)
The fourth embodiment relates to a method for mounting the thermoelectric conversion module according to the second embodiment on a heat source. FIG. 5 is a schematic sectional view showing the fourth embodiment. The thermoelectric conversion module according to the present invention has moderate flexibility because the thermoelectric conversion element portion is not fixed. The thing (external heat source) expected to be equipped with a thermoelectric conversion module is the exhaust heat area around the exhaust part of an automobile having an internal combustion engine, or a waste heat part from a factory or a large building. In many cases, these portions are not a flat surface but a curved surface of the pipe surface. If it is a thermoelectric conversion module excellent in flexibility like the thermoelectric conversion module which concerns on this invention, a heat transfer layer can be made to contact along the shape of an external heat source. For example, as shown in FIG. 5, the heat transfer layer 8 can be installed along the curved surface of the external heat source. As described above, the thermoelectric conversion module according to the present invention is effective in improving the heat transfer efficiency and reducing the size of the installation part.
 以上、本発明に係る熱電変換モジュール実施例を用いて具体的に説明した。なお、本発明は実施例に記載された範囲に限定されるものではなく、趣旨を逸脱しない範囲で変更可能である。 The specific description has been given above using the thermoelectric conversion module embodiment according to the present invention. In addition, this invention is not limited to the range described in the Example, It can change in the range which does not deviate from the meaning.
1、11…絶縁層、1´…絶縁基板、2、22…配線層、3…基板、4…N型熱電変換素子、5…P型熱電変換素子、6…接合部、7…封止用樹脂、8…熱伝達層、9…冷却フィン、100…外部熱源 DESCRIPTION OF SYMBOLS 1,11 ... Insulating layer, 1 '... Insulating substrate, 2, 22 ... Wiring layer, 3 ... Substrate, 4 ... N type thermoelectric conversion element, 5 ... P type thermoelectric conversion element, 6 ... Junction part, 7 ... For sealing Resin, 8 ... Heat transfer layer, 9 ... Cooling fin, 100 ... External heat source

Claims (14)

  1.  絶縁層と、前記絶縁層の表面に形成された配線層と、前記配線層を介して交互に直列接続された薄膜状のP型及びN型熱電変換素子と、前記熱電変換素子が搭載される基板と、を備える熱電変換モジュールであって、
     前記熱電変換素子は、隣り合う前記熱電変換素子の素子面が対向し、かつ素子面の長手方向が熱伝達方向となるように配置しており、
     前記配線層は、前記熱電変換素子の熱伝達方向の両端側に配置していることを特徴とする熱電変換モジュール。
    An insulating layer, a wiring layer formed on the surface of the insulating layer, thin film P-type and N-type thermoelectric conversion elements alternately connected in series via the wiring layer, and the thermoelectric conversion element are mounted. A thermoelectric conversion module comprising a substrate,
    The thermoelectric conversion elements are arranged so that the element surfaces of the adjacent thermoelectric conversion elements face each other, and the longitudinal direction of the element surfaces is the heat transfer direction,
    The thermoelectric conversion module according to claim 1, wherein the wiring layer is disposed on both ends of the thermoelectric conversion element in a heat transfer direction.
  2.  請求項1に記載の熱電変換モジュールであって、
     前記配線層は、前記素子面における長手方向の端部で前記熱電変換素子と接続していることを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 1,
    The thermoelectric conversion module, wherein the wiring layer is connected to the thermoelectric conversion element at an end in a longitudinal direction on the element surface.
  3.  請求項1に記載の熱電変換モジュールであって、
     前記絶縁層は可撓性のフィルムであることを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 1,
    The thermoelectric conversion module, wherein the insulating layer is a flexible film.
  4.  請求項1に記載の熱電変換モジュールであって、
     前記配線層に接するように配置される熱伝達層を備えることを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 1,
    A thermoelectric conversion module comprising a heat transfer layer disposed in contact with the wiring layer.
  5.  請求項4に記載の熱電変換モジュールであって、
     少なくとも一部の前記熱伝達層は、外部熱源に接触可能であることを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 4, wherein
    At least a part of the heat transfer layer is capable of contacting an external heat source.
  6.  請求項1に記載の熱電変換モジュールであって、
     前記熱電変換素子を封止する樹脂を備えることを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 1,
    A thermoelectric conversion module comprising a resin for sealing the thermoelectric conversion element.
  7.  請求項6に記載の熱電変換モジュールであって、
     前記基板の熱伝導率及び前記樹脂の熱伝導率の少なくともいずれかが、前記熱電変換素子の熱伝導率よりも小さいことを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 6,
    At least one of the thermal conductivity of the substrate and the thermal conductivity of the resin is smaller than the thermal conductivity of the thermoelectric conversion element.
  8.  請求項1に記載の熱電変換モジュールであって、
     前記絶縁層は、折り曲げられていることを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 1,
    The thermoelectric conversion module, wherein the insulating layer is bent.
  9.  請求項6に記載の熱電変換モジュールであって、
     前記配線層は、高温側と低温側に交互に配置していることを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 6,
    The thermoelectric conversion module, wherein the wiring layers are alternately arranged on a high temperature side and a low temperature side.
  10.  請求項8に記載の熱電変換モジュールであって、
     前記配線層は、高温側及び低温側に交互に位置するように前記絶縁層に形成されていることを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 8, wherein
    The thermoelectric conversion module, wherein the wiring layer is formed on the insulating layer so as to be alternately positioned on a high temperature side and a low temperature side.
  11.  請求項5に記載の熱電変換モジュールであって、
     前記基板と前記絶縁層は一体であることを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 5,
    The thermoelectric conversion module, wherein the substrate and the insulating layer are integrated.
  12.  請求項4に記載の熱電変換モジュールであって、
     前記絶縁層及び前記配線層は、前記熱電変換素子毎に個片化されており、
     前記配線層同士は、前記熱伝達層を介して接続されていることを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 4, wherein
    The insulating layer and the wiring layer are separated for each thermoelectric conversion element,
    The wiring layers are connected to each other through the heat transfer layer.
  13.  請求項4または9に記載の熱電変換モジュールであって、
     前記熱電変換素子の熱伝達方向の一端側に配置している前記熱伝達層は、放熱フィンを備えることを特徴とする熱電変換モジュール。
    The thermoelectric conversion module according to claim 4 or 9, wherein
    The thermoelectric conversion module, wherein the heat transfer layer disposed on one end side in the heat transfer direction of the thermoelectric conversion element includes a heat radiating fin.
  14.  請求項4に記載の熱電変換モジュールの搭載方法であって、
     前記熱伝達層は、外部熱源の形状に沿って前記熱伝達層を接触させることを特徴とする熱電変換モジュールの搭載方法。
    A mounting method of the thermoelectric conversion module according to claim 4,
    The method for mounting a thermoelectric conversion module, wherein the heat transfer layer is brought into contact with the heat transfer layer along a shape of an external heat source.
PCT/JP2016/050417 2015-01-13 2016-01-08 Thermoelectric conversion module and mounting method therefor WO2016114220A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015003784A JP2018060822A (en) 2015-01-13 2015-01-13 Thermoelectric conversion module and mounting method therefor
JP2015-003784 2015-01-13

Publications (1)

Publication Number Publication Date
WO2016114220A1 true WO2016114220A1 (en) 2016-07-21

Family

ID=56405767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/050417 WO2016114220A1 (en) 2015-01-13 2016-01-08 Thermoelectric conversion module and mounting method therefor

Country Status (2)

Country Link
JP (1) JP2018060822A (en)
WO (1) WO2016114220A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110407A1 (en) * 2015-12-21 2017-06-29 富士フイルム株式会社 Thermoelectric conversion module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116476A (en) * 1986-11-05 1988-05-20 Komatsu Electron Kk Thermoelectric generating device
JPH0430586A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Thermoelectric device
JP2006086510A (en) * 2004-08-17 2006-03-30 Nagoya Institute Of Technology Thermoelectric conversion device and its manufacturing method
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
JP2009526401A (en) * 2006-02-10 2009-07-16 デストロン フィアリング コーポレイション Improved low-power thermoelectric generator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63116476A (en) * 1986-11-05 1988-05-20 Komatsu Electron Kk Thermoelectric generating device
JPH0430586A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Thermoelectric device
JP2006086510A (en) * 2004-08-17 2006-03-30 Nagoya Institute Of Technology Thermoelectric conversion device and its manufacturing method
JP2006114793A (en) * 2004-10-18 2006-04-27 Toyota Central Res & Dev Lab Inc Thermoelement
JP2009526401A (en) * 2006-02-10 2009-07-16 デストロン フィアリング コーポレイション Improved low-power thermoelectric generator

Also Published As

Publication number Publication date
JP2018060822A (en) 2018-04-12

Similar Documents

Publication Publication Date Title
US7745928B2 (en) Heat dissipation plate and semiconductor device
US20120055527A1 (en) Structural element for thermally shielding engines or engine components, in particular a heat shield for combustion engines
EP2789822B1 (en) Thermoelectric generator to engine exhaust manifold assembly
JP2007036178A (en) Thermoelectric converter and heating and cooling apparatus
WO2013121486A1 (en) Thermoelectric conversion module unit, and electronic device
JP5249662B2 (en) Thermoelectric conversion module and manufacturing method thereof
JP4935220B2 (en) Power module device
US10651520B2 (en) Battery
JP2010245265A (en) Thermoelectric module
JP2014154761A (en) Thermoelectric conversion module
JP2007103904A (en) Thermoelectric conversion device
JPH11233837A (en) Thermoelectric conversion module
WO2016114220A1 (en) Thermoelectric conversion module and mounting method therefor
US8581089B2 (en) Module having a plurality of thermoelectric elements
US20170098750A1 (en) Thermoelectric Generator To Engine Exhaust Manifold Interface Using A Direct-Bond-Copper (DBC) Arrangement
JP2008078222A (en) Thermoelectric transducer
JP2016225346A (en) Thermoelectric conversion module and exhaust pipe for vehicle
US20140305480A1 (en) Thermoelectric generator to engine exhaust manifold assembly
CN116584179A (en) Thermoelectric module and power generation device including the same
JP2013251309A (en) Thermoelectric conversion device
CN116368964A (en) Thermoelectric module and generator including the same
JP3404841B2 (en) Thermoelectric converter
JP2023512476A (en) generator
CN109841725B (en) Thermoelectric module board and thermoelectric module assembly comprising same
US20060219286A1 (en) Thermoelectric transducer and manufacturing method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16737291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16737291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP