JP2009289860A - Thermoelectric conversion module and method for manufacturing thermoelectric conversion module - Google Patents

Thermoelectric conversion module and method for manufacturing thermoelectric conversion module Download PDF

Info

Publication number
JP2009289860A
JP2009289860A JP2008139086A JP2008139086A JP2009289860A JP 2009289860 A JP2009289860 A JP 2009289860A JP 2008139086 A JP2008139086 A JP 2008139086A JP 2008139086 A JP2008139086 A JP 2008139086A JP 2009289860 A JP2009289860 A JP 2009289860A
Authority
JP
Japan
Prior art keywords
thermoelectric conversion
insulating layer
conversion module
conversion element
element pairs
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008139086A
Other languages
Japanese (ja)
Other versions
JP5126518B2 (en
Inventor
Takanori Nakamura
孝則 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Murata Manufacturing Co Ltd
Original Assignee
Murata Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co Ltd filed Critical Murata Manufacturing Co Ltd
Priority to JP2008139086A priority Critical patent/JP5126518B2/en
Publication of JP2009289860A publication Critical patent/JP2009289860A/en
Application granted granted Critical
Publication of JP5126518B2 publication Critical patent/JP5126518B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Powder Metallurgy (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermoelectric conversion module capable of raising output per unit area as compared with the conventional thermoelectric conversion module, and a method for manufacturing the same. <P>SOLUTION: The thermoelectric conversion module 10 includes an insulating layer 1 and a plurality of thermoelectric conversion element pairs 20 formed of P-type thermoelectric conversion elements 21 and N-type thermoelectric conversion elements 22 which are both embedded in the insulating layer 1 with a front surface 2 and a back surface 3 being configured so as to act as a heat transfer surface, wherein the insulating layer has a corrugated plate shape in which a chevron portion 11 and a valley portion 12 are alternately repeated. The plurality of thermoelectric conversion element pairs 20 are arranged on each inclined surface 13 constituting the chevron portion 11 and the valley portion 12 in the insulating layer 1. The plurality of thermoelectric conversion element pairs are electrically connected in the insulating layer. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、熱電変換モジュールおよびその製造方法に関し、詳しくは、単位面積あたりの出力を高くすることを可能にした熱電変換モジュールおよびその製造方法に関する。   The present invention relates to a thermoelectric conversion module and a method for manufacturing the thermoelectric conversion module, and more particularly to a thermoelectric conversion module and a method for manufacturing the thermoelectric conversion module that can increase output per unit area.

近年、地球温暖化防止のため、二酸化炭素の削減が重要な課題となるに至り、熱を直接電気に変換することが可能な熱電変換素子が、有効な廃熱利用技術の一つとして着目されている。   In recent years, the reduction of carbon dioxide has become an important issue in order to prevent global warming, and thermoelectric conversion elements that can directly convert heat into electricity have attracted attention as an effective waste heat utilization technology. ing.

そして、これらの熱電変換素子の一つに、P型熱電半導体およびN型熱電半導体と、電気絶縁性を有する複数の絶縁層の積層体に形成された、複数の第1の収容穴にP型熱電半導体を収容するとともに、複数の第2の収容穴にN型熱電半導体を収容し、これらのP型熱電半導体とN型熱電半導体から形成された複数の熱電変換素子対を、配線導体によって任意に電気的に接続することができるようにした熱電変換モジュールが提案されている(特許文献1参照)。   In one of these thermoelectric conversion elements, a P-type thermoelectric semiconductor, an N-type thermoelectric semiconductor, and a plurality of first accommodation holes formed in a laminate of a plurality of insulating layers having electrical insulation have a P-type. A thermoelectric semiconductor is accommodated, an N-type thermoelectric semiconductor is accommodated in a plurality of second accommodation holes, and a plurality of thermoelectric conversion element pairs formed of the P-type thermoelectric semiconductor and the N-type thermoelectric semiconductor can be arbitrarily selected by a wiring conductor. There has been proposed a thermoelectric conversion module that can be electrically connected to the power supply (see Patent Document 1).

そして、この熱電変換モジュールによれば、複数の熱電変換素子対を、積層体に設けられる配線導体によって任意に電気的に接続することが可能で、比較的高い自由度をもって、熱電変換モジュールの設計を行なうことができるため、種々の特性を有する熱電変換モジュールを実現することが容易になるという作用効果が得られる。   According to this thermoelectric conversion module, a plurality of thermoelectric conversion element pairs can be arbitrarily electrically connected by wiring conductors provided in the laminate, and the thermoelectric conversion module can be designed with a relatively high degree of freedom. Therefore, the effect of facilitating the realization of the thermoelectric conversion module having various characteristics can be obtained.

ところで、熱電変換素子の発電能力は、材料の熱電変換特性や素子に与える温度差によって決まるが、熱電変換材料の占有率(熱電変換素子に生じる温度差の方向に対し、垂直な面における熱電変換材料部が占める面積の割合)の影響も大きく、熱電変換材料の占有率を大きくすることにより、熱電変換素子の単位面積当りの発電能力を高めることができる。
特許第3879769号公報
By the way, the power generation capability of the thermoelectric conversion element is determined by the thermoelectric conversion characteristics of the material and the temperature difference applied to the element, but the occupation rate of the thermoelectric conversion material (thermoelectric conversion in a plane perpendicular to the direction of the temperature difference occurring in the thermoelectric conversion element) The influence of the ratio of the area occupied by the material portion is also great, and the power generation capacity per unit area of the thermoelectric conversion element can be increased by increasing the occupation ratio of the thermoelectric conversion material.
Japanese Patent No. 3879769

しかし、積層構造を有する平坦な絶縁体(積層体)中に熱電変換素子対を配設した構造を有する上記従来の熱電変換モジュールの場合、熱電変換素子対を積層体にいかに高密度に配設したとしても、熱電変換素子対の配設密度を高めるのには制約がある。すなわち、平坦な絶縁体(積層体)に、平面的にいくら高密度に熱電変換素子対を配設したとしても、配設密度の向上には、平面面積上の限界がある。   However, in the case of the above conventional thermoelectric conversion module having a structure in which thermoelectric conversion element pairs are arranged in a flat insulator (laminated body) having a laminated structure, the thermoelectric conversion element pairs are arranged in the laminated body at a high density. Even so, there are restrictions on increasing the arrangement density of the thermoelectric conversion element pairs. That is, even if thermoelectric conversion element pairs are arranged on a flat insulator (laminated body) at a high density in a plane, there is a limit on the plane area for improving the arrangement density.

本発明は、上記実情に鑑みてなされたものであり、従来の熱電変換モジュールに比べて、単位平面面積あたりの熱電変換素子対の配設密度を高めることが可能で、単位面積あたりの出力をさらに向上させることが可能な熱電変換モジュールおよびその製造方法を提供することを目的とする。   The present invention has been made in view of the above circumstances, and it is possible to increase the arrangement density of the thermoelectric conversion element pairs per unit plane area as compared with the conventional thermoelectric conversion module, and the output per unit area can be increased. It is another object of the present invention to provide a thermoelectric conversion module that can be further improved and a method for manufacturing the same.

上記課題を解決するために、本発明の熱電変換モジュールは、
P型熱電変換素子とN型熱電変換素子の対である熱電変換素子対が複数個、絶縁層に埋め込まれており、前記絶縁層の表面および裏面が伝熱面として機能する熱電変換モジュールにおいて、
前記絶縁層が、山部と谷部とが交互に繰り返される波板状の形状を有していること
を特徴としている。
In order to solve the above problems, the thermoelectric conversion module of the present invention is:
In a thermoelectric conversion module in which a plurality of thermoelectric conversion element pairs, which are pairs of P-type thermoelectric conversion elements and N-type thermoelectric conversion elements, are embedded in an insulating layer, and the front and back surfaces of the insulating layer function as heat transfer surfaces,
The insulating layer has a corrugated shape in which peaks and valleys are alternately repeated.

本発明の熱電変換モジュールにおいては、前記絶縁層の、山部および谷部を構成する各傾斜面に、複数の前記熱電変換素子対が配設されていることが望ましい。   In the thermoelectric conversion module of the present invention, it is preferable that a plurality of the thermoelectric conversion element pairs are disposed on each inclined surface constituting the peak and valley of the insulating layer.

また、前記複数の前記熱電変換素子対は、前記複数の前記熱電変換素子対が、前記絶縁層の内部において所定の態様で電気的に接続されていることが望ましい。   The plurality of thermoelectric conversion element pairs may be electrically connected in a predetermined manner inside the insulating layer.

また、本発明の熱電変換モジュールの製造方法は、
P型熱電変換素子とN型熱電変換素子の対である熱電変換素子対が複数個、絶縁層に埋め込まれており、前記絶縁層の表面および裏面が伝熱面として機能する熱電変換モジュールの製造方法であって、
(a)絶縁層用のグリーンシートに複数の貫通孔を形成する工程と、
(b)複数の前記貫通孔のうち対応する貫通孔に、P型熱電変換材料またはN型熱電変換材料を充填する工程と、
(c)複数枚の前記グリーンシートを積層する工程を経て、複数の熱電変換素子対が埋め込まれ、かつ、各熱電変換素子対が所定の順序で電気的に接続された構造を有する未焼成積層体を形成する工程と、
(d)前記未焼成積層体を波板状に成形する工程と
を具備することを特徴としている。
Moreover, the manufacturing method of the thermoelectric conversion module of the present invention is:
Manufacture of a thermoelectric conversion module in which a plurality of thermoelectric conversion element pairs, which are pairs of P-type thermoelectric conversion elements and N-type thermoelectric conversion elements, are embedded in an insulating layer, and the front and back surfaces of the insulating layer function as heat transfer surfaces A method,
(a) forming a plurality of through holes in the green sheet for the insulating layer;
(b) filling a corresponding through hole among the plurality of through holes with a P-type thermoelectric conversion material or an N-type thermoelectric conversion material;
(c) An unfired laminate having a structure in which a plurality of thermoelectric conversion element pairs are embedded through a step of laminating a plurality of the green sheets, and the thermoelectric conversion element pairs are electrically connected in a predetermined order Forming a body;
(d) forming the green laminate into a corrugated plate.

また、本発明においては、山部と谷部とが繰り返し形成された金型を用いてプレス加工することにより、前記未焼成積層体を波板状の形状に成型することが望ましい。   Moreover, in this invention, it is desirable to shape | mold the said unbaking laminated body in a corrugated shape by pressing using the metal mold | die with which the peak part and the trough part were formed repeatedly.

また、前記未焼成積層体を形成する工程において、表裏の両面側に、前記P型熱電変換素子およびN型熱電変換素子と導通する電極の配設されていない未焼成積層体を形成することが望ましい。   Further, in the step of forming the unfired laminated body, forming the unfired laminated body in which electrodes that are electrically connected to the P-type thermoelectric conversion element and the N-type thermoelectric conversion element are not formed on both sides of the front and back sides. desirable.

P型熱電変換素子とN型熱電変換素子からなる複数の熱電変換素子対が埋め込まれた絶縁層を、山部と谷部とが交互に繰り返される波板状の形状とすることにより、絶縁層が平坦な構造を有している場合に比べて、単位平面面積あたりの熱電変換素子対の配設密度を高めることが可能になるとともに、平面面積に対する熱電変換面積(伝熱面の面積)の割合を高めることが可能になる。その結果、単位面積あたりの出力の大きい熱電変換モジュールを提供することが可能になる。   By forming an insulating layer in which a plurality of thermoelectric conversion element pairs composed of P-type thermoelectric conversion elements and N-type thermoelectric conversion elements are embedded into a corrugated plate-like shape in which peaks and troughs are alternately repeated, the insulating layer Compared with the case where has a flat structure, the arrangement density of thermoelectric conversion element pairs per unit plane area can be increased, and the thermoelectric conversion area (area of the heat transfer surface) relative to the plane area can be increased. It becomes possible to increase the ratio. As a result, it is possible to provide a thermoelectric conversion module having a large output per unit area.

また、絶縁層の、山部または谷部を構成する各傾斜面に、複数の熱電変換素子対を配設するようにした場合、例えば、主として山部や谷部に熱電変換素子対を配設するようにした場合に比べて、確実に熱電変換素子を高密度に配置することが可能になり、本発明をより実効あらしめることができる。   In addition, when a plurality of thermoelectric conversion element pairs are disposed on each inclined surface constituting the peak or valley of the insulating layer, for example, the thermoelectric conversion element pairs are mainly disposed in the peak or valley. Compared with the case where it does, it becomes possible to arrange | position a thermoelectric conversion element reliably at high density, and can make this invention more effective.

また、複数の熱電変換素子対が、絶縁層の内部において所定の態様で電気的に接続された構造とすることにより、例えば、導体と接するように配設することも可能な、使用環境に対する制約の少ない熱電変換モジュールを提供することが可能になる。   In addition, by using a structure in which a plurality of thermoelectric conversion element pairs are electrically connected in a predetermined manner inside the insulating layer, for example, it is possible to arrange the thermoelectric conversion element pairs in contact with a conductor. It is possible to provide a thermoelectric conversion module with less.

また、本発明の熱電変換モジュールの製造方法のように、絶縁層用のグリーンシートに複数の貫通孔を形成し、対応する貫通孔に、P型熱電変換材料およびN型熱電変換材料を充填した後、複数枚のグリーンシートを積層する工程を経て、複数の熱電変換素子対が埋め込まれ、かつ、各熱電変換素子対が所定の順序で電気的に接続された構造を有する未焼成積層体を形成し、この未焼成積層体を波板状に成形することにより、波板状の絶縁層と、絶縁層に埋め込まれた複数の熱電変換素子対とを備え、絶縁層の表面および裏面が伝熱面として機能する熱電変換モジュールを効率よく製造することが可能になる。   Further, as in the method of manufacturing the thermoelectric conversion module of the present invention, a plurality of through holes are formed in the green sheet for the insulating layer, and the corresponding through holes are filled with a P-type thermoelectric conversion material and an N-type thermoelectric conversion material. Thereafter, through a step of laminating a plurality of green sheets, an unfired laminate having a structure in which a plurality of thermoelectric conversion element pairs are embedded and each thermoelectric conversion element pair is electrically connected in a predetermined order And forming the green laminate into a corrugated plate, thereby providing a corrugated insulating layer and a plurality of thermoelectric conversion element pairs embedded in the insulating layer. It becomes possible to efficiently manufacture a thermoelectric conversion module that functions as a hot surface.

また、本発明においては、山部と谷部とが繰り返し形成された金型を用いて未焼成積層体をプレス加工することにより、容易に波板状の絶縁層を備えた本発明の熱電変換モジュールを製造することができる。   Further, in the present invention, the thermoelectric conversion of the present invention can be easily provided with a corrugated insulating layer by pressing a green laminate using a mold in which crests and troughs are repeatedly formed. Modules can be manufactured.

また、未焼成積層体を形成するにあたって、表裏の両面側に、P型熱電変換素子およびN型熱電変換素子と導通する電極の配設されていない未焼成積層体を形成することにより、例えば、導体と接するように配設することも可能な、使用環境に対する制約の少ない熱電変換モジュールを得ることが可能になり、有意義である。   Further, in forming the unfired laminate, by forming an unfired laminate in which electrodes that are electrically connected to the P-type thermoelectric conversion element and the N-type thermoelectric conversion element are formed on both sides of the front and back, for example, It is possible to obtain a thermoelectric conversion module that can be disposed so as to be in contact with a conductor and has few restrictions on the use environment, which is significant.

以下に本発明の実施例を示して、本発明の特徴とするところをさらに詳しく説明する。   Examples of the present invention will be described below to describe the features of the present invention in more detail.

図1は、本発明の一実施例にかかる熱電変換モジュールの構成を模式的に示す平面図、図2は図1のA−A線断面図である。   FIG. 1 is a plan view schematically showing a configuration of a thermoelectric conversion module according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view taken along line AA of FIG.

この熱電変換モジュール10は、図1および図2に示すように、絶縁層1と、絶縁層1に埋め込まれた、P型熱電変換素子21とN型熱電変換素子22からなる複数の熱電変換素子対20とを備えている。また、絶縁層1の表面2および裏面3が伝熱面として機能するように構成されている。   As shown in FIGS. 1 and 2, the thermoelectric conversion module 10 includes a plurality of thermoelectric conversion elements including an insulating layer 1 and a P-type thermoelectric conversion element 21 and an N-type thermoelectric conversion element 22 embedded in the insulating layer 1. And a pair 20. Moreover, it is comprised so that the surface 2 and the back surface 3 of the insulating layer 1 may function as a heat transfer surface.

そして、絶縁層1は、山部11と谷部12とが交互に繰り返される波板状の形状に構成されている。また、絶縁層1の、山部11、谷部12を構成する各傾斜面13(図2)には、複数の熱電変換素子対20が配設されている。   And the insulating layer 1 is comprised by the corrugated shape by which the peak part 11 and the trough part 12 are repeated alternately. In addition, a plurality of thermoelectric conversion element pairs 20 are disposed on each inclined surface 13 (FIG. 2) constituting the peak portion 11 and the valley portion 12 of the insulating layer 1.

さらに、絶縁層1に配設された複数の熱電変換素子対20は、絶縁層1の内部において電極30により直列接続になるように電気的に接続されている。
また、図1,2には特に示していないが、絶縁層1の両端面の所定の位置には内部電極が引き出され、露出した内部電極と導通するように外部電極が配設されている。
Further, the plurality of thermoelectric conversion element pairs 20 disposed in the insulating layer 1 are electrically connected so as to be connected in series by the electrode 30 inside the insulating layer 1.
Although not particularly shown in FIGS. 1 and 2, internal electrodes are drawn out at predetermined positions on both end surfaces of the insulating layer 1, and external electrodes are disposed so as to be electrically connected to the exposed internal electrodes.

上述のように構成されたこの実施例1の熱電変換モジュール10は、P型熱電変換素子21とN型熱電変換素子22からなる複数の熱電変換素子対20が埋め込まれた絶縁層1が、山部11と谷部12とが交互に繰り返される波板状の形状を有しているので、絶縁層1が平坦な構造を有している場合に比べて、単位平面面積あたりの熱電変換素子対20の配設割合が高くなるとともに、平面面積に対する熱電変換面積(伝熱面の面積)の割合が高くなる。そのため、単位面積あたりの出力の大きい熱電変換モジュールを得ることができる。   In the thermoelectric conversion module 10 according to the first embodiment configured as described above, the insulating layer 1 in which a plurality of thermoelectric conversion element pairs 20 including a P-type thermoelectric conversion element 21 and an N-type thermoelectric conversion element 22 are embedded is Since the portion 11 and the trough portion 12 have a corrugated shape that is alternately repeated, the thermoelectric conversion element pairs per unit plane area compared to the case where the insulating layer 1 has a flat structure. As the arrangement ratio of 20 increases, the ratio of the thermoelectric conversion area (area of the heat transfer surface) to the planar area increases. Therefore, a thermoelectric conversion module having a large output per unit area can be obtained.

また、絶縁層1の、山部11または谷部12を構成する各傾斜面13に、複数の熱電変換素子対20が配設されているため、絶縁層1が平坦な構造を有している場合はもとより、主として山部11や谷部12に熱電変換素子対20を配設するようにした場合に比べても、熱電変換素子対20を高密度に配置することが可能で、単位面積あたりの出力の向上を実現することができる。   Moreover, since the several thermoelectric conversion element pair 20 is arrange | positioned in each inclined surface 13 which comprises the peak part 11 or the trough part 12 of the insulating layer 1, the insulating layer 1 has a flat structure. In addition to the case, it is possible to arrange the thermoelectric conversion element pairs 20 at a high density as compared with the case where the thermoelectric conversion element pairs 20 are mainly arranged in the mountain parts 11 and the valley parts 12. The output can be improved.

また、この実施例の熱電変換モジュールの場合、熱電変換素子対20が、絶縁層1の内部において電極30により直列接続になるように電気的に接続されており、表裏の両面側に、P型熱電変換素子21およびN型熱電変換素子22と導通する電極が配設されていないため、例えば、熱電変換モジュールを導体と接するように配設することが可能で、使用環境に対する制約の少ない熱電変換モジュール10を提供することができる。   Further, in the case of the thermoelectric conversion module of this embodiment, the thermoelectric conversion element pair 20 is electrically connected so as to be connected in series by the electrode 30 inside the insulating layer 1, and P-type is provided on both sides of the front and back sides. Since the electrodes that are electrically connected to the thermoelectric conversion element 21 and the N-type thermoelectric conversion element 22 are not disposed, for example, the thermoelectric conversion module can be disposed so as to be in contact with the conductor, and the thermoelectric conversion has less restrictions on the use environment. A module 10 can be provided.

次に、この実施例の熱電変換モジュールの製造方法について説明する。
この実施例では、上記熱電変換モジュールを製造するにあたり、まず、
a)P型熱電変換材料としてCuの粉末材料、
b)N型熱電材料としてコンスタンタンの粉末材料、
c)電極としてCu電極材料、
d)絶縁層を構成する絶縁材料としてアルミナなどを主成分とする絶縁性セラミックグリーンシート
をそれぞれ用意した。
Next, a method for manufacturing the thermoelectric conversion module of this embodiment will be described.
In this example, in manufacturing the thermoelectric conversion module, first,
a) Cu powder material as P-type thermoelectric conversion material,
b) Constantan powder material as N-type thermoelectric material,
c) Cu electrode material as an electrode,
d) An insulating ceramic green sheet mainly composed of alumina or the like was prepared as an insulating material constituting the insulating layer.

そして、上記の絶縁性セラミックグリーンシートに、レーザー加工法により、P型熱電変換材料およびN型熱電変換材料を充填するためのビアホール(貫通孔)をそれぞれ所定個数形成した。   A predetermined number of via holes (through holes) for filling the P-type thermoelectric conversion material and the N-type thermoelectric conversion material were formed on the insulating ceramic green sheet by a laser processing method.

次いで、P型熱電変換材料粉末を用いて作製したペーストおよびN型熱電変換材料粉末を用いて作製したペーストを所定のビアホールに充填した。
なお、この実施例では、P型およびN型熱電変換材料を充填するためのビアホールを形成するにあたって、ビアホールの直径を0.4mm、ビアホールのピッチ(中心間隔)を0.7mmとした。
Next, a paste prepared using the P-type thermoelectric conversion material powder and a paste prepared using the N-type thermoelectric conversion material powder were filled in predetermined via holes.
In this example, when forming the via holes for filling the P-type and N-type thermoelectric conversion materials, the diameter of the via holes was set to 0.4 mm, and the pitch (center interval) of the via holes was set to 0.7 mm.

その後、熱電変換材料を充填した絶縁性セラミックグリーンシートを600μm厚さまで積層し、さらに、積層された絶縁性セラミックグリーンシートと対向する面側に所定の回路パターンが形成された、厚みが200μmの絶縁性セラミックグリーンシートを配設した後、所定の圧力で圧着して未焼成積層体を得た。
なお、上記回路パターンは、P型熱電変換材料(素子)とN型熱電変換材料(素子)を接続するとともに、P型熱電変換素子とN型熱電変換素子からなる熱電変換素子対を直列接続する電極として機能するものである。この実施例では、Cuペーストを絶縁性セラミックグリーンシートの表面にスクリーン印刷することにより上記の回路パターンを形成した。
Thereafter, an insulating ceramic green sheet filled with a thermoelectric conversion material is laminated to a thickness of 600 μm, and a predetermined circuit pattern is formed on the side facing the laminated insulating ceramic green sheet. After disposing the functional ceramic green sheet, it was pressure-bonded at a predetermined pressure to obtain a green laminate.
In the circuit pattern, a P-type thermoelectric conversion material (element) and an N-type thermoelectric conversion material (element) are connected, and a thermoelectric conversion element pair including a P-type thermoelectric conversion element and an N-type thermoelectric conversion element is connected in series. It functions as an electrode. In this example, the circuit pattern was formed by screen-printing Cu paste on the surface of an insulating ceramic green sheet.

次に、この積層体を所定の大きさに切り出し、平坦なプレート状の未焼成積層体を得た。それから、伝熱方向の垂線に対し、30°の角度となる傾斜面を有する山部と谷部を備えた金型を用いて一軸加圧(プレス加工)を行い、図3,図4に示すような、波板状の未焼成熱電変換モジュール10aを作製した。なお、この未焼成熱電変換モジュール10aは、伝熱方向の垂線Lに対し、θ=30°の角度となる傾斜面を有する山部11aと谷部12aを備えており、未焼成絶縁層(絶縁性セラミックグリーンシートの積層体)1aの、山部11a、谷部12aを構成する各傾斜面13a(図3,4)には、複数の未焼成の熱電変換素子対20aが配設された構造を有している。   Next, this laminate was cut into a predetermined size to obtain a flat plate-like unfired laminate. Then, uniaxial pressing (pressing) was performed using a mold having a crest and a trough having an inclined surface with an angle of 30 ° with respect to the perpendicular to the heat transfer direction, as shown in FIGS. Such a corrugated unfired thermoelectric conversion module 10a was produced. The unfired thermoelectric conversion module 10a includes a crest portion 11a and a trough portion 12a having inclined surfaces with an angle of θ = 30 ° with respect to the perpendicular L in the heat transfer direction. Structure of laminated ceramic green sheets) 1a, a plurality of unfired thermoelectric conversion element pairs 20a are arranged on each inclined surface 13a (FIGS. 3 and 4) constituting the peak portion 11a and the valley portion 12a. have.

また、同様に、伝熱方向の垂線に対し、45°の角度となる傾斜面を有する山部と谷部を備えた金型とを用いて一軸加圧し、図5,図6に示すような、波板状の未焼成熱電変換モジュール10aを作製した。なお、この未焼成熱電変換モジュール10aは、伝熱方向の垂線Lに対し、θ=45°の角度となる傾斜面を有する山部11aと谷部12aを備えており、未焼成絶縁層(絶縁性セラミックグリーンシートの積層体)1aの、山部11a、谷部12aを構成する各傾斜面13a(図5,6)には、複数の熱電変換素子対20aが配設された構造を有している。   Similarly, uniaxial pressure is applied using a die having a crest and a trough having an inclined surface with an angle of 45 ° with respect to the perpendicular to the heat transfer direction, as shown in FIGS. A corrugated unfired thermoelectric conversion module 10a was produced. The unfired thermoelectric conversion module 10a includes a crest portion 11a and a trough portion 12a having inclined surfaces with an angle of θ = 45 ° with respect to the perpendicular line L in the heat transfer direction. Each of the inclined surfaces 13a (FIGS. 5 and 6) constituting the peak portion 11a and the valley portion 12a of the laminated ceramic green sheet 1a has a structure in which a plurality of thermoelectric conversion element pairs 20a are disposed. ing.

なお、この実施例では、図3,4、および図5,6に示す未焼成熱電変換モジュールとして、伝熱方向に平行な方向からみた寸法(平面視寸法)が、30mm×30mmのものを作製した。   In this example, as the unfired thermoelectric conversion modules shown in FIGS. 3, 4, 5, and 6, the dimensions (plan view dimensions) viewed from a direction parallel to the heat transfer direction are 30 mm × 30 mm. did.

次に、未焼成熱電変換モジュール(積層体)の両端面に露出した電極(内部電極)と導通するように、外部電極形成用のCuペーストを塗布した後、還元雰囲気中900〜990℃で焼成することにより、
1)伝熱方向の垂線Lに対し、θ=30°の角度となる傾斜面13を有する山部11と谷部12を備えた熱電変換モジュール(実施例の試料1)(図1,2参照)と、
2)伝熱方向の垂線Lに対し、θ=45°の角度となる傾斜面を有する山部と谷部を備えた熱電変換モジュール(実施例の試料2(図5,6参照))
を作製した。
なお、上述のように、未焼成の段階で平面視寸法が、30mm×30mmの未焼成熱電変換モジュールを焼成することにより得られた、上記試料1および2の波板状の形状を有する熱電変換モジュールの平面視寸法は、ほぼ25mm×25mmであった。
Next, after applying a Cu paste for forming an external electrode so as to be electrically connected to the electrodes (internal electrodes) exposed at both end faces of the unfired thermoelectric conversion module (laminate), firing is performed at 900 to 990 ° C. in a reducing atmosphere. By doing
1) A thermoelectric conversion module (sample 1 of the example) having a crest portion 11 and a trough portion 12 having an inclined surface 13 having an angle of θ = 30 ° with respect to the perpendicular L in the heat transfer direction (see FIGS. 1 and 2). )When,
2) Thermoelectric conversion module having a crest and a trough having an inclined surface with an angle of θ = 45 ° with respect to the perpendicular L in the heat transfer direction (sample 2 of the example (see FIGS. 5 and 6))
Was made.
As described above, the thermoelectric conversion having the corrugated shape of Samples 1 and 2 obtained by firing an unfired thermoelectric conversion module having a plan view size of 30 mm × 30 mm in the unfired stage. The planar view size of the module was approximately 25 mm × 25 mm.

また、比較のため、図7,図8に示すように、平面型(傾斜角度0゜)の未焼成熱電変換モジュール(積層体)(平面視寸法:30mm×30mm)10aを作製した。そして、両端面に露出した電極(内部電極)と導通するように、外部電極形成用のCuペーストを塗布した後、還元雰囲気中900〜990℃で焼成することにより、平面視寸法がほぼ25mm×25mmの熱電変換モジュール(比較例の試料)を作製した。
なお、図7,8において、図3〜図6と同一符号を付した部分は同一または相当する部分を示している。
For comparison, as shown in FIGS. 7 and 8, a flat-type (tilt angle 0 °) unfired thermoelectric conversion module (laminated body) (plan view size: 30 mm × 30 mm) 10 a was produced. And after apply | coating the Cu paste for external electrode formation so that it may conduct | electrically_connect with the electrode (internal electrode) exposed to both end surfaces, the planar view dimension is about 25 mm x by baking at 900-990 degreeC in reducing atmosphere. A 25 mm thermoelectric conversion module (sample for comparison) was produced.
7 and 8, the same reference numerals as those in FIGS. 3 to 6 denote the same or corresponding parts.

なお、上述のようにして作製した各熱電変換モジュール(平面視寸法:25mm×25mm)を構成する絶縁層に形成されたビアホールの数(すなわち、熱電変換素子の数)は以下の通りである。
(実施例の試料1)
図3のX方向:40個,図3のY方向:56個、全体で2240個
(実施例の試料2)
図5のX方向:40個,図5のY方向:44個、全体で1760個
(比較例の試料)
図7のX方向:40個,図7のY方向:40個、全体で1600個
In addition, the number of via holes (that is, the number of thermoelectric conversion elements) formed in the insulating layer constituting each thermoelectric conversion module (plan view size: 25 mm × 25 mm) manufactured as described above is as follows.
(Sample 1 of Example)
3 in the X direction: 40, Y direction in FIG. 3: 56, 2240 in total (Sample 2 of Example)
X direction of FIG. 5: 40 pieces, Y direction of FIG. 5: 44 pieces, 1760 pieces in total (sample of comparative example)
7 in the X direction: 40, Y direction in FIG. 7: 40, 1600 in total

[特性の評価]
上述のようにして作製した実施例1,2の試料と、比較例の試料(熱電変換モジュール)の上面と下面に温度差を与え、起電力(出力電圧)と出力電力を測定した。ここで、熱電変換モジュールの上面と下面に温度差を与えるにあたって、高温部はヒーターによる加熱、低温部はファンによる空冷を実施した。
起電力(出力電圧)と出力電力の測定結果を表1に示す。
[Evaluation of characteristics]
A temperature difference was given to the upper and lower surfaces of the samples of Examples 1 and 2 and the sample of the comparative example (thermoelectric conversion module) produced as described above, and the electromotive force (output voltage) and output power were measured. Here, in giving a temperature difference between the upper surface and the lower surface of the thermoelectric conversion module, the high temperature portion was heated by a heater, and the low temperature portion was air-cooled by a fan.
Table 1 shows the measurement results of electromotive force (output voltage) and output power.

Figure 2009289860
Figure 2009289860

表1に示すように、平面型の比較例の試料(熱電変換モジュール)の場合、平面視寸法が25mm×25mmで、熱電素子数が1600個であったが、絶縁層を波板状の形状に加工した実施例の試料1の場合、平面視寸法25mm×25mmで、熱電素子数を2240個にまで増加させることが可能であった。   As shown in Table 1, in the case of a sample of a flat type comparative example (thermoelectric conversion module), the size in plan view was 25 mm × 25 mm and the number of thermoelectric elements was 1600, but the insulating layer was shaped like a corrugated plate In the case of the sample 1 processed in Example 1, it was possible to increase the number of thermoelectric elements to 2240 with a plan view size of 25 mm × 25 mm.

また、実施例の試料2の場合でも、平面視寸法25mm×25mmで、熱電素子数を1760個にまで増加させることが可能であった。
また、実施例の試料1および2の場合、表1に示すように、起電力(出力電圧)、出力電極についても、比較例の試料に比べて、特性が向上することが確認された。
Also in the case of the sample 2 of the example, it was possible to increase the number of thermoelectric elements to 1760 with a plan view size of 25 mm × 25 mm.
In the case of Samples 1 and 2 of the example, as shown in Table 1, it was confirmed that the characteristics of the electromotive force (output voltage) and the output electrode were improved as compared with the sample of the comparative example.

なお、上記実施例では、絶縁層の構成材料として、セラミック系材料を用いているが、場合によっては樹脂を含む材料などを用いることも可能である。   In the above embodiment, the ceramic material is used as the constituent material of the insulating layer. However, a material containing a resin may be used depending on the case.

本発明は、上記実施例に限定されるものではなく、P型熱電変換材料およびN型熱電変換材料の組成やその原料、熱電変換モジュールを構成する絶縁層の具体的な構造、絶縁層を波板状に成形する際の具体的な条件、絶縁層に埋め込む熱電変換素子の数などに関し、発明の範囲内において、種々の応用、変形を加えることが可能である。   The present invention is not limited to the above-described embodiments. The composition of the P-type thermoelectric conversion material and the N-type thermoelectric conversion material, the raw materials thereof, the specific structure of the insulating layer constituting the thermoelectric conversion module, and the insulating layer Various applications and modifications can be made within the scope of the invention with respect to specific conditions for forming into a plate shape, the number of thermoelectric conversion elements embedded in the insulating layer, and the like.

上述のように、本発明によれば、単位面積あたりの熱電変換素子対の配設密度を高めることが可能で、単位面積あたりの出力を大幅に向上させることができる。
したがって、本発明は、単位面積あたりの熱電変換素子対の配設割合を高くして、高出力が得られるようにすることが求められる熱電変換モジュールの技術分野に広く適用することができる。
As described above, according to the present invention, the arrangement density of thermoelectric conversion element pairs per unit area can be increased, and the output per unit area can be greatly improved.
Therefore, the present invention can be widely applied to the technical field of thermoelectric conversion modules which are required to increase the arrangement ratio of thermoelectric conversion element pairs per unit area to obtain high output.

本発明の実施形態1にかかる熱電変換モジュールを示す斜視図である。It is a perspective view which shows the thermoelectric conversion module concerning Embodiment 1 of this invention. 図1のA−A線断面図である。It is the sectional view on the AA line of FIG. 本発明の実施例にかかる熱電変換モジュールの製造方法の一工程で作製した未焼成熱電変換モジュールを示す斜視図である。It is a perspective view which shows the unbaking thermoelectric conversion module produced at 1 process of the manufacturing method of the thermoelectric conversion module concerning the Example of this invention. 図3のB−B線断面図である。FIG. 4 is a sectional view taken along line BB in FIG. 3. 本発明の実施例にかかる熱電変換モジュールの製造方法の一工程で作製した他の未焼成熱電変換モジュールを示す斜視図である。It is a perspective view which shows the other unbaking thermoelectric conversion module produced at 1 process of the manufacturing method of the thermoelectric conversion module concerning the Example of this invention. 図5のC−C線断面図である。It is CC sectional view taken on the line of FIG. 比較例にかかる熱電変換モジュールの製造工程で作製した未焼成熱電変換モジュールを示す斜視図である。It is a perspective view which shows the non-baking thermoelectric conversion module produced at the manufacturing process of the thermoelectric conversion module concerning a comparative example. 図7のD−D線断面図である。It is the DD sectional view taken on the line of FIG.

符号の説明Explanation of symbols

1 絶縁層
1a 未焼成絶縁層
2 絶縁層の表面
3 絶縁層の裏面
10 熱電変換モジュール
11 山部
12 谷部
13 山部、谷部を構成する傾斜面
20 熱電変換素子対
21 P型熱電変換素子
22 N型熱電変換素子
30 電極
10a 未焼成熱電変換モジュール
11a 未焼成熱電変換モジュールの山部
12a 未焼成熱電変換モジュールの谷部
13a 未焼成絶縁層の山部、谷部を構成する傾斜面
20a 未焼成熱電変換モジュールの熱電変換素子対
DESCRIPTION OF SYMBOLS 1 Insulating layer 1a Unbaked insulating layer 2 The surface of an insulating layer 3 The back surface of an insulating layer 10 Thermoelectric conversion module 11 Mountain part 12 Valley part 13 The inclined surface which comprises a mountain part and a valley part 20 Thermoelectric conversion element pair 21 P type thermoelectric conversion element 22 N-type thermoelectric conversion element 30 Electrode 10a Unsintered thermoelectric conversion module 11a Peak part of unsintered thermoelectric conversion module 12a Valley part of unsintered thermoelectric conversion module 13a Slope of unsintered insulating layer 20a not yet Thermoelectric conversion element pair of firing thermoelectric conversion module

Claims (6)

P型熱電変換素子とN型熱電変換素子の対である熱電変換素子対が複数個、絶縁層に埋め込まれており、前記絶縁層の表面および裏面が伝熱面として機能する熱電変換モジュールにおいて、
前記絶縁層が、山部と谷部とが交互に繰り返される波板状の形状を有していること
を特徴とする熱電変換モジュール。
In a thermoelectric conversion module in which a plurality of thermoelectric conversion element pairs, which are pairs of P-type thermoelectric conversion elements and N-type thermoelectric conversion elements, are embedded in an insulating layer, and the front and back surfaces of the insulating layer function as heat transfer surfaces,
The thermoelectric conversion module, wherein the insulating layer has a corrugated shape in which peaks and valleys are alternately repeated.
前記絶縁層の、山部および谷部を構成する各傾斜面に、複数の前記熱電変換素子対が配設されていることを特徴とする、請求項1記載の熱電変換モジュール。   2. The thermoelectric conversion module according to claim 1, wherein a plurality of the thermoelectric conversion element pairs are disposed on each inclined surface constituting a peak and a valley of the insulating layer. 前記複数の前記熱電変換素子対が、前記絶縁層の内部において所定の態様で電気的に接続されていることを特徴とする、請求項1または2記載の熱電変換モジュール。   The thermoelectric conversion module according to claim 1 or 2, wherein the plurality of thermoelectric conversion element pairs are electrically connected in a predetermined manner inside the insulating layer. P型熱電変換素子とN型熱電変換素子の対である熱電変換素子対が複数個、絶縁層に埋め込まれており、前記絶縁層の表面および裏面が伝熱面として機能する熱電変換モジュールの製造方法であって、
(a)絶縁層用のグリーンシートに複数の貫通孔を形成する工程と、
(b)複数の前記貫通孔のうち対応する貫通孔に、P型熱電変換材料またはN型熱電変換材料を充填する工程と、
(c)複数枚の前記グリーンシートを積層する工程を経て、複数の熱電変換素子対が埋め込まれ、かつ、各熱電変換素子対が所定の順序で電気的に接続された構造を有する未焼成積層体を形成する工程と、
(d)前記未焼成積層体を波板状に成形する工程と
を具備することを特徴とする、熱電変換モジュールの製造方法。
Manufacture of a thermoelectric conversion module in which a plurality of thermoelectric conversion element pairs, which are pairs of P-type thermoelectric conversion elements and N-type thermoelectric conversion elements, are embedded in an insulating layer, and the front and back surfaces of the insulating layer function as heat transfer surfaces A method,
(a) forming a plurality of through holes in the green sheet for the insulating layer;
(b) filling a corresponding through hole among the plurality of through holes with a P-type thermoelectric conversion material or an N-type thermoelectric conversion material;
(c) An unfired laminate having a structure in which a plurality of thermoelectric conversion element pairs are embedded through a step of laminating a plurality of the green sheets, and the thermoelectric conversion element pairs are electrically connected in a predetermined order Forming a body;
(d) A method of manufacturing a thermoelectric conversion module, comprising: forming the green laminate into a corrugated plate.
山部と谷部とが繰り返し形成された金型を用いてプレス加工することにより、前記未焼成積層体を波板状の形状に成形することを特徴とする、請求項4記載の熱電変換モジュールの製造方法。   5. The thermoelectric conversion module according to claim 4, wherein the green laminate is formed into a corrugated shape by pressing using a mold in which crests and troughs are repeatedly formed. Manufacturing method. 前記未焼成積層体を形成する工程において、表裏の両面側に、前記P型熱電変換素子およびN型熱電変換素子と導通する電極の配設されていない未焼成積層体を形成することを特徴とする、請求項4または5記載の熱電変換モジュールの製造方法。   In the step of forming the unsintered laminate, the unsintered laminate is formed on both sides of the front and back sides, and no electrode is provided to be electrically connected to the P-type thermoelectric conversion element and the N-type thermoelectric conversion element. The manufacturing method of the thermoelectric conversion module of Claim 4 or 5.
JP2008139086A 2008-05-28 2008-05-28 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module Active JP5126518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008139086A JP5126518B2 (en) 2008-05-28 2008-05-28 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008139086A JP5126518B2 (en) 2008-05-28 2008-05-28 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Publications (2)

Publication Number Publication Date
JP2009289860A true JP2009289860A (en) 2009-12-10
JP5126518B2 JP5126518B2 (en) 2013-01-23

Family

ID=41458814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008139086A Active JP5126518B2 (en) 2008-05-28 2008-05-28 Thermoelectric conversion module and method for manufacturing thermoelectric conversion module

Country Status (1)

Country Link
JP (1) JP5126518B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017150932A1 (en) * 2016-03-04 2017-09-08 엘지이노텍 주식회사 Thermoelectric device and manufacturing method therefor
JPWO2017038525A1 (en) * 2015-08-31 2018-08-02 富士フイルム株式会社 Thermoelectric conversion device
WO2019003582A1 (en) * 2017-06-27 2019-01-03 株式会社村田製作所 Thermoelectric conversion module and electronic component module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430586A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Thermoelectric device
JP2005328000A (en) * 2004-05-17 2005-11-24 Ritsumeikan Thermoelectric conversion device
JP2007227508A (en) * 2006-02-22 2007-09-06 Murata Mfg Co Ltd Thermoelectric conversion module and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0430586A (en) * 1990-05-28 1992-02-03 Matsushita Electric Ind Co Ltd Thermoelectric device
JP2005328000A (en) * 2004-05-17 2005-11-24 Ritsumeikan Thermoelectric conversion device
JP2007227508A (en) * 2006-02-22 2007-09-06 Murata Mfg Co Ltd Thermoelectric conversion module and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2017038525A1 (en) * 2015-08-31 2018-08-02 富士フイルム株式会社 Thermoelectric conversion device
WO2017150932A1 (en) * 2016-03-04 2017-09-08 엘지이노텍 주식회사 Thermoelectric device and manufacturing method therefor
US11611028B2 (en) 2016-03-04 2023-03-21 Lg Innotek Co., Ltd. Thermoelectric device and manufacturing method therefor
WO2019003582A1 (en) * 2017-06-27 2019-01-03 株式会社村田製作所 Thermoelectric conversion module and electronic component module

Also Published As

Publication number Publication date
JP5126518B2 (en) 2013-01-23

Similar Documents

Publication Publication Date Title
JP3879769B1 (en) Thermoelectric conversion module and manufacturing method thereof
JP5360072B2 (en) Method for manufacturing thermoelectric conversion element
WO2010058464A1 (en) Thermoelectric conversion module
CN1236488A (en) Thermoelectric device
KR102561218B1 (en) Thermoelectric device moudule
JP4668233B2 (en) Thermoelectric conversion element, thermoelectric conversion module, and method of manufacturing thermoelectric conversion module
JP5007748B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP5098589B2 (en) Thermoelectric conversion module
JP2014165188A (en) Thermoelectric transducer
JP2008147323A (en) Thermoelectric conversion module and manufacturing method thereof
JP5537202B2 (en) Thermoelectric conversion module
JP5126518B2 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
WO2007141890A1 (en) Thermoelectric conversion module and method for manufacturing the same
WO2010001822A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP2015005596A (en) Thermoelectric conversion module and method of manufacturing thermoelectric conversion module
EP2503610A1 (en) Structure useful for producing a thermoelectric generator, thermoelectric generator comprising same and method for producing same
JP2009049165A (en) Thermoelectric conversion module and thermoelectric conversion module assembly
CN210245193U (en) Thermistor element
JP2015005595A (en) Thermoelectric conversion module and method of manufacturing thermoelectric conversion module
CN105612626B (en) Cascade type thermoelectric conversion element
JPWO2009142240A1 (en) Thermoelectric conversion module and method for manufacturing thermoelectric conversion module
JP4719861B2 (en) Thermoelectric element and thermoelectric power generation module
KR20120011626A (en) Multilayer thermoelectric element and method for manufacturing same
CN108780835B (en) Thermoelectric conversion module and thermoelectric conversion element
TW200725838A (en) Thermal conductive apparatus and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110414

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121003

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121016

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5126518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3