JPH0640478Y2 - Thermoelectric generator using Zebeck element - Google Patents

Thermoelectric generator using Zebeck element

Info

Publication number
JPH0640478Y2
JPH0640478Y2 JP10182288U JP10182288U JPH0640478Y2 JP H0640478 Y2 JPH0640478 Y2 JP H0640478Y2 JP 10182288 U JP10182288 U JP 10182288U JP 10182288 U JP10182288 U JP 10182288U JP H0640478 Y2 JPH0640478 Y2 JP H0640478Y2
Authority
JP
Japan
Prior art keywords
heat
terminal
plate
type semiconductors
absorbing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP10182288U
Other languages
Japanese (ja)
Other versions
JPH0226387U (en
Inventor
晃 田村
昌也 川野
康彦 倉知
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chubu Electric Power Co Inc
Original Assignee
Chubu Electric Power Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chubu Electric Power Co Inc filed Critical Chubu Electric Power Co Inc
Priority to JP10182288U priority Critical patent/JPH0640478Y2/en
Publication of JPH0226387U publication Critical patent/JPH0226387U/ja
Application granted granted Critical
Publication of JPH0640478Y2 publication Critical patent/JPH0640478Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、P型半導体とN型半導体で2点を接合した閉
回路を形成して2つの接合点に温度差を与えることによ
り起電力を生じるゼーベツク素子を用いた熱電気発電器
に関する。
DETAILED DESCRIPTION OF THE INVENTION Industrial Field of the Invention In the present invention, an electromotive force is generated by forming a closed circuit in which two points are joined by a P-type semiconductor and an N-type semiconductor and giving a temperature difference to the two junction points. The present invention relates to a thermoelectric generator using a Seebeck element.

従来の技術及び考案が解決しようとする問題点 従来、このような熱電気発電器としては、第3図に示す
ように、チツプ状のP型半導体PとN型半導体Nの一面
同士を金属片aを介して接続するとともに、P型半導体
PとN型半導体Nの夫々の他面に金属片b、bを接続し
て、その金属片b同士を負荷抵抗Rを介して接続するよ
うにしたゼーベツク素子を複数個直列に接続し、ゼーベ
ツク素子の一面側の金属片aに放熱板と吸熱板のいずれ
か一方を、他面側の金属片bに他方を貼着した、いわゆ
るバルクタイプのものが知られているが、ゼーベツク素
子は一般に取り出せる電圧が低いために、大きな電圧を
取り出すためには多数の素子を接続する必要があり、従
来のバルクタイプのものでは、半導体チツプを小さくす
るのに限界があることから、熱電気発電器全体が大型化
する欠点がある。
Problems to be Solved by the Related Art and Invention Conventionally, as such a thermoelectric generator, as shown in FIG. 3, one surface of a chip-shaped P-type semiconductor P and an N-type semiconductor N are separated from each other by metal pieces. The metal pieces b and b are connected to the other surfaces of the P-type semiconductor P and the N-type semiconductor N, respectively, and the metal pieces b are connected to each other via the load resistance R. A so-called bulk type in which a plurality of Zebek elements are connected in series, and one of the heat dissipation plate and the heat absorption plate is attached to the metal piece a on one side of the Zebek element and the other is attached to the metal piece b on the other side. However, since the voltage that can be extracted is generally low, it is necessary to connect a large number of devices in order to extract a large voltage, and in the conventional bulk type, it is necessary to reduce the semiconductor chip size. Because there are limits However, there is a drawback that the entire thermoelectric generator becomes large.

そこで、半導体の膜化技術の発展に伴い、多数の膜状を
なすP型半導体とN型半導体とを平面上において金属膜
を介して交互にジグザグ状に直列接続して、それらの金
属膜を1つおきに放熱端子と吸熱端子としたゼーベツク
素子列を形成することによつて、熱電気発電器の小形化
を計る試みがなされているが、放熱端子と吸熱端子とが
一面上に点在することになるから、各放熱端子と各吸熱
端子を夫々まとめて冷却あるいは加熱するのが難しく、
未だ実用化されていないのが実情であつた。
Therefore, with the development of film forming technology for semiconductors, a large number of film-shaped P-type semiconductors and N-type semiconductors are alternately connected in series in a zigzag pattern via metal films on a plane, and the metal films are connected. Attempts have been made to reduce the size of thermoelectric generators by forming Zebeck element rows each having a heat radiating terminal and a heat absorbing terminal, but the heat radiating terminals and heat absorbing terminals are scattered on one surface. Therefore, it is difficult to cool or heat each heat radiation terminal and each heat absorption terminal collectively,
The reality is that it has not yet been put to practical use.

問題点を解決するための手段 本考案のゼーベツク素子を用いた熱電気発電器は、この
ような事情を背景として完成されたものであつて、多数
の膜状のP型半導体とN型半導体とを、縦方向及び横方
向において交互に位置する格子状に配置して、そのP型
半導体とN型半導体を金属膜を介してジグザグ状に直列
接続することにより、その金属膜を縦横いずれか一方向
において交互に放熱端子と吸熱端子として整列した面状
のゼーベツク素子列を形成し、そのゼーベツク素子列の
表面と裏面において、各放熱端子列と各吸熱端子列とに
放熱板と吸熱板を各別に絶縁材を介して対応させた構成
とした。
Means for Solving the Problems The thermoelectric generator using the Seebeck element of the present invention has been completed in view of such circumstances, and includes a large number of film-like P-type semiconductors and N-type semiconductors. Are arranged in a grid pattern alternately located in the vertical direction and the horizontal direction, and the P-type semiconductor and the N-type semiconductor are connected in series in a zigzag pattern through the metal film, so that the metal film is vertically or horizontally aligned. Forming a sheet-like Seebeck element array that is alternately aligned as a heat-dissipating terminal and a heat-absorbing terminal in the direction, and disposing a heat-dissipating plate and a heat-absorbing plate on each heat-dissipating terminal array and each heat-absorbing terminal array on the front and back surfaces of the Zebek-element array. Separately, an insulating material is used.

考案の作用及び効果 本考案は上記構成になり、放熱板を低温に、吸熱板を高
温に保つと、すべての放熱端子が放熱板に放熱すること
により低温に維持され、また、すべての吸熱端子が吸熱
板から吸熱することによつて高温に維持され、各ゼーベ
ツク素子の2つの接合部に同様の温度差が与えられて同
様の起電力が生じ、各ゼーベツク素子の出力電圧を加え
た電圧を取り出すことができるのであつて、各放熱端子
と各吸熱端子を夫々整列することによつて別々にまと
め、ゼーベツク素子列の表面と裏面に各別に配した放熱
板と吸熱板に夫々熱伝導するようにしたから、ゼーベツ
ク素子を膜状とした熱電気発電器の製造が可能となり、
これにより、小嵩でしかも大きな電圧を出力する熱電気
発電器を得ることができる効果がある。
The function and effect of the present invention With the above-mentioned configuration, when the heat sink is kept at a low temperature and the heat sink is kept at a high temperature, all the heat dissipation terminals radiate heat to the heat sink to keep the temperature low, and all the heat sink terminals are Is maintained at a high temperature by absorbing heat from the heat absorbing plate, a similar temperature difference is given to the two joints of each Seebeck element, a similar electromotive force is generated, and a voltage obtained by adding the output voltage of each Seebeck element is generated. It is possible to take out, so that each heat radiation terminal and each heat absorption terminal are separately arranged by aligning them, and heat is conducted to the heat radiation plate and heat absorption plate separately arranged on the front and back of the Seebeck element row, respectively. As a result, it becomes possible to manufacture a thermoelectric generator with a Zebek element in the form of a film,
As a result, there is an effect that it is possible to obtain a thermoelectric generator that is small and outputs a large voltage.

実施例 以下、本考案の一実施例を第1図及び第2図に基づいて
説明する。
Embodiment An embodiment of the present invention will be described below with reference to FIGS. 1 and 2.

図において、1は、ガラス、アルミナ等の絶縁材からな
る基板であつて、第1図に示すように、この基板1の表
面上に、膜状をなすP型半導体PとN型半導体Nが、縦
横両方向において交互に位置するように、縦6列、横10
列の格子状に配置されて貼着され、これらのP型半導体
PとN型半導体Nとが金属膜3を介してジグザグ状に接
続され、それらの金属膜3が交互に放熱端子3aと吸熱端
子3bとなつて、ゼーベツク素子2が横1列に3組ずつ配
置されて直列接続されたゼーベツク素子列4が形成され
ており、ここで、放熱端子3aと吸熱端子3bとが縦方向に
おいて整列して、4本の放熱端子列5aと3本の吸熱端子
列5bとが交互に形成され、手前側の初めの放熱端子3aと
向こう側の最後の放熱端子3aにリード線7、7が接続さ
れている。
In FIG. 1, reference numeral 1 denotes a substrate made of an insulating material such as glass or alumina. As shown in FIG. 1, a film-shaped P-type semiconductor P and N-type semiconductor N are formed on the surface of the substrate 1. , 6 rows vertically and 10 rows horizontally so that they are alternately located in both vertical and horizontal directions.
The P-type semiconductors P and the N-type semiconductors N are connected in a zigzag shape through the metal film 3 arranged and adhered in a grid pattern of rows, and the metal films 3 alternately absorb heat and the heat radiation terminals 3a. The terminal 3b is connected to a series of three Seebeck elements 2 arranged in a row and three Seebeck element rows 4 are connected in series, where the heat radiating terminals 3a and the heat absorbing terminals 3b are vertically aligned. Then, four heat radiation terminal rows 5a and three heat absorption terminal rows 5b are alternately formed, and lead wires 7 and 7 are connected to the first heat radiation terminal 3a on the front side and the last heat radiation terminal 3a on the other side. Has been done.

基板1の表面側には、上記の4本の放熱端子列5aと対応
する4本の伝熱突条部12aを下面に形成したアルミニウ
ム等の熱伝導率の高い金属からなる放熱板11aが、各伝
熱突条部12aをその下面に貼着した絶縁板13を介して放
熱端子3aに当てて載置されているとともに、基板1の裏
面側に、3本の吸熱端子列5bと対応する3本の伝熱突条
部12bを上面に形成した上記と同じ金属からなる吸熱板1
1bが、各伝熱突条部12bを各吸熱端子列5bの下面に対応
して当てられ、これらが一体的に結合されている。
On the front surface side of the substrate 1, a heat dissipation plate 11a made of a metal having a high heat conductivity such as aluminum having four heat transfer ridges 12a corresponding to the above four heat dissipation terminal rows 5a formed on the lower surface, The heat transfer ridges 12a are placed against the heat radiating terminals 3a via the insulating plate 13 attached to the lower surface of the heat transfer ridges 12a, and are placed on the back surface of the substrate 1 corresponding to the three heat absorbing terminal rows 5b. A heat absorbing plate 1 made of the same metal as above with three heat transfer ridges 12b formed on the upper surface 1
The heat transfer ridges 12b are applied to the heat transfer terminal strips 1b so as to correspond to the lower surfaces of the heat absorption terminal rows 5b, and these are integrally connected.

なお、上記の放熱板11a及び吸熱板11bは、夫々複数個に
分割されて、弾力性の高い緩衝材15を挟んで一体に結合
した構造となつており、これらの放熱板11a、吸熱板11b
の方が基板1よりも線膨張率が高いことから、放熱板11
a、吸熱板11bの熱膨張を緩衝材15で吸収して、夫々の伝
熱突条部12a、12bが放熱端子列5a、吸熱端子列5bと常に
対応関係を保つようになつている。
The heat dissipation plate 11a and the heat absorption plate 11b are divided into a plurality of parts, respectively, and have a structure in which they are integrally coupled with each other with a highly elastic buffer material 15 interposed therebetween.
Has a higher linear expansion coefficient than the substrate 1,
a, the thermal expansion of the heat absorbing plate 11b is absorbed by the cushioning material 15, so that the heat transfer ridges 12a and 12b are always kept in correspondence with the heat radiating terminal row 5a and the heat absorbing terminal row 5b.

本実施例はこのような構造になり、下面側を加熱して吸
熱板11bを高温に保つと、すべての吸熱端子3bが伝熱突
条部12bを介して吸熱して高温に維持される一方、上面
側の放熱板11aを常温に保つことによつて、すべての放
熱端子3aが伝熱突条部12aを介して放熱して相対的な低
温に維持され、各ゼーベツク素子2において、P型半導
体PとN型半導体Nの2つの接合部に温度差ができるこ
とにより同方向の起電力が生じ、多数のゼーベツク素子
2が直列接続されていることから、リード線7、7から
大きな出力電圧が取り出される。
This embodiment has such a structure, and when the lower surface side is heated to keep the heat absorbing plate 11b at high temperature, all the heat absorbing terminals 3b absorb heat through the heat transfer ridges 12b and are maintained at high temperature. By keeping the heat radiating plate 11a on the upper surface at room temperature, all the heat radiating terminals 3a radiate heat through the heat transfer ridges 12a and are maintained at a relatively low temperature. Due to the temperature difference between the two junctions of the semiconductor P and the N-type semiconductor N, an electromotive force in the same direction is generated, and since a large number of Seebeck elements 2 are connected in series, a large output voltage from the lead wires 7 and 7. Taken out.

また、吸熱板11bの表面上に、シリコン太陽電池を取り
付けると、太陽電池による光発電と、太陽光の熱を利用
した熱発電とを併せて行うことができる。
Further, by mounting a silicon solar cell on the surface of the heat absorbing plate 11b, it is possible to perform both photovoltaic power generation by the solar cell and thermoelectric power generation using the heat of sunlight.

なお、放熱と吸熱を前記と逆にすると、前記とは逆向き
の起電力を生じさせることができる。
If heat dissipation and heat absorption are reversed, an electromotive force in the opposite direction can be generated.

【図面の簡単な説明】[Brief description of drawings]

第1図は本考案の一実施例の分解斜視図、第2図はその
組立状態の断面図、第3図は従来のゼーベツク素子の斜
視図である。 P:P型半導体、N:N型半導体、1:基板、2:ゼーベツク素
子、3a:放熱端子、3b:吸熱端子、4:ゼーベツク素子列、
5a:放熱端子列、5b:吸熱端子列、11a:放熱板、11b:吸熱
板、12a、12b:伝熱突条部、13:絶縁板
FIG. 1 is an exploded perspective view of an embodiment of the present invention, FIG. 2 is a sectional view of the assembled state, and FIG. 3 is a perspective view of a conventional Zebek element. P: P-type semiconductor, N: N-type semiconductor, 1: Substrate, 2: Seebeck element, 3a: Heat dissipation terminal, 3b: Endothermic terminal, 4: Seebeck element row,
5a: heat radiation terminal row, 5b: heat absorption terminal row, 11a: heat radiation plate, 11b: heat absorption plate, 12a, 12b: heat transfer ridges, 13: insulating plate

───────────────────────────────────────────────────── フロントページの続き (72)考案者 倉知 康彦 愛知県名古屋市緑区大高町北関山20番地の 1 中部電力株式会社総合技術研究所内 (56)参考文献 特開 昭58−6186(JP,A) 実開 昭61−90261(JP,U) ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yasuhiko Kurachi 1 at 20 Kitakanzan, Otakamachi, Midori-ku, Nagoya, Aichi Chubu Electric Power Co., Inc. (56) Reference JP-A-58-6186 A) Actual development Sho 61-90261 (JP, U)

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】多数の膜状のP型半導体とN型半導体と
を、縦方向及び横方向において交互に位置する格子状に
配置して、該P型半導体と該N型半導体を金属膜を介し
てジグザグ状に直列接続することにより、該金属膜を縦
横いずれか一方向において交互に放熱端子と吸熱端子と
して整列した面状のゼーベツク素子列を形成し、該ゼー
ベツク素子列の表面と裏面において、前記各放熱端子列
と前記各吸熱端子列とに放熱板と吸熱板を各別に絶縁材
を介して対応させたことを特徴とするゼーベツク素子を
用いた熱電気発電器
1. A large number of film-shaped P-type semiconductors and N-type semiconductors are arranged in a grid pattern alternately located in the vertical and horizontal directions, and the P-type semiconductors and the N-type semiconductors are formed into a metal film. By connecting in series in a zigzag pattern through the metal film, the metal film is alternately arranged in one of the vertical and horizontal directions to form a planar Zebeck element array arranged as a heat-dissipating terminal and a heat-absorbing terminal. A thermoelectric generator using a Seebeck element, characterized in that a heat radiating plate and a heat absorbing plate are respectively made to correspond to each of the heat radiating terminal lines and each of the heat absorbing terminal lines through an insulating material.
JP10182288U 1988-07-29 1988-07-29 Thermoelectric generator using Zebeck element Expired - Lifetime JPH0640478Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10182288U JPH0640478Y2 (en) 1988-07-29 1988-07-29 Thermoelectric generator using Zebeck element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10182288U JPH0640478Y2 (en) 1988-07-29 1988-07-29 Thermoelectric generator using Zebeck element

Publications (2)

Publication Number Publication Date
JPH0226387U JPH0226387U (en) 1990-02-21
JPH0640478Y2 true JPH0640478Y2 (en) 1994-10-19

Family

ID=31331166

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10182288U Expired - Lifetime JPH0640478Y2 (en) 1988-07-29 1988-07-29 Thermoelectric generator using Zebeck element

Country Status (1)

Country Link
JP (1) JPH0640478Y2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011065185A1 (en) * 2009-11-27 2011-06-03 富士通株式会社 Thermoelectric conversion module and method for manufacturing same
CN102612762A (en) * 2009-10-25 2012-07-25 数字安吉尔公司 Planar thermoelectric generator

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5298532B2 (en) * 2007-12-27 2013-09-25 ダイキン工業株式会社 Thermoelectric element
JP5589589B2 (en) * 2010-06-17 2014-09-17 富士通株式会社 Thermoelectric element and method for manufacturing thermoelectric element
JP5776700B2 (en) * 2010-11-25 2015-09-09 住友金属鉱山株式会社 Thermoelectric conversion module
JP5708174B2 (en) * 2011-04-12 2015-04-30 富士通株式会社 Thermoelectric conversion device and manufacturing method thereof
WO2013121486A1 (en) * 2012-02-16 2013-08-22 日本電気株式会社 Thermoelectric conversion module unit, and electronic device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102612762A (en) * 2009-10-25 2012-07-25 数字安吉尔公司 Planar thermoelectric generator
WO2011065185A1 (en) * 2009-11-27 2011-06-03 富士通株式会社 Thermoelectric conversion module and method for manufacturing same
JPWO2011065185A1 (en) * 2009-11-27 2013-04-11 富士通株式会社 Thermoelectric conversion module and manufacturing method thereof

Also Published As

Publication number Publication date
JPH0226387U (en) 1990-02-21

Similar Documents

Publication Publication Date Title
US6043423A (en) Thermoelectric device and thermoelectric module
US3116171A (en) Satellite solar cell assembly
US4004210A (en) Reversible thermoelectric converter with power conversion of energy fluctuations
US3240628A (en) Thermoelectric panel
US20180240956A1 (en) Flexible thermoelectric generator
US20130291919A1 (en) Concentrated photovoltaic/quantum well thermoelectric power source
JPH0640478Y2 (en) Thermoelectric generator using Zebeck element
US4193081A (en) Means for effecting cooling within elements for a solar cell array
JP3554861B2 (en) Thin film thermocouple integrated thermoelectric conversion device
JPH09186353A (en) Solar cell module
US20100037931A1 (en) Method and Apparatus for Generating Electric Power Using Solar Energy
JPH06151979A (en) Thermoelectric device
JP2563524B2 (en) Thermoelectric device
JPH0430586A (en) Thermoelectric device
JPH04101472A (en) Cooler
JPH0219975Y2 (en)
JPH01105582A (en) Solar light generating element
JP2016214079A5 (en)
JPH04280482A (en) Cooling device utilizing solar light
JPH0629580A (en) Thermo module
JPH0951115A (en) Heat generation preventing device of solar cell
TWI657657B (en) Solar cell module
CN215496781U (en) Refrigeration chip and nanometer water ion generator
KR20170107273A (en) Thermoelectric module
JPH02155281A (en) Thermoelectric device