JPH09186353A - Solar cell module - Google Patents

Solar cell module

Info

Publication number
JPH09186353A
JPH09186353A JP7354304A JP35430495A JPH09186353A JP H09186353 A JPH09186353 A JP H09186353A JP 7354304 A JP7354304 A JP 7354304A JP 35430495 A JP35430495 A JP 35430495A JP H09186353 A JPH09186353 A JP H09186353A
Authority
JP
Japan
Prior art keywords
heat
solar cell
cell module
power generation
radiating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7354304A
Other languages
Japanese (ja)
Inventor
Ryoji Nakatsuka
良治 中塚
Akio Shimizu
明生 清水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP7354304A priority Critical patent/JPH09186353A/en
Publication of JPH09186353A publication Critical patent/JPH09186353A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Abstract

PROBLEM TO BE SOLVED: To avoid the decline in power generation efficiency due to the temperature rise in the title solar cell module. SOLUTION: Within the title solar cell module 11 wherein plural solar cell elements 12 in the state juxtaposed in planar mode and electrically connected formed in panel mode integrally wrapped up in a transparent member such as a glass or resin, etc., a heat conductive member 16 in high heat conductivity is heat transferably provided inside or outside of the transparent member 18 to be the back side of the elements 12. Simultaneously, the heating part 17a of a heat pipe 17 is heat transferably fitted to said heat conductive member 16, furthermore, radiating members 20 are provided in the outer edge parts formed in said panel mode and then the radiating part 17b of the heat pipe 17 is heat transferably fitted to this radiating member 20 to increase the cooling efficiency thereby avoiding the decline in the power generation efficacy due toe temperature rise.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】この発明は、複数の太陽電池
素子を電気的に接続して一体化した太陽電池モジュール
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a solar cell module in which a plurality of solar cell elements are electrically connected and integrated.

【0002】[0002]

【従来の技術】太陽光発電システム用の従来の太陽電池
モジュール1を図3に示してある。これは、複数の太陽
電池素子2を平面的に並べ、かつこれらの太陽電池素子
2をインターコネクタ3によって電気的に接続した状態
で透明な樹脂充填材4中に埋設し、さらに、太陽電池素
子2の太陽光入射側となる樹脂充填材4の一側(図3に
おいて上側)にガラス等の透明な表面材5を、また太陽
電池素子2の背面側となる前記樹脂充填材4の他側に金
属板等の背面材6を設けて樹脂充填材4を両側から挟む
とともに、この樹脂充填材4を両側から挟持する表面材
5と背面材6との外周部を囲むようにアルミニウム等の
金属製フレーム7を設けることによって一体化してあ
る。
2. Description of the Related Art A conventional solar cell module 1 for a solar power generation system is shown in FIG. This is because a plurality of solar cell elements 2 are arranged in a plane, and these solar cell elements 2 are embedded in a transparent resin filler 4 in a state where they are electrically connected by an interconnector 3, and 2 has a transparent surface material 5 such as glass on one side (the upper side in FIG. 3) of the resin filler 4 which is the sunlight incident side, and the other side of the resin filler 4 which is the back side of the solar cell element 2. Is provided with a backing material 6 such as a metal plate to sandwich the resin filler 4 from both sides, and a metal such as aluminum so as to surround the outer periphery of the surface material 5 and the backing material 6 which sandwich the resin filler 4 from both sides. It is integrated by providing a frame 7 made of it.

【0003】このパネル状の太陽電池モジュール1は、
さらに複数組み合わされて大容量化され、例えば、建物
の屋上や壁面に、あるいは地上に直接または架台上に、
最も効率良く太陽光を受光できるように、所定の方向お
よび角度で設置される。その結果、太陽電池モジュール
は、太陽光エネルギのみならず太陽熱エネルギのふく射
にも曝されることとなり、その表面温度は50℃以上に
達することがある。
This panel-shaped solar cell module 1 is
In addition, multiple units are combined to increase the capacity, for example, on the roof or wall of a building, or directly on the ground or on a pedestal.
It is installed in a predetermined direction and angle so that sunlight can be received most efficiently. As a result, the solar cell module is exposed not only to solar energy but also to solar thermal energy, and the surface temperature thereof may reach 50 ° C. or higher.

【0004】一方、太陽電池の発電効率は素子温度によ
って変化し、一般に温度が高いほど効率が低下すること
が知られている。例えば、太陽電池素子の基材(シリコ
ン系あるいはガリウム砒素系等)の違いによって特性が
異なるが、単結晶シリコンセルの場合で、25℃におけ
る発電効率を100%とすると、素子温度が25℃より
1℃上昇する毎に約0.5%づつ効率が低下する。
On the other hand, it is known that the power generation efficiency of a solar cell changes depending on the element temperature, and generally, the higher the temperature, the lower the efficiency. For example, although the characteristics differ depending on the base material (silicon-based or gallium arsenide-based) of the solar cell element, in the case of a single crystal silicon cell, if the power generation efficiency at 25 ° C is 100%, the element temperature will be higher than 25 ° C. The efficiency decreases by about 0.5% for every 1 ° C increase.

【0005】したがって、この種の従来の太陽光発電シ
ステムにおいては、素子温度の上昇による発電効率の低
下を見越して、劣悪な条件下でも必要な発電容量を確保
できるように、電池容量(モジュール枚数)を定格以上
に増大させて計画される場合が多かった。
Therefore, in this type of conventional solar power generation system, the battery capacity (the number of modules) is adjusted so that the required power generation capacity can be secured even under adverse conditions in anticipation of a decrease in power generation efficiency due to an increase in element temperature. ) Was often planned to be increased above the rating.

【0006】[0006]

【発明が解決しようとする課題】したがって、前述した
従来の太陽光発電システムにおいては、必要な発電容量
を確保するために、電池容量(モジュール枚数)を定格
以上に増大させて設計するため、これが設備のコストア
ップの原因となり、また太陽光発電システムの普及を妨
げる原因ともなっている。
Therefore, in the above-mentioned conventional solar power generation system, the battery capacity (the number of modules) is designed to be higher than the rating in order to secure the necessary power generation capacity. This causes an increase in the cost of equipment and also a hindrance to the spread of solar power generation systems.

【0007】この発明は、上記の事情に鑑みなされたも
ので、発電効率が高く、また太陽熱エネルギの有効利用
が可能な太陽電池モジュールを提供することを目的とし
ている。
The present invention has been made in view of the above circumstances, and an object thereof is to provide a solar cell module having high power generation efficiency and capable of effectively utilizing solar heat energy.

【0008】[0008]

【課題を解決するための手段およびその作用】上記の課
題を解決するための手段としてこの発明は、複数の太陽
電池素子を平面的に並べかつ電気的に接続した状態でガ
ラスあるいは樹脂等の透明部材で一体に被包して平板に
形成してなる太陽電池モジュールにおいて、前記太陽電
池素子の背面側となる前記透明部材の内部もしくは外部
に熱伝導率の高い伝熱部材を熱伝達可能に設けるととも
に、ヒートパイプの加熱部を前記伝熱部材に熱伝達可能
に取付け、さらに、前記平板の外縁部に放熱部材を設
け、この放熱部材に前記ヒートパイプの放熱部を熱伝達
可能に取付けたことを特徴としている。
Means for Solving the Problems and Actions Thereof As a means for solving the above problems, the present invention is directed to a transparent material such as glass or resin in a state in which a plurality of solar cell elements are arranged in a plane and electrically connected. In a solar cell module which is integrally encapsulated with a member and formed into a flat plate, a heat transfer member having a high heat conductivity is provided inside or outside the transparent member, which is the back side of the solar cell element, so that heat can be transferred. At the same time, the heating part of the heat pipe is attached to the heat transfer member so that heat can be transferred, and further, a heat dissipation member is provided on the outer edge of the flat plate, and the heat dissipation part of the heat pipe is attached to the heat dissipation member so that heat transfer can be performed. Is characterized by.

【0009】上記のように構成することによってこの発
明の太陽電池モジュールは、太陽電池素子の背面側に配
設された伝熱部材に加熱部を取付けたヒートパイプによ
って吸熱され、その熱は放熱部材へ運ばれ、この放熱部
材から大気中に放熱される。したがって、この太陽電池
モジュールは、太陽熱エネルギ等による温度上昇時に、
ヒートパイプによって直ちに冷却されるため、素子温度
の上昇による発電効率の低下が防止され、常に高い発電
効率が維持される。さらに、前記放熱部材に温水器等の
熱交換器を取付ければ熱エネルギを効率良く回収でき、
その有効利用が可能となる。
With the above construction, the solar cell module of the present invention absorbs heat by the heat pipe having the heating portion attached to the heat transfer member disposed on the back side of the solar cell element, and the heat is radiated by the heat radiating member. And is radiated to the atmosphere from this heat dissipation member. Therefore, this solar cell module, when the temperature rises due to solar heat energy,
Since it is immediately cooled by the heat pipe, a decrease in power generation efficiency due to an increase in element temperature is prevented, and high power generation efficiency is always maintained. Furthermore, if a heat exchanger such as a water heater is attached to the heat dissipation member, heat energy can be efficiently recovered,
It can be effectively used.

【0010】[0010]

【発明の実施の形態】以下、この発明の太陽電池モジュ
ールの実施例を図1および図2を参照して説明する。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the solar cell module of the present invention will be described below with reference to FIGS. 1 and 2.

【0011】図1はこの発明の太陽電池モジュールの第
1実施例を示すもので、この太陽電池モジュール11
は、複数の太陽電池素子12を同一平面上に3列に配列
するとともに、各太陽電池素子12間を、インタコネク
タ13により直列もしくは直並列に接続されている。
FIG. 1 shows a first embodiment of the solar cell module of the present invention. This solar cell module 11
The plurality of solar cell elements 12 are arranged on the same plane in three rows, and the solar cell elements 12 are connected in series or series-parallel by an interconnector 13.

【0012】また、同一平面上に配列された前記太陽電
池素子12の表面となる太陽光入射側(図1において上
側)には、ガラス板等の透明な素材からなる板状の表面
材14が、太陽電池素子12の表面から離間して平行に
設けられ、また前記太陽電池素子12の背面側(図1に
おいて下側)には、強化ガラス板や耐食アルミニウム板
あるいは耐候性樹脂板等からなる背面材15が、素子背
面から離間して平行に設けられている。すなわち、太陽
電池素子12の両側に、表面材14と背面材15とが、
空間を保持して両側から挟むように設けられている。
A plate-like surface material 14 made of a transparent material such as a glass plate is provided on the sunlight incident side (upper side in FIG. 1) which is the surface of the solar cell elements 12 arranged on the same plane. Provided in parallel with the surface of the solar cell element 12, and on the back side (lower side in FIG. 1) of the solar cell element 12 is a tempered glass plate, a corrosion-resistant aluminum plate, a weather-resistant resin plate, or the like. A back material 15 is provided in parallel with the back surface of the element. That is, the surface material 14 and the back material 15 are provided on both sides of the solar cell element 12,
It is provided so as to hold the space and sandwich it from both sides.

【0013】さらに、前記太陽電池素子12と背面材1
5との間の空間には、伝熱部材である銅板あるいはアル
ミニウム板等の金属製の伝熱ブロック16が、全ての太
陽電池素子12の背面と対向するように配置されるとと
もに、この伝熱ブロック16には、ヒートパイプ17の
加熱部17aが熱伝達可能に固定されている。
Further, the solar cell element 12 and the backing material 1
A heat transfer block 16 made of metal such as a copper plate or an aluminum plate, which is a heat transfer member, is arranged in the space between the heat transfer member 5 and the solar battery element 12 so as to face the back surfaces of all the solar cell elements 12, and A heating portion 17a of a heat pipe 17 is fixed to the block 16 so that heat can be transferred.

【0014】そして、前記太陽電池素子12と伝熱ブロ
ック16およびヒートパイプ17の加熱部17aが配設
された表面材14と背面材15との間の空間には、充填
材18として、例えばEVA樹脂(Ethylene Vinylacet
ate Copolymer)等の光透過性(透明性)、耐衝撃性、
耐オゾン性および耐候性に優れた樹脂を充填し、一体に
硬化させてパネル状に形成されるとともに、耐食アルミ
ニウム製のフレーム19および放熱フレーム20が、外
周を囲むように設けられている。この放熱フレーム20
の内側面に、前記ヒートパイプ17の放熱部17bが熱
伝達可能に密着させてあり、放熱フレーム20の外側に
は多数の放熱フィン20aが形成されている。
In the space between the surface material 14 and the back surface material 15 in which the solar cell element 12, the heat transfer block 16 and the heating part 17a of the heat pipe 17 are arranged, a filling material 18, such as EVA, is used. Resin (Ethylene Vinylacet
light transparency (transparency) such as ate Copolymer), impact resistance,
A resin 19 having excellent ozone resistance and weather resistance is filled and cured integrally to form a panel shape, and a frame 19 and a heat dissipation frame 20 made of corrosion resistant aluminum are provided so as to surround the outer circumference. This heat dissipation frame 20
The heat radiating portion 17b of the heat pipe 17 is in close contact with the inner surface of the heat pipe 17 so that heat can be transferred, and a large number of heat radiating fins 20a are formed on the outer side of the heat radiating frame 20.

【0015】次に、上記のように構成されるこの実施例
の太陽電池モジュールの作用を説明する。
Next, the operation of the solar cell module of this embodiment constructed as described above will be described.

【0016】例えば、太陽電池モジュール11は、その
放熱フレーム20が外周となるようにして複数連結され
て使用される。そして、各太陽電池モジュール11の表
面に太陽光が照射されると、透明な表面材14と充填材
18を透過した太陽光エネルギは各太陽電池素子12に
よって受光される。
For example, the solar cell modules 11 are used by connecting a plurality of them so that the heat radiating frame 20 is the outer circumference. When the surface of each solar cell module 11 is irradiated with sunlight, the solar energy transmitted through the transparent surface material 14 and the filling material 18 is received by each solar cell element 12.

【0017】そして、太陽電池素子12によって受光さ
れた太陽光エネルギは電気エネルギに変換され、電流が
発生する。したがって、両電極間に負荷抵抗を継ぐこと
によって電流が流れ、電力が取出されて電池として機能
する。
Then, the solar energy received by the solar cell element 12 is converted into electric energy to generate a current. Therefore, by connecting the load resistance between both electrodes, a current flows, and electric power is taken out to function as a battery.

【0018】このとき、照射される太陽光中には、太陽
光エネルギのほかに太陽熱エネルギが存在するため、こ
の太陽熱エネルギによって太陽電池モジュール11が加
熱される。加熱されて各太陽電池素子12の温度が上昇
すると、発電効率が低下するが、この実施例の太陽電池
モジュール11においては、充填材18中に埋設した伝
熱ブロック16によって、広い範囲から熱を集めるとと
もに、集めた熱をヒートパイプ17によってその放熱部
17bまで大量に熱輸送するとともに、放熱部17bに
おいて放熱フレーム20側に効率よく熱伝達され、各放
熱フィン20aから大気中に放散させることによって冷
却されるので、太陽電池素子12の温度上昇が防止され
て、高い発電効率が維持される。
At this time, since solar heat energy exists in the irradiated sunlight in addition to sunlight energy, the solar cell module 11 is heated by this solar heat energy. When the temperature of each solar cell element 12 rises due to heating, the power generation efficiency decreases, but in the solar cell module 11 of this embodiment, the heat transfer block 16 embedded in the filler 18 allows heat to be generated from a wide range. In addition to collecting, the collected heat is transferred to the heat radiating portion 17b by the heat pipe 17 in a large amount, and is efficiently transferred to the heat radiating frame 20 side in the heat radiating portion 17b, and is dissipated into the atmosphere from each heat radiating fin 20a. Since it is cooled, the temperature rise of the solar cell element 12 is prevented, and high power generation efficiency is maintained.

【0019】また、ヒートパイプ17によって輸送され
た熱は放熱フレーム20に伝達されるため、例えば給湯
施設の予熱配管を、この放熱フレーム20の放熱フィン
20aを巻付ける等によって熱交換可能に配設すれば、
太陽電池モジュール11から熱を奪って冷却して、温度
上昇による発電効率の低下を防止するとともに、回収し
た熱を有効に利用することができる。
Further, since the heat transported by the heat pipe 17 is transferred to the heat radiation frame 20, for example, the preheating pipe of the hot water supply facility is arranged so that heat can be exchanged by winding the heat radiation fins 20a of the heat radiation frame 20. if,
It is possible to remove heat from the solar cell module 11 to cool it, prevent a decrease in power generation efficiency due to a temperature rise, and effectively use the recovered heat.

【0020】また、図2はこの発明の太陽電池モジュー
ルの第2実施例を示すもので、この太陽電池モジュール
21は、複数の太陽電池素子22を同一平面上に配列す
るとともに、各太陽電池素子22間を、インタコネクタ
23により直列もしくは直並列に接続されている。そし
て、太陽電池素子22の両側に、表面材24と背面材2
5とが、空間を保持して両側から挟むように設けられて
おり、この空間には、EVA樹脂(Ethylene Vinylacet
ate Copolymer )等の光透過性(透明性)、耐衝撃性、
耐オゾン性および耐候性等の物性に優れた樹脂充填材2
8を充填し、一体に硬化させてパネル状に形成さてい
る。そして、パネル状の外周部は、耐食アルミニウム製
のフレーム29と、多数の放熱フィン30aを備えた放
熱フレーム30が囲むように設けられている。
FIG. 2 shows a second embodiment of the solar cell module of the present invention. In this solar cell module 21, a plurality of solar cell elements 22 are arranged on the same plane and each solar cell element is arranged. 22 are connected in series or series-parallel by an interconnector 23. The surface material 24 and the back surface material 2 are provided on both sides of the solar cell element 22.
5 and 5 are provided so as to hold the space and sandwich it from both sides. In this space, EVA resin (Ethylene Vinylacet
light transparency (transparency) such as ate Copolymer), impact resistance,
Resin filler 2 with excellent physical properties such as ozone resistance and weather resistance
8 is filled and cured integrally to form a panel shape. The panel-shaped outer periphery is provided so as to surround a frame 29 made of corrosion-resistant aluminum and a heat dissipation frame 30 having a large number of heat dissipation fins 30a.

【0021】そして、前記背面材25の外側には、銅板
あるいはアルミニウム板等の金属製の伝熱ブロック26
が背面材25に密着させて設けられている。そして、ヒ
ートパイプ27がその加熱部27aを前記伝熱ブロック
26に熱伝達可能に密着させて設けられ、その放熱部2
7bは、前記放熱フレーム30に形成された孔部に、サ
ーマルジョイント等を用いて熱伝達良好に挿着されてい
る。
A heat transfer block 26 made of metal such as a copper plate or an aluminum plate is provided outside the backing material 25.
Are provided in close contact with the back material 25. A heat pipe 27 is provided so that its heating portion 27a is in close contact with the heat transfer block 26 so that heat can be transferred, and the heat radiating portion 2 thereof is provided.
7b is inserted into the hole formed in the heat dissipation frame 30 with good heat transfer using a thermal joint or the like.

【0022】上記のように構成することによって、前記
第1実施例の太陽電池モジュールの場合と同様の作用効
果が得られるとともに、前記第1実施例においては,充
填材中に埋設させた伝熱ブロックおよびヒートパイプ
を、太陽電池モジュール背面材の外側に設けるようにし
たので、構造が単純化され、伝熱ブロックおよびヒート
パイプを太陽電池素子と別体に組付けできるため、製造
が容易となるという利点がある。
With the above-mentioned structure, the same operational effect as in the case of the solar cell module of the first embodiment can be obtained, and in the first embodiment, the heat transfer embedded in the filler is achieved. Since the block and the heat pipe are provided on the outside of the back surface material of the solar cell module, the structure is simplified and the heat transfer block and the heat pipe can be assembled separately from the solar cell element, which facilitates manufacturing. There is an advantage.

【0023】[0023]

【発明の効果】以上説明したようにこの発明の太陽電池
モジュールは、太陽電池素子の背面側となる透明部材の
内部もしくは外部に伝熱部材を設け、さらに伝熱部材に
ヒートパイプの加熱部を取付けて、太陽電池モジュール
の熱を放熱部材まで熱輸送して冷却するようにしたの
で、太陽電池モジュールの温度上昇が防止され、高い発
電効率を維持することができる。
As described above, in the solar cell module of the present invention, the heat transfer member is provided inside or outside the transparent member on the back side of the solar cell element, and the heat transfer member is provided with the heating portion of the heat pipe. Since the solar cell module is mounted so that the heat of the solar cell module is transported to the heat dissipation member to be cooled, the temperature rise of the solar cell module is prevented and high power generation efficiency can be maintained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】この発明の第1実施例の太陽電池モジュールを
示す断面側面図である。
FIG. 1 is a sectional side view showing a solar cell module according to a first embodiment of the present invention.

【図2】この発明の第2実施例の太陽電池モジュールを
示す断面側面図である。
FIG. 2 is a sectional side view showing a solar cell module according to a second embodiment of the present invention.

【図3】従来の太陽電池モジュールの一例を示す断面側
面図である。
FIG. 3 is a sectional side view showing an example of a conventional solar cell module.

【符号の説明】 11,21…太陽電池モジュール、 12,22…太陽
電池素子、 13,23…インタコネクタ、 14,2
4…表面材、 16,26…伝熱材、 17,27…ヒ
ートパイプ、 18,28…充填材、 20,30…放
熱フレーム。
[Explanation of Reference Signs] 11,21 ... Solar Cell Module, 12,22 ... Solar Cell Element, 13,23 ... Interconnector, 14,2
4 ... Surface material, 16, 26 ... Heat transfer material, 17, 27 ... Heat pipe, 18, 28 ... Filler material, 20, 30 ... Heat dissipation frame.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数の太陽電池素子を平面的に並べかつ
電気的に接続した状態でガラスあるいは樹脂等の透明部
材で一体に被包して平板に形成してなる太陽電池モジュ
ールにおいて、 前記太陽電池素子の背面側となる前記透明部材の内部も
しくは外部に熱伝導率の高い伝熱部材を熱伝達可能に設
けるとともに、ヒートパイプの加熱部を前記伝熱部材に
熱伝達可能に取付け、さらに、前記平板の外縁部に放熱
部材を設け、この放熱部材に前記ヒートパイプの放熱部
を熱伝達可能に取付けたことを特徴とする太陽電池モジ
ュール。
1. A solar cell module comprising a plurality of solar cell elements arranged in a plane and electrically connected to each other so as to be integrally covered with a transparent member such as glass or resin to form a flat plate. A heat transfer member having a high thermal conductivity is provided inside or outside the transparent member that is the back side of the battery element so as to be able to transfer heat, and a heating portion of a heat pipe is attached to the heat transfer member so as to be able to transfer heat. A solar cell module, wherein a heat radiating member is provided on an outer edge portion of the flat plate, and the heat radiating portion of the heat pipe is attached to the heat radiating member so that heat can be transferred.
JP7354304A 1995-12-28 1995-12-28 Solar cell module Pending JPH09186353A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7354304A JPH09186353A (en) 1995-12-28 1995-12-28 Solar cell module

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7354304A JPH09186353A (en) 1995-12-28 1995-12-28 Solar cell module

Publications (1)

Publication Number Publication Date
JPH09186353A true JPH09186353A (en) 1997-07-15

Family

ID=18436641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7354304A Pending JPH09186353A (en) 1995-12-28 1995-12-28 Solar cell module

Country Status (1)

Country Link
JP (1) JPH09186353A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017610A1 (en) * 2000-03-30 2001-10-18 Hahn Meitner Inst Berlin Gmbh Method for producing a solar module with integrated series-connected thin-film solar cells and solar modules produced with the method, in particular using concentrator modules
JP2008101822A (en) * 2006-10-18 2008-05-01 Tama Tlo Kk Thermoelectric composite solar cell system
JPWO2006038508A1 (en) * 2004-10-06 2008-05-15 タマティーエルオー株式会社 Solar cell system and thermoelectric combined solar cell system
DE102009012720A1 (en) * 2009-03-11 2010-09-16 Meuleman, André, Dipl.-Ing. Cooling system for photovoltaic module that is utilized on e.g. roofs, for converting sunlight into electricity, has corrugated plate and chamber connected to each other by openings to form cooling circuit for photovoltaic module
WO2011002213A3 (en) * 2009-06-30 2011-04-14 엘지이노텍주식회사 Photovoltaic power-generating apparatus
JP2011091450A (en) * 2011-02-07 2011-05-06 Nikkeikin Aluminium Core Technology Co Ltd Solar cell panel
WO2012169418A1 (en) 2011-06-06 2012-12-13 信越化学工業株式会社 Solar cell module and method for manufacturing same
KR101232034B1 (en) * 2011-04-01 2013-02-22 한국세라믹기술원 Solar cell module integrated with heat radiating package
EP2595200A2 (en) 2011-11-18 2013-05-22 Shin-Etsu Chemical Co., Ltd. Solar cell module and light control sheet for solar cell module
WO2013180344A1 (en) * 2012-05-30 2013-12-05 주식회사 애니캐스팅 Concentrating solar cell module panel having stiffness and concentrating photovoltaic generation system comprising same
WO2014034979A1 (en) * 2012-08-31 2014-03-06 주식회사 이건창호 Dye-sensitized solar cell assembly having cooling line
KR101373629B1 (en) * 2012-09-27 2014-03-12 (주)애니캐스팅 Concentrating photovoltaic module panel having stiffness and concentraing photovoltaic system including the same
KR101437903B1 (en) * 2014-01-23 2014-09-16 (주)애니캐스팅 Concentrating photovoltaic module panel improving stiffness and assembly of baseplate

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10017610A1 (en) * 2000-03-30 2001-10-18 Hahn Meitner Inst Berlin Gmbh Method for producing a solar module with integrated series-connected thin-film solar cells and solar modules produced with the method, in particular using concentrator modules
DE10017610C2 (en) * 2000-03-30 2002-10-31 Hahn Meitner Inst Berlin Gmbh Process for producing a solar module with integrated series-connected thin-film solar cells and use thereof
JPWO2006038508A1 (en) * 2004-10-06 2008-05-15 タマティーエルオー株式会社 Solar cell system and thermoelectric combined solar cell system
JP2008101822A (en) * 2006-10-18 2008-05-01 Tama Tlo Kk Thermoelectric composite solar cell system
DE102009012720A1 (en) * 2009-03-11 2010-09-16 Meuleman, André, Dipl.-Ing. Cooling system for photovoltaic module that is utilized on e.g. roofs, for converting sunlight into electricity, has corrugated plate and chamber connected to each other by openings to form cooling circuit for photovoltaic module
WO2011002213A3 (en) * 2009-06-30 2011-04-14 엘지이노텍주식회사 Photovoltaic power-generating apparatus
JP2011091450A (en) * 2011-02-07 2011-05-06 Nikkeikin Aluminium Core Technology Co Ltd Solar cell panel
KR101232034B1 (en) * 2011-04-01 2013-02-22 한국세라믹기술원 Solar cell module integrated with heat radiating package
WO2012169418A1 (en) 2011-06-06 2012-12-13 信越化学工業株式会社 Solar cell module and method for manufacturing same
EP2595200A2 (en) 2011-11-18 2013-05-22 Shin-Etsu Chemical Co., Ltd. Solar cell module and light control sheet for solar cell module
WO2013180344A1 (en) * 2012-05-30 2013-12-05 주식회사 애니캐스팅 Concentrating solar cell module panel having stiffness and concentrating photovoltaic generation system comprising same
CN104350608A (en) * 2012-05-30 2015-02-11 韩国艾尼凯斯特有限公司 Concentrating solar cell module panel having stiffness and concentrating photovoltaic generation system comprising same
WO2014034979A1 (en) * 2012-08-31 2014-03-06 주식회사 이건창호 Dye-sensitized solar cell assembly having cooling line
KR101373629B1 (en) * 2012-09-27 2014-03-12 (주)애니캐스팅 Concentrating photovoltaic module panel having stiffness and concentraing photovoltaic system including the same
KR101437903B1 (en) * 2014-01-23 2014-09-16 (주)애니캐스팅 Concentrating photovoltaic module panel improving stiffness and assembly of baseplate

Similar Documents

Publication Publication Date Title
US4153474A (en) Solar energy collector
KR101070871B1 (en) Back sheet of solar cell module for photovoltaic power generation
CN202059353U (en) High power condensation solar energy photovoltaic photo-thermal composite power generation system
US20080135086A1 (en) Photovoltaic cells, modules and methods of making same
US20110114155A1 (en) Solar energy use
JPH09186353A (en) Solar cell module
CN102473766A (en) Solar cell apparatus
WO2015188226A1 (en) System and apparatus for generating electricity
CZ308676B6 (en) Solar photovoltaic panels waste heat management equipment
KR101548179B1 (en) cooling system of solarcell by heatpipe
JPWO2006019091A1 (en) Solar cell hybrid module
US20110203638A1 (en) Concentrating linear photovoltaic receiver and method for manufacturing same
US20100037931A1 (en) Method and Apparatus for Generating Electric Power Using Solar Energy
JP3602721B2 (en) Solar cell module
ES2772308B2 (en) HYBRID SOLAR PANEL FOR THE PRODUCTION OF ELECTRIC AND THERMAL ENERGY
JP2006064203A (en) Solar battery module
US20110272001A1 (en) Photovoltaic panel assembly with heat dissipation function
KR101211947B1 (en) Electro-generation system with function for heating of water using solar cell and thermo-electric device
CN216794887U (en) Solar power generation element array
JP6292266B2 (en) Concentrating solar power generation panel and concentrating solar power generation device
KR101636914B1 (en) Heating panel assembly of modularizing diode for solar light generation
KR101604824B1 (en) Hybrid solar panel for solar energy generation device
JP2000101116A (en) Solar electric power generating system
JP2016214079A5 (en)
JPH0983003A (en) Solar battery module