WO2023243816A1 - Thermoelectric generator, manufacturing method therefor, and thermoelectric generating apparatus equipped therewith - Google Patents

Thermoelectric generator, manufacturing method therefor, and thermoelectric generating apparatus equipped therewith Download PDF

Info

Publication number
WO2023243816A1
WO2023243816A1 PCT/KR2023/003564 KR2023003564W WO2023243816A1 WO 2023243816 A1 WO2023243816 A1 WO 2023243816A1 KR 2023003564 W KR2023003564 W KR 2023003564W WO 2023243816 A1 WO2023243816 A1 WO 2023243816A1
Authority
WO
WIPO (PCT)
Prior art keywords
air
heat dissipation
air distribution
thermoelectric generator
fin
Prior art date
Application number
PCT/KR2023/003564
Other languages
French (fr)
Korean (ko)
Inventor
김성민
현승봉
최원우
이학준
박시목
방성환
Original Assignee
성균관대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 성균관대학교산학협력단 filed Critical 성균관대학교산학협력단
Publication of WO2023243816A1 publication Critical patent/WO2023243816A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/10Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects operating with only the Peltier or Seebeck effects
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details

Definitions

  • the present invention relates to a thermoelectric generator, a method of manufacturing the same, and a thermoelectric generator including the same.
  • thermoelectric element is a device that uses the thermoelectric phenomenon to convert thermal energy into electrical energy or electrical energy into thermal energy due to a temperature difference between both sides.
  • thermoelectric generator is a device that uses these thermoelectric elements to convert heat into electricity and recover power.
  • thermoelectric generator consists of a high-temperature heat exchange fin that exchanges heat with the high-temperature exhaust gas inside, and a low-temperature heat exchange fin through which low-temperature coolant flows outside the thermoelectric generator.
  • the high heat energy of the exhaust gas flowing inside is converted into thermoelectric energy. It must be efficiently delivered to the device.
  • the heat exchange fin of the high temperature part used in the related art does not sufficiently transfer the heat energy of the exhaust gas to the thermoelectric element, which causes a problem in that the efficiency of the thermoelectric element is reduced and the ability to recover power is reduced.
  • the problem with the conventional high-temperature heat exchange fin is that the temperature of the exhaust gas entering the inside is high at the inlet and heat exchange occurs as it moves toward the outlet, so the temperature of the exhaust gas decreases. Accordingly, the efficiency of the thermoelectric element placed at the inlet increases due to the large temperature difference, but the efficiency of the thermoelectric element placed at the outlet decreases due to the small temperature difference, making it difficult to obtain uniform efficiency throughout the thermoelectric element.
  • the present invention is intended to solve the problems of the prior art described above, and aims to provide a thermoelectric generator and a method for manufacturing the same.
  • thermoelectric generator including the thermoelectric generator.
  • thermoelectric generator including a heat dissipation fin, an air distribution fin, and an air flow path, wherein an air heat dissipation portion is disposed on one side of the heat dissipation fin.
  • a thermoelectric element is disposed on the other side of the heat dissipation fin, the air distribution fin is disposed in the direction of the one side of the heat dissipation fin, the air distribution fin is formed on a lower member, the lower member, and an internal space.
  • an air distribution unit dividing the air into at least two areas, and a wall portion formed on each of one side and the other side of the lower member, wherein the air flow path is disposed between the air heat dissipation unit and the air distribution unit. do.
  • the air distribution unit includes an air inlet formed on one side of the air distribution fin and an air outlet formed on the other side of the air distribution fin, and the air flowing into the air inlet is It may be discharged through the air discharge unit via the air heat dissipation unit, but is not limited thereto.
  • the air heat dissipation unit includes a heat dissipation substrate on which the thermoelectric element is installed on the other side of the heat dissipation fin; and a plurality of heat dissipation distribution fins formed on the heat dissipation substrate in the direction of one side of the heat dissipation fin, but are not limited thereto.
  • the air distribution unit includes an air distribution plate formed on each of one side and the other side of the air distribution fin, and connects the air distribution plate and divides the space inside the air distribution pin into two or more spaces. It may include, but is not limited to, a flow path separator plate.
  • the air passage includes an air inlet passage through which air flows in from the outside of the thermoelectric generator, an air discharge passage through which air is discharged from the inside of the thermoelectric generator, and the air inlet passage and the air. It may include, but is not limited to, an air distribution flow path connecting the discharge flow path.
  • one side of the air inlet may be open and the other side may be closed, and one side of the air outlet may be closed and the other side may be open, but are not limited thereto.
  • one surface of the air inlet and one surface of the air outlet may be disposed to face each other, but the present invention is not limited thereto.
  • the other surface of the air inlet and the other surface of the air outlet may be disposed to face each other, but are not limited thereto.
  • the air flowing into the inflow area formed by one surface of the air inlet and the air distribution unit passes through the air passage to the other surface of the air discharge part and the discharge area formed by the air distribution unit. It may be discharged, but is not limited to this.
  • thermoelectric element when the air flowing into the air inlet passes through the air passage, the thermoelectric element may be heated by the air and generate power, but is not limited thereto.
  • thermoelectric generator may further include a cooling unit, but is not limited thereto.
  • a method of manufacturing a thermoelectric generator according to the second aspect of the present invention includes: forming a wall portion on both sides of the lower member; forming an air distribution portion on the lower member to divide the internal space between the lower member and the wall portion into at least two regions; Installing a thermoelectric element on the other side of the heat dissipation substrate; forming a heat dissipation fin by forming a plurality of heat dissipation distribution fins on one side of the heat dissipation substrate; and forming an air flow path by disposing the air distribution fin on the one side direction of the heat dissipation fin.
  • forming the air distribution unit includes forming a structure including the air distribution plate on one side and the air distribution plate on the other side at both end portions of the flow path separation plate; and folding the structure around the air distribution plate on one side and the air distribution plate on the other side so that the flow path dividing plate divides the area between the lower member and the wall portions on both sides into at least two or more areas. It may include, but is not limited to this.
  • the structure may include a structure in which the air distribution plate and the flow path separation plate appear alternately, but is not limited thereto.
  • one side of the air inlet is open but the other side is closed by the air distribution plate on the one side
  • one side of the air discharge portion is closed but the other side is open by the air distribution plate on the other side.
  • the structure may be folded, but is not limited thereto.
  • the structure may be folded so that one side of the air inlet portion and one side of the air outlet portion face each other, and the other side of the air inlet portion and the other side of the air discharge portion face each other. It is not limited.
  • the angle formed by the heat dissipation distribution fin and the air distribution part may be 70° to 110°, but is not limited thereto.
  • the air flow path may include an air inflow path, an air distribution path, and an air discharge path formed by the air distribution fin and the heat dissipation distribution fin, but is not limited thereto.
  • thermoelectric generator including the thermoelectric generator according to the first aspect.
  • the thermoelectric generator may generate electricity by contact between the thermoelectric element and air introduced from the air inlet, but is not limited thereto.
  • thermoelectric generator had a disadvantage in that the temperature difference between the inlet and the outlet was large, resulting in low efficiency and large deviation of the thermoelectric element.
  • thermoelectric generator according to the present invention is composed of an air distribution fin and a heat dissipation fin and is manufactured in consideration of the air flow structure, it can compensate for the problems of low efficiency and temperature difference between the inlet and outlet of the conventional thermoelectric generator. You can.
  • thermoelectric generator according to the present invention has improved thermoelectric element efficiency compared to the conventional thermoelectric generator, allowing more power to be recovered through waste heat.
  • thermoelectric generator according to the present invention can be applied to various places where thermoelectric power generation is required, such as vehicles and plants.
  • thermoelectric generator because the heat exchange fin of a conventional thermoelectric generator does not sufficiently transfer the heat energy of high-temperature air to the thermoelectric element, the efficiency of the thermoelectric element disposed on the heat exchange fin is reduced, thereby reducing the power recovery ability.
  • the thermoelectric generator according to the present invention has a flow structure in which high-temperature air is distributed to each air heat dissipation fin due to the air distribution fin, and after a collision occurs in the area where the thermoelectric element is located, it flows out through the air discharge portion through the air heat dissipation fin. have Due to this air flow structure, a collision effect occurs in the thermoelectric element, thereby solving the problem of insufficient transfer of heat energy. As a result, power recovery ability increases, resulting in energy and cost savings.
  • thermoelectric generator 1 is a schematic diagram of a thermoelectric generator according to an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of a thermoelectric generator according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a heat dissipation fin according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram of a heat dissipation fin according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a heat dissipation fin according to an embodiment of the present invention.
  • Figure 6 is a schematic diagram of a heat dissipation fin according to an embodiment of the present invention.
  • Figure 7 is a schematic diagram of an air distribution pin according to an embodiment of the present invention.
  • Figure 8 is a schematic diagram of an air distribution pin according to an embodiment of the present invention.
  • Figure 9 is a schematic diagram of an air distribution pin according to an embodiment of the present invention.
  • FIG. 10 is a schematic diagram of a thermoelectric generator according to an embodiment of the present invention.
  • FIG 11 is a schematic diagram of a thermoelectric generator according to an embodiment of the present invention.
  • Figure 12 is a diagram showing part of the process of forming an air distribution fin according to an embodiment of the present invention.
  • FIG. 13 is a flowchart of a method for manufacturing a thermoelectric generator according to an embodiment of the present invention.
  • FIG 14 is a schematic diagram of a thermoelectric generator according to an embodiment of the present invention.
  • the terms “about,” “substantially,” and the like are used to mean at or close to a numerical value when manufacturing and material tolerances inherent in the stated meaning are given, and are used to enhance the understanding of the present invention. Precise or absolute figures are used to assist in preventing unscrupulous infringers from taking unfair advantage of stated disclosures. Additionally, throughout the specification of the present invention, “a step of” or “a step of” does not mean a “step for”.
  • the term "combination thereof" included in the Markushi format expression means a mixture or combination of one or more selected from the group consisting of the components described in the Markushi format expression, It means containing one or more selected from the group consisting of constituent elements.
  • thermoelectric generator of the present invention and its manufacturing method will be described in detail with reference to implementation examples, examples, and drawings.
  • the present invention is not limited to these embodiments, examples, and drawings.
  • the first aspect of the present invention is a thermoelectric generator 10 including a heat dissipation fin 200, an air distribution fin 100, and an air flow path 300, the heat dissipation fin 200 ), an air heat dissipation unit is disposed on one side, a thermoelectric element 230 is disposed on the other side of the heat dissipation fin 200, and an air distribution fin 100 is disposed in the direction of one side of the heat dissipation fin 200, and air distribution The fin 100 is formed on the lower member 140, the air distribution part 101 that divides the internal space into at least two areas, and one side and the other of the lower member 140.
  • a thermoelectric generator 10 is provided, including wall portions formed on each side, and the air flow path 300 is disposed between the air heat radiation portion and the air distribution portion 101.
  • thermoelectric generators 1, 2, 10, 11, and 14 are schematic diagrams of a thermoelectric generator according to an embodiment of the present invention
  • FIGS. 3 to 6 are schematic diagrams of a heat dissipation fin according to an embodiment of the present invention.
  • 7, 8, and 9 are schematic diagrams of air distribution fins according to an embodiment of the present invention
  • Figure 12 is a diagram showing a part of the formation process of the air distribution fins according to an embodiment of the present invention
  • Figure 13 is a flowchart of a method for manufacturing a thermoelectric generator according to an embodiment of the present invention.
  • FIG. 7 is a schematic diagram of the air distribution part 101 of the air distribution pin 100, which shows the structure of the air distribution part 101 when the wall portion is not formed on the lower member 140, as will be described later.
  • FIGS. 8 and 5B are cross-sections A-A and B-B of FIG. 7.
  • FIG. 8 shows the other side 122 of the air inlet 120
  • FIG. 9 shows one side 131 of the air outlet 130 closed.
  • one side 121 of the air inlet 120 and the other side 132 of the air outlet 130 are open structures.
  • the wave mark formed at one end of the indicator line in FIGS. 7, 5A, 9, 10, and 6B means that the corresponding area is an empty space.
  • thermoelectric generator 10 is formed by combining a heat dissipation fin 200 and an air distribution fin 100, and the following description may refer to FIGS. 1 to 13.
  • thermoelectric element is a device that converts thermal energy into electrical energy through a temperature difference between two sides, or uses a thermoelectric phenomenon that converts electrical energy into thermal energy.
  • a thermoelectric generator 10 is a device that recovers power by converting heat into electricity using such thermoelectric elements.
  • This thermoelectric generator 10 includes a high-temperature heat exchange fin that exchanges heat with the high-temperature exhaust gas inside, a low-temperature heat exchange fin through which low-temperature coolant flows outside the thermoelectric generator 10, etc.
  • the high thermal energy of the exhaust gas flowing inside must be efficiently transferred to the thermoelectric element.
  • the heat exchange fin of the high temperature portion used in the conventional thermoelectric generator 10 has the disadvantage of not sufficiently transferring the heat energy of the exhaust gas to the thermoelectric element.
  • the air entering the inlet of the heat exchange fin exchanges heat during the movement process, which reduces the temperature of the exhaust gas.
  • the efficiency of the thermoelectric element placed at the inlet increases due to the high temperature difference, but the thermoelectric element placed at the outlet increases. There is a problem of reduced efficiency due to the small temperature difference.
  • thermoelectric generator 10 generates thermoelectric power between the thermoelectric element 230 on the inlet side and the thermoelectric element 230 on the outlet side by separating the flow path through which air flows in and the air discharge path.
  • the efficiency gap can be reduced.
  • the thermoelectric generator 10 includes a heat dissipation fin 200, an air distribution fin 100, and an air flow path 300 formed by contact between the heat dissipation fin 200 and the air distribution fin 100. It can be done, but is not limited to this.
  • thermoelectric generator 10 includes a heat dissipation fin 200 and an air distribution fin 100. As will be described later, the thermoelectric generator according to the present invention may include at least one thermoelectric generator 10.
  • the heat dissipation fin 200 may have an air heat dissipation portion disposed on one side and a thermoelectric element 230 may be disposed on the other side, but is not limited thereto. no.
  • the air heat dissipation unit includes a heat dissipation substrate 210 on which a thermoelectric element 230 is installed on the other side of the heat dissipation fin 200; and a plurality of heat dissipation distribution fins 220 formed on the heat dissipation substrate 210 in the direction of one side of the heat dissipation fin 200, but are not limited thereto.
  • the heat dissipation distribution fins 220 are formed on the heat dissipation substrate 210 at regular intervals. As will be described later, the heat dissipation distribution fins 220 are in contact with the air distribution portion 101 of the air distribution fin 100, and the heat dissipation distribution fins 220 are in contact with the air distribution portion 101 of the air distribution fin 100.
  • the area between 220 is an air distribution passage 320 that connects the air inlet passage 310 with the air discharge passage 330.
  • the heat dissipation fin 200 may include a heat dissipation substrate 210 with a thermoelectric element 230 disposed on the other side and a plurality of heat dissipation distribution fins 220 on one side, and the heat dissipation fin 200
  • the heat dissipation distribution fin 220 may be arranged to contact the air distribution fin 100, but is not limited thereto.
  • the air distribution pin 100 includes a lower member 140, an air distribution portion 101 formed on the lower member 140 and dividing the internal space into at least two or more areas, and wall portions formed on one side and the other side of the lower member 140, but are not limited thereto.
  • the wall portion 112 on one side and the wall portion 113 on the other side are formed on the outermost sides of both sides of the lower member 140, and together with the air distribution portion 101, occupy the internal space at least. It can be divided into two or more areas.
  • the air distribution unit 101 includes an air inlet 120 formed on one side of the air distribution pin 100 and an air outlet 130 formed on the other side of the air distribution pin 100. It includes, and the air flowing into the air inlet 120 may pass through the air heat dissipation unit and be discharged through the air discharge unit 130, but is not limited thereto.
  • the air distribution unit 101 may include a zone dividing plate 110 and an air distribution plate, but is not limited thereto.
  • the air distribution unit 101 has a structure in which the area dividing plate 110 and the air distribution plate appear alternately, and the air distribution plate is connected to the other side 122 of the air inlet 120 and one side of the air outlet 130. It can be formed by folding relative to the air distribution plate to close (131).
  • the air distribution unit 101 refers to what is formed on the lower member 140, and the air inlet 120 and air outlet 130 refer to areas divided by the air distribution unit 101.
  • the zone divider plate 110 and the air distribution plate refer to members constituting the air distribution unit 101.
  • the structure including the zone divider plate 110 and the air distribution plate is folded to form the air distribution portion. (101) can be formed.
  • the region dividing plate 110 includes a flow path dividing plate 111 and a wall portion, and the wall portion may include a wall portion 112 on one side and a wall portion 113 on the other side.
  • the area dividing plate 110 divides one side and the other side, and the wall portion separates the inside and outside of the thermoelectric generator 10, and the flow path dividing plate 111 separates the air inlet flow path 310 and the air discharge flow path 330. It can be separated.
  • the air distribution pin 100 may include a lower member 140 and an air distribution unit 101.
  • an air inlet 120 is formed on one side of the air distribution pin 100, and an air outlet 130 is formed on the other side of the air distribution pin 100, and the air passing through the thermoelectric generator 10 is formed. Air may move along a path passing through the air inlet 120, the air radiator, and the air outlet 130.
  • one side 121 of the air inlet 120 is open, the other side 122 is closed, and one side 131 of the air outlet 130 is closed, and the other side 132 is closed.
  • ) may be open, but is not limited thereto.
  • one surface 121 of the air inlet 120 and one surface 131 of the air outlet 130 may be disposed to face each other, but are not limited thereto.
  • the other surface 122 of the air inlet 120 and the other surface 132 of the air outlet 130 may be disposed to face each other, but are not limited thereto.
  • the description of the one side 121 and the other side 122 of the air inlet 120 and the one side 131 and the other side 132 of the air outlet 130 are one side of the air inlet 120. It may also be expressed as a region and other regions, and as one region and another region of the air discharge unit 130.
  • the air inlet 120 and the air outlet 130 have open and closed parts alternating with each other, and the open part of the air inlet 120 and the closed part of the air outlet 130 face each other. , the closed portion of the air inlet 120 and the open portion of the air outlet 130 are opposed to each other.
  • one side 121 of the air inlet 120 is open and the other side 122 is closed, and one side 131 of the air outlet 130 is closed and the other side is closed. (132) is open and may be arranged so that the open side and the closed side face each other.
  • the air introduced through one surface 121 of the air inlet 120 is the space formed by the contact between the heat dissipation fin 200 and the air distribution fin 100, and more specifically, the heat dissipation distribution fin 220 and the air distribution fin 220. It may be discharged through the other surface 132 of the air discharge unit 130 through the air passage 300 formed by contact with the distribution portion 101.
  • the air distribution unit 101 includes an air distribution plate formed on each of one side and the other side of the air distribution pin 100, and a space inside the air distribution pin 100 that connects the air distribution plates. It may include a flow path separation plate 111 that divides the space into two or more spaces, but is not limited thereto.
  • the air distribution plate closes the other side 122 of the air inlet 120 and one side 131 of the air outlet 130, but closes one side 121 of the air inlet 120 and the other side 131 of the air outlet 130. It is formed to open (132).
  • the flow path separation plate 111 is used to separate the air flow paths 300, which will be described later, and prevents one side 121 of the air inlet 120 and the other side 132 of the air outlet 130 from directly communicating with each other. It is for this purpose.
  • the air distribution pin 100 may include a lower member 140, an air distribution plate, and a zone dividing plate 110, and the air distribution unit may include an air distribution plate and a zone dividing plate 110.
  • the lower member 140 has an air distribution portion 101 formed at the upper portion, and the upper surface of the lower member 140 and one side of the heat dissipation fin 200 are arranged to face each other. You can.
  • thermoelectric generators are generally applied to vehicles and plants, the empty space is a space where the shaft is connected to fix the thermoelectric generator, and serves as a distribution guide for high temperature exhaust gas to move from the inlet to the thermoelectric generator (10). It is a space to practice.
  • the air flow path 300 includes an air inlet flow path 310 through which air flows in from the outside of the thermoelectric generator 10, and an air discharge path through which air is discharged from the inside of the thermoelectric generator 10. It may include (330), and an air distribution flow path (320) connecting the air inlet flow path (310) and the air discharge flow path (330), but is not limited thereto.
  • the air flowing into the inlet area formed by the one surface 121 of the air inlet 120 and the air distribution unit 101 passes through the air flow path 300 to the air outlet 130. It may be discharged to the discharge area formed by the other side 132 and the air distribution unit 101, but is not limited thereto.
  • the air inlet flow path 310 is formed by one side 121 of the air inlet 120, the flow path separator 111, and one side 131 of the air outlet 130. It is a flow path, and the air discharge flow path 330 refers to a flow path formed by the other surface 132 of the air discharge unit 130, the flow path separator plate 111, and the other surface 122 of the air inlet 120.
  • the air flowing in through one side 121 of the air inlet 120 is directed to the air outlet 130.
  • thermoelectric generator 10 is formed between the air inlet flow path 310 and the air discharge flow path 330, and the air distribution path formed by contact between the flow path separator plate 111 and the heat dissipation distribution pin 220 ( 320), and the air distribution passage 320 refers to an area between the heat dissipation distribution fins 220. That is, the air flowing into the air inflow passage 310 may move to the air discharge passage 330 through the air distribution passage 320.
  • thermoelectric element 230 may be heated by the air and generate power, but is limited thereto. That is not the case.
  • High-temperature air introduced through one surface 121 of the air inlet 120 may collide with or contact the heat dissipation substrate 210 of the heat dissipation fin 200 while passing through the air distribution passage 320.
  • the thermoelectric element 230 is present on the other side of the heat dissipation substrate 210, the heat dissipation substrate 210 is heated in the process of moving the high temperature air, and the heated heat dissipation substrate 210 is connected to the thermoelectric element 230. ) can provide a heat source for power generation.
  • the angle formed by the heat dissipation distribution fin 220 and the air distribution part 101 may be 70° to 110°, but is not limited thereto.
  • the heat dissipation distribution pin 220 and the air distribution part 101 must contact each other to form an air distribution passage 320.
  • the heat dissipation distribution fin 220 and the air distribution unit 101 specifically the heat dissipation distribution fin 220 and the flow path separator plate 111, are parallel to each other, the air distribution flow path 320 is not formed.
  • the angle formed by the heat dissipation distribution fin 220 and the air distribution unit 101 may be 70° to 110°.
  • the angle between the heat dissipation distribution pin 220 and the air distribution unit 101 need only be staggered so that the air distribution passage 320 can be formed, and if the air distribution passage 320 is not formed, the inflow A problem occurs in which the contaminated air cannot be discharged.
  • thermoelectric generator 10 of FIGS. 1 and 2 is a combination of an air radiating fin 200 and an air distribution fin 100 having a hexagonal cross-section, but the thermoelectric generator 10 according to the present invention has a cross-section as necessary.
  • the air radiating fin 200 and the air distribution fin 100 having a circular or polygonal shape may be combined.
  • thermoelectric generator may further include a cooling unit, but is not limited thereto.
  • thermoelectric generator 10 produces power through temperature differences, so if high temperature air is continuously supplied to the thermoelectric generator 10, the thermoelectric element 230 may overheat and the thermoelectric effect may decrease, resulting in a decrease in power generation. there is.
  • the cooling unit may be formed on the other side of the heat dissipation fin 200, that is, on the top of the thermoelectric element 230, and the structure of the cooling unit/thermoelectric element/heat dissipation substrate/heat dissipation distribution fin.
  • the heat dissipation distribution fin 220 may be formed to contact the air distribution unit 101.
  • the temperature of the air flowing into the thermoelectric generator 10 may be 150°C to 500°C, and the temperature of the refrigerant in the cooling unit may be 20°C to 40°C, but are not limited thereto.
  • the temperature of the air flowing into the thermoelectric generator 10 is about 150°C to about 500°C, about 175°C to about 500°C, about 200°C to about 500°C, about 250°C to about 500°C, about 300°C.
  • °C to about 500 °C may be about 250 °C to about 350 °C, or about 300 °C, but is not limited thereto.
  • the temperature of the refrigerant in the cooling unit is about 20°C to about 40°C, about 25°C to about 40°C, about 30°C to about 40°C, about 35°C to about 40°C, about 20°C to about 25°C, about 20°C. It may be, but is not limited to, °C to about 30°C, about 20°C to about 35°C, about 25°C to about 35°C, or about 30°C.
  • the temperature of the air discharged from the thermoelectric generator 10 may be 50°C to 200°C, but is not limited thereto.
  • the temperature of the air discharged from the thermoelectric generator 10 is about 50°C to about 200°C, about 75°C to about 200°C, about 100°C to about 200°C, about 125°C to about 200°C, about 150°C.
  • °C to about 200 °C is about 175 °C to about 200 °C, about 50 °C to about 75 °C, about 50 °C to about 100 °C, about 50 °C to about 125 °C, about 50 °C to about 150 °C, about 50 °C It may be about 175°C, about 75°C to about 175°C, about 100°C to about 150°C, or about 175°C, but is not limited thereto.
  • a second aspect of the present invention is a method of manufacturing a thermoelectric generator 10 manufactured by the method according to the first aspect, comprising: forming wall portions on both sides of the lower member 140; forming an air distribution unit 101 on the lower member 140, dividing the internal space between the lower member 140 and the wall portion into at least two or more areas; Installing a thermoelectric element 230 on the other side of the heat dissipation substrate 210; Forming a heat dissipation fin 200 by forming a plurality of heat dissipation distribution fins 220 on one side of the heat dissipation substrate 210; and forming an air flow path 300 by disposing the air distribution unit 101 on one side of the heat dissipation fin 200.
  • the lower member 140, the wall portion, and the air distribution portion 101 may be collectively referred to as the air distribution pin 100.
  • thermoelectric generator 10 According to the second aspect of the present invention, detailed description of parts overlapping with the first aspect of the present invention has been omitted. However, even if the description is omitted, the first aspect of the present invention The contents described can be equally applied to the second aspect of the present invention.
  • FIG. 12 is a flowchart of a method of manufacturing a thermoelectric generator 10 according to an embodiment of the present invention
  • FIG. 13 is a diagram showing a portion of the formation process of the air distribution fin 100 according to an embodiment of the present invention.
  • the air distribution unit 101 of FIG. 13 represents the minimum unit of the area dividing plate 110.
  • wall portions are formed on both sides of the lower member 140 (S110).
  • an air distribution unit 101 is formed on the lower member 140 to divide the space between the lower member 140 and the wall portion into at least two or more areas (S120).
  • the process of forming the wall portion and the air distribution portion 101 on the lower member 140 may be referred to as the forming process of the air distribution fin 100.
  • the step of forming the air distribution unit 101 includes forming an air distribution plate 122' on one side and an air distribution plate 131' on the other side at both end portions of the flow path separation plate 111. forming a structure containing; and an air distribution plate 122' on one side and an air distribution plate 131' on the other side so that the flow path separation plate 111 divides the area between the lower member 140 and the wall portions on both sides into at least two areas. It may include, but is not limited to, folding the structure to the center. In this regard, when the structure is folded, it becomes the air distribution unit 101, and the form in which the air distribution unit 101 is not folded around the air distribution plate can be called a structure.
  • the air distribution pin 100 may be composed of an air inlet 120 and an air outlet 130, and a lower member 140 and a wall portion formed on the lower member 140 and an air outlet. It may also be configured as distribution 101.
  • the air inlet 120 and the air outlet 130 are divided into one side and the other side of the air distribution pin 100, that is, an area where air flows into or out of the air distribution pin 100, and the lower part
  • the member 140, the wall portion, and the air distribution portion 101 are structurally separated.
  • the structure may include a structure in which air distribution plates and flow path separation plates 111 appear alternately, but is not limited thereto.
  • the step of forming the wall portion may be omitted, but is not limited thereto.
  • the wall portions formed at both ends of the structure separate the inner and outer regions of the air distribution fin 100 and may perform the same role as the flow path separation plate 111.
  • the flow path separation plate 111 that is not formed at both ends of the structure divides the area inside the air distribution pin 100, and the wall portion divides the inside and outside of the air distribution pin 100, and distributes the air.
  • the plate may close the other side 122 of the air inlet 120 and/or the one side 131 of the air outlet 130.
  • the wall portion and the flow path separation plate 111 may be collectively referred to as the area dividing plate 110, and the area dividing plate 110 and the air distribution plate may be collectively referred to as the air distribution unit 101.
  • one side 121 of the air inlet 120 is opened by the air distribution plate 122' on one side, but the other side is closed by the air distribution plate 131' on the other side.
  • the structure may be folded so that one side 131 of the air discharge unit 130 is closed and the other side is open, but is not limited thereto.
  • one side 121 of the air inlet 120 and one side 131 of the air outlet 130 face each other, and the other side 122 of the air inlet 120 and the air
  • the other surfaces 132 of the discharge unit 130 may be folded so that they face each other, but are not limited thereto.
  • the process of forming the wall portion on both sides of the lower member 140 can be omitted.
  • the process of forming the wall portion is omitted, when forming the air distribution fin 100, it must be folded so that the wall portion is formed.
  • the air distribution plate 122' on one side closes a part of the air inlet 120, which is one side of the air distribution pin 100, and is specifically a plate that closes the other side 122 of the air inlet 120.
  • the air distribution plate 131' on the other side closes a part of the air discharge portion 130, which is the other side of the air distribution pin 100, and is specifically a plate that closes one side 131 of the air discharge portion 130. means.
  • the structures can be folded so that they face each other.
  • FIG. 12 is a diagram illustrating the formation of the air distribution unit 101 on the lower member 140 in which the wall portion is not formed, before the air distribution unit 101 is formed, that is, in the non-folded structure. It expresses only the minimum unit.
  • the structure has an air distribution plate 122' on one side of the flow path separation plate 111, an air distribution plate 131' on the other side on the other side, and an air distribution plate 122 on one side. '), the wall portion 112 on one side may be located on one side, and the wall portion 113 on the other side may be located on the other side of the air distribution plate 131'.
  • the structure can be folded based on the air distribution plate 122' on one side and the air distribution plate 131' on the other side. At this time, the air distribution plate 122' on one side closes the other side 122 of the air inlet 120, and the air distribution plate 131' on the other side closes one side of the discharge section.
  • the flow path separation plate 111 formed between them can distinguish the air inlet flow path 310 and the air discharge flow path 330.
  • the flow path separator plate 111 may be formed so that the upper cross sections of the air inlet flow path 310 and the air discharge flow path 330 include a shape selected from the group consisting of trapezoid, square, and combinations thereof, but is not limited thereto. no.
  • thermoelectric element 230 is installed on the other side of the heat dissipation substrate 210 (S210).
  • a plurality of heat dissipation distribution fins 220 are formed on one side of the heat dissipation substrate 210 to form the heat dissipation fin 200 (S220).
  • the steps of forming the heat dissipation fin 200 and the steps of forming the air distribution fin 100 may be performed simultaneously or sequentially.
  • the heat dissipation fin 200 may be manufactured simultaneously with the air distribution fin 100, or may be manufactured before or after manufacturing the air distribution fin 100.
  • one side of the heat dissipation substrate 210 may be in contact with the air distribution fin 100.
  • an air flow path 300 is formed by disposing the air distribution fin 100 on one side of the heat dissipation fin 200.
  • the air flow path 300 may be formed when the heat dissipation distribution fin 220 of the heat dissipation fin 200 and the air distribution fin 100 contact each other.
  • the air passage 300 includes an air inlet passage 310, an air distribution passage 320, and an air discharge passage formed by the air distribution pin 100 and the heat dissipation distribution pin 220. It may include (330), but is not limited thereto.
  • the angle formed by the heat dissipation distribution fin 220 and the air distribution part 101 may be 70° to 110°, but is not limited thereto.
  • the air flow path 300 When the air flow path 300 is formed, the air flows to one side 121 of the air inlet 120 of the thermoelectric generator 10, the area between the heat dissipation distribution fins 220, and the other side 132 of the air outlet 130. ) can be moved.
  • thermoelectric generator (1) comprising the thermoelectric generator (10) according to the first aspect.
  • the thermoelectric generator 1 may generate electricity by contact between the thermoelectric element 230 and air introduced from the air inlet 120, but is not limited thereto.
  • thermoelectric generator means that it includes at least one thermoelectric generator 10, and may have a structure in which the thermoelectric generators 10 are installed in series or in parallel.
  • the thermoelectric generator 10 may be a combination of a heat dissipation fin 200 and an air distribution fin 100.
  • the minimum unit of the thermoelectric generator 10 is an air distribution fin 100 and a heat dissipation fin 200 combined vertically, and one side and the other side of the minimum unit are attached to form the thermoelectric generator 10. ) can be configured.
  • thermoelectric generator 10 Both the minimum unit and the combination of a plurality of minimum units can be referred to as the thermoelectric generator 10.
  • the minimum unit of the thermoelectric generator 10 is referred to as the thermoelectric generator 10
  • a combination of a plurality of minimum units is referred to as a thermoelectric generator. It can be called At this time, the thermoelectric generator may include not only a structure in which six thermoelectric generators 10 are combined as shown in FIG. 2, but also a structure in which two or more thermoelectric generators 10 are combined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Blowing Cold Air, Devices For Blowing Warm Air, And Means For Preventing Water Condensation In Air Conditioning Units (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

The present invention relates to a thermoelectric generator comprising heat-dissipation fins, air distribution fins, and airflow paths, wherein: the heat-dissipation fins each have an air heat-dissipation part disposed on one side surface thereof, thermoelectric elements disposed on the other side surface thereof, and air distribution fins disposed in the direction of the one side surface thereof; the air distribution fins comprise lower members, air distribution portions formed on the lower members and dividing the interior space into at least two areas, and wall portions formed respectively on one side surface and the other side surface of the lower member; and airflow paths are disposed between the air heat-dissipation part and the air distribution portions.

Description

열전 발생기, 이의 제조 방법 및 이를 구비하는 열전 발생 장치. Thermoelectric generator, manufacturing method thereof, and thermoelectric generator comprising the same.
본 발명은 열전 발생기, 이의 제조 방법 및 이를 구비하는 열전 발생 장치에 관한 것이다.The present invention relates to a thermoelectric generator, a method of manufacturing the same, and a thermoelectric generator including the same.
열전소자는 양측면의 온도차로 인해 열에너지를 전기에너지로 변환하거나, 전기에너지를 열에너지로 변환하는 열전현상을 이용하는 소자이다. 이러한 열전소자를 활용하여 열을 전기로 변환시켜 전력을 회수하는 장치가 열전 발전기이다.A thermoelectric element is a device that uses the thermoelectric phenomenon to convert thermal energy into electrical energy or electrical energy into thermal energy due to a temperature difference between both sides. A thermoelectric generator is a device that uses these thermoelectric elements to convert heat into electricity and recover power.
이러한 열전 발전기는 내부에 고온의 배기가스와 열교환하는 고온부 열교환 핀, 열전 발전기 외부에 저온의 냉각수가 흐르는 저온부 열교환 핀으로 구성되어 있는데 열전 발전기의 효율을 높이기 위해서는 내부에 흐르는 배기가스의 높은 열에너지가 열전소자에 효율적으로 전달되어야 한다.This thermoelectric generator consists of a high-temperature heat exchange fin that exchanges heat with the high-temperature exhaust gas inside, and a low-temperature heat exchange fin through which low-temperature coolant flows outside the thermoelectric generator. In order to increase the efficiency of the thermoelectric generator, the high heat energy of the exhaust gas flowing inside is converted into thermoelectric energy. It must be efficiently delivered to the device.
하지만 종래의 사용하고 있는 고온부의 열교환 핀은 배기가스의 열에너지를 열전소자로 충분히 전달되지 않아 열전소자의 효율이 떨어져 전력을 회수하는 능력이 저하되는 문제점이 발생한다.However, the heat exchange fin of the high temperature part used in the related art does not sufficiently transfer the heat energy of the exhaust gas to the thermoelectric element, which causes a problem in that the efficiency of the thermoelectric element is reduced and the ability to recover power is reduced.
또한, 종래 고온부의 열교환 핀의 문제점은 내부에 들어오는 배기가스의 온도가 입구에서는 고온이고 출구쪽으로 이동하면서 열교환이 되기 때문에 배기가스의 온도가 감소하게 된다. 이에 따라 입구쪽의 배치된 열전소자는 온도차이가 커 효율이 증가하지만, 출구쪽에 배치된 열전소자는 온도차이가 작아 효율이 감소하여 전체적으로 열전소자 균일한 효율을 얻기 어렵다.In addition, the problem with the conventional high-temperature heat exchange fin is that the temperature of the exhaust gas entering the inside is high at the inlet and heat exchange occurs as it moves toward the outlet, so the temperature of the exhaust gas decreases. Accordingly, the efficiency of the thermoelectric element placed at the inlet increases due to the large temperature difference, but the efficiency of the thermoelectric element placed at the outlet decreases due to the small temperature difference, making it difficult to obtain uniform efficiency throughout the thermoelectric element.
본 발명의 배경기술은 대한민국 공개특허공보 10-2021-0054218 호(2021. 05. 13. 공개, 발명의 명칭 : 산업폐열을 재활용하는 다층 열전발전기)에 게시되어 있다.The background technology of the present invention is published in Republic of Korea Patent Publication No. 10-2021-0054218 (published on May 13, 2021, title of invention: Multilayer thermoelectric generator for recycling industrial waste heat).
본 발명은 전술한 종래 기술의 문제점을 해결하기 위한 것으로서,열전 발생기 및 이의 제조 방법을 제공하는 것을 목적으로 한다.The present invention is intended to solve the problems of the prior art described above, and aims to provide a thermoelectric generator and a method for manufacturing the same.
또한, 본 발명은 상기 열전 발생기를 포함하는 열전 발생 장치를 제공하는 것을 목적으로 한다.Additionally, the present invention aims to provide a thermoelectric generator including the thermoelectric generator.
다만, 본 발명의 실시예가 이루고자 하는 기술적 과제는 상기된 바와 같은 기술적 과제들로 한정되지 않으며, 또 다른 기술적 과제들이 존재할 수 있다.However, the technical problems to be achieved by the embodiments of the present invention are not limited to the technical problems described above, and other technical problems may exist.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제 1 측면에 따른 열전 발전기는: 방열핀, 공기 분배핀 및 공기 유로를 포함하는 열전 발전기에 있어서, 상기 방열핀의 일측면에 공기 방열부가 배치되어 있고, 상기 방열핀의 타측면에 열전 소자가 배치되고, 상기 방열핀의 상기 일측면 방향으로 상기 공기 분배핀이 배치되고, 상기 공기 분배핀은 하부 부재, 상기 하부 부재 상에 형성되고, 내부의 공간을 적어도 둘 이상의 영역으로 구분하는 공기 분배부, 및 상기 하부 부재의 일측면 및 타측면 각각에 형성된 벽면부를 포함하고, 상기 공기 유로는 상기 공기 방열부 및 상기 공기 분배부 사이에 배치된 것을 특징으로 한다. As a technical means for achieving the above-described technical problem, a thermoelectric generator according to the first aspect of the present invention is: a thermoelectric generator including a heat dissipation fin, an air distribution fin, and an air flow path, wherein an air heat dissipation portion is disposed on one side of the heat dissipation fin. A thermoelectric element is disposed on the other side of the heat dissipation fin, the air distribution fin is disposed in the direction of the one side of the heat dissipation fin, the air distribution fin is formed on a lower member, the lower member, and an internal space. an air distribution unit dividing the air into at least two areas, and a wall portion formed on each of one side and the other side of the lower member, wherein the air flow path is disposed between the air heat dissipation unit and the air distribution unit. do.
본 발명의 일 구현예에 따르면, 상기 공기 분배부는, 상기 공기 분배핀의 일면에 형성된 공기 유입부 및 상기 공기 분배핀의 타면에 형성된 공기 배출부를 포함하고, 상기 공기 유입부에 유입된 공기는 상기 공기 방열부를 거쳐 상기 공기 배출부를 통해 배출될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air distribution unit includes an air inlet formed on one side of the air distribution fin and an air outlet formed on the other side of the air distribution fin, and the air flowing into the air inlet is It may be discharged through the air discharge unit via the air heat dissipation unit, but is not limited thereto.
본 발명의 일 구현예에 따르면, 상기 공기 방열부는, 상기 방열 핀의 타측면 방향 상에 상기 열전 소자가 설치되는 방열 기판; 및 상기 방열핀의 일측면 방향으로 상기 방열 기판 상에 형성되는 복수의 방열 분배핀을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air heat dissipation unit includes a heat dissipation substrate on which the thermoelectric element is installed on the other side of the heat dissipation fin; and a plurality of heat dissipation distribution fins formed on the heat dissipation substrate in the direction of one side of the heat dissipation fin, but are not limited thereto.
본 발명의 일 구현예에 따르면, 상기 공기 분배부는, 상기 공기 분배핀의 일면 및 타면 각각에 형성된 공기 분배판, 및 상기 공기 분배판을 연결하고 상기 공기 분배핀 내부의 공간을 둘 이상의 공간으로 구분하는 유로 분리판을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air distribution unit includes an air distribution plate formed on each of one side and the other side of the air distribution fin, and connects the air distribution plate and divides the space inside the air distribution pin into two or more spaces. It may include, but is not limited to, a flow path separator plate.
본 발명의 일 구현예에 따르면, 상기 공기 유로는, 상기 열전 발전기의 외부로부터 공기가 유입되는 공기 유입 유로, 상기 열전 발전기의 내부로부터 공기가 배출되는 공기 배출 유로, 및 상기 공기 유입 유로와 상기 공기 배출 유로를 연결하는 공기 분배 유로를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air passage includes an air inlet passage through which air flows in from the outside of the thermoelectric generator, an air discharge passage through which air is discharged from the inside of the thermoelectric generator, and the air inlet passage and the air. It may include, but is not limited to, an air distribution flow path connecting the discharge flow path.
본 발명의 일 구현예에 따르면, 상기 공기 유입부의 일면은 개방되고, 타면은 폐쇄되며, 상기 공기 배출부의 일면은 폐쇄되고, 타면은 개방된 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, one side of the air inlet may be open and the other side may be closed, and one side of the air outlet may be closed and the other side may be open, but are not limited thereto.
본 발명의 일 구현예에 따르면, 상기 공기 유입부의 일면과 상기 공기 배출부의 일면은 서로 대향되어 배치될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, one surface of the air inlet and one surface of the air outlet may be disposed to face each other, but the present invention is not limited thereto.
본 발명의 일 구현예에 따르면, 상기 공기 유입부의 타면과 상기 공기 배출부의 타면은 서로 대향되어 배치될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the other surface of the air inlet and the other surface of the air outlet may be disposed to face each other, but are not limited thereto.
본 발명의 일 구현예에 따르면, 상기 공기 유입부의 일면 및 상기 공기 분배부에 의해 이루어진 유입 영역에 유입된 공기는 상기 공기 유로를 거쳐 상기 공기 배출부의 타면 및 상기 공기 분배부에 의해 이루어진 배출 영역으로 배출되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air flowing into the inflow area formed by one surface of the air inlet and the air distribution unit passes through the air passage to the other surface of the air discharge part and the discharge area formed by the air distribution unit. It may be discharged, but is not limited to this.
본 발명의 일 구현예에 따르면, 상기 공기 유입부에 유입된 공기가 공기 유로를 통과하는 과정에서, 상기 열전 소자는 상기 공기에 의해 가열되어 발전할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, when the air flowing into the air inlet passes through the air passage, the thermoelectric element may be heated by the air and generate power, but is not limited thereto.
본 발명의 일 구현예에 따르면, 상기 열전 발생기는 냉각부를 더 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the thermoelectric generator may further include a cooling unit, but is not limited thereto.
본 발명의 제 2 측면에 따른 열전 발전기의 제조 방법은: 상기 제 1 측면에 따른 방법에 의해 제조된 열전 발전기의 제조 방법에 있어서, 하부 부재의 양측면 상에 벽면부를 형성하는 단계; 상기 하부 부재 상에, 상기 하부 부재와 상기 벽면부 사이의 내부 공간을 적어도 둘 이상의 영역으로 구분하는 공기 분배부를 형성하는 단계; 방열 기판의 타측면 상에 열전 소자를 설치하는 단계; 상기 방열 기판의 일측면 상에 복수의 방열 분배핀을 형성하여 방열핀을 형성하는 단계; 및 상기 방열핀의 상기 일측면 방향 상에 상기 공기 분배핀을 배치시킴으로써 공기 유로를 형성하는 단계를 포함하는 것을 특징으로 한다. A method of manufacturing a thermoelectric generator according to the second aspect of the present invention includes: forming a wall portion on both sides of the lower member; forming an air distribution portion on the lower member to divide the internal space between the lower member and the wall portion into at least two regions; Installing a thermoelectric element on the other side of the heat dissipation substrate; forming a heat dissipation fin by forming a plurality of heat dissipation distribution fins on one side of the heat dissipation substrate; and forming an air flow path by disposing the air distribution fin on the one side direction of the heat dissipation fin.
본 발명의 일 구현예에 따르면, 상기 공기 분배부를 형성하는 단계는, 유로 분리판의 양측 말단부에 상기 일면의 공기 분배판 및 상기 타면의 공기 분배판을 포함하는 구조체를 형성하는 단계; 및 상기 유로 분리판이 상기 하부 부재 및 상기 양측면의 벽면부 사이의 영역을 적어도 둘 이상의 영역으로 구분하도록, 상기 일면의 공기 분배판 및 상기 타면의 공기 분배판을 중심으로 상기 구조체를 폴딩하는 단계;를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, forming the air distribution unit includes forming a structure including the air distribution plate on one side and the air distribution plate on the other side at both end portions of the flow path separation plate; and folding the structure around the air distribution plate on one side and the air distribution plate on the other side so that the flow path dividing plate divides the area between the lower member and the wall portions on both sides into at least two or more areas. It may include, but is not limited to this.
본 발명의 일 구현예에 따르면, 상기 구조체는, 상기 공기 분배판과 상기 유로 분리판이 교번하여 나타나는 구조를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the structure may include a structure in which the air distribution plate and the flow path separation plate appear alternately, but is not limited thereto.
본 발명의 일 구현예에 따르면, 상기 일면의 공기 분배판에 의해 상기 공기 유입부의 일면은 개방되되 타면은 폐쇄되고, 상기 타면의 공기 분배판에 의해 상기 공기 배출부의 일면은 폐쇄되되 타면은 개방되도록, 상기 구조체가 폴딩될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, one side of the air inlet is open but the other side is closed by the air distribution plate on the one side, and one side of the air discharge portion is closed but the other side is open by the air distribution plate on the other side. , the structure may be folded, but is not limited thereto.
본 발명의 일 구현예에 따르면, 상기 공기 유입부의 일면과 상기 공기 배출부의 일면은 서로 대향되고, 상기 공기 유입부의 타면과 상기 공기 배출부의 타면은 서로 대향되도록 상기 구조체가 폴딩된 것일수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the structure may be folded so that one side of the air inlet portion and one side of the air outlet portion face each other, and the other side of the air inlet portion and the other side of the air discharge portion face each other. It is not limited.
본 발명의 일 구현예에 따르면, 상기 방열 분배핀 및 상기 공기 분배부가 이루는 각도는 70° 내지 110° 일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the angle formed by the heat dissipation distribution fin and the air distribution part may be 70° to 110°, but is not limited thereto.
본 발명의 일 구현예에 따르면, 상기 공기 유로는 상기 공기 분배핀 및 상기 방열 분배핀에 의해 형성되는 공기 유입 유로, 공기 분배 유로, 및 공기 배출 유로를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air flow path may include an air inflow path, an air distribution path, and an air discharge path formed by the air distribution fin and the heat dissipation distribution fin, but is not limited thereto.
본 발명의 제 3 측면은, 상기 제 1 측면에 따른 열전 발전기를 포함하는, 열전 발생 장치를 제공한다.A third aspect of the present invention provides a thermoelectric generator including the thermoelectric generator according to the first aspect.
본 발명의 일 구현예에 따르면, 상기 열전 발생 장치는 상기 공기 유입부에서 유입된 공기 및 상기 열전 소자의 접촉에 의해 전기를 발생시킬 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the thermoelectric generator may generate electricity by contact between the thermoelectric element and air introduced from the air inlet, but is not limited thereto.
상술한 과제 해결 수단은 단지 예시적인 것으로서, 본 발명을 제한하려는 의도로 해석되지 않아야 한다. 상술한 예시적인 실시예 외에도, 도면 및 발명의 상세한 설명에 추가적인 실시예가 존재할 수 있다.The above-described means for solving the problem are merely illustrative and should not be construed as limiting the present invention. In addition to the exemplary embodiments described above, additional embodiments may be present in the drawings and detailed description of the invention.
종래의 열전 발전기의 열 교환 핀은, 입구와 출구 사이의 온도 차이가 커서 열전 소자의 효율이 낮고 편차가 큰 단점이 있었다.The heat exchange fin of a conventional thermoelectric generator had a disadvantage in that the temperature difference between the inlet and the outlet was large, resulting in low efficiency and large deviation of the thermoelectric element.
그러나 본 발명에 따른 열전 발전기는, 공기 분배 핀과 방열 핀으로 구성된 것으로서, 공기 유동 구조를 고려하여 제조되었기 때문에, 종래의 열전 발전기가 갖는 효율 저하 및 입구와 출구 사이의 온도 차이의 문제점을 보완할 수 있다.However, since the thermoelectric generator according to the present invention is composed of an air distribution fin and a heat dissipation fin and is manufactured in consideration of the air flow structure, it can compensate for the problems of low efficiency and temperature difference between the inlet and outlet of the conventional thermoelectric generator. You can.
또한, 본 발명에 따른 열전 발전기는 종래의 열전 발전기에 비해 열전 소자의 효율이 향상되어 폐열을 통해 더 많은 전력의 회수가 가능하다.In addition, the thermoelectric generator according to the present invention has improved thermoelectric element efficiency compared to the conventional thermoelectric generator, allowing more power to be recovered through waste heat.
또한, 본 발명에 따른 열전 발전기는 차량, 플랜트 등 다양한 열전 발전이 필요한 곳에 다양하게 적용 가능하다.In addition, the thermoelectric generator according to the present invention can be applied to various places where thermoelectric power generation is required, such as vehicles and plants.
또한, 종래의 열전 발전기 열 교환 핀은 고온의 공기가 가진 열 에너지를 열전 소자로 충분히 전달하지 않기 때문에, 상기 열 교환핀에 배치된 열전 소자의 효율이 떨어져 전력 회수의 능력이 저하된다. 그러나, 본 발명에 따른 열전 발전기는 고온의 공기가 공기 분배 핀으로 인해 각각의 공기 방열핀으로 분배되고, 열전 소자가 위치한 영역에서 충돌이 일어난 후, 공기 방열핀을 거쳐 공기 배출부를 통해 유출되는 유동구조를 가진다. 이러한 공기 유동구조에 의해 열전 소자에서 충돌 효과가 일어남으로써 열 에너지를 충분히 전달되지 않는 문제점을 보완할 수 있다. 이에 따라 전력 회수 능력이 증가하기 때문에 에너지 및 비용 절감의 효과를 얻을 수 있다.In addition, because the heat exchange fin of a conventional thermoelectric generator does not sufficiently transfer the heat energy of high-temperature air to the thermoelectric element, the efficiency of the thermoelectric element disposed on the heat exchange fin is reduced, thereby reducing the power recovery ability. However, the thermoelectric generator according to the present invention has a flow structure in which high-temperature air is distributed to each air heat dissipation fin due to the air distribution fin, and after a collision occurs in the area where the thermoelectric element is located, it flows out through the air discharge portion through the air heat dissipation fin. have Due to this air flow structure, a collision effect occurs in the thermoelectric element, thereby solving the problem of insufficient transfer of heat energy. As a result, power recovery ability increases, resulting in energy and cost savings.
다만, 본 발명에서 얻을 수 있는 효과는 상기된 바와 같은 효과들로 한정되지 않으며, 또 다른 효과들이 존재할 수 있다.However, the effects that can be obtained from the present invention are not limited to the effects described above, and other effects may exist.
도 1 은 본 발명의 일 구현예에 따른 열전 발전기의 모식도이다.1 is a schematic diagram of a thermoelectric generator according to an embodiment of the present invention.
도 2 는 본 발명의 일 구현예에 따른 열전 발전기의 모식도이다.Figure 2 is a schematic diagram of a thermoelectric generator according to an embodiment of the present invention.
도 3 은 본 발명의 일 구현예에 따른 방열핀의 모식도이다.Figure 3 is a schematic diagram of a heat dissipation fin according to an embodiment of the present invention.
도 4 는 본 발명의 일 구현예에 따른 방열핀의 모식도이다.Figure 4 is a schematic diagram of a heat dissipation fin according to an embodiment of the present invention.
도 5 는 본 발명의 일 구현예에 따른 방열핀의 모식도이다.Figure 5 is a schematic diagram of a heat dissipation fin according to an embodiment of the present invention.
도 6 는 본 발명의 일 구현예에 따른 방열핀의 모식도이다.Figure 6 is a schematic diagram of a heat dissipation fin according to an embodiment of the present invention.
도 7 은 본 발명의 일 구현예에 따른 공기 분배핀의 모식도이다.Figure 7 is a schematic diagram of an air distribution pin according to an embodiment of the present invention.
도 8 은 본 발명의 일 구현예에 따른 공기 분배핀의 모식도이다.Figure 8 is a schematic diagram of an air distribution pin according to an embodiment of the present invention.
도 9 는 본 발명의 일 구현예에 따른 공기 분배핀의 모식도이다.Figure 9 is a schematic diagram of an air distribution pin according to an embodiment of the present invention.
도 10 은 본 발명의 일 구현예에 따른 열전 발전기의 모식도이다.Figure 10 is a schematic diagram of a thermoelectric generator according to an embodiment of the present invention.
도 11 은 본 발명의 일 구현예에 따른 열전 발전기의 모식도이다.Figure 11 is a schematic diagram of a thermoelectric generator according to an embodiment of the present invention.
도 12 는 본 발명의 일 구현예에 따른 공기 분배핀의 형성 과정의 일부를 나타낸 도면이다Figure 12 is a diagram showing part of the process of forming an air distribution fin according to an embodiment of the present invention.
도 13 은 본 발명의 일 구현예에 따른 열전 발전기의 제조 방법의 순서도이다.Figure 13 is a flowchart of a method for manufacturing a thermoelectric generator according to an embodiment of the present invention.
도 14 는 본 발명의 일 구현예에 따른 열전 발전기의 모식도이다.Figure 14 is a schematic diagram of a thermoelectric generator according to an embodiment of the present invention.
아래에서는 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예를 상세히 설명한다. Below, with reference to the attached drawings, embodiments of the present invention will be described in detail so that those skilled in the art can easily implement the present invention.
그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.However, the present invention may be implemented in many different forms and is not limited to the embodiments described herein. In order to clearly explain the present invention in the drawings, parts that are not related to the description are omitted, and similar parts are given similar reference numerals throughout the specification.
본 발명의 명세서 전체에서, 어떤 부분이 다른 부분과 "연결"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우 뿐 아니라, 그 중간에 다른 소자를 사이에 두고 "전기적으로 연결"되어 있는 경우도 포함한다 Throughout the specification of the present invention, when a part is said to be “connected” to another part, this means not only when it is “directly connected” but also when it is “electrically connected” with another element in between. also includes
본 발명의 명세서 전체에서, 어떤 부재가 다른 부재 "상에", "상부에", "상단에", "하에", "하부에", "하단에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.Throughout the specification of the present invention, when a member is said to be located “on”, “in the upper part”, “at the top”, “below”, “at the bottom”, or “at the bottom” of another member, this means that a member This includes not only cases where a member is in contact with a member, but also cases where another member exists between two members.
본 발명의 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification of the present invention, when a part is said to “include” a certain component, this means that it may further include other components rather than excluding other components unless specifically stated to the contrary.
본 명세서에서 사용되는 정도의 용어 "약", "실질적으로" 등은 언급된 의미에 고유한 제조 및 물질 허용오차가 제시될 때 그 수치에서 또는 그 수치에 근접한 의미로 사용되고, 본 발명의 이해를 돕기 위해 정확하거나 절대적인 수치가 언급된 개시 내용을 비양심적인 침해자가 부당하게 이용하는 것을 방지하기 위해 사용된다. 또한, 본 발명의 명세서 전체에서, "~ 하는 단계" 또는 "~의 단계"는 "~를 위한 단계"를 의미하지 않는다. As used herein, the terms “about,” “substantially,” and the like are used to mean at or close to a numerical value when manufacturing and material tolerances inherent in the stated meaning are given, and are used to enhance the understanding of the present invention. Precise or absolute figures are used to assist in preventing unscrupulous infringers from taking unfair advantage of stated disclosures. Additionally, throughout the specification of the present invention, “a step of” or “a step of” does not mean a “step for”.
본 발명의 명세서 전체에서, 마쿠시 형식의 표현에 포함된 "이들의 조합"의 용어는 마쿠시 형식의 표현에 기재된 구성 요소들로 이루어진 군에서 선택되는 하나 이상의 혼합 또는 조합을 의미하는 것으로서, 상기 구성 요소들로 이루어진 군에서 선택되는 하나 이상을 포함하는 것을 의미한다.Throughout the specification of the present invention, the term "combination thereof" included in the Markushi format expression means a mixture or combination of one or more selected from the group consisting of the components described in the Markushi format expression, It means containing one or more selected from the group consisting of constituent elements.
본 발명의 명세서 전체에서, "A 및/또는 B" 의 기재는, "A 또는 B, 또는, A 및 B" 를 의미한다.Throughout the specification of the present invention, description of “A and/or B” means “A or B, or A and B.”
이하에서는 본 발명의 열전 발생기 및 이의 제조 방법에 대하여, 구현예 및 실시예와 도면을 참조하여 구체적으로 설명하도록 한다. 그러나 본 발명이 이러한 구현예 및 실시예와 도면에 제한되는 것은 아니다.Hereinafter, the thermoelectric generator of the present invention and its manufacturing method will be described in detail with reference to implementation examples, examples, and drawings. However, the present invention is not limited to these embodiments, examples, and drawings.
상기한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제 1 측면은 방열핀(200), 공기 분배핀(100) 및 공기 유로(300)를 포함하는 열전 발전기(10)에 있어서, 방열핀(200)의 일측면에 공기 방열부가 배치되어 있고, 방열핀(200)의 타측면에 열전 소자(230)가 배치되고, 방열핀(200)의 일측면 방향으로 공기 분배핀(100)이 배치되고, 공기 분배핀(100)은 하부 부재(140), 하부 부재(140) 상에 형성되고, 내부의 공간을 적어도 둘 이상의 영역으로 구분하는 공기 분배부(101), 및 하부 부재(140)의 일측면 및 타측면 각각에 형성된 벽면부를 포함하고, 공기 유로(300)는 공기 방열부 및 공기 분배부(101) 사이에 배치된 것인, 열전 발전기(10)를 제공한다.As a technical means for achieving the above-described technical problem, the first aspect of the present invention is a thermoelectric generator 10 including a heat dissipation fin 200, an air distribution fin 100, and an air flow path 300, the heat dissipation fin 200 ), an air heat dissipation unit is disposed on one side, a thermoelectric element 230 is disposed on the other side of the heat dissipation fin 200, and an air distribution fin 100 is disposed in the direction of one side of the heat dissipation fin 200, and air distribution The fin 100 is formed on the lower member 140, the air distribution part 101 that divides the internal space into at least two areas, and one side and the other of the lower member 140. A thermoelectric generator 10 is provided, including wall portions formed on each side, and the air flow path 300 is disposed between the air heat radiation portion and the air distribution portion 101.
도 1, 도 2, 도 10, 도 11, 및 도 14 는 본 발명의 일 구현예에 따른 열전 발전기의 모식도이고, 도 3 내지 도 6 은 본 발명의 일 구현예에 따른 방열핀의 모식도이고, 도 7, 도 8, 및 도 9 는 본 발명의 일 구현예에 따른 공기 분배핀의 모식도이고, 도 12 는 본 발명의 일 구현예에 따른 공기 분배핀의 형성 과정의 일부를 나타낸 도면이고, 도 13 은 본 발명의 일 구현예에 따른 열전 발전기의 제조 방법의 순서도이다.1, 2, 10, 11, and 14 are schematic diagrams of a thermoelectric generator according to an embodiment of the present invention, and FIGS. 3 to 6 are schematic diagrams of a heat dissipation fin according to an embodiment of the present invention. 7, 8, and 9 are schematic diagrams of air distribution fins according to an embodiment of the present invention, Figure 12 is a diagram showing a part of the formation process of the air distribution fins according to an embodiment of the present invention, and Figure 13 is a flowchart of a method for manufacturing a thermoelectric generator according to an embodiment of the present invention.
이와 관련하여, 도 7 은 공기 분배핀(100)의 공기 분배부(101)의 모식도로서, 후술하겠지만 하부 부재(140) 상에 벽면부가 형성되지 않았을 경우 공기 분배부(101)의 구조를 나타낸 것이다. 도 8 및 도5b 는 도 7 의 A-A 단면 및 B-B 단면으로서, 후술하겠지만 도 8 는 공기 유입부(120)의 타면(122)이, 도 9 는 공기 배출부(130)의 일면(131)이 폐쇄된 구조로서, 공기 유입부(120)의 일면(121) 및 공기 배출부(130)의 타면(132)는 개방된 구조이다.In this regard, Figure 7 is a schematic diagram of the air distribution part 101 of the air distribution pin 100, which shows the structure of the air distribution part 101 when the wall portion is not formed on the lower member 140, as will be described later. . FIGS. 8 and 5B are cross-sections A-A and B-B of FIG. 7. As will be described later, FIG. 8 shows the other side 122 of the air inlet 120, and FIG. 9 shows one side 131 of the air outlet 130 closed. In this structure, one side 121 of the air inlet 120 and the other side 132 of the air outlet 130 are open structures.
또한, 도 7, 도5a, 도 9, 도 10, 및 도6b 의 지시선의 일측 말단에 형성된 물결 표시는 해당 영역이 빈 공간임을 의미한다.Additionally, the wave mark formed at one end of the indicator line in FIGS. 7, 5A, 9, 10, and 6B means that the corresponding area is an empty space.
본 발명에 따른 열전 발전기(10)는 방열핀(200) 및 공기 분배핀(100)이 결합되어 형성된 것으로서, 이하의 설명은 도 1 내지 도 13 을 참고할 수 있다.The thermoelectric generator 10 according to the present invention is formed by combining a heat dissipation fin 200 and an air distribution fin 100, and the following description may refer to FIGS. 1 to 13.
일반적으로 열전 소자는 양측면의 온도차를 통해 열 에너지를 전기 에너지로 변환하거나, 또는 전기 에너지를 열 에너지로 변환하는 열전 현상을 이용하는 소자이다. 이러한 열전소자를 활용하여 열을 전기로 변환시켜 전력을 회수하는 장치가 열전 발전기(10)이다. 이러한 열전 발전기(10)는 내부에 고온의 배기가스와 열교환하는 고온부 열교환 핀, 열전 발전기(10) 외부에 저온의 냉각수가 흐르는 저온부 열교환 핀 등을 포함하고, 열전 발전기(10)의 효율을 높이기 위해서는 내부에 흐르는 배기가스의 높은 열에너지가 열전소자에 효율적으로 전달되어야 한다. 그러나, 종래의 열전 발전기(10)에서 사용되고 있는 고온부의 열교환 핀은 배기가스의 열 에너지를 열전 소자로 충분히 전달하지 못하는 단점이 있다. 또한, 열 교환핀의 입구에 들어오는 공기는 이동과정에서 열 교환되오 배기가스의 온도가 감소하게 되어, 입구쪽의 배치된 열전 소자는 높은 온도 차이에 의해 효율이 증가하지만, 출구쪽에 배치된 열전 소자는 온도 차이가 작아 효율이 감소하는 문제가 존재한다.In general, a thermoelectric element is a device that converts thermal energy into electrical energy through a temperature difference between two sides, or uses a thermoelectric phenomenon that converts electrical energy into thermal energy. A thermoelectric generator 10 is a device that recovers power by converting heat into electricity using such thermoelectric elements. This thermoelectric generator 10 includes a high-temperature heat exchange fin that exchanges heat with the high-temperature exhaust gas inside, a low-temperature heat exchange fin through which low-temperature coolant flows outside the thermoelectric generator 10, etc. In order to increase the efficiency of the thermoelectric generator 10, The high thermal energy of the exhaust gas flowing inside must be efficiently transferred to the thermoelectric element. However, the heat exchange fin of the high temperature portion used in the conventional thermoelectric generator 10 has the disadvantage of not sufficiently transferring the heat energy of the exhaust gas to the thermoelectric element. In addition, the air entering the inlet of the heat exchange fin exchanges heat during the movement process, which reduces the temperature of the exhaust gas. The efficiency of the thermoelectric element placed at the inlet increases due to the high temperature difference, but the thermoelectric element placed at the outlet increases. There is a problem of reduced efficiency due to the small temperature difference.
이러한 문제를 해결하기 위해, 본 발명에 따른 열전 발전기(10)는 공기가 유입되는 유로와 배출되는 유로를 분리함으로써 입구 쪽의 열전 소자(230)와 출구 쪽의 열전 소자(230) 사이의 열전 발전 효율 차이를 낮출 수 있다.To solve this problem, the thermoelectric generator 10 according to the present invention generates thermoelectric power between the thermoelectric element 230 on the inlet side and the thermoelectric element 230 on the outlet side by separating the flow path through which air flows in and the air discharge path. The efficiency gap can be reduced.
본 발명의 일 구현예에 따르면, 열전 발전기(10)는 방열핀(200), 공기 분배핀(100), 및 방열핀(200)과 공기 분배핀(100)이 접촉함으로써 형성된 공기 유로(300)를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the thermoelectric generator 10 includes a heat dissipation fin 200, an air distribution fin 100, and an air flow path 300 formed by contact between the heat dissipation fin 200 and the air distribution fin 100. It can be done, but is not limited to this.
도 2 를 참조하면, 본 발명에 따른 열전 발전기(10)는 방열핀(200)과 공기 분배핀(100)을 포함하는 것이다. 후술하겠으나 본 발명에 따른 열전 발생 장치는 열전 발전기(10)를 적어도 하나 이상 포함할 수 있다.Referring to Figure 2, the thermoelectric generator 10 according to the present invention includes a heat dissipation fin 200 and an air distribution fin 100. As will be described later, the thermoelectric generator according to the present invention may include at least one thermoelectric generator 10.
도 3 내지 도 6 을 참조하면, 본 발명의 일 구현예에 따른 방열핀(200)은 일측면에 공기 방열부가 배치되어 있고, 타측면에 열전 소자(230)가 배치될 수 있으나, 이에 제한되는 것은 아니다.Referring to FIGS. 3 to 6, the heat dissipation fin 200 according to an embodiment of the present invention may have an air heat dissipation portion disposed on one side and a thermoelectric element 230 may be disposed on the other side, but is not limited thereto. no.
본 발명의 일 구현예에 따르면, 공기 방열부는, 방열핀(200)의 타측면 방향 상에 열전 소자(230)가 설치되는 방열 기판(210); 및 방열핀(200)의 일측면 방향으로 방열 기판(210) 상에 형성되는 복수의 방열 분배핀(220)을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air heat dissipation unit includes a heat dissipation substrate 210 on which a thermoelectric element 230 is installed on the other side of the heat dissipation fin 200; and a plurality of heat dissipation distribution fins 220 formed on the heat dissipation substrate 210 in the direction of one side of the heat dissipation fin 200, but are not limited thereto.
방열 분배핀(220)은 일정한 간격으로 방열 기판(210) 상에 형성되는 것으로서, 후술하겠지만 방열 분배핀(220)은 공기 분배핀(100)의 공기 분배부(101)와 접촉하고, 방열 분배핀(220) 사이의 영역은 공기 분배 유로(320)로서 공기 유입 유로(310)를 공기 배출 유로(330)와 연결시키는 역할을 수행한다.The heat dissipation distribution fins 220 are formed on the heat dissipation substrate 210 at regular intervals. As will be described later, the heat dissipation distribution fins 220 are in contact with the air distribution portion 101 of the air distribution fin 100, and the heat dissipation distribution fins 220 are in contact with the air distribution portion 101 of the air distribution fin 100. The area between 220 is an air distribution passage 320 that connects the air inlet passage 310 with the air discharge passage 330.
즉, 방열핀(200)은 타측면에 열전 소자(230)가 배치되고, 일측면 상에 복수의 방열 분배핀(220)을 포함하는 방열 기판(210)을 포함할 수 있는 것으로서, 방열핀(200)은 방열 분배핀(220)이 공기 분배핀(100)과 접촉하도록 배치될 수 있으나, 이에 제한되는 것은 아니다.That is, the heat dissipation fin 200 may include a heat dissipation substrate 210 with a thermoelectric element 230 disposed on the other side and a plurality of heat dissipation distribution fins 220 on one side, and the heat dissipation fin 200 The heat dissipation distribution fin 220 may be arranged to contact the air distribution fin 100, but is not limited thereto.
본 발명의 일 구현예에 따르면, 공기 분배핀(100)은 하부 부재(140), 하부 부재(140) 상에 형성되고, 내부의 공간을 적어도 둘 이상의 영역으로 구분하는 공기 분배부(101), 및 하부 부재(140)의 일측면 및 타측면 각각에 형성된 벽면부를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air distribution pin 100 includes a lower member 140, an air distribution portion 101 formed on the lower member 140 and dividing the internal space into at least two or more areas, and wall portions formed on one side and the other side of the lower member 140, but are not limited thereto.
이와 관련하여, 일측면의 벽면부(112) 및 타측면의 벽면부(113)는 하부 부재(140)의 양 측면의 최외곽에 형성된 것으로서, 공기 분배부(101)와 함께 내부의 공간을 적어도 둘 이상의 영역으로 구분할 수 있다.In this regard, the wall portion 112 on one side and the wall portion 113 on the other side are formed on the outermost sides of both sides of the lower member 140, and together with the air distribution portion 101, occupy the internal space at least. It can be divided into two or more areas.
본 발명의 일 구현예에 따르면, 공기 분배부(101)는, 공기 분배핀(100)의 일면에 형성된 공기 유입부(120) 및 공기 분배핀(100)의 타면에 형성된 공기 배출부(130)를 포함하고, 공기 유입부(120)에 유입된 공기는 공기 방열부를 거쳐 공기 배출부(130)를 통해 배출될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air distribution unit 101 includes an air inlet 120 formed on one side of the air distribution pin 100 and an air outlet 130 formed on the other side of the air distribution pin 100. It includes, and the air flowing into the air inlet 120 may pass through the air heat dissipation unit and be discharged through the air discharge unit 130, but is not limited thereto.
본 발명의 일 구현예에 따르면, 공기 분배부(101)는 영역 구분판(110) 및 공기 분배판을 포함할 수 있으나, 이에 제한되는 것은 아니다. 이와 관련하여 공기 분배부(101)는 영역 구분판(110)과 공기 분배판이 교번하여 나타나는 구조를 갖되, 공기 분배판이 공기 유입부(120)의 타면(122) 및 공기 배출부(130)의 일면(131)을 폐쇄하도록 공기 분배판을 기준으로 폴딩됨으로써 형성될 수 있다.According to one embodiment of the present invention, the air distribution unit 101 may include a zone dividing plate 110 and an air distribution plate, but is not limited thereto. In this regard, the air distribution unit 101 has a structure in which the area dividing plate 110 and the air distribution plate appear alternately, and the air distribution plate is connected to the other side 122 of the air inlet 120 and one side of the air outlet 130. It can be formed by folding relative to the air distribution plate to close (131).
구체적으로, 공기 분배부(101)는 하부 부재(140) 상에 형성된 것을 의미하는 것으로서, 공기 유입부(120) 및 공기 배출부(130)는 공기 분배부(101)에 의해 구분되는 영역을 의미하고, 영역 구분판(110) 및 공기 분배판은 공기 분배부(101)를 구성하는 부재를 의미하는 것으로서, 후술하겠지만 영역 구분판(110)과 공기 분배판을 포함하는 구조체가 폴딩됨으로써 공기 분배부(101)가 형성될 수 있다.Specifically, the air distribution unit 101 refers to what is formed on the lower member 140, and the air inlet 120 and air outlet 130 refer to areas divided by the air distribution unit 101. And, the zone divider plate 110 and the air distribution plate refer to members constituting the air distribution unit 101. As will be described later, the structure including the zone divider plate 110 and the air distribution plate is folded to form the air distribution portion. (101) can be formed.
후술하겠지만, 영역 구분판(110)은 유로 구분판(111) 및 벽면부를 포함하고, 벽면부는 일측면의 벽면부(112) 및 타측면의 벽면부(113)를 포함할 수 있다. 영역 구분판(110)은 일면과 타면를 구분하는 것으로서, 벽면부는 열전 발전기(10)의 내부와 외부를 분리하고, 유로 구분판(111)은 공기 유입 유로(310)와 공기 배출 유로(330)을 분리할 수 있다.As will be described later, the region dividing plate 110 includes a flow path dividing plate 111 and a wall portion, and the wall portion may include a wall portion 112 on one side and a wall portion 113 on the other side. The area dividing plate 110 divides one side and the other side, and the wall portion separates the inside and outside of the thermoelectric generator 10, and the flow path dividing plate 111 separates the air inlet flow path 310 and the air discharge flow path 330. It can be separated.
공기 분배핀(100)은 하부 부재(140) 및 공기 분배부(101)를 포함하는 것일 수 있다.The air distribution pin 100 may include a lower member 140 and an air distribution unit 101.
이와 관련하여, 공기 분배핀(100)의 일면에는 공기 유입부(120)가 형성되고, 공기 분배핀(100)의 타면에는 공기 배출부(130)가 형성되며, 열전 발전기(10)를 통과하는 공기는 공기 유입부(120), 공기 방열부, 및 공기 배출부(130)를 통과하는 경로를 따라 움직일 수 있다.In this regard, an air inlet 120 is formed on one side of the air distribution pin 100, and an air outlet 130 is formed on the other side of the air distribution pin 100, and the air passing through the thermoelectric generator 10 is formed. Air may move along a path passing through the air inlet 120, the air radiator, and the air outlet 130.
본 발명의 일 구현예에 따르면, 공기 유입부(120)의 일면(121)은 개방되고, 타면(122)은 폐쇄되며, 공기 배출부(130)의 일면(131)은 폐쇄되고, 타면(132)은 개방된 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, one side 121 of the air inlet 120 is open, the other side 122 is closed, and one side 131 of the air outlet 130 is closed, and the other side 132 is closed. ) may be open, but is not limited thereto.
본 발명의 일 구현예에 따르면, 공기 유입부(120)의 일면(121)과 공기 배출부(130)의 일면(131)은 서로 대향되어 배치될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, one surface 121 of the air inlet 120 and one surface 131 of the air outlet 130 may be disposed to face each other, but are not limited thereto.
본 발명의 일 구현예에 따르면, 공기 유입부(120)의 타면(122)과 공기 배출부(130)의 타면(132)은 서로 대향되어 배치될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the other surface 122 of the air inlet 120 and the other surface 132 of the air outlet 130 may be disposed to face each other, but are not limited thereto.
이와 관련하여, 공기 유입부(120)의 일면(121) 및 타면(122), 및 공기 배출부(130)의 일면(131) 및 타면(132)의 기재는, 공기 유입부(120)의 일영역 및 타영역, 및 공기 배출부(130)의 일영역 및 타영역으로도 표현될 수 있다. 공기 유입부(120) 및 공기 배출부(130)는 개방된 부분과 폐쇄된 부분이 교번하여 나타나되 공기 유입부(120)의 개방된 부분과 공기 배출부(130)의 폐쇄된 부분이 대향되고, 공기 유입부(120)의 폐쇄된 부분과 공기 배출부(130)의 개방된 부분이 대향된다.In this regard, the description of the one side 121 and the other side 122 of the air inlet 120 and the one side 131 and the other side 132 of the air outlet 130 are one side of the air inlet 120. It may also be expressed as a region and other regions, and as one region and another region of the air discharge unit 130. The air inlet 120 and the air outlet 130 have open and closed parts alternating with each other, and the open part of the air inlet 120 and the closed part of the air outlet 130 face each other. , the closed portion of the air inlet 120 and the open portion of the air outlet 130 are opposed to each other.
도 7, 도 8 및 도 9 를 참조하면, 공기 유입부(120)의 일면(121)은 개방되고 타면(122)은 폐쇄된 것이고, 공기 배출부(130)의 일면(131)은 폐쇄되고 타면(132)은 개방되며, 개방된 면과 폐쇄된 면끼리 서로 대향되도록 배치될 수 있다. 후술하겠지만, 공기 유입부(120)의 일면(121)을 통해 유입된 공기는, 방열핀(200)과 공기 분배핀(100)이 접촉하여 형성된 공간, 보다 구체적으로 방열 분배핀(220)과 공기 분배부(101)가 접촉하여 형성된 공기 유로(300)를 거쳐 공기 배출부(130)의 타면(132)을 통해 배출될 수 있다.Referring to FIGS. 7, 8, and 9, one side 121 of the air inlet 120 is open and the other side 122 is closed, and one side 131 of the air outlet 130 is closed and the other side is closed. (132) is open and may be arranged so that the open side and the closed side face each other. As will be described later, the air introduced through one surface 121 of the air inlet 120 is the space formed by the contact between the heat dissipation fin 200 and the air distribution fin 100, and more specifically, the heat dissipation distribution fin 220 and the air distribution fin 220. It may be discharged through the other surface 132 of the air discharge unit 130 through the air passage 300 formed by contact with the distribution portion 101.
본 발명의 일 구현예에 따르면, 공기 분배부(101)는, 공기 분배핀(100)의 일면 및 타면 각각에 형성된 공기 분배판, 및 공기 분배판을 연결하고 공기 분배핀(100) 내부의 공간을 둘 이상의 공간으로 구분하는 유로 분리판(111)을 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air distribution unit 101 includes an air distribution plate formed on each of one side and the other side of the air distribution pin 100, and a space inside the air distribution pin 100 that connects the air distribution plates. It may include a flow path separation plate 111 that divides the space into two or more spaces, but is not limited thereto.
공기 분배판은 공기 유입부(120)의 타면(122) 및 공기 배출부(130)의 일면(131)을 폐쇄하되 공기 유입부(120)의 일면(121) 및 공기 배출부(130)의 타면(132)을 개방하도록 형성된 것이다.The air distribution plate closes the other side 122 of the air inlet 120 and one side 131 of the air outlet 130, but closes one side 121 of the air inlet 120 and the other side 131 of the air outlet 130. It is formed to open (132).
유로 분리판(111)은 후술할 공기 유로(300)를 구분하기 위한 것으로서, 공기 유입부(120)의 일면(121) 및 공기 배출부(130)의 타면(132)이 직접적으로 연통하는 것을 방지하기 위한 것이다.The flow path separation plate 111 is used to separate the air flow paths 300, which will be described later, and prevents one side 121 of the air inlet 120 and the other side 132 of the air outlet 130 from directly communicating with each other. It is for this purpose.
하부 부재(140)의 양측면 상에 형성된 벽면부는 유로 분리판(111)과 동일한 역할을 수행할 수 있는 것으로서, 벽면부와 유로 분리판(111)을 총칭하여 영역 구분판(110)이라고 칭할 수 있으며, 공기 분배핀(100)은 하부 부재(140), 공기 분배판, 및 영역 구분판(110)을 포함할 수 있고, 공기 분배부는 공기 분배판 및 영역 구분판(110)을 포함할 수 있다.The wall portions formed on both sides of the lower member 140 can perform the same role as the flow path separator plate 111, and the wall portion and the flow path separator plate 111 can be collectively referred to as the region divider plate 110. , the air distribution pin 100 may include a lower member 140, an air distribution plate, and a zone dividing plate 110, and the air distribution unit may include an air distribution plate and a zone dividing plate 110.
본 발명의 일 구현예에 따르면, 하부 부재(140)는 상부에 공기 분배부(101)가 형성되는 것으로서, 하부 부재(140)의 상부면과 방열핀(200)의 일측면이 서로 대향되도록 배치될 수 있다.According to one embodiment of the present invention, the lower member 140 has an air distribution portion 101 formed at the upper portion, and the upper surface of the lower member 140 and one side of the heat dissipation fin 200 are arranged to face each other. You can.
도 1 을 참조하면, 공기 분배핀(100)으로 둘러 쌓인 육각형 형상의 빈 공간이 위치함을 확인할 수 있다. 일반적으로 열전발전기는 차량 및 플랜트 등에 적용되기 때문에, 빈 공간은 축이 연결되어 열전 발전기를 고정할 수 있는 공간이고, 고온의 배기 가스가 입구에서 열전 발전기(10)로 이동하기 위한 분배 가이드 역할을 수행하는 공간이다. Referring to Figure 1, it can be seen that a hexagonal empty space surrounded by the air distribution pin 100 is located. Since thermoelectric generators are generally applied to vehicles and plants, the empty space is a space where the shaft is connected to fix the thermoelectric generator, and serves as a distribution guide for high temperature exhaust gas to move from the inlet to the thermoelectric generator (10). It is a space to practice.
본 발명의 일 구현예에 따르면, 공기 유로(300)는, 열전 발전기(10)의 외부로부터 공기가 유입되는 공기 유입 유로(310), 열전 발전기(10)의 내부로부터 공기가 배출되는 공기 배출 유로(330), 및 공기 유입 유로(310)와 공기 배출 유로(330)를 연결하는 공기 분배 유로(320)를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air flow path 300 includes an air inlet flow path 310 through which air flows in from the outside of the thermoelectric generator 10, and an air discharge path through which air is discharged from the inside of the thermoelectric generator 10. It may include (330), and an air distribution flow path (320) connecting the air inlet flow path (310) and the air discharge flow path (330), but is not limited thereto.
본 발명의 일 구현예에 따르면, 공기 유입부(120)의 일면(121) 및 공기 분배부(101)에 의해 이루어진 유입 영역에 유입된 공기는 공기 유로(300)를 거쳐 공기 배출부(130)의 타면(132) 및 공기 분배부(101)에 의해 이루어진 배출 영역으로 배출되는 것일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air flowing into the inlet area formed by the one surface 121 of the air inlet 120 and the air distribution unit 101 passes through the air flow path 300 to the air outlet 130. It may be discharged to the discharge area formed by the other side 132 and the air distribution unit 101, but is not limited thereto.
도 10 및 도 11 을 참조하면, 공기 유입 유로(310)는 공기 유입부(120)의 일면(121), 유로 분리판(111), 및 공기 배출부(130)의 일면(131)에 의해 형성된 유로이고, 공기 배출 유로(330)는 공기 배출부(130)의 타면(132), 유로 분리판(111), 및 공기 유입부(120)의 타면(122)에 의해 형성된 유로를 의미한다. 이와 관련하여, 열전 발전기(10)에 유입되는 공기의 흐름이 7시 방향에서 1시 방향으로 향할 때, 공기 유입부(120)의 일면(121)을 통해 유입되는 공기는 공기 배출부(130)의 일면(131)에 의해 배출되지 않고, 공기 유입부(120)의 타면(122)에 의해 공기의 유입이 차단되어 있어 공기 배출부(130)는 공기를 배출할 수 없는 문제가 있다. 10 and 11, the air inlet flow path 310 is formed by one side 121 of the air inlet 120, the flow path separator 111, and one side 131 of the air outlet 130. It is a flow path, and the air discharge flow path 330 refers to a flow path formed by the other surface 132 of the air discharge unit 130, the flow path separator plate 111, and the other surface 122 of the air inlet 120. In this regard, when the flow of air flowing into the thermoelectric generator 10 is directed from the 7 o'clock direction to the 1 o'clock direction, the air flowing in through one side 121 of the air inlet 120 is directed to the air outlet 130. There is a problem in that air cannot be discharged from the air outlet 130 because the air is not discharged by one side 131 and the inflow of air is blocked by the other side 122 of the air inlet 120.
본 발명에 따른 열전 발전기(10)는, 공기 유입 유로(310)와 공기 배출 유로(330) 사이에 형성되고, 유로 분리판(111)과 방열 분배핀(220)이 접촉하여 형성된 공기 분배 유로(320)를 포함할 수 있으며, 공기 분배 유로(320)는 방열 분배핀(220) 사이의 영역을 의미한다. 즉, 공기 유입 유로(310)에 유입된 공기는, 공기 분배 유로(320)를 거쳐 공기 배출 유로(330)로 이동할 수 있다.The thermoelectric generator 10 according to the present invention is formed between the air inlet flow path 310 and the air discharge flow path 330, and the air distribution path formed by contact between the flow path separator plate 111 and the heat dissipation distribution pin 220 ( 320), and the air distribution passage 320 refers to an area between the heat dissipation distribution fins 220. That is, the air flowing into the air inflow passage 310 may move to the air discharge passage 330 through the air distribution passage 320.
본 발명의 일 구현예에 따르면, 공기 유입부(120)에 유입된 공기가 공기 유로(300)를 통과하는 과정에서, 열전 소자(230)는 공기에 의해 가열되어 발전할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, while the air introduced into the air inlet 120 passes through the air flow path 300, the thermoelectric element 230 may be heated by the air and generate power, but is limited thereto. That is not the case.
공기 유입부(120)의 일면(121)을 통해 유입된 고온의 공기는, 공기 분배 유로(320)를 통과하는 과정에서 방열핀(200)의 방열 기판(210)과 충돌 또는 접촉할 수 있다. 이 때 방열 기판(210)의 타측면 상에는 열전 소자(230)가 존재하기 때문에, 고온의 공기가 이동하는 과정에서 방열 기판(210)을 가열시키고, 가열된 방열 기판(210)은 열전 소자(230)가 발전할 수 있는 열원을 제공할 수 있다.High-temperature air introduced through one surface 121 of the air inlet 120 may collide with or contact the heat dissipation substrate 210 of the heat dissipation fin 200 while passing through the air distribution passage 320. At this time, since the thermoelectric element 230 is present on the other side of the heat dissipation substrate 210, the heat dissipation substrate 210 is heated in the process of moving the high temperature air, and the heated heat dissipation substrate 210 is connected to the thermoelectric element 230. ) can provide a heat source for power generation.
본 발명의 일 구현예에 따르면, 방열 분배핀(220) 및 공기 분배부(101)가 이루는 각도는 70° 내지 110° 일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the angle formed by the heat dissipation distribution fin 220 and the air distribution part 101 may be 70° to 110°, but is not limited thereto.
앞서 언급하였듯 방열 분배핀(220)과 공기 분배부(101)는 서로 접촉하여 공기 분배 유로(320)를 형성해야 한다. 이 때, 방열 분배핀(220)과 공기 분배부(101), 구체적으로 방열 분배핀(220)과 유로 분리판(111)이 서로 평행할 경우 공기 분배 유로(320)의 형성이 이루어지지 않기 때문에, 방열 분배핀(220)과 공기 분배부(101)가 이루는 각도는 70° 내지 110° 일 수 있다. 다만, 방열 분배핀(220)과 공기 분배부(101) 사이의 각도는, 공기 분배 유로(320)가 형성될 수 있도록 엇갈리기만 하면 되는 것으로서, 공기 분배 유로(320)가 형성되지 않을 경우 유입된 공기가 배출되지 못하는 문제가 발생한다.As mentioned earlier, the heat dissipation distribution pin 220 and the air distribution part 101 must contact each other to form an air distribution passage 320. At this time, when the heat dissipation distribution fin 220 and the air distribution unit 101, specifically the heat dissipation distribution fin 220 and the flow path separator plate 111, are parallel to each other, the air distribution flow path 320 is not formed. , the angle formed by the heat dissipation distribution fin 220 and the air distribution unit 101 may be 70° to 110°. However, the angle between the heat dissipation distribution pin 220 and the air distribution unit 101 need only be staggered so that the air distribution passage 320 can be formed, and if the air distribution passage 320 is not formed, the inflow A problem occurs in which the contaminated air cannot be discharged.
도 1 및 도 2 의 열전 발전기(10)는, 단면이 육각형 형상을 갖는 공기 방열핀(200)과 공기 분배핀(100)이 결합된 것이나, 본 발명에 따른 열전 발전기(10)는 필요에 따라 단면이 원형 또는 다각형을 갖는 공기 방열핀(200)과 공기 분배핀(100)이 결합된 것일 수 있다.The thermoelectric generator 10 of FIGS. 1 and 2 is a combination of an air radiating fin 200 and an air distribution fin 100 having a hexagonal cross-section, but the thermoelectric generator 10 according to the present invention has a cross-section as necessary. The air radiating fin 200 and the air distribution fin 100 having a circular or polygonal shape may be combined.
본 발명의 일 구현예에 따르면, 열전 발생기는 냉각부를 더 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the thermoelectric generator may further include a cooling unit, but is not limited thereto.
일반적으로 열전 발전기(10)는 온도 차이를 통해 전력을 생산하기 때문에, 열전 발전기(10)에 지속적으로 고온의 공기를 공급할 경우 열전 소자(230)가 과열되어 열전 효과가 저하되어 발전량이 감소할 수 있다.In general, the thermoelectric generator 10 produces power through temperature differences, so if high temperature air is continuously supplied to the thermoelectric generator 10, the thermoelectric element 230 may overheat and the thermoelectric effect may decrease, resulting in a decrease in power generation. there is.
본 발명의 일 구현예에 따르면, 냉각부는 방열핀(200)의 타측면 방향 상에, 즉 열전 소자(230)의 상부에 형성될 수 있으며, 냉각부/열전소자/방열기판/방열 분배핀의 구조를 갖고, 방열 분배핀(220)은 공기 분배부(101)과 접촉하도록 형성될 수 있다.According to one embodiment of the present invention, the cooling unit may be formed on the other side of the heat dissipation fin 200, that is, on the top of the thermoelectric element 230, and the structure of the cooling unit/thermoelectric element/heat dissipation substrate/heat dissipation distribution fin. The heat dissipation distribution fin 220 may be formed to contact the air distribution unit 101.
본 발명의 일 구현예에 따르면, 열전 발전기(10)에 유입되는 공기의 온도는 150℃ 내지 500℃ 이고, 냉각부의 냉매의 온도는 20℃ 내지 40℃ 일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 열전 발전기(10)에 유입되는 공기의 온도는 약 150℃ 내지 약 500℃, 약 175 ℃ 내지 약 500℃, 약 200℃ 내지 약 500℃, 약 250℃ 내지 약 500℃, 약 300℃ 내지 약 500℃, 약 350℃ 내지 약 500℃, 약 400℃ 내지 약 500℃, 약 450℃ 내지 약 500℃, 약 150℃ 내지 약 175 ℃, 약 150℃ 내지 약 200℃, 약 150℃ 내지 약 250℃, 약 150℃ 내지 약 300℃, 약 150℃ 내지 약 350℃, 약 150℃ 내지 약 400℃, 약 150℃ 내지 약 450℃, 약 175 ℃ 내지 약 450℃, 약 200℃ 내지 약 400℃, 약 250℃ 내지 약 350℃, 또는 약 300℃일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the temperature of the air flowing into the thermoelectric generator 10 may be 150°C to 500°C, and the temperature of the refrigerant in the cooling unit may be 20°C to 40°C, but are not limited thereto. For example, the temperature of the air flowing into the thermoelectric generator 10 is about 150°C to about 500°C, about 175°C to about 500°C, about 200°C to about 500°C, about 250°C to about 500°C, about 300°C. ℃ to about 500 ℃, about 350 ℃ to about 500 ℃, about 400 ℃ to about 500 ℃, about 450 ℃ to about 500 ℃, about 150 ℃ to about 175 ℃, about 150 ℃ to about 200 ℃, about 150 ℃ About 250°C, about 150°C to about 300°C, about 150°C to about 350°C, about 150°C to about 400°C, about 150°C to about 450°C, about 175°C to about 450°C, about 200°C to about 400°C. ℃, may be about 250 ℃ to about 350 ℃, or about 300 ℃, but is not limited thereto.
또한, 냉각부의 냉매의 온도는 약 20℃ 내지 약 40℃, 약 25℃ 내지 약 40℃, 약 30℃ 내지 약 40℃, 약 35℃ 내지 약 40℃, 약 20℃ 내지 약 25℃, 약 20℃ 내지 약 30℃, 약 20℃ 내지 약 35℃, 약 25℃ 내지 약 35℃, 또는 약 30℃ 일 수 있으나, 이에 제한되는 것은 아니다.In addition, the temperature of the refrigerant in the cooling unit is about 20°C to about 40°C, about 25°C to about 40°C, about 30°C to about 40°C, about 35°C to about 40°C, about 20°C to about 25°C, about 20°C. It may be, but is not limited to, ℃ to about 30℃, about 20℃ to about 35℃, about 25℃ to about 35℃, or about 30℃.
또한, 본 발명의 일 구현예에 따르면, 열전 발전기(10)에서 배출되는 공기의 온도는 50℃ 내지 200℃ 일 수 있으나, 이에 제한되는 것은 아니다. 예를 들어, 열전 발전기(10)에서 배출되는 공기의 온도는 약 50℃ 내지 약 200℃, 약 75℃ 내지 약 200℃, 약 100℃ 내지 약 200℃, 약 125℃ 내지 약 200℃, 약 150℃ 내지 약 200℃, 약 175℃ 내지 약 200℃, 약 50℃ 내지 약 75℃, 약 50℃ 내지 약 100℃, 약 50℃ 내지 약 125℃, 약 50℃ 내지 약 150℃, 약 50℃ 내지 약 175℃, 약 75℃ 내지 약 175℃, 약 100℃ 내지 약 150℃, 또는 약 175℃ 일 수 있으나, 이에 제한되는 것은 아니다.Additionally, according to one embodiment of the present invention, the temperature of the air discharged from the thermoelectric generator 10 may be 50°C to 200°C, but is not limited thereto. For example, the temperature of the air discharged from the thermoelectric generator 10 is about 50°C to about 200°C, about 75°C to about 200°C, about 100°C to about 200°C, about 125°C to about 200°C, about 150°C. ℃ to about 200 ℃, about 175 ℃ to about 200 ℃, about 50 ℃ to about 75 ℃, about 50 ℃ to about 100 ℃, about 50 ℃ to about 125 ℃, about 50 ℃ to about 150 ℃, about 50 ℃ It may be about 175°C, about 75°C to about 175°C, about 100°C to about 150°C, or about 175°C, but is not limited thereto.
본 발명의 제 2 측면은 제 1 측면에 따른 방법에 의해 제조된 열전 발전기(10)의 제조 방법에 있어서, 하부 부재(140)의 양측면 상에 벽면부를 형성하는 단계; 하부 부재(140) 상에, 하부 부재(140)와 벽면부 사이의 내부 공간을 적어도 둘 이상의 영역으로 구분하는 공기 분배부(101)를 형성하는 단계; 방열 기판(210)의 타측면 상에 열전 소자(230)를 설치하는 단계; 방열 기판(210)의 일측면 상에 복수의 방열 분배핀(220)을 형성하여 방열핀(200)을 형성하는 단계; 및 방열핀(200)의 일측면 방향 상에 공기 분배부(101)를 배치시킴으로써 공기 유로(300)를 형성하는 단계를 포함하는, 열전 발전기(10)의 제조 방법을 제공한다. 이 때 하부 부재(140), 벽면부, 및 공기 분배부(101)를 총칭하여 공기 분배핀(100)이라 칭할 수 있다.A second aspect of the present invention is a method of manufacturing a thermoelectric generator 10 manufactured by the method according to the first aspect, comprising: forming wall portions on both sides of the lower member 140; forming an air distribution unit 101 on the lower member 140, dividing the internal space between the lower member 140 and the wall portion into at least two or more areas; Installing a thermoelectric element 230 on the other side of the heat dissipation substrate 210; Forming a heat dissipation fin 200 by forming a plurality of heat dissipation distribution fins 220 on one side of the heat dissipation substrate 210; and forming an air flow path 300 by disposing the air distribution unit 101 on one side of the heat dissipation fin 200. At this time, the lower member 140, the wall portion, and the air distribution portion 101 may be collectively referred to as the air distribution pin 100.
본 발명의 제 2 측면에 따른 열전 발전기(10)의 제조 방법에 대하여, 본 발명의 제 1 측면과 중복되는 부분들에 대해서는 상세한 설명을 생략하였으나, 그 설명이 생략되었더라도 본 발명의 제 1 측면에 기재된 내용은 본 발명의 제 2 측면에 동일하게 적용될 수 있다.Regarding the manufacturing method of the thermoelectric generator 10 according to the second aspect of the present invention, detailed description of parts overlapping with the first aspect of the present invention has been omitted. However, even if the description is omitted, the first aspect of the present invention The contents described can be equally applied to the second aspect of the present invention.
도 12 는 본 발명의 일 구현예에 따른 열전 발전기(10)의 제조 방법의 순서도이고, 도 13 은 본 발명의 일 구현예에 따른 공기 분배핀(100)의 형성 과정의 일부를 나타낸 도면이다. 이와 관련하여, 도 13 의 공기 분배부(101)는 영역 구분판(110)의 최소 단위를 표현한 것이다.FIG. 12 is a flowchart of a method of manufacturing a thermoelectric generator 10 according to an embodiment of the present invention, and FIG. 13 is a diagram showing a portion of the formation process of the air distribution fin 100 according to an embodiment of the present invention. In this regard, the air distribution unit 101 of FIG. 13 represents the minimum unit of the area dividing plate 110.
먼저, 하부 부재(140)의 양측면 상에 벽면부를 형성한다 (S110).First, wall portions are formed on both sides of the lower member 140 (S110).
이어서, 하부 부재(140) 상에, 하부 부재(140)와 벽면부 사이의 공간을 내부의 공간을 적어도 둘 이상의 영역으로 구분하는 공기 분배부(101)를 형성한다 (S120). Next, an air distribution unit 101 is formed on the lower member 140 to divide the space between the lower member 140 and the wall portion into at least two or more areas (S120).
상술하였듯, 하부 부재(140) 상에 벽면부 및 공기 분배부(101)를 형성하는 과정을 공기 분배핀(100)의 형성 과정이라고 칭할 수 있다.As described above, the process of forming the wall portion and the air distribution portion 101 on the lower member 140 may be referred to as the forming process of the air distribution fin 100.
본 발명의 일 구현예에 따르면, 공기 분배부(101)를 형성하는 단계는, 유로 분리판(111)의 양측 말단부에 일면의 공기 분배판(122') 및 타면의 공기 분배판(131')을 포함하는 구조체를 형성하는 단계; 및 유로 분리판(111)이 하부 부재(140) 및 양측면의 벽면부 사이의 영역을 적어도 둘 이상의 영역으로 구분하도록, 일면의 공기 분배판(122') 및 타면의 공기 분배판(131')을 중심으로 구조체를 폴딩하는 단계;를 포함할 수 있으나, 이에 제한되는 것은 아니다. 이와 관련하여, 구조체를 폴딩하면 공기 분배부(101)가 되는 것으로서, 공기 분배부(101)가 공기 분배판을 중심으로 폴딩되지 않은 형태를 구조체라고 칭할 수 있다.According to one embodiment of the present invention, the step of forming the air distribution unit 101 includes forming an air distribution plate 122' on one side and an air distribution plate 131' on the other side at both end portions of the flow path separation plate 111. forming a structure containing; and an air distribution plate 122' on one side and an air distribution plate 131' on the other side so that the flow path separation plate 111 divides the area between the lower member 140 and the wall portions on both sides into at least two areas. It may include, but is not limited to, folding the structure to the center. In this regard, when the structure is folded, it becomes the air distribution unit 101, and the form in which the air distribution unit 101 is not folded around the air distribution plate can be called a structure.
또한 상술하였듯, 공기 분배핀(100)은 공기 유입부(120) 및 공기 배출부(130)로 구성될 수도 있고, 하부 부재(140) 및 하부 부재(140) 상에 형성된 벽면부 및 공기 분배부(101)로도 구성될 수 있다.Also, as described above, the air distribution pin 100 may be composed of an air inlet 120 and an air outlet 130, and a lower member 140 and a wall portion formed on the lower member 140 and an air outlet. It may also be configured as distribution 101.
이와 관련하여 공기 유입부(120) 및 공기 배출부(130)는 공기 분배핀(100)의 일면과 타면, 즉 공기 분배핀(100)으로 공기가 유입되거나 또는 배출되는 영역으로 구분되는 것이고, 하부 부재(140), 벽면부, 및 공기 분배부(101)는 구조적으로 구분된 것이다.In this regard, the air inlet 120 and the air outlet 130 are divided into one side and the other side of the air distribution pin 100, that is, an area where air flows into or out of the air distribution pin 100, and the lower part The member 140, the wall portion, and the air distribution portion 101 are structurally separated.
본 발명의 일 구현예에 따르면, 구조체는, 공기 분배판과 유로 분리판(111)이 교번하여 나타나는 구조를 포함할 수 있으나, 이에 제한되는 것은 아니다. According to one embodiment of the present invention, the structure may include a structure in which air distribution plates and flow path separation plates 111 appear alternately, but is not limited thereto.
본 발명의 일 구현예에 따르면, 벽면부를 형성하는 단계는 생략될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the step of forming the wall portion may be omitted, but is not limited thereto.
구체적으로, 구조체의 양측 말단에 형성된 벽면부는 공기 분배핀(100) 내부의 영역과 외부 영역을 구분하는 것으로서, 유로 분리판(111)과 동일한 역할을 수행할 수 있다. 이 때, 구조체의 양측 말단에 형성되지 않은 유로 분리판(111)은 공기 분배핀(100) 내부의 영역을 구분하는 것이고, 벽면부는 공기 분배핀(100)의 내부와 외부를 구분하며, 공기 분배판은 공기 유입부(120)의 타면(122) 및/또는 공기 배출부(130)의 일면(131)을 폐쇄할 수 있다.Specifically, the wall portions formed at both ends of the structure separate the inner and outer regions of the air distribution fin 100 and may perform the same role as the flow path separation plate 111. At this time, the flow path separation plate 111 that is not formed at both ends of the structure divides the area inside the air distribution pin 100, and the wall portion divides the inside and outside of the air distribution pin 100, and distributes the air. The plate may close the other side 122 of the air inlet 120 and/or the one side 131 of the air outlet 130.
벽면부 및 유로 분리판(111)을 총칭하여 영역 구분판(110)이라 칭할 수 있고, 영역 구분판(110)과 공기 분배판을 총칭하여 공기 분배부(101)라고 칭할 수 있다.The wall portion and the flow path separation plate 111 may be collectively referred to as the area dividing plate 110, and the area dividing plate 110 and the air distribution plate may be collectively referred to as the air distribution unit 101.
본 발명의 일 구현예에 따르면, 일면의 공기 분배판(122')에 의해 공기 유입부(120)의 일면(121)은 개방되되 타면은 폐쇄되고, 타면의 공기 분배판(131')에 의해 공기 배출부(130)의 일면(131)은 폐쇄되되 타면은 개방되도록, 구조체가 폴딩될 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, one side 121 of the air inlet 120 is opened by the air distribution plate 122' on one side, but the other side is closed by the air distribution plate 131' on the other side. The structure may be folded so that one side 131 of the air discharge unit 130 is closed and the other side is open, but is not limited thereto.
본 발명의 일 구현예에 따르면, 공기 유입부(120)의 일면(121)과 공기 배출부(130)의 일면(131)은 서로 대향되고, 공기 유입부(120)의 타면(122)과 공기 배출부(130)의 타면(132)은 서로 대향되도록 구조체가 폴딩된 것일수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, one side 121 of the air inlet 120 and one side 131 of the air outlet 130 face each other, and the other side 122 of the air inlet 120 and the air The other surfaces 132 of the discharge unit 130 may be folded so that they face each other, but are not limited thereto.
상술하였듯, 벽면부는 유로 분리판(111) 중 하부 부재(140)의 양측면에 형성된 것을 지칭하는 것이기 때문에, 하부 부재(140)의 양측면 상에 벽면부를 형성하는 과정을 생략할 수 있다. 이와 관련하여, 벽면부의 형성 과정을 생략할 경우, 공기 분배핀(100)을 형성할 때 벽면부가 형성되도록 폴딩해야 한다.As described above, since the wall portion refers to what is formed on both sides of the lower member 140 of the flow path separation plate 111, the process of forming the wall portion on both sides of the lower member 140 can be omitted. In this regard, if the process of forming the wall portion is omitted, when forming the air distribution fin 100, it must be folded so that the wall portion is formed.
또한, 일면의 공기 분배판(122') 은 공기 분배핀(100)의 일면인 공기 유입부(120)의 일부를 폐쇄하는 것으로서 구체적으로 공기 유입부(120)의 타면(122)을 폐쇄하는 판을 의미한다. 또한, 타면의 공기 분배판(131')은 공기 분배핀(100)의 타면인 공기 배출부(130)의 일부를 폐쇄하는 것으로서 구체적으로 공기 배출부(130)의 일면(131)을 폐쇄하는 판을 의미한다. 이 때 공기 유입부(120)의 일면(121)과 공기 배출부(130)의 일면(131), 및 공기 유입부(120)의 타면(122)과 공기 배출부(130)의 타면(132)은 서로 대향되도록 구조체가 폴딩될 수 있다.In addition, the air distribution plate 122' on one side closes a part of the air inlet 120, which is one side of the air distribution pin 100, and is specifically a plate that closes the other side 122 of the air inlet 120. means. In addition, the air distribution plate 131' on the other side closes a part of the air discharge portion 130, which is the other side of the air distribution pin 100, and is specifically a plate that closes one side 131 of the air discharge portion 130. means. At this time, one side 121 of the air inlet 120, one side 131 of the air outlet 130, and the other side 122 of the air inlet 120 and the other side 132 of the air outlet 130. The structures can be folded so that they face each other.
이와 관련하여, 도 12 는 벽면부가 형성되지 않은 하부 부재(140) 상에 공기 분배부(101)를 형성하는 것을 표현한 도면으로서, 공기 분배부(101)가 형성되기 전, 즉 폴딩되지 않은 구조체의 최소 단위만을 표현한 것이다. 도 12 을 참조하면, 구조체는 유로 분리판(111)의 일측에는 일면의 공기 분배판(122')이, 타측에는 타면의 공기 분배판(131')이 존재하고, 일면의 공기 분배판(122')의 일측에는 일측면의 벽면부(112)가, 타면의 공기 분배판(131')의 타측에는 타측면의 벽면부(113)가 위치할 수 있다.In this regard, FIG. 12 is a diagram illustrating the formation of the air distribution unit 101 on the lower member 140 in which the wall portion is not formed, before the air distribution unit 101 is formed, that is, in the non-folded structure. It expresses only the minimum unit. Referring to FIG. 12, the structure has an air distribution plate 122' on one side of the flow path separation plate 111, an air distribution plate 131' on the other side on the other side, and an air distribution plate 122 on one side. '), the wall portion 112 on one side may be located on one side, and the wall portion 113 on the other side may be located on the other side of the air distribution plate 131'.
일면의 공기 분배판(122')과 타면의 공기 분배판(131')을 기준으로 구조체를 폴딩할 수 있다. 이 때 일면의 공기 분배판(122')은 공기 유입부(120)의 타면(122)을 폐쇄하는 것이고, 타면의 공기 분배판(131')은 배출부의 일면을 폐쇄할 수 있으며, 공기 분배판 사이에 형성된 유로 분리판(111)은 공기 유입 유로(310)와 공기 배출 유로(330)를 구분할 수 있다.The structure can be folded based on the air distribution plate 122' on one side and the air distribution plate 131' on the other side. At this time, the air distribution plate 122' on one side closes the other side 122 of the air inlet 120, and the air distribution plate 131' on the other side closes one side of the discharge section. The flow path separation plate 111 formed between them can distinguish the air inlet flow path 310 and the air discharge flow path 330.
유로 분리판(111)은 공기 유입 유로(310) 및 공기 배출 유로(330)의 상부 단면이 사다리꼴, 사각형, 및 이들의 조합들로 이루어진 군에서 선택된 것을 포함하도록 형성된 것일 수 있으나, 이에 제한되는 것은 아니다.The flow path separator plate 111 may be formed so that the upper cross sections of the air inlet flow path 310 and the air discharge flow path 330 include a shape selected from the group consisting of trapezoid, square, and combinations thereof, but is not limited thereto. no.
이어서, 방열 기판(210)의 타측면 상에 열전 소자(230)를 설치한다 (S210).Next, the thermoelectric element 230 is installed on the other side of the heat dissipation substrate 210 (S210).
이어서, 방열 기판(210)의 일측면 상에 복수의 방열 분배핀(220)을 형성하여 방열핀(200)을 형성한다 (S220).Next, a plurality of heat dissipation distribution fins 220 are formed on one side of the heat dissipation substrate 210 to form the heat dissipation fin 200 (S220).
본 발명의 일 구현예에 따르면, 방열핀(200)을 형성하는 단계와, 공기 분배핀(100)을 형성하는 단계는 동시에 또는 순차적으로 진행될 수 있다. 예를 들어, 방열핀(200)은 공기 분배핀(100)과 동시에 제조되거나, 공기 분배핀(100)을 제조하기 전 또는 후에 제조될 수 있다.According to one embodiment of the present invention, the steps of forming the heat dissipation fin 200 and the steps of forming the air distribution fin 100 may be performed simultaneously or sequentially. For example, the heat dissipation fin 200 may be manufactured simultaneously with the air distribution fin 100, or may be manufactured before or after manufacturing the air distribution fin 100.
후술하겠지만, 방열 기판(210)의 일측면은 공기 분배핀(100)과 접촉할 수 있다.As will be described later, one side of the heat dissipation substrate 210 may be in contact with the air distribution fin 100.
이어서, 방열핀(200)의 일측면 방향 상에 공기 분배핀(100)을 배치시킴으로써 공기 유로(300)를 형성한다.Next, an air flow path 300 is formed by disposing the air distribution fin 100 on one side of the heat dissipation fin 200.
상술하였듯, 방열핀(200)의 방열 분배핀(220)과, 공기 분배핀(100)이 접촉함으로써 공기 유로(300)가 형성될 수 있다.As described above, the air flow path 300 may be formed when the heat dissipation distribution fin 220 of the heat dissipation fin 200 and the air distribution fin 100 contact each other.
본 발명의 일 구현예에 따르면, 공기 유로(300)는 공기 분배핀(100) 및 방열 분배핀(220)에 의해 형성되는 공기 유입 유로(310), 공기 분배 유로(320), 및 공기 배출 유로(330)를 포함할 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the air passage 300 includes an air inlet passage 310, an air distribution passage 320, and an air discharge passage formed by the air distribution pin 100 and the heat dissipation distribution pin 220. It may include (330), but is not limited thereto.
본 발명의 일 구현예에 따르면, 방열 분배핀(220) 및 공기 분배부(101)가 이루는 각도는 70° 내지 110° 일 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the angle formed by the heat dissipation distribution fin 220 and the air distribution part 101 may be 70° to 110°, but is not limited thereto.
공기 유로(300)가 형성된 경우, 공기는 열전 발전기(10)의 공기 유입부(120)의 일면(121), 방열 분배핀(220) 사이의 영역, 및 공기 배출부(130)의 타면(132)의 경로를 이동할 수 있다.When the air flow path 300 is formed, the air flows to one side 121 of the air inlet 120 of the thermoelectric generator 10, the area between the heat dissipation distribution fins 220, and the other side 132 of the air outlet 130. ) can be moved.
본 발명의 제 3 측면은, 제 1 측면에 따른 열전 발전기(10)를 포함하는, 열전 발생 장치(1)를 제공한다.A third aspect of the present invention provides a thermoelectric generator (1) comprising the thermoelectric generator (10) according to the first aspect.
본 발명의 일 구현예에 따르면, 열전 발생 장치(1)는 공기 유입부(120)에서 유입된 공기 및 열전 소자(230)의 접촉에 의해 전기를 발생시킬 수 있으나, 이에 제한되는 것은 아니다.According to one embodiment of the present invention, the thermoelectric generator 1 may generate electricity by contact between the thermoelectric element 230 and air introduced from the air inlet 120, but is not limited thereto.
열전 발생 장치는 열전 발전기(10)를 적어도 하나 이상 포함하는 것을 의미하는 것으로서, 열전 발전기(10)가 직렬로 또는 병렬로 설치된 구조를 가질 수 있다.The thermoelectric generator means that it includes at least one thermoelectric generator 10, and may have a structure in which the thermoelectric generators 10 are installed in series or in parallel.
열전 발전기(10)는, 방열핀(200)과 공기 분배핀(100)이 결합된 것일 수 있다. 이와 관련하여, 도 2 를 참조하면, 열전 발전기(10)의 최소 단위는 공기 분배핀(100)과 방열핀(200)이 상하로 결합된 것이고, 최소 단위의 일면 및 타면을 부착하여 열전 발전기(10)를 구성할 수 있다.The thermoelectric generator 10 may be a combination of a heat dissipation fin 200 and an air distribution fin 100. In this regard, referring to FIG. 2, the minimum unit of the thermoelectric generator 10 is an air distribution fin 100 and a heat dissipation fin 200 combined vertically, and one side and the other side of the minimum unit are attached to form the thermoelectric generator 10. ) can be configured.
최소 단위와, 최소 단위를 복수개 결합한 것 모두 열전 발전기(10)라고 칭할 수 있으나, 이하에서는 열전 발전기(10)의 최소 단위를 열전 발전기(10)라 칭하고, 최소 단위가 복수개 결합한 것을 열전 발생 장치라 칭할 수 있다. 이 때 열전 발생 장치는 도 2 와 같이 6 개의 열전 발전기(10)가 결합된 구조 뿐만 아니라, 2 개 이상의 열전 발전기(10)가 결합된 구조를 포함할 수 있다.Both the minimum unit and the combination of a plurality of minimum units can be referred to as the thermoelectric generator 10. However, hereinafter, the minimum unit of the thermoelectric generator 10 is referred to as the thermoelectric generator 10, and a combination of a plurality of minimum units is referred to as a thermoelectric generator. It can be called At this time, the thermoelectric generator may include not only a structure in which six thermoelectric generators 10 are combined as shown in FIG. 2, but also a structure in which two or more thermoelectric generators 10 are combined.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The description of the present invention described above is for illustrative purposes, and those skilled in the art will understand that the present invention can be easily modified into other specific forms without changing the technical idea or essential features of the present invention. will be. Therefore, the embodiments described above should be understood in all respects as illustrative and not restrictive. For example, each component described as single may be implemented in a distributed manner, and similarly, components described as distributed may also be implemented in a combined form.
본 발명의 범위는 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is indicated by the claims described later rather than the detailed description, and all changes or modified forms derived from the meaning and scope of the claims and their equivalent concepts should be construed as being included in the scope of the present invention. .

Claims (19)

  1. 방열핀, 공기 분배핀 및 공기 유로를 포함하는 열전 발전기에 있어서, In the thermoelectric generator including a heat dissipation fin, an air distribution fin, and an air flow path,
    상기 방열핀의 일측면에 공기 방열부가 배치되어 있고, 상기 방열핀의 타측면에 열전 소자가 배치되고, An air heat dissipation part is disposed on one side of the heat dissipation fin, and a thermoelectric element is disposed on the other side of the heat dissipation fin,
    상기 방열핀의 상기 일측면 방향으로 상기 공기 분배핀이 배치되고, The air distribution fin is disposed in the direction of one side of the heat dissipation fin,
    상기 공기 분배핀은 하부 부재, 상기 하부 부재 상에 형성되고, 내부의 공간을 적어도 둘 이상의 영역으로 구분하는 공기 분배부, 및 상기 하부 부재의 일측면 및 타측면 각각에 형성된 벽면부를 포함하고, The air distribution fin includes a lower member, an air distribution portion formed on the lower member and dividing the internal space into at least two regions, and a wall portion formed on one side and the other side of the lower member, respectively,
    상기 공기 유로는 상기 공기 방열부 및 상기 공기 분배부 사이에 배치된 것을 특징으로 하는 열전 발전기. Thermoelectric generator, characterized in that the air flow path is disposed between the air heat dissipation part and the air distribution part.
  2. 제 1 항에 있어서, According to claim 1,
    상기 공기 분배부는, 상기 공기 분배핀의 일면에 형성된 공기 유입부 및 상기 공기 분배핀의 타면에 형성된 공기 배출부를 포함하고,The air distribution unit includes an air inlet formed on one side of the air distribution fin and an air outlet formed on the other side of the air distribution fin,
    상기 공기 유입부에 유입된 공기는 상기 공기 방열부를 거쳐 상기 공기 배출부를 통해 배출되는 것을 특징으로 하는 열전 발전기. A thermoelectric generator, characterized in that the air flowing into the air inlet passes through the air heat dissipation part and is discharged through the air discharge part.
  3. 제 1 항에 있어서,According to claim 1,
    상기 공기 방열부는, 상기 방열 핀의 타측면 방향 상에 상기 열전 소자가 설치되는 방열 기판; 및 상기 방열핀의 일측면 방향으로 상기 방열 기판 상에 형성되는 복수의 방열 분배핀을 포함하는 것을 특징으로 하는 열전 발전기. The air heat dissipation unit includes a heat dissipation substrate on which the thermoelectric element is installed on the other side of the heat dissipation fin; and a plurality of heat dissipation distribution fins formed on the heat dissipation substrate in a direction toward one side of the heat dissipation fin.
  4. 제 1 항에 있어서,According to claim 1,
    상기 공기 분배부는, 상기 공기 분배핀의 일면 및 타면 각각에 형성된 공기 분배판, 및 상기 공기 분배판을 연결하고 상기 공기 분배핀 내부의 공간을 둘 이상의 공간으로 구분하는 유로 분리판을 포함하는 것을 특징으로 하는 열전 발전기. The air distribution unit includes an air distribution plate formed on each of one side and the other side of the air distribution fin, and a flow path separation plate that connects the air distribution plate and divides the space inside the air distribution pin into two or more spaces. Thermoelectric generator.
  5. 제 4 항에 있어서,According to claim 4,
    상기 공기 유로는, 상기 열전 발전기의 외부로부터 공기가 유입되는 공기 유입 유로, 상기 열전 발전기의 내부로부터 공기가 배출되는 공기 배출 유로, 및 상기 공기 유입 유로와 상기 공기 배출 유로를 연결하는 공기 분배 유로를 포함하는 것을 특징으로 하는 열전 발전기. The air passage includes an air inlet passage through which air flows in from the outside of the thermoelectric generator, an air discharge passage through which air is discharged from the inside of the thermoelectric generator, and an air distribution passage connecting the air inflow passage and the air discharge passage. A thermoelectric generator comprising:
  6. 제 1 항에 있어서,According to claim 1,
    상기 공기 유입부의 일면은 개방되고, 타면은 폐쇄되며, One side of the air inlet is open and the other side is closed,
    상기 공기 배출부의 일면은 폐쇄되고, 타면은 개방된 것을 특징으로 하는 열전 발전기. A thermoelectric generator, characterized in that one side of the air outlet is closed and the other side is open.
  7. 제 6 항에 있어서,According to claim 6,
    상기 공기 유입부의 일면과 상기 공기 배출부의 일면은 서로 대향되어 배치되고, 상기 공기 유입부의 타면과 상기 공기 배출부의 타면은 서로 대향되어 배치된 것을 특징으로 하는 열전 발전기. A thermoelectric generator, wherein one surface of the air inlet part and one surface of the air outlet part are arranged to face each other, and the other surface of the air inlet part and the other surface of the air outlet part are arranged to face each other.
  8. 제 7 항에 있어서,According to claim 7,
    상기 공기 유입부의 일면 및 상기 공기 분배부에 의해 이루어진 유입 영역에 유입된 공기는 상기 공기 유로를 거쳐 상기 공기 배출부의 타면 및 상기 공기 분배부에 의해 이루어진 배출 영역으로 배출되는 것을 특징으로 하는 열전 발전기. Thermoelectric generator, characterized in that the air flowing into the inlet area formed by one surface of the air inlet and the air distribution unit is discharged through the air flow path to the other surface of the air discharge part and the discharge area formed by the air distribution unit.
  9. 제 1 항에 있어서,According to claim 1,
    상기 공기 유입부에 유입된 공기가 공기 유로를 통과하는 과정에서, 상기 열전 소자는 상기 공기에 의해 가열되어 발전하는 것을 특징으로 하는 열전 발전기. A thermoelectric generator, characterized in that while the air flowing into the air inlet passes through the air passage, the thermoelectric element is heated by the air and generates power.
  10. 제 1 항에 있어서,According to claim 1,
    상기 열전 발생기는 냉각부를 더 포함하는 것을 특징으로 하는 열전 발전기. The thermoelectric generator further includes a cooling unit.
  11. 열전 발전기의 제조 방법에 있어서,In the method of manufacturing a thermoelectric generator,
    하부 부재의 양측면 상에 벽면부를 형성하는 단계;forming wall portions on both sides of the lower member;
    상기 하부 부재 상에, 상기 하부 부재와 상기 벽면부 사이의 내부 공간을 적어도 둘 이상의 영역으로 구분하는 공기 분배부를 형성하는 단계;forming an air distribution portion on the lower member to divide the internal space between the lower member and the wall portion into at least two regions;
    방열 기판의 타측면 상에 열전 소자를 설치하는 단계;Installing a thermoelectric element on the other side of the heat dissipation substrate;
    상기 방열 기판의 일측면 상에 복수의 방열 분배핀을 형성하여 방열핀을 형성하는 단계; 및forming a heat dissipation fin by forming a plurality of heat dissipation distribution fins on one side of the heat dissipation substrate; and
    상기 방열핀의 상기 일측면 방향 상에 상기 공기 분배부를 배치시킴으로써 공기 유로를 형성하는 단계;를 포함하는 것을 특징으로 하는 열전 발전기의 제조 방법.A method of manufacturing a thermoelectric generator comprising: forming an air flow path by disposing the air distribution unit on the one side direction of the heat dissipation fin.
  12. 제 11 항에 있어서,According to claim 11,
    상기 공기 분배부를 형성하는 단계는,The step of forming the air distribution unit is,
    유로 분리판의 양측 말단부에 상기 일면의 공기 분배판 및 상기 타면의 공기 분배판을 포함하는 구조체를 형성하는 단계; 및forming a structure including the air distribution plate on one side and the air distribution plate on the other side at both end portions of the flow path separation plate; and
    상기 유로 분리판이 상기 하부 부재 및 상기 양측면의 벽면부 사이의 영역을 적어도 둘 이상의 영역으로 구분하도록, 상기 일면의 공기 분배판 및 상기 타면의 공기 분배판을 중심으로 상기 구조체를 폴딩하는 단계;를 포함하는 것을 특징으로 하는 열전 발전기의 제조 방법.Folding the structure around the air distribution plate on one side and the air distribution plate on the other side so that the flow path dividing plate divides the area between the lower member and the wall portions on both sides into at least two or more areas. A method of manufacturing a thermoelectric generator, characterized in that.
  13. 제 12 항에 있어서,According to claim 12,
    상기 구조체는, 상기 공기 분배판과 상기 유로 분리판이 교번하여 나타나는 구조를 포함하는 것을 특징으로 하는 열전 발전기의 제조 방법.The structure is a method of manufacturing a thermoelectric generator, characterized in that it includes a structure in which the air distribution plate and the flow path separation plate appear alternately.
  14. 제 12 항에 있어서,According to claim 12,
    상기 일면의 공기 분배판에 의해 상기 공기 유입부의 일면은 개방되되 타면은 폐쇄되고, One side of the air inlet is open and the other side is closed by the air distribution plate on one side,
    상기 타면의 공기 분배판에 의해 상기 공기 배출부의 일면은 폐쇄되되 타면은 개방되도록 상기 구조체가 폴딩되는 것을 특징으로 하는 열전 발전기의 제조 방법.A method of manufacturing a thermoelectric generator, characterized in that the structure is folded so that one side of the air discharge portion is closed by the air distribution plate on the other side and the other side is open.
  15. 제 13 항에 있어서,According to claim 13,
    상기 공기 유입부의 일면과 상기 공기 배출부의 일면은 서로 대향되고, 상기 공기 유입부의 타면과 상기 공기 배출부의 타면은 서로 대향되도록 폴딩된 것을 특징으로 하는 열전 발전기의 제조 방법.A method of manufacturing a thermoelectric generator, wherein one surface of the air inlet portion and one surface of the air discharge portion are opposed to each other, and the other surface of the air inlet portion and the other surface of the air discharge portion are folded to face each other.
  16. 제 11 항에 있어서,According to claim 11,
    상기 방열 분배핀 및 상기 공기 분배부가 이루는 각도는 70° 내지 110° 인것을 특징으로 하는 열전 발전기의 제조 방법.A method of manufacturing a thermoelectric generator, characterized in that the angle formed by the heat dissipation distribution fin and the air distribution part is 70° to 110°.
  17. 제 11 항에 있어서,According to claim 11,
    상기 공기 유로는 상기 공기 분배핀 및 상기 방열 분배핀에 의해 형성되는 공기 유입 유로, 공기 분배 유로, 및 공기 배출 유로를 포함하는 것을 특징으로 하는 열전 발전기의 제조 방법.The air flow path is a method of manufacturing a thermoelectric generator, characterized in that it includes an air inflow path, an air distribution path, and an air discharge path formed by the air distribution fin and the heat dissipation distribution fin.
  18. 방열핀, 공기 분배핀 및 공기 유로를 구비하는 열전 발전기를 포함하는 열전 발생 장치에 있어서, In the thermoelectric generator including a thermoelectric generator having a heat dissipation fin, an air distribution fin, and an air flow path,
    상기 방열핀의 일측면에 공기 방열부가 배치되어 있고, 상기 방열핀의 타측면에 열전 소자가 배치되고, An air heat dissipation part is disposed on one side of the heat dissipation fin, and a thermoelectric element is disposed on the other side of the heat dissipation fin,
    상기 방열핀의 상기 일측면 방향으로 상기 공기 분배핀이 배치되고, The air distribution fin is disposed in the direction of one side of the heat dissipation fin,
    상기 공기 분배핀은 하부 부재, 상기 하부 부재 상에 형성되고, 내부의 공간을 적어도 둘 이상의 영역으로 구분하는 공기 분배부, 및 상기 하부 부재의 일측면 및 타측면 각각에 형성된 벽면부를 포함하고, The air distribution fin includes a lower member, an air distribution portion formed on the lower member and dividing the internal space into at least two regions, and a wall portion formed on one side and the other side of the lower member, respectively,
    상기 공기 유로는 상기 공기 방열부 및 상기 공기 분배부 사이에 배치된 것을 특징으로 하는 열전 발생 장치.Thermoelectric generator, characterized in that the air flow path is disposed between the air heat dissipation unit and the air distribution unit.
  19. 제 18 항에 있어서,According to claim 18,
    상기 열전 발생 장치는 상기 공기 유입부에서 유입된 공기 및 상기 열전 소자의 접촉에 의해 전기를 발생시키는 것을 특징으로 하는 열전 발생 장치.The thermoelectric generator is characterized in that it generates electricity by contact between the thermoelectric element and air introduced from the air inlet.
PCT/KR2023/003564 2022-06-15 2023-03-17 Thermoelectric generator, manufacturing method therefor, and thermoelectric generating apparatus equipped therewith WO2023243816A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20220072574 2022-06-15
KR10-2022-0072574 2022-06-15

Publications (1)

Publication Number Publication Date
WO2023243816A1 true WO2023243816A1 (en) 2023-12-21

Family

ID=89191340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/003564 WO2023243816A1 (en) 2022-06-15 2023-03-17 Thermoelectric generator, manufacturing method therefor, and thermoelectric generating apparatus equipped therewith

Country Status (2)

Country Link
KR (1) KR20230172398A (en)
WO (1) WO2023243816A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214350A (en) * 2005-02-03 2006-08-17 Toyota Motor Corp Thermoelectric generator
JP2009278767A (en) * 2008-05-14 2009-11-26 Toyota Motor Corp Heat exchanger, thermoelectric generator, and method of manufacturing heat exchanger
JP2010275872A (en) * 2009-05-26 2010-12-09 Isuzu Motors Ltd Thermoelectric unit
JP2012199356A (en) * 2011-03-22 2012-10-18 Toyota Industries Corp Board device
KR102083611B1 (en) * 2019-04-25 2020-03-02 엘지이노텍 주식회사 Heat conversion device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006214350A (en) * 2005-02-03 2006-08-17 Toyota Motor Corp Thermoelectric generator
JP2009278767A (en) * 2008-05-14 2009-11-26 Toyota Motor Corp Heat exchanger, thermoelectric generator, and method of manufacturing heat exchanger
JP2010275872A (en) * 2009-05-26 2010-12-09 Isuzu Motors Ltd Thermoelectric unit
JP2012199356A (en) * 2011-03-22 2012-10-18 Toyota Industries Corp Board device
KR102083611B1 (en) * 2019-04-25 2020-03-02 엘지이노텍 주식회사 Heat conversion device

Also Published As

Publication number Publication date
KR20230172398A (en) 2023-12-22

Similar Documents

Publication Publication Date Title
WO2018110948A1 (en) Battery pack
WO2020013348A1 (en) Cooling apparatus
WO2021085913A1 (en) Coupling-type focus ring
WO2016028073A1 (en) Passive safety system and nuclear power plant comprising same
WO2021201443A1 (en) Battery module including gas breaking structure
WO2021221407A1 (en) Heat dissipation device and antenna assembly using same
WO2019078456A1 (en) Battery pack with function of preventing inflow of leaking coolant
WO2012086902A1 (en) Induction range including an air layer for improving heat resistance and shock resistance
WO2015141993A1 (en) Heat exchanger and manufacturing method for unit plate constituting heat exchanger
WO2023243816A1 (en) Thermoelectric generator, manufacturing method therefor, and thermoelectric generating apparatus equipped therewith
WO2016105034A1 (en) Electrolyte distribution block having cooling function, and split stack type redox flow battery comprising same
WO2020204534A1 (en) Converter
WO2018038457A1 (en) Gas turbine blade
WO2019132124A1 (en) Parallel-type thermoelectric module
WO2019231035A1 (en) Multi-chamber type heater
WO2017115966A1 (en) Integrated system of heat exchange device and thermoelectric power generation device, and operating method therefor
WO2024034868A1 (en) Variable-capacity electric propulsion motor cooling structure and variable-capacity electric propulsion motor equipped therewith
WO2011002191A2 (en) Thermoelectric power-generating system using the waste heat of a cooling fluid
WO2020189825A1 (en) Intelligent power generation module
WO2024014785A1 (en) Thermoelectric generator and method for manufacturing same
WO2020204446A1 (en) Thermoelectric power generation module
WO2021020642A1 (en) Heat exchanger cleaning system and heat exchanger cleaning method
WO2020106017A1 (en) Electrode assembly manufacturing apparatus and electrode assembly manufacturing method
WO2015046948A1 (en) Chemical vapor deposition reactor for producing polysilicon
WO2023239186A1 (en) Electrode material firing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23824046

Country of ref document: EP

Kind code of ref document: A1