EP1854139A1 - Modul mit strahlungsemittierenden halbleiterkörpern - Google Patents

Modul mit strahlungsemittierenden halbleiterkörpern

Info

Publication number
EP1854139A1
EP1854139A1 EP06705951A EP06705951A EP1854139A1 EP 1854139 A1 EP1854139 A1 EP 1854139A1 EP 06705951 A EP06705951 A EP 06705951A EP 06705951 A EP06705951 A EP 06705951A EP 1854139 A1 EP1854139 A1 EP 1854139A1
Authority
EP
European Patent Office
Prior art keywords
radiation
emitting semiconductor
module according
semiconductor body
module
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06705951A
Other languages
English (en)
French (fr)
Inventor
Stefan GRÖTSCH
Berthold Hahn
Stefan Illek
Wolfgang Schnabel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram International GmbH
Original Assignee
Osram Opto Semiconductors GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osram Opto Semiconductors GmbH filed Critical Osram Opto Semiconductors GmbH
Publication of EP1854139A1 publication Critical patent/EP1854139A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/48137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/0102Calcium [Ca]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01068Erbium [Er]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01078Platinum [Pt]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/01Chemical elements
    • H01L2924/01079Gold [Au]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/02Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies
    • H01L33/20Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor bodies with a particular shape, e.g. curved or truncated substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the invention relates to a module with a regular arrangement of individual, radiation-emitting semiconductor bodies.
  • Publication WO 02/33756 A1 discloses an LED module which has a carrier with a planar main surface on which a plurality of LED semiconductor bodies is applied.
  • the LED semiconductor bodies are electrically connectable by means of a chip connection region, which is located between the carrier and the LED semiconductor body, and a contact surface applied to the side of the LED semiconductor body which faces away from the carrier.
  • wire connections extend from the contact surface of the LED semiconductor bodies to the chip connection region of the adjacent LED semiconductor bodies.
  • modules with radiation-emitting semiconductor bodies with small dimensions and high luminance are needed.
  • Such modules are particularly suitable as a semiconductor light source in conjunction with imaging optics such as projectors.
  • An increase in the luminance of a module of radiation-emitting semiconductor bodies can in principle be achieved by increasing the radiation density of the individual semiconductor bodies, at the same time maintaining or increasing the optical output power.
  • the area on which the radiation-emitting semiconductor bodies are arranged can be reduced.
  • Object of the present invention is to provide a module with radiation-emitting semiconductor bodies with high luminance, which has the highest possible packing density of the individual semiconductor body.
  • a module according to the invention has a regular arrangement of individual, radiation-emitting semiconductor bodies which are applied to a mounting surface of a carrier, wherein a wire connection between two adjacent, radiation-emitting semiconductor bodies is mounted on an upper side of the two radiation-emitting semiconductor bodies opposite the mounting surface. Due to an advantageous arrangement or design of the radiation-emitting semiconductor body, such a module enables a high packing density.
  • Radiation-emitting semiconductor bodies are to be understood here in particular as light-emitting diode semiconductor bodies with contact surfaces.
  • other radiation emitters can be used in the invention. This includes, among other things, in addition to light-emitting diodes in general, for example, laser diodes, Superstrahier and OLEDs.
  • the radiation emitter is preferably a diode emitting electromagnetic radiation with at least approximately Lambertian radiation characteristic, particularly preferably a thin-film light-emitting diode chip.
  • a reflective layer is applied or formed which reflects back at least part of the electromagnetic radiation generated in the epitaxial layer sequence
  • the carrier element is an element which is applied to the epitaxial layer sequence before the growth substrate is detached from the growth substrate on which the epitaxial layer sequence has been grown,
  • the epitaxial layer sequence has a thickness in the range of 20 microns or less, in particular in the range of 10 microns, and
  • the epitaxial layer sequence contains at least one semiconductor layer with at least one surface which has a diameter has, in the ideal case, an approximately ergodic distribution of the light in the epitaxial epitaxial layer sequence, that is, it has a possible ergodisch stochastic scattering behavior.
  • the semiconductor layer is made of a material comprising a compound of elements of III. and V. Main Group of the Periodic Table.
  • this layer GaAs or AlGaAs (Al x Ga ⁇ _ x As with 0 ⁇ x ⁇ 1), which of course also III-V compound semiconductor such as GaP or GaN and based thereon or derived therefrom compounds such
  • InGaAlP In x AIyGa 1 _ x _ y P with O ⁇ x ⁇ l; O ⁇ y ⁇ l
  • InGaAlN In x AIyGa 1 _ x _ y N with O ⁇ x ⁇ l; O ⁇ y ⁇ l
  • InGaAlPN in x AIyGa 1 - x n N in -yP with O ⁇ x ⁇ l; O ⁇ y ⁇ l; 0 ⁇ n ⁇ 1
  • InGaAlP In x AIyGa 1 _ x _ y P with O ⁇ x ⁇ l; O ⁇ y ⁇ l
  • InGaAlPN InGaAlPN (in x AIyGa 1 - x n N in -yP with O ⁇ x ⁇ l; O ⁇ y ⁇ l; 0 ⁇ n
  • the radiation-emitting semiconductor bodies are arranged on the carrier in accordance with a matrix of columns and rows.
  • the number of columns can correspond to the number of rows.
  • the number of columns differs from the number of rows.
  • a matrix size of 3x4, 4x3 or 16x9 can be selected. These sizes correspond to standardized TV formats, making such a module suitable for commercial projection applications.
  • matrix sizes with a higher number of radiation-emitting semiconductor bodies are also conceivable are matrix sizes with a higher number of radiation-emitting semiconductor bodies. As a result, the luminance can advantageously be increased.
  • a constant spacing between the rows and columns of radiation-emitting semiconductor bodies is achieved. chooses.
  • This distance can be 200 ⁇ m with a deviation of 5% in the tolerance range.
  • the distance lOO ⁇ m. Distances which are less than 100 ⁇ m can prove particularly advantageous.
  • the distance between the semiconductor bodies is limited by the fact that, in the case of an arrangement of more than three semiconductor bodies, a gap is to be provided next to one another for a bonding pad. This limits the packing density. In the present invention, however, a bonding pad between the adjacent semiconductor bodies is not required, since the wire connection is guided from semiconductor body to semiconductor body.
  • a plurality of bond pads can be arranged laterally downstream of the radiation-emitting semiconductor bodies.
  • the bond pads can thus advantageously be located outside the matrix of radiation-emitting semiconductor bodies.
  • a suitable, electrical connection of the radiation-emitting semiconductor body also makes possible the electrical supply of the radiation-emitting semiconductor body which is not directly adjacent to the bond pads.
  • the packing density can be increased by approximately 30% compared to a conventional module.
  • the radiation-emitting semiconductor bodies are connected in series in each case in one column of the matrix.
  • two adjacent, radiation-emitting semiconductor bodies of a column are arranged inversely to one another, that is to say that the upper side of the one radiation-emitting semiconductor body is a layer of a first conductivity type and the upper side of the radiation-emitting semiconductor body adjacent in the column is a layer of a second conductivity type having .
  • a p-layer is located on the upper side of the one radiation-emitting semiconductor body and an n-layer is located on the upper side of the adjacent, radiation-emitting semiconductor body.
  • any number of semiconductor bodies can be arranged in a column and connected in series.
  • the inversely arranged, radiation-emitting semiconductor bodies of the matrix are located on a common metallization, which is applied to the mounting surface of the carrier. More preferably, the metallization has breaks between the columns and rows. More preferably, the distance between the breaks of lines corresponds to a double line spacing.
  • the electrical connection of the radiation-emitting semiconductor body can be effected by means of the metallization and by means of wire connections.
  • the wire connections run particularly preferably above the plane in which the upper side of the radiation-emitting semiconductor body is located. This allows a simple attachment of the wire connections, since only in one plane can be operated.
  • the radiation-emitting semiconductor bodies of a column are connected in series.
  • the Columns of series-connected, radiation-emitting semiconductor body be connected in parallel.
  • the radiation-emitting semiconductor bodies are doubly contacted on the upper side, that is to say they have on the upper side " a means for n-contacting as well as for p-contact.”
  • the upper side of the radiation-emitting semiconductor bodies is structured accordingly.
  • the thin-film semiconductor bodies preferably have a radiation-generating layer sequence on which a p-type contact has been applied.
  • the radiation-generating layer sequence has an active layer containing, for example, GaN.
  • further layers may be arranged downstream of the active layer, for example a barrier layer containing TiWN, a protective layer containing Ti / Pt / Au, and a corrosion protection layer containing Au.
  • said layers may be bonded to a support member containing, for example, Ge by means of a braze containing, for example, AuSn.
  • the carrier element On the side of the carrier element which faces away from the mounting surface, it is furthermore possible to provide a protective layer containing, for example, Ti / Pt / Au, a barrier layer containing TiWN, for example, and a base metallization containing, for example, AuSb. be seen.
  • the carrier element On the side facing the mounting surface, the carrier element may comprise a layer containing Au.
  • the radiation-generating layer sequence advantageously rises as a mesa structure, so that there is space for an n-contact in addition to the mesa structure on the carrier element.
  • the radiation-emitting semiconductor bodies can be connected in series in a column by conducting a wire connection from the p-contacting of a radiation-emitting semiconductor body to the n-contacting of an adjacent, radiation-emitting semiconductor body.
  • the radiation-emitting semiconductor bodies are preferably connected to bond pads. Further advantageous interconnections are conceivable on account of the geometric arrangement and structure of the radiation-emitting semiconductor bodies.
  • a module according to the invention advantageously has a carrier which contains an electrically insulating material.
  • a support is characterized, which contains a ceramic material, for example AL2O3 or AlN.
  • the UV stability of the ceramic material can reduce the degradation of the carrier and thus increase the life of the module. This can prove to be an advantage especially when the module is used for projection applications.
  • a permanent operation with changing load for example when switching on or off, is of importance.
  • LEDs can advantageously have a lifetime (equivalent to the Half of the original value of the intensity) of 10 5 to 10 ⁇ hours.
  • the dissipation of heat which may additionally be effected by a heat sink containing a thermally conductive material, such as Al, and downstream of the carrier, have a positive effect on the life of the module.
  • a heat sink containing a thermally conductive material, such as Al and downstream of the carrier, have a positive effect on the life of the module.
  • the radiation-emitting semiconductor bodies may preferably be mounted on the carrier by means of a solder or an adhesive, particularly preferably by means of a metallization which is applied between the semiconductor body and the carrier.
  • the metallization may at least partially cover the carrier. In this case, in contrast to the embodiment described above, the metallization is not required for the electrical supply of the semiconductor body.
  • the individual, radiation-emitting semiconductor bodies or the entire module may preferably be enveloped with a molding compound.
  • Suitable materials are reaction resins such as epoxy resins, acrylic resins, silicone resins and polyurethane resins.
  • reaction resins such as epoxy resins, acrylic resins, silicone resins and polyurethane resins.
  • hybrid materials such as, for example, mixtures of epoxy resins and silicone may prove particularly suitable, with the hybrid materials having the advantage of increased UV stability, for example, over epoxy resins.
  • FIG. 1 shows a schematic plan view of a first exemplary embodiment of a module according to the invention
  • FIG. 2 shows a schematic plan view of a second exemplary embodiment of a module according to the invention
  • FIG. 3 is a schematic sectional view of the first and second embodiments
  • FIG. 4 shows a schematic plan view of a third exemplary embodiment of a module according to the invention
  • FIG. 5 shows a schematic plan view of a fourth exemplary embodiment of a module according to the invention
  • FIG. 6a is a schematic sectional view of a thin-film semiconductor body according to the fourth embodiment
  • Figure 6b is a schematic plan view of a thin-film semiconductor body according to the fourth embodiment.
  • FIG. 1 shows a first exemplary embodiment of a module according to the invention.
  • the radiation-emitting semiconductor bodies 1 are arranged regularly on a carrier 2.
  • the regular arrangement corresponds to a matrix three columns and four rows.
  • the column spacing 18 or the line spacing 17 is preferably 100 ⁇ m.
  • the radiation-emitting semiconductor bodies 1 can be contacted on two mutually opposite sides of the semiconductor body (n-contacting, p-contacting).
  • the radiation-emitting semiconductor bodies 1 are preferably arranged inversely, so that of two adjacent, radiation-emitting semiconductor bodies 1 of a column, one side of the carrier 2 facing away from the mounting surface 6 has a p-type contact, the other an n-type contact.
  • each radiation-emitting semiconductor bodies 1 of a column which are not directly connected by a wire connection, are electrically connected by a common metallization 4, which is applied to the carrier 2.
  • This metallization 4 may be strip-shaped.
  • These semiconductor bodies 1 can be applied to the metallization 4 by means of a solder or an electrically conductive adhesive.
  • an Ag or Au-containing conductive adhesive can be used for this purpose.
  • FIG. 1 A second embodiment of a module according to the invention is shown in FIG.
  • the radiation-emitting semiconductor bodies 1 are preferably located on a carrier 2 which contains an electrically insulating, preferably heat-conducting material, for example a ceramic material.
  • the radiation-emitting semiconductor bodies 1 are regularly arranged on the carrier 2, forming a 3 ⁇ 4 matrix of three columns and four rows.
  • the semiconductor bodies are arranged inversely to each other, so that of two adjacent, radiation-emitting Halbleiterk ⁇ rpern 1 of a column, one on the mounting surface facing away from a layer of a first and the other has a layer of a second conductivity type.
  • a metallization 4 is applied to the carrier 2, which preferably has an interruption between the 2nd and the 3rd line.
  • the wire connections between the radiation-emitting semiconductor bodies of a column run as in the first exemplary embodiment.
  • the semiconductor bodies of a column are thus connected in series.
  • the columns of series-connected, radiation-emitting semiconductor bodies are connected in parallel. This is done by means of the metallization 4, which has only one parallel to the lines running interruption achieved.
  • FIG. 3 shows a schematic sectional view of the first and second exemplary embodiments.
  • the section A-A runs along a column.
  • a metallization 4 is applied, which has an interruption in the middle of the carrier 2. Furthermore, bonding pads 3 are applied on the carrier 2 on the edge side. These bond pads 3 serve for the electrical connection of the radiation-emitting semiconductor bodies 1.
  • the semiconductor bodies 1 are mounted in pairs on a common metallization 4. As shown in FIG. 3, these groups of two consist of two semiconductor bodies 1 which are arranged inversely in relation to one another and are radiation-emitting.
  • the radiation-emitting semiconductor body Ia has a p-contact on the side facing away from the mounting surface and is connected to a bonding pad 3 by means of a wire connection 5. The n-contacting takes place by means of the metallization 4, on which the radiation-emitting semiconductor body is mounted by means of a solder or conductive adhesive.
  • the semiconductor body Ib has an n-contact on the side facing away from the mounting surface 6, and a p-contact on the side facing the mounting surface 6.
  • the radiation-emitting semiconductor bodies Ia and Ib are interconnected in series with one another by means of the common metallization 4, on which the two semiconductor bodies are located.
  • the radiation-emitting semiconductor body Ic is arranged inversely with respect to the radiation-emitting semiconductor body Ib.
  • the semiconductor body Id is in turn arranged inversely to the radiation-emitting semiconductor body Ic and is located therewith on a common metallization 4.
  • the electrical connection is made by means of a wire connection 5 to a bondpad 3.
  • the illustrated radiation-emitting semiconductor bodies Ia to Id are thus connected in series.
  • the wire connections 5 preferably run on the side facing away from the mounting surface 6 of the radiation-emitting semiconductor body Ia to Id and are applied to a contact surface 8 of the radiation-emitting semiconductor body 1.
  • FIG. 4 shows a third exemplary embodiment of a module according to the invention.
  • the adjacent radiation-emitting semiconductor bodies 1 of a column are arranged inversely to one another.
  • two adjacent, radiation-emitting semiconductor bodies 1 of a column are each applied to a common metallization 4.
  • not all the radiation-emitting semiconductor bodies 1 of each column are connected to one another in series.
  • the advantage of this embodiment is that a total failure of the one, a radiation-emitting semiconductor bodies 1 downstream of a defective, radiation-emitting semiconductor body can be partially prevented.
  • the radiation-emitting semiconductor bodies 1 are arranged on a common carrier 2, which preferably contains an electrically insulating material, for example a ceramic material, and in their arrangement particularly preferably follow a matrix of three columns and four rows.
  • the line spacing 17 is preferably selected to be the same size as the column spacing 18 and may be 200 ⁇ m, advantageously 100 ⁇ m, particularly advantageously less than 100 ⁇ m.
  • the columns of radiation-emitting Halbleiterk ⁇ r- pern 1 Bonding pads 3 are laterally downstream, which are applied to the carrier 2.
  • Each radiation-emitting semiconductor body 1 has two contacts on the side facing away from the mounting surface 6, an n-type contact and a p-type contact, so that two wire connections 5 are arranged on top of a radiation-emitting semiconductor body 1.
  • the adjacent radiation-emitting semiconductor bodies 1 of a column are each electrically connected to one another by means of a wire connection 5, these in each case referring to the p-contacting of the one radiation-emitting semiconductor body for n-contacting of the adjacent radiation-emitting semiconductor body, which is referred to as n Corner contact is formed, runs.
  • the radiation-emitting semiconductor body 1 of a column are connected in series.
  • the semiconductor bodies are preferably designed as thin-film semiconductor bodies, as will be explained in more detail below.
  • this embodiment of a module according to the invention enables easy attachment of the wire connections 5 on the top side.
  • FIG. 6a a thin-film semiconductor body, as can be used, for example, in the fourth exemplary embodiment, is shown in a schematic sectional view.
  • the thin-film semiconductor body has a carrier element 9, which preferably contains a semiconductor material, for example Ge.
  • a base metallization 15 for example, contains AuSb, applied, which are arranged downstream of the following layers: a barrier layer 11, which contains, for example, TiWN, to a degradation of the carrier material and a protective layer 12 containing, for example, Ti / Pt / Au.
  • the radiation-generating layer sequence has an active layer 10, which preferably contains a semiconductor material composed of a III-V compound, for example GaN or InGaN, as well as a barrier layer 11, which contains, for example, TiWN, a protective layer 12, for example Ti / Pt / Au contains, and a corrosion protection layer 13, the example Au contains.
  • the radiation-generating layer sequence with the exception of the corrosion protection layer 13, has a mesa structure that is formed during the manufacturing process. After growth of the radiation-generating layer sequence on a growth substrate, it is detached from the growth substrate, so that the layer 13 is then partially exposed.
  • the radiation-generating layer sequence is applied to the carrier element 9 by means of a brazing filler metal 14, which contains, for example, AuSn.
  • the support member 9 may have on its underside a layer, e.g. Contains Au. Through this layer on the underside, which is preferably thermally conductive, the semiconductor body may be connected to the cooling heat-conducting to a heat sink, which may have a positive effect on the life of the module.
  • the mesa structure allows on the top 16 the application of an n-type contact 8b.
  • the p-type contact 8a is applied to the radiation-generating layer sequence comprising the active layer 10.
  • the p- and n-contacts are applied in the outer regions of the thin-film semiconductor body, so that the lighting Density is minimally reduced by the shading of the wire connections 5.
  • FIG. 6b shows a schematic plan view of a thin-film semiconductor body.
  • the sectional view shows the triangular n-type contact 8b, the upper layer of the layer sequence comprising the active layer 10 and the circular p-type contact 8b.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Led Device Packages (AREA)

Abstract

Es wird ein Modul mit einer regelmäßigen Anordnung von einzelnen, strahlungsemittierenden Halbleiterkörpern (1) beschrieben, die auf einer Montagefläche (6) eines Trägers (2) aufgebracht sind, wobei eine Drahtverbindung zwischen zwei benachbarten, strahlungsemittierenden Halbleiterkörpern (1) auf einer der Montagefläche (6) gegenüberliegenden Oberseite der beiden strahlungsemittierenden Halbleiterkörper (1) angebracht ist.

Description

Beschreibung
Modul mit Strahlungsemittierenden Halbleiterkörpern
Die Erfindung betrifft ein Modul mit einer regelmäßigen Anordnung von einzelnen, Strahlungsemittierenden Halbleiterkörpern.
Diese Patentanmeldung beansprucht die Priorität der deutschen Patentanmeldung 102005009060.5-33, deren Offenbarungsgehalt hiermit durch Rückbezug aufgenommen wird.
In der Offenlegungsschrift EP 0 303 741 ist ein Display aus Leuchtdioden beschrieben. Die Leuchtdioden befinden sich dabei auf einer Platine, mit der sie jeweils elektrisch leitend verbunden sind.
Aus der Offenlegungsschrift WO 02/33756 Al ist ein LED-Modul bekannt, das einen Träger mit einer ebenen Hauptfläche aufweist, auf der eine Mehrzahl von LED-Halbleiterkörpern aufgebracht ist . Die LED-Halbleiterkörper sind mittels eines Chipanschlussbereichs, der sich zwischen dem Träger und dem LED- Halbleiterkörper befindet, und einer auf der dem Träger abgewandten Seite des LED-Halbleiterkörpers aufgebrachten Kontaktfläche elektrisch anschließbar. Zur Verbindung der LED- Halbleiterkörper miteinander verlaufen Drahtverbindungen von der Kontaktfläche der LED-Halbleiterkörper zum Chipanschlussbereich der benachbarten LED-Halbleiterkörper.
Für viele Anwendungen werden Module mit strahlungsemit- tierenden Halbleiterkörpern mit geringen Abmessungen und hoher Leuchtdichte benötigt. Derartige Module eignen sich insbesondere als Halbleiterlichtquelle in Verbindung mit abbildenden Optiken wie beispielsweise Projektoren. Eine Erhöhung der Leuchtdichte eines Moduls aus strahlungs- emittierenden Halbleiterkörpern kann prinzipiell dadurch erreicht werden, dass die Strahlungsdichte der einzelnen Halbleiterkörper erhöht wird, wobei zugleich die optische Ausgangsleistung beibehalten oder vergrößert wird.
Weiterhin kann zur Erhöhung der Leuchtdichte die Fläche, auf der die Strahlungsemittierenden Halbleiterkörper angeordnet sind, verringert werden. Allerdings besteht bei fortschreitender Miniaturisierung des Moduls ein Problem darin, Bond- pads zur Kontaktierung der Halbleiterkörper auf einer immer kleiner werdenden Fläche des Moduls unterzubringen.
Aufgabe der vorliegenden Erfindung ist es, ein Modul mit Strahlungsemittierenden Halbleiterkörpern mit hoher Leuchtdichte zu schaffen, das eine möglichst hohe Packungsdichte der einzelnen Halbleiterkörper aufweist.
Diese Aufgabe wird durch ein Modul mit strahlungsemittieren- den Halbleiterkörpern nach Patentanspruch 1 gelöst. Vorteilhafte Weiterbildungen der Erfindung sind Gegenstand der abhängigen Ansprüche .
Ein erfindungsgemäßes Modul weist eine regelmäßige Anordnung von einzelnen, strahlungsemittierenden Halbleiterkörpern auf, die auf einer Montagefläche eines Trägers aufgebracht sind, wobei eine Drahtverbindung zwischen zwei benachbarten, strah- lungsemittierenden Halbleiterkörpern auf einer der Montagefläche gegenüber liegenden Oberseite der beiden strahlungs- emittierenden Halbleiterkörper angebracht ist. Ein solches Modul ermöglicht aufgrund einer vorteilhaften Anordnung beziehungsweise Gestaltung der strahlungsemittieren- den Halbleiterkörper eine hohe Packungsdichte.
Unter Strahlungsemittierenden Halbleiterkörpern sind hierbei vor allem Leuchtdiodenhalbleiterkörper mit Kontaktflächen zu verstehen. Weitergehend können bei der Erfindung auch andere Strahlungsemitter verwendet werden. Dies umfasst unter anderem neben Leuchtdioden Lumineszenzdioden im allgemeinen, beispielsweise Laserdioden, Superstrahier und OLEDs. Ferner ist der Strahlungsemitter bevorzugt eine elektromagnetische Strahlung emittierende Diode mit zumindest näherungsweise lambertscher Abstrahlcharakteristik, besonders bevorzugt ein Dünnfilm-Leuchtdioden-Chip .
Ein Dünnfilm-Leuchtdioden-Chip zeichnet sich insbesondere durch die charakteristischen Merkmale aus:
- an einer zu einem Trägerelement hingewandten ersten Haupt- fläche einer Strahlungserzeugenden Epitaxieschichtenfolge ist eine reflektierende Schicht aufgebracht oder ausgebildet, die zumindest einen Teil der in der Epitaxieschichtenfolge erzeugten elektromagnetischen Strahlung in diese zurückreflektiert,
- das Trägerelement ist ein von dem Aufwachssubstrat, auf dem die Epitaxieschichtenfolge aufgewachsen wurde, verschiedenes, vor dem Ablösen des Aufwachssubstrates auf die Epitaxieschichtenfolge aufgebrachtes Element,
- die Epitaxieschichtenfolge weist eine Dicke im Bereich von 20 μm oder weniger, insbesondere im Bereich von 10 μm auf, und
- die Epitaxieschichtenfolge enthält mindestens eine Halbleiterschicht mit zumindest einer Fläche, die eine Durchmi- schungsstruktur aufweist, die im Idealfall zu einer annähernd ergodischen Verteilung des Lichts in der epitaktischen Epitaxieschichtenfolge führt, das heißt, sie weist ein möglichst ergodisch stochastisches Streuverhalten auf.
Vorzugsweise ist die Halbleiterschicht aus einem Material gefertigt, das eine Verbindung aus Elementen der III. und V. Hauptgruppe des Periodensystems enthält . Besonders bevorzugt enthält diese Schicht GaAs oder AlGaAs (AlxGa^_xAs mit 0 < x < 1) , wobei selbstverständlich auch III-V-Verbindungshalb- leiter wie GaP oder GaN sowie hierauf basierende oder hiervon abgeleitete Verbindungen wie
InGaAlP (InxAIyGa1_x_yP mit O ≤ x ≤ l; O ≤ y ≤ l), InGaAlN (InxAIyGa1_x_yN mit O ≤ x ≤ l; O ≤ y ≤ l) oder InGaAlPN ( InxAIyGa1-x-yPn Nl-n mit O ≤ x ≤ l; O ≤ y ≤ l; 0 ≤ n ≤ 1 ) im Rahmen der Erfindung vorgesehen sein können.
Bei einer vorteilhaften Ausführungsform sind die strahlungs- emittierenden Halbleiterkörper gemäß einer Matrix aus Spalten und Zeilen auf dem Träger angeordnet . Dabei kann die Anzahl der Spalten der Anzahl der Zeilen entsprechen. Vorzugsweise unterscheidet sich die Anzahl der Spalten von der Anzahl der Zeilen. Beispielsweise kann eine Matrixgröße von 3x4, 4x3 o- der 16x9 gewählt werden. Diese Größen entsprechen standardisierten TV-Formaten, wodurch sich ein solches Modul für kommerzielle Projektionsanwendungen eignet. Denkbar sind auch Matrixgrößen mit einer höheren Anzahl von strahlungsemittie- renden Halbleiterkörpern. Dadurch kann vorteilhafterweise die Leuchtdichte erhöht werden.
Vorzugsweise wird ein konstanter Abstand zwischen den Zeilen und Spalten aus Strahlungsemittierenden Halbleiterkδrpern ge- wählt. Dieser Abstand kann 200μm betragen, wobei eine Abweichung von 5% im Toleranzbereich liegt. Vorteilhafterweise beträgt der Abstand lOOμm. Als besonders vorteilhaft können sich Abstände erweisen, die 100 μm unterschreiten. Durch einen möglichst kleinen Abstand zwischen den einzelnen, strah- lungsemittierenden Halbleiterkörpern kann dabei eine hohe Packungsdichte und in der Folge eine hohe Leuchtdichte erzielt werden.
In bisher bekannten Modulen von Strahlungsemittierenden Halbleiterkörpern wird demgegenüber der Abstand zwischen den Halbleiterkörpern dadurch begrenzt, dass bei einer Anordnung von mehr als drei Halbleiterkörpern nebeneinander eine Lücke für ein Bondpad vorzusehen ist. Dies beschränkt die Packungsdichte. Bei der vorliegenden Erfindung ist hingegen ein Bondpad zwischen den benachbarten Halbleiterkörpern nicht erforderlich, da die Drahtverbindung von Halbleiterkδrper zu Halbleiterkörper geführt ist.
Bei der Erfindung kann eine Mehrzahl von Bondpads den strah- lungsemittierenden Halbleiterkδrpern lateral nachgeordnet sein. Die Bondpads können sich somit vorteilhafterweise außerhalb der Matrix aus Strahlungsemittierenden Halbleiterkörpern befinden. Eine geeignete, elektrische Verbindung der Strahlungsemittierenden Halbleiterkörper ermöglicht auch die elektrische Versorgung der den Bondpads nicht unmittelbar benachbarten, Strahlungsemittierenden Halbleiterkörper.
Im Rahmen der Erfindung lässt sich die Packungsdichte gegenüber einem herkömmlichen Modul um ungefähr 30% erhöhen.
Vorzugsweise sind die Strahlungsemittierenden Halbleiterkörper in jeweils einer Spalte der Matrix seriell verschaltet. In einer möglichen Ausführungsform sind dazu zwei benachbarte, Strahlungsemittierende Halbleiterkörper einer Spalte in- vers zueinander angeordnet, das heißt, dass die Oberseite des einen Strahlungsemittierenden Halbleiterkörpers eine Schicht eines ersten Leitungstyps und die Oberseite des in der Spalte benachbarten, Strahlungsemittierenden Halbleiterkörpers eine Schicht eines zweiten Leitungstyps aufweist . Beispielsweise befindet sich eine p-Schicht an der Oberseite des einen Strahlungsemittierenden Halbleiterkörpers und eine n-Schicht an der Oberseite des benachbarten, Strahlungsemittierenden Halbleiterkörpers. Vorteilhafterweise können beliebig viele Halbleiterkδrper in einer Spalte angeordnet und seriell verschaltet sein.
Bevorzugt befinden sich die invers angeordneten, strahlungs- emittierenden Halbleiterkörper der Matrix auf einer gemeinsamen Metallisierung, die auf die Montagefläche des Trägers aufgebracht ist. Besonders bevorzugt weist die Metallisierung Unterbrechungen zwischen den Spalten und Zeilen auf. Weiter besonders bevorzugt entspricht der Abstand zwischen den Unterbrechungen von Zeilen einem doppelten Zeilenabstand.
Der elektrische Anschluss der Strahlungsemittierenden Halbleiterkörper kann mittels der Metallisierung und mittels Drahtverbindungen erfolgen. Die Drahtverbindungen verlaufen besonders bevorzugt oberhalb der Ebene, in der sich die Oberseite der Strahlungsemittierenden Halbleiterkörper befindet. Dies ermöglicht eine einfache Anbringung der Drahtverbindungen, da ausschließlich in einer Ebene operiert werden kann.
Vorzugsweise sind die Strahlungsemittierenden Halbleiterkörper einer Spalte seriell verschaltet. Außerdem können die Spalten aus seriell verschalteten, Strahlungsemittierenden Halbleiterkörper parallel verschaltet sein.
Ferner ist denkbar, dass lediglich zwei strahlungsemittieren- de Halbleiterkörper einer Spalte seriell verschaltet sind. Weitere vorteilhafte Möglichkeiten der Verschaltung sind auf Grund der geometrischen Anordnung der Strahlungsemittierenden Halbleiterkörper in einer Matrix und der sie umgebenden Bond- pads realisierbar.
In einer weiteren möglichen Ausführungsform werden die strah- lungsemittierenden Halbleiterkörper auf der Oberseite zweifach kontaktiert, das heißt sie weisen auf der Oberseite so"- wohl ein Mittel zur n-Kontaktierung als auch zur p-Kontak- tierung auf . Die Oberseite der Strahlungsemittierenden Halbleiterkörper ist dafür entsprechend strukturiert .
Die Dünnfilm-Halbleiterkörper weisen als oberste Schichtenfolge vorzugsweise eine Strahlungserzeugende Schichtenfolge auf, auf der eine p-Kontaktierung aufgebracht ist. Die strah- lungserzeugende Schichtenfolge weist eine aktive Schicht auf, die beispielsweise GaN enthält. Auf der der Montagefläche des Trägers zugewandten Seite können der aktiven Schicht weitere Schichten nachgeordnet sein, beispielsweise eine Barriereschicht, die TiWN enthält, eine Schutzschicht, die Ti/Pt/Au enthält, und eine Korrosionsschutzschicht, die Au enthält. Ferner können die genannten Schichten mittels eines Hartlots, das beispielsweise AuSn enthält, auf ein Trägerelement, das zum Beispiel Ge enthält, gebondet sein. Auf der der Montage- fläche abgewandten Seite des Trägerelements kann weiterhin eine Schutzschicht, die zum Beispiel Ti/Pt/Au enthält, eine Barriereschicht, die beispielsweise TiWN enthält, und eine Grundmetallisierung, die beispielsweise AuSb enthält, vorge- sehen sein. Auf der der Montagefläche zugewandten Seite kann das Trägerelement eine Schicht, die Au enthält, aufweisen.
Auf dem Trägerelement erhebt sich die strahlungserzeugende Schichtenfolge vorteilhafterweise als Mesa-Struktur, so dass neben der Mesa-Struktur auf dem Trägerelement Platz für eine n-Kontaktierung besteht.
Die Strahlungsemittierenden Halbleiterkörper können in einer Spalte seriell verschaltet sein, indem eine Drahtverbindung von der p-Kontaktierung eines Strahlungsemittierenden Halbleiterkörpers zur n-Kontaktierung eines benachbarten, strah- lungsemittierenden Halbleiterkörpers geführt ist. In der ersten und letzten Zeile einer jeden Spalte sind die strahlungs- emittierenden Halbleiterkörper vorzugsweise an Bondpads angeschlossen. Weitere vorteilhafte Verschaltungen sind aufgrund der geometrischen Anordnung und Struktur der Strahlungsemit- tierenden Halbleiterkörper denkbar.
Ein erfindungsgemäßes Modul weist vorteilhafterweise einen Träger auf, der ein elektrisch isolierendes Material enthält. Als verschleißfest, korrosionsbeständig, UV-stabil und vor allem sehr gut wärmeleitend zeichnet sich ein Träger aus, der ein Keramikmaterial, zum Beispiel AL2O3 oder AlN, enthält. Durch die UV-Stabilität des Keramikmaterials kann die Degradation des Trägers verringert und damit die Lebensdauer des Moduls erhöht werden. Dies kann sich insbesondere dann als Vorteil herausstellen, wenn das Modul für Projektionsanwendungen verwendet wird. Hierbei ist ein dauerhafter Betrieb bei wechselnder Belastung, beispielsweise beim Ein- oder Ausschalten, von Bedeutung. Während konventionelle Glühlampen eine mittlere Lebensdauer von ca. 10^ Stunden haben, können LEDs vorteilhafterweise eine Lebensdauer (entspricht der Hälfte des ursprünglichen Wertes der Intensität) von 105 bis 10^ Stunden erreichen.
Ferner kann sich die Abführung der Wärme, die zusätzlich durch eine Wärmesenke erfolgen kann, die ein wärmeleitendes Material, beispielsweise Al, enthält, und dem Träger nachgeordnet ist, positiv auf die Lebensdauer des Moduls auswirken. Außerdem kann durch die Kühlung des Moduls eine unerwünschte Änderung der Abstrahlcharakteristik der strahlungsemittierenden Halbleiterkörper verhindert werden.
Die Strahlungsemittierenden Halbleiterkörper können bevorzugt mittels eines Lotes oder eines Klebers, besonders bevorzugt mittels einer Metallisierung, die zwischen dem Halbleiterkörper und dem Träger aufgebracht ist, auf dem Träger montiert sein. Die Metallisierung kann den Träger zumindest teilweise bedecken. Dabei ist die Metallisierung im Gegensatz zur weiter oben beschriebenen Ausführungsform nicht zur elektrischen Versorgung der Halbleiterkδrper erforderlich.
Zum Schutz des Moduls vor schädigenden äußeren Einwirkungen können die einzelnen, Strahlungsemittierenden Halbleiterkörper beziehungsweise kann das gesamte Modul vorzugsweise mit einer Formmasse umhüllt sein. Als Materialien eignen sich Reaktionsharze wie beispielsweise Epoxidharze, Acryl-Harze, Silicon-Harze und Polyurethan-Harze. Ferner können sich Hybridmaterialien wie zum Beispiel Mischungen aus Epoxidharzen und Silikon als besonders geeignet herausstellen, wobei die Hybridmaterialien beispielsweise gegenüber Epoxidharzen den Vorteil gesteigerter UV-Stabilität aufweisen.
Weitere Merkmale, Vorteile und Weiterbildungen eines erfindungsgemäßen Moduls ergeben sich aus den nachfolgend in Ver- bindung mit den Figuren 1 bis 6 erläuterten Ausführungsbeispielen.
Es zeigen:
Figur 1 eine schematische Aufsicht eines ersten Ausführungs- beispiels eines erfindungsgemäßen Moduls,
Figur 2 eine schematische Aufsicht eines zweiten Ausführungs- beispiels eines erfindungsgemäßen Moduls,
Figur 3 eine schematische Schnittansicht des ersten und zweiten Ausführungsbeispiels,
Figur 4 eine schematische Aufsicht eines dritten Ausführungsbeispiels eines erfindungsgemäßen Moduls,
Figur 5 eine schematische Aufsicht eines vierten Ausführungsbeispiels eines erfindungsgemäßen Moduls,
Figur 6a eine schematische Schnittansicht eines Dünnfilm- Halbleiterkörpers gemäß des vierten Ausführungsbeispiels,
Figur 6b eine schematische Aufsicht eines Dünnfilm- Halbleiterkörpers gemäß des vierten Ausführungsbeispiels .
In Figur 1 ist ein erstes Ausführungsbeispiel eines erfindungsgemäßen Moduls dargestellt. Die Strahlungsemittierenden Halbleiterkörper 1 sind auf einem Träger 2 regelmäßig angeordnet. Die regelmäßige Anordnung entspricht einer Matrix aus drei Spalten und vier Zeilen. Der Spaltenabstand 18 beziehungsweise der Zeilenabstand 17 beträgt vorzugsweise lOOμm.
Die Strahlungsemittierenden Halbleiterkörper 1 können an zwei einander gegenüber liegenden Seiten des Halbleiterkörpers kontaktiert werden (n-Kontaktierung, p-Kontaktierung) . Die Strahlungsemittierenden Halbleiterkörper 1 sind bevorzugt in- vers angeordnet, so dass von zwei benachbarten, strahlungs- emittierenden Halbleiterkörpern 1 einer Spalte der eine auf der der Montagefläche 6 abgewandten Seite des Trägers 2 eine p-Kontaktierung, der andere eine n-Kontaktierung aufweist.
Besonders bevorzugt sind jeweils zwei Strahlungsemittierende Halbleiterkörper 1 einer Spalte, die nicht durch eine Drahtverbindung unmittelbar verbunden sind, durch eine gemeinsame Metallisierung 4, die auf dem Träger 2 aufgebracht ist, e- lektrisch verbunden. Diese Metallisierung 4 kann streifenförmig ausgeführt sein. Für das dargestellte Modul ergeben sich dann sechs streifenförmige Metallisierungen 4, auf denen sich jeweils zwei invers angeordnete, Strahlungsemittierende Halbleiterkörper 1 befinden. Diese Halbleiterkörper 1 können mittels eines Lotes oder eines elektrisch leitenden Klebers auf die Metallisierung 4 aufgebracht sein. Beispielsweise kann dazu ein Ag- oder Au-haltiger Leitkleber verwendet werden.
Die Strahlungsemittierenden Halbleiterkörper 1, die sich auf einer gemeinsamen, streifenförmigen Metallisierung 4 befinden, sind dadurch in Reihe geschaltet. Ferner sind zwei einander benachbarte, Strahlungsemittierende Halbleiterkörper 1 einer Spalte, die sich auf verschiedenen, streifenförmigen Metallisierungen 4 befinden, mittels einer Drahtverbindung 5 miteinander verbunden. Schließlich sind die äußeren strah- lungsemittierenden Halbleiterkörper jeder Spalte mittels ei- ner Drahtverbindung 5 an Bondpads, die diesen lateral nachge- ordnet sind, angeschlossen. Sowohl durch die spezielle Form der Anordnung als auch durch die elektrische Verbindung sind die Strahlungsemittierenden Halbleiterkörper 1 jeder Spalte seriell verschaltet.
Ein zweites Ausführungsbeispiel eines erfindungsgemäßen Moduls ist in Figur 2 dargestellt. Die Strahlungsemittierenden Halbleiterkörper 1 befinden sich vorzugsweise auf einem Träger 2, der ein elektrisch isolierendes, vorzugsweise wärmeleitendes Material, beispielsweise ein Keramikmaterial, enthält.
Die Strahlungsemittierenden Halbleiterkörper 1 sind auf dem Träger 2 regelmäßig angeordnet, wobei sie eine 3x4 -Matrix aus drei Spalten und vier Zeilen bilden.
Wie bei dem ersten Ausführungsbeispiel sind die Halbleiterkörper invers zueinander angeordnet, so dass von zwei benachbarten, Strahlungsemittierenden Halbleiterkδrpern 1 einer Spalte der eine auf der der Montagefläche abgewandten Seite eine Schicht eines ersten und der andere eine Schicht eines zweiten Leitungstyps aufweist.
Ferner ist auf dem Träger 2 eine Metallisierung 4 aufgebracht, die vorzugsweise eine Unterbrechung zwischen der 2. und der 3. Zeile aufweist. Die Drahtverbindungen zwischen den Strahlungsemittierenden Halbleiterkörpern einer Spalte verlaufen wie im ersten Ausführungsbeispiel. Die Halbleiterkörper einer Spalte sind also seriell verschaltet. Zusätzlich sind die Spalten seriell verschalteter, strahlungsemittieren- den Halbleiterkörper parallel verschaltet. Dies wird mittels der Metallisierung 4, die nur eine parallel zu den Zeilen verlaufende Unterbrechung aufweist, erreicht.
Vorteilhafterweise kann durch diese Anordnung vermieden werden, dass die Halbleiterkörper einer gesamten Spalte ausfallen, sobald ein strahlungsemittierender Halbleiterkörper in der Reihe defekt ist.
In Figur 3 ist eine schematische Schnittansicht des ersten und zweiten Ausführungsbeispiels dargestellt. Der Schnitt A-A verläuft entlang einer Spalte.
Auf dem Träger 2 ist eine Metallisierung 4 aufgebracht, die in der Mitte des Trägers 2 eine Unterbrechung aufweist. Ferner sind auf dem Träger 2 randseitig Bondpads 3 aufgebracht. Diese Bondpads 3 dienen dem elektrischen Anschluss der strah- lungsemittierenden Halbleiterkörper 1. Die Halbleiterkörper 1 sind in Zweiergruppen auf eine gemeinsame Metallisierung 4 montiert. Wie in der Figur 3 dargestellt bestehen diese Zweiergruppen aus zwei zueinander invers angeordneten, strah- lungsemittierenden Halbleiterkörpern 1.
Der Strahlungsemittierende Halbleiterkörper Ia weist an der der Montagefläche abgewandten Seite eine p-Kontaktierung auf und ist mittels einer Drahtverbindung 5 an ein Bondpad 3 angeschlossen. Die n-Kontaktierung erfolgt mittels der Metallisierung 4, auf die der Strahlungsemittierende Halbleiterkörper mittels eines Lotes oder Leitklebers montiert ist.
Der Halbleiterkörper Ib weist hingegen auf der der Montage- fläche 6 abgewandten Seite eine n-Kontaktierung und auf der der Montagefläche 6 zugewandten Seite eine p-Kontaktierung auf . Die Strahlungsemittierenden Halbleiterkörper Ia und Ib sind mittels der gemeinsamen Metallisierung 4, auf dem sich die beiden Halbleiterkörper befinden, miteinander seriell verschaltet .
Die elektrische Verbindung des Halbleiterkörpers Ib mit dem Halbleiterkδrper Ic, wobei die Metallisierung 4 zwischen den beiden Halbleiterkörpern unterbrochen ist, erfolgt mittels einer Drahtverbindung 5 auf der der Montagefläche 6 abgewandten Seite. Der Strahlungsemittierende Halbleiterkörper Ic ist dabei in Bezug auf den Strahlungsemittierenden Halbleiterkörper Ib invers angeordnet .
Der Halbleiterkörper Id ist wiederum invers zum strahlungs- emittierenden Halbleiterkörper Ic angeordnet und befindet sich mit diesem auf einer gemeinsamen Metallisierung 4. Die elektrische Verbindung ist mittels einer Drahtverbindung 5 zu einem Bondpad 3 hergestellt.
Die dargestellten Strahlungsemittierenden Halbleiterkörper Ia bis Id sind somit seriell verschaltet.
Die Drahtverbindungen 5 verlaufen vorzugsweise auf der der Montagefläche 6 abgewandten Seite der Strahlungsemittierenden Halbleiterkörper Ia bis Id und sind auf einer Kontaktfläche 8 der Strahlungsemittierenden Halbleiterkörper 1 aufgebracht.
In Figur 4 ist ein drittes Ausführungsbeispiel eines erfindungsgemäßen Moduls dargestellt. Entsprechend der ersten beiden Ausführungsbeispiele sind die benachbarten, strahlungs- emittierenden Halbleiterkörper 1 einer Spalte invers zu einander angeordnet . Wie im ersten Ausführungsbeispiel sind jeweils zwei benachbarte, Strahlungsemittierende Halbleiterkörper 1 einer Spalte auf einer gemeinsamen Metallisierung 4 aufgebracht. Im Gegensatz zum ersten Ausführungsbeispiel sind jedoch nicht alle Strahlungsemittierenden Halbleiterkörper 1 jeder Spalte miteinander seriell verschaltet. So sind in der ersten und letzten Spalte der Matrix lediglich die Zweiergruppen zueinander invers angeordneter strahlungsemittierender Halbleiterkörper 1, die sich auf einer gemeinsamen Metallisierung 4 befinden, miteinander seriell verschaltet. Zusätzliche Bondpads 3, die den Zeilen aus Strahlungsemittierenden Halbleiterkörpern 1 lateral nachgeordnet sind, ermöglichen diese elektrische Verbindung .
Der Vorteil dieses Ausführungsbeispiels ist, dass ein Totalausfall von den einem defekten, Strahlungsemittierenden Halbleiterkörper nachgeordneten, Strahlungsemittierenden Halbleiterkörpern 1 teilweise verhindert werden kann.
In Figur 5 ist ein viertes Ausführungsbeispiel eines erfindungsgemäßen Moduls in einer schematischen Aufsicht dargestellt. Die Strahlungsemittierenden Halbleiterkörper 1 sind auf einem gemeinsamen Träger 2 angeordnet, der vorzugsweise ein elektrisch isolierendes Material, beispielsweise ein Keramikmaterial, enthält, und folgen in ihrer Anordnung besonders bevorzugt einer Matrix aus drei Spalten und vier Zeilen. Der Zeilenabstand 17 wird vorzugsweise gleich groß wie der Spaltenabstand 18 gewählt und kann 200μm, vorteilhafterweise lOOμm, besonders vorteilhafterweise weniger als lOOμm betragen. Den Spalten aus Strahlungsemittierenden Halbleiterkδr- pern 1 sind Bondpads 3 lateral nachgeordnet, die auf dem Träger 2 aufgebracht sind. Jeder Strahlungsemittierende Halbleiterkörper 1 weist auf der der Montagefläche 6 abgewandten Seite zwei Kontaktierungen auf, eine n-Kontaktierung und eine p-Kontaktierung, so dass zwei Drahtverbindungen 5 auf einem Strahlungsemittierenden Halbleiterkörper 1 oberseitig angeordnet sind.
Wie in Figur 5 dargestellt sind die benachbarten strahlungs- emittierenden Halbleiterkörper 1 einer Spalte jeweils mittels einer Drahtverbindung 5 miteinander elektrisch verbunden, wobei diese jeweils von der p-Kontaktierung des einen strah- lungsemittierenden Halbleiterkörpers zur n-Kontaktierung des benachbarten Strahlungsemittierenden Halbleiterkörpers, der als n-Eckkontakt ausgebildet ist, verläuft. Somit sind die Strahlungsemittierenden Halbleiterkörper 1 einer Spalte seriell verschaltet. Bevorzugt sind die Halbleiterkörper als Dünnfilm-Halbleiterkδrper ausgeführt, wie im Folgenden noch näher erläutert wird.
Vorteilhafterweise ermöglicht diese Ausführungsform eines erfindungsgemäßen Moduls eine leichte Anbringung der oberseitig verlaufenden Drahtverbindungen 5.
In Figur 6a ist ein Dünnfilm-Halbleiterkörper, wie er beispielsweise im vierten Ausführungsbeispiel verwendet werden kann, in einer schematischen Schnittansicht dargestellt.
Der Dünnfilm-Halbleiterkörper weist ein Trägerelement 9 auf, das vorzugsweise ein Halbleitermaterial, beispielsweise Ge, enthält. Auf dem Trägerelement 9 ist eine Grundmetallisierung 15, die z.B. AuSb enthält, aufgebracht, welcher folgende Schichten nachgeordnet sind: eine Barriereschicht 11, die z.B. TiWN enthält, um eine Degradation des Trägermaterials zu verhindern, und eine Schutzschicht 12, die z.B. Ti/Pt/Au enthält.
Die Strahlungserzeugende Schichtenfolge weist eine aktive Schicht 10 auf, die vorzugsweise ein Halbleitermaterial aus einer III-V-Verbindung, beispielsweise GaN oder InGaN ent- hält, außerdem eine Barriereschicht 11, die beispielsweise TiWN enthält, eine Schutzschicht 12, die beispielsweise Ti/Pt/Au enthält, und eine Korrosionsschutzschicht 13, die z.B. Au enthält. Die Strahlungserzeugende Schichtenfolge, ausgenommen die Korrosionsschutzschicht 13, weist eine Mesa- Struktur auf, die während des Herstellungsprozesses geformt wird. Nach dem Aufwachsen der strahlungserzeugenden Schichtenfolge auf ein Aufwachssubstrat wird diese von dem Aufwachssubstrat abgelöst, so dass die Schicht 13 dann partiell frei liegt.
Ferner ist die Strahlungserzeugende Schichtenfolge mittels eines Hartlots 14, das beispielsweise AuSn enthält, auf dem Trägerelement 9 aufgebracht. Das Trägerelement 9 kann an seiner Unterseite eine Schicht, die z.B. Au enthält, aufweisen. Durch diese Schicht an der Unterseite, die vorzugsweise wärmeleitend ist, kann der Halbleiterkörper zur Kühlung wärmeleitend an eine Wärmesenke angeschlossen sein, was sich positiv auf die Lebensdauer des Moduls auswirken kann.
Die Mesa-Struktur ermöglicht auf der Oberseite 16 die Aufbringung einer n-Kontaktierung 8b. Die p-Kontaktierung 8a ist auf der Strahlungserzeugenden Schichtenfolge, die die aktive Schicht 10 umfasst, aufgebracht.
Die p- und n-Kontaktierung sind in den Außenbereichen des Dünnfilm-Halbleiterkörpers aufgebracht, so dass die Leucht- dichte durch die Abschattung der Drahtverbindungen 5 minimal verringert wird.
In Figur 6b ist eine schematische Draufsicht eines Dünnfilm- Halbleiterkörpers dargestellt. Zu sehen ist in der Schnittansicht die dreieckförmige n-Kontaktierung 8b, die obere Schicht der Schichtenfolge, die die aktive Schicht 10 umfasst und die kreisförmige p-Kontaktierung 8b.
Es versteht sich, dass die in der Beschreibung, in den Zeichnungen sowie in den Ansprüchen offenbarten Merkmale der Erfindung sowohl einzeln als auch in jeder möglichen Kombination für die Verwirklichung der Erfindung wesentlich sein können

Claims

Patentansprüche
1. Modul mit einer regelmäßigen Anordnung von einzelnen, strahlungs- emittierenden Halbleiterkδrpern (1) , die auf einer Montagefläche (6) eines Trägers (2) aufgebracht sind, wobei eine Drahtverbindung (5) zwischen zwei benachbarten, Strahlungsemittierenden Halbleiterkörpern (1) auf einer der Montagefläche (6) gegenüberliegenden Oberseite der beiden Strahlungsemittierenden Halbleiterkörper (1) angebracht ist .
2. Modul nach Anspruch 1, wobei die regelmäßige Anordnung einer Matrix aus Spalten und Zeilen entspricht .
3. Modul nach Anspruch 2 , wobei die Matrix eine 3x4-, 4x3- oder 16x9- Matrix ist.
4. Modul nach einem der Ansprüche 2 oder 3 , wobei der Abstand zwischen zwei Zeilen (17) gleich oder kleiner als lOOμm ist.
5. Modul nach einem der Ansprüche 2 bis 4, wobei der Abstand zwischen zwei Spalten (18) gleich oder kleiner als lOOμm ist.
6. Modul nach einem der Ansprüche 2 bis 5, wobei die Strahlungsemittierenden Halbleiterkörper (1) innerhalb einer Spalte seriell verschaltet sind.
7. Modul nach einem der Ansprüche 2 bis 6, wobei die Strahlungsemittierenden Halbleiterkörper (1) zweier benachbarter Spalten in einer Zeile parallel verschaltet sind.
8. Modul nach einem der Ansprüche 2 bis 7, wobei die Oberseite eines Strahlungsemittierenden Halbleiterkörpers eine Schicht eines ersten Leitungstyps und die Oberseite eines in der Spalte benachbarten, strahlungsemittie- renden Halbleiterkörpers eine Schicht eines zweiten Leitungstyps aufweist.
9. Modul nach Anspruch 8, wobei der Träger (2) auf der Montagefläche (6) eine Metallisierung (4) aufweist.
10. Modul nach Anspruch 9, wobei die Metallisierung (4) eine oder mehrere Unterbrechungen (7) aufweist.
11. Modul nach Anspruch 10, wobei der Abstand zwischen zwei Unterbrechungen einem doppelten Zeilenabstand entspricht.
12. Modul nach einem der Ansprüche 2 bis 7, wobei jeder Strahlungsemittierende Halbleiterkörper (1) an der Oberseite sowohl eine p-Kontaktierung als auch eine n- Kontaktierung aufweist.
13. Modul nach Anspruch 12 , wobei die n-Kontaktierung (8b) auf der Oberseite 16 der auf einem Trägerelement 9 angeordneten Schichtenfolge (13, 9, 15, 11, 12, 14, 13) des Strahlungsemittierenden Halbleiterkörpers (1) aufgebracht ist.
14. Modul nach einem der Ansprüche 12 oder 13, wobei die p-Kontaktierung (8a) auf einer Mesa-Struktur des Strahlungsemittierenden Halbleiterkörpers (1) aufgebracht ist.
15. Modul nach einem der Ansprüche 12 bis 14, wobei der Träger (2) auf der Montagefläche (6) eine Metallisierung aufweist.
16. Modul nach einem der vorhergehenden Ansprüche, wobei der Anordnung aus Strahlungsemittierenden Halbleiterkörpern (1) eine Mehrzahl von Bondpads (3) lateral nachgeordnet ist .
17. Modul nach Anspruch 16, wobei ein Teil der Strahlungsemittierenden Halbleiterkδrper (1) durch eine Drahtverbindung (5) mit den Bondpads (3) verbunden ist .
18. Modul nach einem der vorhergehenden Ansprüche, wobei die Strahlungsemittierenden Halbleiterkörper (1) Dünnfilm- Halbleiterkörper sind.
19. Modul nach Anspruch 18, wobei der Strahlungsemittierende Halbleiterkörper (1) ein Halbleitermaterial wie InGaN oder InGaAlP enthält.
20. Modul nach einem der vorhergehenden Ansprüche, wobei der Träger (2) , auf dem die Strahlungsemittierenden Halbleiterkörper (1) montiert sind, ein elektrisch isolierendes Material enthält.
21. Modul nach Anspruch 20, wobei der Träger (2) ein Keramikmaterial enthält.
22. Modul nach Anspruch 21, wobei der Träger (2) AlN enthält.
23. Modul nach einem der vorhergehenden Ansprüche, wobei die Strahlungsemittierenden Halbleiterkörper (1) von einer Formmasse umhüllt sind.
24. Verwendung eines Moduls nach einem der vorhergehenden Ansprüche für Projektionsanwendungen.
EP06705951A 2005-02-28 2006-02-10 Modul mit strahlungsemittierenden halbleiterkörpern Withdrawn EP1854139A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005009060A DE102005009060A1 (de) 2005-02-28 2005-02-28 Modul mit strahlungsemittierenden Halbleiterkörpern
PCT/DE2006/000232 WO2006089512A1 (de) 2005-02-28 2006-02-10 Modul mit strahlungsemittierenden halbleiterkörpern

Publications (1)

Publication Number Publication Date
EP1854139A1 true EP1854139A1 (de) 2007-11-14

Family

ID=36442045

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06705951A Withdrawn EP1854139A1 (de) 2005-02-28 2006-02-10 Modul mit strahlungsemittierenden halbleiterkörpern

Country Status (8)

Country Link
US (1) US8154031B2 (de)
EP (1) EP1854139A1 (de)
JP (1) JP2008532299A (de)
KR (1) KR101238981B1 (de)
CN (1) CN100595918C (de)
DE (1) DE102005009060A1 (de)
TW (1) TW200711099A (de)
WO (1) WO2006089512A1 (de)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4729441B2 (ja) * 2006-06-09 2011-07-20 スタンレー電気株式会社 車両用灯具
FR2906347B1 (fr) * 2006-09-22 2008-12-12 Valeo Vision Sa Module d'eclairage
DE102006045440A1 (de) * 2006-09-26 2008-03-27 Osram Opto Semiconductors Gmbh Optisches Projektionsgerät
TWI344708B (en) * 2007-04-30 2011-07-01 Jin Chyuan Biar Package structure of lighting element and lighting device thereof
US8143777B2 (en) * 2007-08-23 2012-03-27 Stanley Electric Co., Ltd. LED lighting unit with LEDs and phosphor materials
DE102008021618A1 (de) * 2007-11-28 2009-06-04 Osram Opto Semiconductors Gmbh Chipanordnung, Anschlussanordnung, LED sowie Verfahren zur Herstellung einer Chipanordnung
DE102008005935A1 (de) * 2007-11-29 2009-06-04 Osram Opto Semiconductors Gmbh Halbleiteranordnung sowie Verfahren zur Herstellung einer Halbleiteranordnung
KR100939304B1 (ko) * 2009-06-18 2010-01-28 유트로닉스주식회사 Led어레이모듈 및 그 제조방법
JP5340879B2 (ja) * 2009-10-13 2013-11-13 スタンレー電気株式会社 発光装置
US8482015B2 (en) * 2009-12-03 2013-07-09 Toyoda Gosei Co., Ltd. LED light emitting apparatus and vehicle headlamp using the same
JP5571419B2 (ja) * 2010-03-24 2014-08-13 スタンレー電気株式会社 車両用前照灯
KR101192181B1 (ko) 2010-03-31 2012-10-17 (주)포인트엔지니어링 광 소자 디바이스 및 그 제조 방법
JP2010251796A (ja) * 2010-07-06 2010-11-04 Toshiba Lighting & Technology Corp 発光モジュール
DE102010026344A1 (de) * 2010-07-07 2012-01-12 Osram Opto Semiconductors Gmbh Leuchtdiode
JP2012018307A (ja) 2010-07-08 2012-01-26 Sony Corp 表示装置
JP2012018305A (ja) * 2010-07-08 2012-01-26 Sony Corp 表示装置
DE102011077614B4 (de) 2011-06-16 2023-08-17 Osram Gmbh Verfahren zur Herstellung einer Leuchtvorrichtung und Leuchtvorrichtung
DE102011077644A1 (de) * 2011-06-16 2012-12-20 Osram Ag Leuchtvorrichtung mit Metallisierungsbereich bestückt mit Halbleiterleuchtchip
US8349116B1 (en) 2011-11-18 2013-01-08 LuxVue Technology Corporation Micro device transfer head heater assembly and method of transferring a micro device
US8573469B2 (en) 2011-11-18 2013-11-05 LuxVue Technology Corporation Method of forming a micro LED structure and array of micro LED structures with an electrically insulating layer
US8426227B1 (en) 2011-11-18 2013-04-23 LuxVue Technology Corporation Method of forming a micro light emitting diode array
US9620478B2 (en) 2011-11-18 2017-04-11 Apple Inc. Method of fabricating a micro device transfer head
US8518204B2 (en) 2011-11-18 2013-08-27 LuxVue Technology Corporation Method of fabricating and transferring a micro device and an array of micro devices utilizing an intermediate electrically conductive bonding layer
US9773750B2 (en) 2012-02-09 2017-09-26 Apple Inc. Method of transferring and bonding an array of micro devices
US9548332B2 (en) 2012-04-27 2017-01-17 Apple Inc. Method of forming a micro LED device with self-aligned metallization stack
US9105492B2 (en) 2012-05-08 2015-08-11 LuxVue Technology Corporation Compliant micro device transfer head
US8415768B1 (en) 2012-07-06 2013-04-09 LuxVue Technology Corporation Compliant monopolar micro device transfer head with silicon electrode
US9171826B2 (en) * 2012-09-04 2015-10-27 Micron Technology, Inc. High voltage solid-state transducers and solid-state transducer arrays having electrical cross-connections and associated systems and methods
US8791530B2 (en) 2012-09-06 2014-07-29 LuxVue Technology Corporation Compliant micro device transfer head with integrated electrode leads
US9162880B2 (en) 2012-09-07 2015-10-20 LuxVue Technology Corporation Mass transfer tool
US9558721B2 (en) 2012-10-15 2017-01-31 Apple Inc. Content-based adaptive refresh schemes for low-power displays
US9236815B2 (en) 2012-12-10 2016-01-12 LuxVue Technology Corporation Compliant micro device transfer head array with metal electrodes
US9217541B2 (en) 2013-05-14 2015-12-22 LuxVue Technology Corporation Stabilization structure including shear release posts
US9484504B2 (en) 2013-05-14 2016-11-01 Apple Inc. Micro LED with wavelength conversion layer
US9136161B2 (en) 2013-06-04 2015-09-15 LuxVue Technology Corporation Micro pick up array with compliant contact
ES2952036T3 (es) 2013-06-12 2023-10-26 Rohinni Inc Teclado de retroiluminación con fuentes generadoras de luz depositadas
US8987765B2 (en) 2013-06-17 2015-03-24 LuxVue Technology Corporation Reflective bank structure and method for integrating a light emitting device
US9111464B2 (en) 2013-06-18 2015-08-18 LuxVue Technology Corporation LED display with wavelength conversion layer
US8928021B1 (en) 2013-06-18 2015-01-06 LuxVue Technology Corporation LED light pipe
US9035279B2 (en) 2013-07-08 2015-05-19 LuxVue Technology Corporation Micro device with stabilization post
US9296111B2 (en) 2013-07-22 2016-03-29 LuxVue Technology Corporation Micro pick up array alignment encoder
US9087764B2 (en) 2013-07-26 2015-07-21 LuxVue Technology Corporation Adhesive wafer bonding with controlled thickness variation
US9153548B2 (en) 2013-09-16 2015-10-06 Lux Vue Technology Corporation Adhesive wafer bonding with sacrificial spacers for controlled thickness variation
DE102013218541A1 (de) 2013-09-16 2015-03-19 Osram Gmbh Leuchtmodul mit Halbleiterlichtquellen und Trägerplatte
US9847462B2 (en) 2013-10-29 2017-12-19 Point Engineering Co., Ltd. Array substrate for mounting chip and method for manufacturing the same
US9367094B2 (en) 2013-12-17 2016-06-14 Apple Inc. Display module and system applications
US9768345B2 (en) 2013-12-20 2017-09-19 Apple Inc. LED with current injection confinement trench
DE102013114691A1 (de) * 2013-12-20 2015-06-25 Osram Opto Semiconductors Gmbh Optoelektronisches Halbleiterbauteil und adaptiver Scheinwerfer für ein Kraftfahrzeug
US9583466B2 (en) 2013-12-27 2017-02-28 Apple Inc. Etch removal of current distribution layer for LED current confinement
US9450147B2 (en) 2013-12-27 2016-09-20 Apple Inc. LED with internally confined current injection area
US9542638B2 (en) 2014-02-18 2017-01-10 Apple Inc. RFID tag and micro chip integration design
US9583533B2 (en) 2014-03-13 2017-02-28 Apple Inc. LED device with embedded nanowire LEDs
DE102014103751A1 (de) 2014-03-19 2015-09-24 Osram Opto Semiconductors Gmbh Organisches strahlungsemittierendes Bauelement
US9522468B2 (en) 2014-05-08 2016-12-20 Apple Inc. Mass transfer tool manipulator assembly with remote center of compliance
US9318475B2 (en) 2014-05-15 2016-04-19 LuxVue Technology Corporation Flexible display and method of formation with sacrificial release layer
US9741286B2 (en) 2014-06-03 2017-08-22 Apple Inc. Interactive display panel with emitting and sensing diodes
US9624100B2 (en) 2014-06-12 2017-04-18 Apple Inc. Micro pick up array pivot mount with integrated strain sensing elements
US9570002B2 (en) 2014-06-17 2017-02-14 Apple Inc. Interactive display panel with IR diodes
US9425151B2 (en) 2014-06-17 2016-08-23 Apple Inc. Compliant electrostatic transfer head with spring support layer
US9828244B2 (en) 2014-09-30 2017-11-28 Apple Inc. Compliant electrostatic transfer head with defined cavity
US9705432B2 (en) 2014-09-30 2017-07-11 Apple Inc. Micro pick up array pivot mount design for strain amplification
US9478583B2 (en) 2014-12-08 2016-10-25 Apple Inc. Wearable display having an array of LEDs on a conformable silicon substrate
US9666558B2 (en) 2015-06-29 2017-05-30 Point Engineering Co., Ltd. Substrate for mounting a chip and chip package using the substrate
CN108770368B (zh) 2016-01-15 2022-04-12 罗茵尼公司 透过设备上的罩盖进行背光照明的设备和方法
WO2020040740A1 (en) 2018-08-21 2020-02-27 Hewlett-Packard Development Company, L.P. P-type semiconductor layers coupled to n-type semiconductor layers
WO2020244784A1 (en) * 2019-06-07 2020-12-10 Jenoptik Optical Systems Gmbh Led illumination apparatus
JP2022107942A (ja) * 2021-01-12 2022-07-25 シーシーエス株式会社 Led光源

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4952477U (de) * 1972-08-16 1974-05-09
JPS5135069B2 (de) 1972-09-27 1976-09-30
DE2315709A1 (de) 1973-03-29 1974-10-10 Licentia Gmbh Strahlung abgebende halbleiteranordnung mit hoher strahlungsleistung
JPS538586A (en) * 1976-07-13 1978-01-26 Seiko Instr & Electronics Ltd Led substrate
JPS604215Y2 (ja) * 1979-05-31 1985-02-05 三洋電機株式会社 発光ダイオ−ドマトリクス表示器
US4772456A (en) * 1983-12-19 1988-09-20 Labofina, S.A. Process for preparing crystalline silicas
JPS60136788A (ja) * 1983-12-26 1985-07-20 日本ビクター株式会社 Led平面パネルデイスプレイの製作法
JPS60147178A (ja) * 1984-01-11 1985-08-03 Canon Inc Ledアレイ
US4845405A (en) * 1986-05-14 1989-07-04 Sanyo Electric Co., Ltd. Monolithic LED display
US4914731A (en) 1987-08-12 1990-04-03 Chen Shen Yuan Quickly formed light emitting diode display and a method for forming the same
DE3737861A1 (de) 1987-11-07 1989-05-18 Mueller Werner Dipl Wirtsch In Elektronisches leuchtelement mit optimierter lichtausbeute, verfahren zu seiner herstellung
US5936353A (en) 1996-04-03 1999-08-10 Pressco Technology Inc. High-density solid-state lighting array for machine vision applications
KR100556240B1 (ko) * 1998-07-28 2006-03-03 세이코 엡슨 가부시키가이샤 반도체 장치 제조방법
US6459100B1 (en) 1998-09-16 2002-10-01 Cree, Inc. Vertical geometry ingan LED
TW444932U (en) 2000-01-29 2001-07-01 Opto Tech Corp Improved structure of light emitting diode package
DE10051159C2 (de) * 2000-10-16 2002-09-19 Osram Opto Semiconductors Gmbh LED-Modul, z.B. Weißlichtquelle
US6939730B2 (en) * 2001-04-24 2005-09-06 Sony Corporation Nitride semiconductor, semiconductor device, and method of manufacturing the same
JP2002329896A (ja) * 2001-05-02 2002-11-15 Kansai Tlo Kk Led面発光装置
US7001057B2 (en) * 2001-05-23 2006-02-21 Ivoclar Vivadent A.G. Lighting apparatus for guiding light onto a light polymerizable piece to effect hardening thereof
KR100619614B1 (ko) * 2001-10-19 2006-09-01 죠스케 나카다 발광 또는 수광용 반도체 모듈 및 그 제조 방법
JP3822545B2 (ja) * 2002-04-12 2006-09-20 士郎 酒井 発光装置
EP2149905A3 (de) * 2002-08-29 2014-05-07 Seoul Semiconductor Co., Ltd. Lichtemittierendes Bauelement mit lichtemittierenden Dioden
US7009199B2 (en) 2002-10-22 2006-03-07 Cree, Inc. Electronic devices having a header and antiparallel connected light emitting diodes for producing light from AC current
EP1465256A1 (de) * 2003-04-03 2004-10-06 Micro Photonics Technology Methode zur Herstellung einer Lichtquelle und die daraus resultierende Lichtquelle

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2006089512A1 *

Also Published As

Publication number Publication date
TW200711099A (en) 2007-03-16
KR101238981B1 (ko) 2013-03-08
CN100595918C (zh) 2010-03-24
US8154031B2 (en) 2012-04-10
DE102005009060A1 (de) 2006-09-07
CN101128932A (zh) 2008-02-20
TWI332259B (de) 2010-10-21
WO2006089512A1 (de) 2006-08-31
US20080303038A1 (en) 2008-12-11
KR20070106624A (ko) 2007-11-02
JP2008532299A (ja) 2008-08-14

Similar Documents

Publication Publication Date Title
EP1854139A1 (de) Modul mit strahlungsemittierenden halbleiterkörpern
DE102005013264B4 (de) Herstellverfahren für eine Festkörperelementvorrichtung
EP1277241B1 (de) Lumineszenzdiodenchip auf der basis von gan
DE10325951B4 (de) Licht emittierende Diode mit zugehörigem Kontaktschema
DE112005002889B4 (de) Licht emittierendes Bauelement mit einer Mehrzahl Licht emittierender Zellen und Baugruppen-Montage desselben
DE10221504B4 (de) Mehrchip-LED-Halbleiteranordnung und Verfahren zu deren Herstellung
DE102005016845B4 (de) Leuchtdiodenarray mit einer Haftschicht
DE112011103482T5 (de) Hochspannungs-LEDs ohne Drahtverbindung
DE10213464B4 (de) Auf einem hochohmigen Substrat gebildetes monolithisches LED-Array
DE112016004262T5 (de) Selbstausrichtender freischwebender Spiegel für Durchkontaktierungen
DE112011101981T5 (de) Oberflächenemittierende LED mit hoher Spannung und niedrigem Strom
DE112011106156B4 (de) Lichtemittierende Diodeneinheit auf Waferebene
DE102013108769A1 (de) Lichtemittierende Halbleitervorrichtung und Verfahren zum Herstellen derselben
DE10213701A1 (de) Hoch reflektierende ohmsche Kontakte für AlGaln-Flip-Chip-LEDs
DE102009018603A1 (de) Leuchtvorrichtungen, dieselben enthaltende Pakete und Systeme und Herstellungsverfahren derselben
DE102007022947A1 (de) Optoelektronischer Halbleiterkörper und Verfahren zur Herstellung eines solchen
DE102006051745A1 (de) LED-Halbleiterkörper und Verwendung eines LED-Halbleiterkörpers
EP1966836A1 (de) Led-halbleiterkörper und verwendung eines led-halbleiterkörpers
DE202009018941U1 (de) Effiziente LED-Anordnung
DE112016000430T5 (de) Hocheffiziente leds und verfahren zu deren herstellung
DE102005031613A1 (de) LED und LED-Array mit einer jeweiligen Kleberschicht
EP2273574B1 (de) Verfahren zum Herstellen eines Lumineszenzdiodenbauelements mit einem Lumineszenzdiodenchip auf der Basis von GaN
DE102007009351A1 (de) Leuchtmittel
DE102011087887A1 (de) Leuchtdiodenanordnung
DE102011011378A1 (de) Trägersubstrat und Verfahren zur Herstellung von Halbleiterchips

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070710

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

RBV Designated contracting states (corrected)

Designated state(s): DE

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20100715

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 25/075 20060101AFI20181206BHEP

Ipc: F21K 9/00 20160101ALN20181206BHEP

INTG Intention to grant announced

Effective date: 20190108

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 25/075 20060101AFI20181218BHEP

Ipc: F21K 9/00 20160101ALN20181218BHEP

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GROETSCH, STEFAN

Inventor name: HAHN, BERTHOLD

Inventor name: ILLEK, STEFAN

Inventor name: SCHNABEL, WOLFGANG

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

INTC Intention to grant announced (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: H01L 33/62 20100101ALN20190306BHEP

Ipc: H01L 33/20 20100101ALN20190306BHEP

Ipc: H01L 25/075 20060101AFI20190306BHEP

Ipc: F21K 9/00 20160101ALN20190306BHEP

INTG Intention to grant announced

Effective date: 20190322

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OSRAM OPTO SEMICONDUCTORS GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20190802