EP1586099B1 - Verfahren zur herstellung eines elektronischen bauelements - Google Patents

Verfahren zur herstellung eines elektronischen bauelements Download PDF

Info

Publication number
EP1586099B1
EP1586099B1 EP03815532.1A EP03815532A EP1586099B1 EP 1586099 B1 EP1586099 B1 EP 1586099B1 EP 03815532 A EP03815532 A EP 03815532A EP 1586099 B1 EP1586099 B1 EP 1586099B1
Authority
EP
European Patent Office
Prior art keywords
main body
resistance
etching
outer electrodes
measured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03815532.1A
Other languages
English (en)
French (fr)
Other versions
EP1586099A1 (de
Inventor
Christian Hesse
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Electronics AG
Original Assignee
Epcos AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos AG filed Critical Epcos AG
Publication of EP1586099A1 publication Critical patent/EP1586099A1/de
Application granted granted Critical
Publication of EP1586099B1 publication Critical patent/EP1586099B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01CRESISTORS
    • H01C17/00Apparatus or processes specially adapted for manufacturing resistors
    • H01C17/22Apparatus or processes specially adapted for manufacturing resistors adapted for trimming
    • H01C17/24Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material
    • H01C17/2416Apparatus or processes specially adapted for manufacturing resistors adapted for trimming by removing or adding resistive material by chemical etching

Definitions

  • the invention relates to a method for producing an electrical component, which has a main body and two opposing outer electrodes.
  • Electroceramic devices such as NTC thermistors are needed in large quantities with a very tight tolerance of the ohmic resistance.
  • Methods are known for producing such components, in which a large number of such components having different resistance values are produced. The lying within a given resistance tolerance components are determined by electrical measurement and then separated from the integrity of the components.
  • This method has the disadvantage that a relatively large scrap of components must be accepted.
  • NTC thermistors In order to reduce this committee, it is also known to produce NTC thermistors by the components are adjusted to a desired resistance by mechanical removal of parts of the ceramic body and possibly also the outer electrodes.
  • this method has the disadvantage that it is not possible or only with great effort in very small designs, for example in the design 0402 with dimensions of 1 mm x 0.5 mm x 0.5 mm.
  • the method described has the advantage that, dispensing with mechanical processing methods, for example, waiving loops, rasps or planing a simple and easy to implement equipment with little effort to produce the device is provided with a predetermined target value for the electrical resistance.
  • the said method also has the advantage that it is particularly suitable for the production of components with a very small volume, where a mechanical processing of the body would require a very high time and equipment expense.
  • the main body produced in process step a) have an actual resistance which is below the nominal resistance. Only in this case it is possible to achieve an adaptation of the actual resistance to the nominal resistance by etching away parts of the basic body.
  • a base body containing a ceramic material is used. This has the advantage that the required in a variety of applications electroceramic devices, surface mount NTC thermistors or similar devices can be easily and inexpensively manufactured.
  • nickel-manganese spinels of the formula Ni III 1-z [Mn III 2 Mn II z ] O 4 may be used as material for NTC thermistors, where 0 ⁇ z ⁇ 0.4.
  • This embodiment of the method has the advantage that it allows the processing or adjustment of the resistance value for very small components, where mechanical processing would be possible only with great effort.
  • the method can be carried out particularly advantageously by immersing the base body in a liquid which corroses the material of the base body.
  • This approach has the advantage that the removal of the material of the body is substantially uniform, so that massive damage to one or a few specific locations can be avoided.
  • the procedure described has the further advantage that several bodies can be treated simultaneously in a single process step.
  • sulfuric acid can be used as corrosive liquid.
  • the etching can also be carried out by dry etching.
  • the actual value of the resistance can be measured before step b).
  • This approach has the advantage that a control mechanism for the Weglegien can be provided. It is possible to draw conclusions about the etching process from the deviation between the desired value and the actual value of the resistance.
  • a duration for the etching process for example in a corrosive liquid, by determining the difference between the desired value of the resistor and the actual value of the resistor.
  • relationships between the etching time and the resistance increase thereby achieved for a type of component are measured by experiments.
  • a predetermined etching time can be determined on the basis of the measurement of the actual resistance and the resulting difference from the nominal resistance.
  • the resistance of the component will then be with sufficient accuracy in the vicinity of the desired value.
  • Measuring the resistance before initiating step b) of the method may be advantageous for determining whether an approximation of the resistance can occur at all with the aid of the etching. This would not be the case, for example, if such large tolerances occur in the manufacture of the base body that the resistance of the component is greater than the desired value already during production. By etching the body could be done in this case, no further adjustment to the target value, since by etching the body of the resistance can only be increased, but not lowered.
  • FIG. 1 shows an NTC thermistor with a base body 1, which consists of the ceramic material NiMn spinel or other similarly suitable material. On opposite side surfaces of the main body 1 external contacts 21, 22 are mounted. By etching away parts of the main body 1, the current path between the external contacts 21, 22 can be narrowed, as shown by the dashed lines. As a result, the resistance of the component increases. It is thus possible to increase the resistance of the device by etching of the base body 1 so that a desired resistance is achieved with sufficient accuracy.
  • the device off FIG. 1 corresponds to the design 0603, which means that the component has the following dimensions: 1.6 mm x 0.8 mm x 0.8 mm.
  • the height of the main body 1 is 0.8 mm.
  • the length, the depth, the width or the diameter of a component come into consideration. It's special advantageous for the method described here to use components whose smallest dimension is smaller than 3 mm.
  • the external contacts (21, 22) consist of a material which is not attacked by the etching solution or significantly less than the ceramic material is attacked, so that the solderability remains.
  • a 3-layer metallization with an Ag / Ni / Sn layer sequence or with a silver / palladium metallization.
  • FIG. 2 shows such a calibration curve for a device of the type 0603 with a resistance R25, measured at 25 ° C, of 6000 ⁇ . It is in FIG. 2 the resistance R25, measured in ⁇ , plotted over the etching time t, measured in minutes. As the etching solution, a 10% sulfuric acid was used. FIG. 2 shows measuring points at the measuring times 0, 1, 5 and 10 minutes. It can be clearly seen that the resistance R25 increases with increasing etching time.
  • the present invention is not limited to NTC thermistors, but can be applied to any electrical device whose resistance depends on the geometric dimensions of its body.

Description

  • Die Erfindung betrifft ein Verfahren zur Herstellung eines elektrischen Bauelements, das einen Grundkörper sowie zwei gegenüberliegende Außenelektroden aufweist.
  • Elektrokeramische Bauelemente, beispielsweise NTC-Thermistoren werden in großen Stückzahlen mit einer sehr engen Toleranz des ohmschen Widerstandes benötigt. Es sind Verfahren zur Herstellung solcher Bauelemente bekannt, bei denen eine Vielzahl solcher Bauelemente mit unterschiedlichsten Widerstandswerten hergestellt werden. Die innerhalb einer vorgegebenen Widerstandstoleranz liegenden Bauelemente werden durch elektrische Messung ermittelt und anschließend aus der Ganzheit der Bauelemente abgesondert.
  • Dieses Verfahren hat den Nachteil, daß ein relativ großer Ausschuß der Bauelemente in Kauf genommen werden muß.
  • Um diesen Ausschuß zu vermindern, ist es desweiteren bekannt, NTC-Thermistoren herzustellen, indem durch mechanisches Abtragen von Teilen des keramischen Grundkörpers sowie ggf. noch der Außenelektroden die Bauelemente auf einen Sollwiderstand hin abgeglichen werden. Dieses Verfahren hat jedoch den Nachteil, daß es bei sehr kleinen Bauformen, beispielsweise bei der Bauform 0402 mit den Abmessungen 1 mm x 0,5 mm x 0,5 mm nicht oder nur mit sehr großem Aufwand möglich ist.
  • Aus DE 100 05 800 A ist beispielsweise ein Thermistorchip sowie ein Verfahren zur Herstellung derselben bekannt.
  • Es ist Aufgabe der vorliegenden Erfindung, ein Verfahren zur Herstellung von Bauelementen anzugeben, bei dem das Einhalten einer vorgegebenen Toleranz für den elektrischen Widerstand auch für kleinvolumige Bauelemente möglich ist.
  • Diese Aufgabe wird gelöst durch ein Verfahren nach Patentanspruch 1. Vorteilhafte Ausgestaltungen des Verfahrens sind den weiteren Patentansprüchen zu entnehmen.
  • Es wird ein Verfahren zur Herstellung eines Bauelements angegeben, das die folgenden Schritte umfaßt:
    1. a) Bilden eines Grundkörpers mit zwei gegenüberliegenden Außenelektroden
    2. b) Angleichen des zwischen den Außenelektroden zu messenden Widerstandes des Grundkörpers an einen vorgegebenen Sollwert durch chemisches Wegätzen von Teilen des Grundkörpers.
  • Das beschriebene Verfahren hat den Vorteil, daß unter Verzicht auf mechanische Bearbeitungsverfahren, beispielsweise unter Verzicht auf Schleifen, Raspeln oder Hobeln eine einfache und apparativ mit geringem Aufwand durchzuführende Methode zur Herstellung des Bauelements mit einem vorgegebenen Sollwert für den elektrischen Widerstand bereitgestellt wird. Das genannte Verfahren hat zudem den Vorteil, daß es insbesondere geeignet ist zur Herstellung von Bauelementen mit sehr kleinem Volumen, wo eine mechanische Bearbeitung des Grundkörpers einen sehr hohen zeitlichen und apparativen Aufwand erfordern würde.
  • Durch das chemische Wegätzen von Teilen des Grundkörpers wird der für den Stromfluß zwischen den gegenüberliegenden Außenelektroden zur Verfügung stehende Strompfad eingeengt, wodurch der elektrische Widerstand des Grundkörpers ansteigt.
  • Entsprechend diesem Verfahren ist es vorteilhaft, wenn die im Verfahrensschritt a) hergestellten Grundkörper einen Ist-Widerstand aufweisen, der unterhalb des Sollwiderstandes liegt. Nur in diesem Fall gelingt es, durch Wegätzen von Teilen des Grundkörpers eine Anpassung des Ist-Widerstandes an den Soll-Widerstand zu erreichen.
  • In einer Ausführungsform des Verfahrens wird ein Grundkörper verwendet, der ein Keramikmaterial enthält. Dies hat den Vorteil, daß die in einer Vielzahl von Applikationen benötigten elektrokeramischen Bauelemente, oberflächenmontierbare NTC-Thermistoren oder ähnliche Bauelemente, einfach und billig hergestellt werden können.
  • In einer anderen Ausführungsform des Verfahrens kann auch ein Keramikmaterial verwendet werden, dessen Widerstand einen negativen Temperaturkoeffizienten aufweist. Dadurch gelingt die Herstellung von NTC-Thermistoren.
  • Beispielsweise können für NTC-Thermistoren als Material Nikkel-Mangan-Spinelle der Formel NiIII 1-z[MnIII 2MnII z]O4, wobei gilt: 0 ≤ z ≤0,4.
  • Es ist darüber hinaus vorteilhaft, das Verfahren mit Grundkörpern durchzuführen, deren kleinste Abmessung unter 3 mm liegt. Diese Ausführungsform des Verfahrens hat den Vorteil, daß es die Bearbeitung bzw. die Anpassung des Widerstandswertes für sehr kleine Bauelemente ermöglicht, wo eine mechanische Bearbeitung nur unter einem großen Aufwand möglich wäre.
  • Besonders vorteilhaft kann das Verfahren ausgeführt werden, indem der Grundkörper in eine das Material des Grundkörpers ätzende Flüssigkeit eingetaucht wird. Diese Vorgehensweise hat den Vorteil, daß der Abtrag des Materials des Grundkörpers im wesentlichen gleichmäßig erfolgt, so daß eine massive Schädigung an einer oder wenigen speziellen Stellen vermieden werden kann. Darüber hinaus hat die beschriebene Vorgehensweise den weiteren Vorteil, daß mehrere Grundkörper gleichzeitig in einem einzigen Verfahrensschritt behandelt werden können.
  • Als ätzende Flüssigkeit kann beispielsweise Schwefelsäure verwendet werden.
  • In einer anderen Ausführungsform der Erfindung kann das Ätzen auch durch Trockenätzen erfolgen.
  • In einer weiteren Ausgestaltung des Verfahrens kann vor dem Schritt b) der Istwert des Widerstandes gemessen werden. Diese Vorgehensweise hat den Vorteil, daß ein Steuerungsmechanismus für das Wegätzen zur Verfügung gestellt werden kann. Aus der Abweichung zwischen dem Sollwert und dem Istwert des Widerstandes können nämlich Rückschlüsse auf den Ätzvorgang gezogen werden.
  • Beispielsweise ist es möglich, durch Ermittlung der Differenz zwischen dem Sollwert des Widerstandes und dem Istwert des Widerstandes eine Dauer für den Ätzvorgang, beispielsweise in einer ätzenden Flüssigkeit festzulegen. Hierzu werden durch Versuche Zusammenhänge zwischen der Ätzdauer und dem dadurch erzielten Widerstandsanstieg für einen Bauelementtyp gemessen. Anhand der so erhaltenen Daten kann aufgrund der Messung des Ist-Widerstandes und der sich daraus ergebenden Differenz zum Soll-Widerstand eine vorher festgesetzte Ätzdauer festgelegt werden.
  • Nach Ätzen des Grundkörpers für die vorher festgesetzte Ätzdauer wird dann der Widerstand des Bauelementes mit ausreichender Genauigkeit in der Nähe des Soll-Wertes liegen. Das Messen des Widerstandes vor Einleiten des Schrittes b) des Verfahrens kann vorteilhaft sein, um festzustellen, ob mit Hilfe des Ätzens überhaupt eine Angleichung des Widerstandes erfolgen kann. Dies wäre beispielsweise nicht gegeben, wenn bei der Herstellung des Grundkörpers so große Toleranzen auftreten, daß schon bei der Herstellung der Widerstand des Bauelementes größer ist als der Sollwert. Durch Ätzen des Grundkörpers könnte in diesem Fall keine weitere Anpassung an den Sollwert erfolgen, da durch Ätzen des Grundkörpers der Widerstand nur erhöht, nicht jedoch erniedrigt werden kann.
  • In einer anderen Ausführungsform des Verfahrens kann es auch vorgesehen sein, während des Ätzens den Widerstand des Bauelementes bzw. des Grundkörpers zu messen, wodurch eine direkte Kontrolle des Ätzvorgangs erfolgen kann. Der Ätzvorgang wird dann abgebrochen, sobald der Widerstand des Grundkörpers den Soll-Wert erreicht hat.
  • Im folgenden wird die Erfindung anhand von Ausführungsbeispielen und den dazugehörigen Figuren näher erläutert.
  • Figur 1
    zeigt ein elektrisches Bauelement in einem schematischen Querschnitt vor dem Ätzen und nach dem Ätzen.
    Figur 2
    zeigt für einen NTC-Termistor den Zusammenhang zwischen der Ätzdauer und dem dadurch erzielbaren Widerstandsanstieg
  • Figur 1 zeigt einen NTC-Thermistor mit einem Grundkörper 1, der aus dem Keramikmaterial NiMn-Spinell oder auch einem anderen ähnlich geeigneten Material besteht. An gegenüberliegenden Seitenflächen des Grundkörpers 1 sind Außenkontakte 21, 22 angebracht. Durch Wegätzen von Teilen des Grundkörpers 1 kann der Strompfad zwischen den Außenkontakten 21, 22 verschmälert werden, so wie es durch die gestrichelten Linien dargestellt ist. Dadurch steigt der Widerstand des Bauelementes an. Es ist somit möglich, durch Ätzen des Grundkörpers 1 den Widerstand des Bauelements so zu erhöhen, daß mit ausreichender Genauigkeit ein Soll-Widerstand erreicht wird. Das Bauelement aus Figur 1 entspricht der Bauform 0603, was bedeutet, daß das Bauelement folgende Abmessungen aufweist: 1,6 mm x 0,8 mm x 0,8 mm. Dabei ist die kleinste Abmessung d in dem Beispiel von Figur 1 die Höhe des Grundkörpers 1 und beträgt 0,8 mm. Als kleinste Abmessungen von Bauelementen kommen jedoch auch die Länge, die Tiefe, die Breite oder auch der Durchmesser eines Bauelements in Betracht. Es ist besonders vorteilhaft, für das hier beschriebene Verfahren Bauelemente zu verwenden, deren kleinste Abmessung kleiner als 3 mm ist.
  • Es kann während des Ätzens auf die Messung des Widerstandes verzichtet werden, indem durch eine Eichmessung der Zusammenhang zwischen dem Widerstand des Bauelements und der Ätzdauer festgelegt wird. Dann genügt die Feststellung des Ist-Widerstandes des Bauelementes und die Feststellung der Differenz zwischen dem Ist-Widerstand und dem Soll-Widerstand. Aus dieser Widerstandsdifferenz kann dann die Ätzdauer anhand der Eichkurve berechnet werden.
  • Erfindungsgemäß bestehen die Außenkontakte (21, 22) aus einem Material, das nicht durch die Ätzlösung angegriffen bzw. deutlich weniger als das Keramikmaterial angegriffen wird, so daß die Lötbarkeit gegeben bleibt. Es kommt beispielsweise in Betracht, eine 3-Schicht-Metallisierung mit einer Ag/Ni/Sn-Schichtenfolge oder mit einer Silber/Palladium-Metallisierung zu verwenden.
  • Figur 2 zeigt eine solche Eichkurve für ein Bauelement der Bauform 0603 mit einem Widerstand R25, gemessen bei 25° C, von 6000 Ω. Es ist in Figur 2 der Widerstand R25, gemessen in Ω, aufgetragen über der Ätzdauer t, gemessen in Minuten. Als Ätzlösung wurde eine 10 %ige Schwefelsäure verwendet. Figur 2 zeigt Meßpunkte bei den Meßzeiten 0, 1, 5 und 10 Minuten. Es ist deutlich zu erkennen, daß der Widerstand R25 mit zunehmender Ätzdauer ansteigt.
  • Die vorliegende Erfindung beschränkt sich nicht auf NTC-Thermistoren, sondern kann für jedes beliebige elektrische Bauelement angewendet werden, dessen Widerstand von den geometrischen Abmessungen seines Grundkörpers abhängig ist.
  • Bezugszeichenliste
  • 1
    Grundkörper
    21, 22
    Außenkontakte
    R25
    Widerstand gemessen bei 25° C
    t
    zeit
    d
    kleinste Abmessung

Claims (9)

  1. Verfahren zur Herstellung eines elektrischen Bauelements
    mit folgenden Schritten:
    a) Bilden eines Grundkörpers (1) mit zwei gegenüberliegenden Außenelektroden,
    b) Angleichen des zwischen den Außenelektroden zu messenden Widerstandes des Grundkörpers (1) an einen vorgegebenen Sollwert durch chemisches Ätzen von Teilen des Grundkörpers (1), dadurch gekennzeichnet dass die Außenelektroden aus einem Material bestehen, das durch die Ätzlösung deutlich weniger als das Keramikmaterial des Grundkörpers (1) angegriffen wird, so dass die Lötbarkeit gegeben bleibt.
  2. Verfahren nach Anspruch 1,
    wobei ein Grundkörper (1) verwendet wird, der ein Keramikmaterial enthält.
  3. Verfahren nach einem der Ansprüche 1 oder 2,
    wobei ein Grundkörper (1) verwendet wird, dessen ohmscher Widerstand einen negativen Temperaturkoeffizienten aufweist.
  4. Verfahren nach einem der Ansprüche 1 bis 3,
    wobei ein Grundkörper (1) verwendet wird, dessen kleinste Abmessung (d) kleiner als 3 mm ist.
  5. Verfahren nach einem der Ansprüche 1 bis 4,
    wobei das Ätzen durch Eintauchen des Grundkörpers (1) in eine das Material des Grundkörpers (1) ätzende Flüssigkeit erfolgt.
  6. Verfahren nach Anspruch 5,
    wobei als ätzende Flüssigkeit Schwefelsäure verwendet wird.
  7. Verfahren nach einem der Ansprüche 1 bis 6,
    wobei vor dem Schritt b) der Istwert des Widerstandes des Grundkörpers (1) gemessen wird.
  8. Verfahren nach Anspruch 7,
    wobei während des Ätzens der Widerstand (R25) des Grundkörpers (1) gemessen wird.
  9. Verfahren nach einem der Ansprüche 1 bis 8,
    - wobei vor dem Schritt b) die Differenz zwischen dem Sollwert und dem Istwert des Widerstandes (R25) ermittelt wird und daraus eine Zeitdauer (t) für den Ätzvorgang bestimmt wird und
    - wobei in Schritt b) mit der so bestimmten Zeitdauer (t) geätzt wird.
EP03815532.1A 2003-01-24 2003-12-23 Verfahren zur herstellung eines elektronischen bauelements Expired - Lifetime EP1586099B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10302800A DE10302800A1 (de) 2003-01-24 2003-01-24 Verfahren zur Herstellung eines Bauelements
DE10302800 2003-01-24
PCT/DE2003/004289 WO2004068508A1 (de) 2003-01-24 2003-12-23 Verfahren zur herstellung eines elektronischen bauelements

Publications (2)

Publication Number Publication Date
EP1586099A1 EP1586099A1 (de) 2005-10-19
EP1586099B1 true EP1586099B1 (de) 2016-02-24

Family

ID=32694955

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03815532.1A Expired - Lifetime EP1586099B1 (de) 2003-01-24 2003-12-23 Verfahren zur herstellung eines elektronischen bauelements

Country Status (5)

Country Link
US (1) US7887713B2 (de)
EP (1) EP1586099B1 (de)
CN (1) CN1742348A (de)
DE (1) DE10302800A1 (de)
WO (1) WO2004068508A1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113727767B (zh) 2018-10-17 2023-05-23 派拓艺(深圳)科技有限责任公司 机器动物拼插模型

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6337552B1 (en) * 1999-01-20 2002-01-08 Sony Corporation Robot apparatus
SE354143B (de) * 1972-02-15 1973-02-26 Ericsson Telefon Ab L M
US3839110A (en) * 1973-02-20 1974-10-01 Bell Telephone Labor Inc Chemical etchant for palladium
DE2908361C2 (de) * 1979-03-03 1985-05-15 Dynamit Nobel Ag, 5210 Troisdorf Verfahren zum Erhöhen des Widerstandes elektrischen Zündelementen
DD241326A1 (de) * 1985-09-25 1986-12-03 Hermsdorf Keramik Veb Verfahren zum abgleich des ohmschen widerstandes von duennfilmfunktionsschichten
DD257895A1 (de) * 1987-02-27 1988-06-29 Elektronische Bauelemente Veb Verfahren zum definierten elektrolytischen abgleichaetzen von widerstandselementen auf der basis von cuni-legierungen (folien)
DE3708832A1 (de) * 1987-03-18 1988-09-29 Siemens Ag Nasschemische strukturierung von hafniumborid-schichten
DE3813627C2 (de) * 1988-04-22 1997-03-27 Bosch Gmbh Robert Verfahren zum Funktionsabgleich einer elektronischen Schaltung
JP3039224B2 (ja) * 1993-09-29 2000-05-08 松下電器産業株式会社 バリスタの製造方法
JP3226014B2 (ja) 1996-02-27 2001-11-05 三菱マテリアル株式会社 チップ型サーミスタの製造方法
DE19640127A1 (de) * 1996-09-28 1998-04-02 Dynamit Nobel Ag Verfahren zum Abgleich von Schichtwiderständen mit einer Excimer-Laserstrahlung
GB9623945D0 (en) * 1996-11-15 1997-01-08 Geco Prakla Uk Ltd Detection of ground roll cone
JPH10199707A (ja) 1997-01-13 1998-07-31 Chichibu Onoda Cement Corp チップ型サーミスタの製造方法
US6166620A (en) 1997-06-16 2000-12-26 Matsushita Electric Industrial Co., Ltd. Resistance wiring board and method for manufacturing the same
US6172592B1 (en) * 1997-10-24 2001-01-09 Murata Manufacturing Co., Ltd. Thermistor with comb-shaped electrodes
DE19800196C2 (de) * 1998-01-07 1999-10-28 Guenter Nimtz Verfahren zur Herstellung von Flächenwiderstandsschichten
JP3624395B2 (ja) * 1999-02-15 2005-03-02 株式会社村田製作所 チップ型サーミスタの製造方法
TW487742B (en) * 1999-05-10 2002-05-21 Matsushita Electric Ind Co Ltd Electrode for PTC thermistor, manufacture thereof, and PTC thermistor
CN1093159C (zh) 1999-05-24 2002-10-23 中国科学院新疆物理研究所 室温固相反应制备负温度系数热敏粉料的方法
KR100674692B1 (ko) * 1999-06-03 2007-01-26 마쯔시다덴기산교 가부시키가이샤 박막서미스터소자 및 박막서미스터소자의 제조방법
JP4557386B2 (ja) * 2000-07-10 2010-10-06 キヤノン株式会社 記録ヘッド用基板の製造方法
US6475400B2 (en) * 2001-02-26 2002-11-05 Trw Inc. Method for controlling the sheet resistance of thin film resistors
US7218506B2 (en) * 2004-03-31 2007-05-15 Tdk Corporation Electrolytic capacitor and method of manufacturing the same

Also Published As

Publication number Publication date
US7887713B2 (en) 2011-02-15
DE10302800A1 (de) 2004-08-12
EP1586099A1 (de) 2005-10-19
WO2004068508A1 (de) 2004-08-12
US20060131274A1 (en) 2006-06-22
CN1742348A (zh) 2006-03-01

Similar Documents

Publication Publication Date Title
DE112004000186B4 (de) Mehrschicht-Keramik-Elektronikkomponenten und Verfahren zur Herstellung derselben
DE2644283C3 (de) Verfahren zum Herstellen eines thermoelektrischen Bausteins
DE3102197A1 (de) Verfahren zum herstellen eines fuehlers zum erfassen einer fluid-stroemungsgeschwindigkeit oder eines fluid-durchsatzes
DE3930623C2 (de)
EP1774603B1 (de) Vielschichtbauelement und verfahren zu dessen herstellung
EP1277215B1 (de) Elektrisches bauelement, verfahren zu dessen herstellung und dessen verwendung
EP1774543B1 (de) Elektrisches bauelement und verfahren zur herstellung eines elektrischen bauelements
EP1586099B1 (de) Verfahren zur herstellung eines elektronischen bauelements
DE4213003C2 (de) Dielektrische Keramiken und elektronische Teile, die diese verwenden
CH689501A5 (de) Cermet-Dickschichtwiderstandselement sowie Verfahren zu seiner Herstellung.
DE3643305C2 (de)
EP0016263A1 (de) Dünnschichtwiderstand mit grossem Temperaturkoeffizienten und Verfahren zu dessen Herstellung
EP1815554B8 (de) Kopplungsleitungen für einen yig-filter oder yig-oszillator und verfahren zur herstellung der kopplungsleitungen
DE2100789A1 (de) Thermistor und Verfahren zu seiner Herstellung
DE3034175C2 (de)
DE4130390C2 (de) Widerstandselement
EP1497838A1 (de) Ptc-bauelement und verfahren zu dessen herstellung
DE2554464C3 (de) Elektrischer Widerstand
DE2445805C3 (de) Verfahren zur Herstellung einer mit bestimmungsgemäß gerichteter, vom Finger ausgeübter Druckkraft zu betätigenden Taste
DE102020133783A1 (de) Verfahren und Vorrichtung zur Gütebestimmung einer Sinterpastenschicht
DE2641574A1 (de) Zylinderkondensator
DE2623606A1 (de) Verfahren zur herstellung eines elektrischen schichtwiderstandes
DE1590525A1 (de) Verfahren zum Abgleichen von elektrischen Widerstaenden in Duennfilmschaltungen
DE2054721A1 (de) Schichtwiderstand und Verfahren zu seinem Abgleich
DE1141010B (de) Verfahren zur Herstellung eines elektrischen Widerstandes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050603

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080625

R17C First examination report despatched (corrected)

Effective date: 20081008

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20151008

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HESSE, CHRISTIAN

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 50315416

Country of ref document: DE

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50315416

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50315416

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20161125

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161223

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 50315416

Country of ref document: DE

Representative=s name: EPPING HERMANN FISCHER PATENTANWALTSGESELLSCHA, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 50315416

Country of ref document: DE

Owner name: TDK ELECTRONICS AG, DE

Free format text: FORMER OWNER: EPCOS AG, 81669 MUENCHEN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20221219

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230521

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50315416

Country of ref document: DE