EP1463847B1 - Elektroden für die elektrolyse in sauren medien - Google Patents

Elektroden für die elektrolyse in sauren medien Download PDF

Info

Publication number
EP1463847B1
EP1463847B1 EP02805772A EP02805772A EP1463847B1 EP 1463847 B1 EP1463847 B1 EP 1463847B1 EP 02805772 A EP02805772 A EP 02805772A EP 02805772 A EP02805772 A EP 02805772A EP 1463847 B1 EP1463847 B1 EP 1463847B1
Authority
EP
European Patent Office
Prior art keywords
titanium
intermediate layer
electrode
electrochemically active
support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02805772A
Other languages
English (en)
French (fr)
Other versions
EP1463847A2 (de
Inventor
Fritz Gestermann
Hans-Dieter Pinter
Gerd Speer
Peter Fabian
Robert Scannel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Covestro Deutschland AG
De Nora Elettrodi SpA
Original Assignee
Bayer MaterialScience AG
De Nora Elettrodi SpA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer MaterialScience AG, De Nora Elettrodi SpA filed Critical Bayer MaterialScience AG
Publication of EP1463847A2 publication Critical patent/EP1463847A2/de
Application granted granted Critical
Publication of EP1463847B1 publication Critical patent/EP1463847B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/052Electrodes comprising one or more electrocatalytic coatings on a substrate
    • C25B11/053Electrodes comprising one or more electrocatalytic coatings on a substrate characterised by multilayer electrocatalytic coatings
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D17/00Constructional parts, or assemblies thereof, of cells for electrolytic coating
    • C25D17/10Electrodes, e.g. composition, counter electrode

Definitions

  • the invention relates to stable electrodes for electrolytic processes, in particular for the electrolysis of hydrochloric acid or aqueous solutions of alkali metal dichromate Process for their preparation and their use.
  • hydrochloric acid Aqueous solutions of hydrogen chloride, hereafter called hydrochloric acid, fall as By-product in many processes, especially those where organic Hydrocarbon compounds are oxidized with chlorine oxidizing. Economically interesting is the recovery of chlorine from these hydrochloric acids, which can then be used for example for further chlorinations.
  • Electrolytic processes in particular for the electrolysis of hydrochloric acid or aqueous solutions of sodium dichromate, a plurality of electrodes are described.
  • DE 29 08 269 A1 describes bipolar electrodes based on carbon, however have a limited life under electrolysis conditions. Also from DE 44 17 744 C1 electrodes are known based on carbon, wherein a Activation of the cathode side by applying noble metal compounds takes place. To produce these electrodes, a graphite body with a solution of Precious metal compound soaked and then with open gas flame to 200 bis 450 ° C heated.
  • US-A-5,411,641 discloses a process for producing dry halogen by electrolysis of anhydrous hydrogen chloride in an electrolytic cell, in Anode and cathode have direct contact with a cation exchange membrane.
  • Anode and cathode are based on carbon and are catalytic active material, for example ruthenium oxide coated.
  • US Pat. No. 5,770,035 discloses a process for the electrolysis of an aqueous hydrochloric acid solution known, wherein an anode of a corrosion-resistant substrate and a electrochemically active coating is used.
  • an anode of a corrosion-resistant substrate is graphite or titanium, titanium alloys, Niobium or tantalum.
  • electrochemically active coating becomes a standard activation used from mixtures of oxides of ruthenium, iridium and titanium.
  • the cathode is a carbon-based gas diffusion cathode with a coating from a platinum group metal or a corresponding oxide.
  • the long-term stability of the gas diffusion cathode is low, presumably because there is a loss of contact between the carbon-based gas diffusion electrode and the necessary current distribution electrode resting on the gas diffusion cathode comes.
  • Another reason for a loss of contact is the Formation of electrically poorly conductive oxides on the electrodes during shutdowns the electrolysis.
  • the formation of such oxides can be achieved by a coating the power distribution electrode with a metal mixed oxide, which also for the anode coating can be used.
  • the mixed metal oxide adheres poorly to the electrode, so that the long-term stability of the electrode remains unsatisfactory.
  • the electrodes described are obtained by direct application of the catalytically active Layer produced on a support and have the disadvantage that the service life the electrodes under the conditions of electrolysis unsatisfactory are.
  • US Pat. No. 4,392,927 proposes the use of sodium chloride electrolysis Composite electrodes, consisting of an electrically conductive substrate and a electrochemically active cover layer.
  • the electrochemically active surface layer is applied by thermal spraying of a powder on the carrier, wherein the Powder contains in addition to matrix particles and electrocatalytically active particles.
  • Matrix particles include, for example, titanium oxide, titanium boride and titanium carbide Question, as electrocatalytically active particles of platinum group metals or Iron group or oxides of these metals.
  • titanium carbide or boride interlayers are already known from DE-A-23 44 645 and CH-A-665429. in this connection Although titanium substrates, but electrochemically active layers Lead dioxide used.
  • the object of the invention is therefore to provide electrodes with an improved lifetime under the conditions of electrolysis, especially under the strong acidic conditions in the hydrochloric acid electrolysis or performing the alkali metal dichromate electrolysis develop in acidic medium.
  • the invention therefore relates to an electrode, at least containing one electrically conductive support made of a titanium-palladium alloy, titanium, tantalum or Compounds or alloys of titanium or tantalum, an electrochemically active Coating and an intermediate layer between support and electrochemical active coating, wherein the intermediate layer of titanium carbide and / or Titanium boride persists and is applied to the carrier by flame or plasma spraying is applied.
  • the electrochemically active layer consists of ruthenium dioxide or iridum dioxide, or a mixed metal oxide which is one contains these oxides.
  • the electrodes of the invention are characterized by increased stability, since by using an intermediate layer both the adhesion to the carrier, as well the adhesion of the catalytically active layer is improved.
  • the electrodes according to the invention can be used as an anode, as a cathode and also as a cathodic power distributor. They show a very high resistance when used in hydrochloric acid electrolysis or alkali metal dichromate electrolysis in acidic medium. For example, these electrodes are also extremely stable in the electrolysis of hydrochloric acid with a concentration of ⁇ 20% by weight of HCl at temperatures up to 70 ° C. and high specific current densities of up to 8 kA / m 2 . Compared to intermediate layers of titanium oxide or titanium suboxide, the intermediate layers of titanium carbide and titanium boride are characterized by being extremely dense. As a result, an attack by aggressive media, such as hydrochloric acid on the carrier is prevented. In addition, the adhesion of the electrochemically active layer is significantly improved.
  • the loading of the carrier with the intermediate layer is preferably from 10 to 5000 g / m 2 .
  • the intermediate layer consists of more than one Layer, i. the intermediate layer is multilayered by flame or Plasmaspritzen applied.
  • the intermediate layer is a layer of titanium carbide.
  • the electrodes of the invention can be, for example, by applying a Intermediate layer by means of flame or plasma spraying on a support and subsequent application of an electrochemically active coating to the Produce intermediate layer, wherein during application of the intermediate layer by Flame or plasma spraying, titanium carbide and / or titanium boride powder of different Grain sizes, i. with a particle size distribution.
  • the carrier used here is a net, woven fabric, braid, knitted fabric, fleece or foam a titanium-palladium alloy, titanium, tantalum or compounds or alloys of the titan or tantalum.
  • the used titanium carbide and / or titanium boride powder for applying the Interlayers by flame or plasma spraying preferably have grain sizes from 10 to 200 ⁇ m.
  • particle size is understood to mean the particle diameter, as determined by sieve analysis, for example.
  • the flame or plasma spraying is done in the usual way.
  • Details of the plasma spraying technique can, for example, the brochure "plasma spraying technology, basics and Applications, 1975 "of the company Plasma-Technik AG
  • Plasma gas for example, a mixture of nitrogen and hydrogen, wherein the volume ratio of nitrogen to hydrogen, for example between 70/30 and 95/5, in an amount of, for example, 5 to 20 1 / min and as Carrier nitrogen can be used.
  • the injection process can, for example, at a current of 200 to 400 amperes and a voltage of 50 to 90 volts be performed.
  • the distance between plasma torch and carrier can for example, be 130 to 200 mm.
  • the application of the electrochemically active coating can be known per se Done way. For example, it is possible to proceed in such a way that a solution or Dispersion of a compound of an element of the platinum metal group (Ru, Rh, Pd, Os, Ir, Pt) and optionally a compound of titanium on the intermediate layer applied and by subsequent thermal treatment to the corresponding Oxides is implemented. Advantageously, this procedure is repeated several times.
  • a compound of an element of the platinum metal group Ru, Rh, Pd, Os, Ir, Pt
  • this procedure is repeated several times.
  • the electrodes according to the invention can be used, for example, as gas-evolving Electrodes are used.
  • the used electrochemical cell can, for example, an anode compartment with anode and a cathode compartment with gas diffusion electrode and current collector containing anode compartment and cathode compartment through a cation exchange membrane are separated from each other and as the anode, cathode and / or current collector an electrode according to the invention is used.
  • an oxygen-containing gas for example, pure oxygen, a mixture of oxygen and inert gases, especially nitrogen, or Air are introduced, preferably oxygen or an oxygen-rich gas.
  • the oxygen-containing gas is advantageously supplied in an amount such that oxygen is superstoichiometrically based on the amount theoretically required according to equation 1.
  • the aqueous solution of hydrogen chloride When using the electrodes in an electrochemical cell for production of chlorine from aqueous hydrochloric acid solutions becomes the aqueous solution of hydrogen chloride usually introduced into the anode chamber.
  • the temperature of the supplied aqueous solution of hydrogen chloride is preferably 30 to 90 ° C, particularly preferably 50 to 70 ° C.
  • aqueous solutions of hydrogen chloride with a hydrogen chloride concentration be used by ⁇ 20 wt .-%.
  • the hydrochloric acid electrolysis is preferably at a pressure in the anode compartment greater than 1 bar absolute, more preferably 1.05 to 1.4 bar.
  • the electrodes according to the invention can also be advantageously used in an electrochemical Cell for the production of chromic acid from an aqueous Alkali dichromate solution, in particular from an aqueous sodium dichromate solution deploy.
  • the use is particularly advantageous if the electrolysis of the aqueous sodium dichromate solution is carried out under acidic conditions, because in this Case conventional electrodes rapidly lose activity.
  • the plasma gas was helium at a flow rate of 1.3 l / min. and nitrogen at a flow rate of 2.5 l / min. used.
  • the carrier gas used to transport the plasma powder to the burner was nitrogen at 6.5 l / min. used.
  • the burner output was 560 A at 62 V.
  • the plasma torch was moved in the soundproof system by an oscillating mast.
  • the lifting speed was 12 m / min.
  • the horizontal step length was 10 mm per double stroke.
  • the burner distance was about 150 mm at an angle of 90 °.
  • the titanium carbide layer had a basis weight of 50 to 80 g / m 2 .
  • an electrochemically active layer of RuO 2 and TiO 2 was applied to the expanded metal provided with the intermediate layer.
  • a mixture of TiCl 3 and RuCl 3 (molar ratio 1: 1) was dissolved in dilute hydrochloric acid (about 2N HCl) and applied to the expanded metal by means of a brush.
  • the coated expanded metal was then heated in air to 500 ° C. This process was repeated several times, preferably 4 to 12 times.
  • the coated expanded metal was used as the anode and / or cathode mesh, which is known as Power supply of an oxygen-consuming cathode served, i. used as a power distributor.
  • the coated expanded metal was used as the anode and / or cathode mesh, which is known as Power supply of a Sauerstoffverzehrkathode served, used.
  • an aqueous hydrochloric acid solution (15-30 wt .-%) by means of a pump in an anolyte and from there by means of another Pump via a heat exchanger in the anode compartment of an electrochemical cell pumped.
  • Part of the depleted hydrochloric acid solution was used together with the
  • the anode developed chlorine gas via a line in a columnar vessel, in which was a gas / liquid separation, discharged.
  • About a line in the Liquid of the columnar vessel was immersed, became a certain Pressure in the electrochemical cell and set in the anolyte. This was pressed the cation exchange membrane on the oxygen-consuming cathode, the in turn on the power distribution.
  • Oxygen was introduced via a pipe into a vessel which was filled with water and used for moistening the oxygen, passed.
  • the moistened oxygen was fed to the cathode compartment, was reduced at the oxygen-consuming cathode and reacted with the protons migrated across the cation exchange membrane to water. Residual oxygen was combined with the condensate formed in a condensate removed. The excess oxygen and the condensate were removed from the electrochemical cell.
  • aqueous approximately 30% strength by weight hydrochloric acid solution was metered into a hydrochloric acid circuit such that the acid concentration in the anolyte circulation and in the cell was about 12-15% by weight HCl.
  • the temperature of the anolyte solution was adjusted to 60-70 ° C.
  • the electrolysis was operated at a current density of 5 kA / m 2 .
  • the cation exchange membrane used was a membrane based on a perfluorosulfonate polymer from DuPont (type Nafion® 324).
  • An oxygen-consuming cathode from E-TEK based on carbon with platinum catalyst was used.
  • the complete cell housing was made of PTFE (polytetrafluoroethylene) or PVDF (polyvinylidene fluoride).
  • the anode and the current distributor were examined at regular intervals and the degree of destruction was determined. The determination was made qualitatively by examining the anode and the current distributor under the light microscope. Quantitatively, the degree of destruction was determined by layer thickness measurements by means of X-ray fluorescence measurement. The results of the investigations are summarized in Table I (anode) and Table II (current distributor). The degree of destruction is given in%, which is to be understood as meaning the proportion of active coating which has been removed in comparison to the layer thickness of active coating originally present.
  • Example 1 Anode an extremely high stability under the above conditions showed.
  • the anode potential was still unchanged after a period of 408 days.
  • the comparison test with an anode manufactured according to Example 2 had because of Destruction of the anode coating terminated after a period of 280 days become.
  • the degree of destruction of the power distribution used was in use an electrode according to the invention according to Example 1 significantly lower than when using an electrode according to Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Description

Die Erfindung betrifft stabile Elektroden für elektrolytische Prozesse, insbesondere für die Elektrolyse von Salzsäure oder wässriger Lösungen von Alkalidichromat, ein Verfahren zu deren Herstellung und deren Verwendung.
Wässrige Lösungen von Chlorwasserstoff, nachfolgend Salzsäure genannt, fallen als Nebenprodukt bei vielen Prozessen an, insbesondere bei solchen, bei denen organische Kohlenwasserstoff-Verbindungen mit Chlor oxidierend chloriert werden. Wirtschaftlich interessant ist die Wiedergewinnung von Chlor aus diesen Salzsäuren, das dann beispielsweise für weitere Chlorierungen eingesetzt werden kann.
Die Wiedergewinnung von Chlor kann beispielsweise elektrolytisch in einer elektrochemischen Zelle erfolgen, die im Wesentlichen aus einem Anodenraum mit Anode und einem Kathodenraum mit Kathode besteht, wobei Anoden- und Kathodenraum durch eine Ionenaustauschermembran voneinander getrennt sind.
Die Herstellung von Chromsäure durch Elektrolyse von Natriumdichromat-Lösungen ist ebenfalls in elektrochemischen Zellen des genannten prinzipiellen Aufbaus möglich.
Für elektrolytische Prozesse, insbesondere für die Elektrolyse von Salzsäure oder wässriger Lösungen von Natriumdichromat, sind eine Vielzahl von Elektroden beschrieben.
DE 29 08 269 Al beschreibt bipolare Elektroden auf Kohlenstoff-Basis, die jedoch unter den Elektrolysebedingungen nur eine begrenzte Lebensdauer aufweisen. Auch aus DE 44 17 744 C1 sind Elektroden auf Kohlenstoff-Basis bekannt, wobei eine Aktivierung der Kathodenseite durch Aufbringen von Edelmetallverbindungen erfolgt. Zur Herstellung dieser Elektroden wird ein Graphitkörper mit einer Lösung der Edelmetallverbindung getränkt und anschließend mit offener Gasflamme auf 200 bis 450°C erhitzt.
US-A 5 411 641 offenbart ein Verfahren zur Herstellung von trockenem Halogen durch Elektrolyse von wasserfreiem Chlorwasserstoff in einer Elektrolysezelle, in der Anode und Kathode direkten Kontakt zu einer Kationenaustauschermembran aufweisen. Anode und Kathode basieren auf Kohlenstoff und sind mit einem katalytisch aktiven Material, beispielsweise Rutheniumoxid beschichtet.
Aus US-A 5 770 035 ist ein Verfahren zur Elektrolyse einer wässrigen Salzsäurelösung bekannt, wobei eine Anode aus einem korrosionsbeständigen Substrat und einer elektrochemisch aktiven Beschichtung zum Einsatz kommt. Bei dem korrosionsbeständigen Substrat handelt es sich um Graphit oder aber um Titan, Titanlegierungen, Niob oder Tantal. Als elektrochemisch aktive Beschichtung wird eine Standardaktivierung aus Mischungen von Oxiden von Ruthenium, Iridium und Titan eingesetzt. Als Kathode wird eine Gasdiffusionskathode auf Kohlenstoff-Basis mit einer Beschichtung aus einem Metall der Platingruppe oder einem entsprechenden Oxid beschrieben. Die Langzeitstabilität der Gasdiffusionskathode ist gering, vermutlich weil es zu einem Kontaktverlust zwischen der auf Kohlenstoff basierenden Gasdiffusionselektrode und der notwendigen, auf der Gasdiffusionskathode aufliegenden Stromverteilungselektrode kommt. Ein weiterer Grund für einen Kontaktverlust ist die Bildung von elektrisch schlecht leitenden Oxiden auf den Elektroden während Stillständen der Elektrolyse. Die Bildung solcher Oxide kann durch eine Beschichtung der Stromverteilerelektrode mit einem Metallmischoxid, welches auch für die Anodenbeschichtung verwendet werden kann, verhindert werden. Das Metallmischoxid haftet jedoch schlecht auf der Elektrode, so dass die Langzeitstabilität der Elektrode nach wie vor unbefriedigend bleibt.
Die beschriebenen Elektroden werden durch direktes Aufbringen der katalytisch aktiven Schicht auf einen Träger hergestellt und haben den Nachteil, dass die Standzeiten der Elektroden unter den Bedingungen der Elektrolyse nicht zufriedenstellend sind.
Die Anwendung von Elektroden mit aufgerauten Oberflächen zur Verbesserung der Lebensdauer dieser Elektroden, speziell durch raue, plasmagespritzte metallische Beschichtungen, ist in EP 493 326 A2 beschrieben. Kernpunkt ist die Erzeugung sehr rauer Oberflächen.
US-A 4 392 927 schlägt für die Natriumchlorid-Elektrolyse die Verwendung von Verbundelektroden, bestehend aus einem elektrisch leitfähigen Substrat und einer elektrochemisch aktiven Deckschicht vor. Die elektrochemisch aktive Deckschicht wird durch thermisches Spritzen eines Pulvers auf den Träger aufgebracht, wobei das Pulver neben Matrixpartikeln auch elektrokatalytisch aktive Partikel enthält. Als Matrixpartikel kommen beispielsweise Titanoxid, Titanborid und Titancarbid in Frage, als elektrokatalytisch aktive Partikel Metalle der Platingruppe oder der Eisengruppe oder Oxide dieser Metalle.
Aus US-A 4 140 813 ist ein Verfahren zur Herstellung von Elektroden mit verbesserter Langzeitstabilität unter den Bedingungen der Alkalichlorid-Elektrolyse bekannt. Auf einen metallischen Träger, vorzugsweise aus Titan oder einer Titanlegierung wird mittels Flamm- oder Plasmaspritzen eine erste Beschichtung aus Titansuboxid aufgebracht. Anschließend wird als elektrochemisch aktive Substanz ein Element der Platingruppe oder eine Verbindung eines solchen Elements aufgebracht. Solche Elektroden weisen eine verbesserte Lebensdauer unter den Bedingungen der Natriumdichromat-Elektrolyse auf. Sie können auch dann eingesetzt werden, wenn die Natriumchlorid-Elektrolyse unter sauren Bedingungen durchgeführt wird oder wenn Salzsäure elektrolysiert werden soll. Insbesondere unter den stark sauren Bedingungen bei der Salzsäure-Elektrolyse oder der Alkalidichromat-Elektrolyse bei niedrigem pH ist jedoch auch hier die Lebensdauer noch nicht ausreichend.
Die Verwendung von Titancarbid bzw. -borid Zwischenschichten ist bereits aus der DE-A-23 44 645 bzw. der CH-A-665429 bekannt. Hierbei werden zwar Titan-Substrate, jedoch elektrochemisch aktive Schichten aus Bleidioxid verwendet.
Bei der Untersuchung von Anoden mit herkömmlichen Anodenbeschichtungen zeigte sich, dass es schon nach vergleichsweise geringer Einsatzdauer zu einem Abplatzen der aktiven Schicht vom Träger kommt. Als Ursache kommt einerseits eine grundsätzliche schlechte Haftung zwischen Träger und aktiver Schicht, andererseits eine Korrosion zwischen der aktiven Schicht und dem metallischen Träger in Frage, wobei die Korrosion die Haftung verschlechtert, was letztlich zur Zerstörung der Anodenbeschichtung führt.
Aufgabe der Erfindung ist es daher, Elektroden mit einer verbesserten Lebensdauer unter den Bedingungen der Elektrolyse, insbesondere unter den stark sauren Bedingungen bei der Salzsäure-Elektrolyse oder einer Durchführung der Alkalidichromat-Elektrolyse in saurem Medium zu entwickeln.
Überraschenderweise wurde nun gefunden, dass diese Aufgabe gelöst werden kann, wenn Elektroden vor Aufbringung der katalytisch aktiven Schicht mit einer speziellen Zwischenschicht versehen werden.
Gegenstand der Erfindung ist daher eine Elektrode, wenigstens enthaltend einen elektrisch leitfähigen Träger aus einer Titan-Palladium-Legierung, Titan, Tantal oder Verbindungen oder Legierungen des Titans oder Tantals, eine elektrochemisch aktive Beschichtung und eine Zwischenschicht zwischen Träger und elektrochemisch aktiver Beschichtung, wobei die Zwischenschicht aus Titancarbid und/oder Titanborid besteht und durch Flamm- oder Plasmaspritzen auf den Träger aufgebracht ist. Hierbei besteht die elektrochemisch aktive Schicht aus Rutheniumdioxid oder Iridumdioxid, oder einem Mischmetalloxid, welches eines dieser Oxide enthält.
Im Vergleich zu den in US-A 4 392 927 für die Natriumchlorid-Elektrolyse beschriebenen Verbundelektroden, die nur eine elektrochemisch aktive Deckschicht enthalten, die neben Matrixpartikeln auch elektrokatalytisch aktive Partikel umfasst, zeichnen sich die erfindungsgemäßen Elektroden durch erhöhte Stabilität aus, da durch Einsatz einer Zwischenschicht sowohl die Haftfestigkeit zum Träger, als auch die Haftfestigkeit der katalytisch aktiven Schicht verbessert wird.
Die erfindungsgemäßen Elektroden sind als Anode, als Kathode und auch als kathodischer Stromverteiler verwendbar. Sie zeigen eine sehr hohe Beständigkeit beim Einsatz in der Salzsäureelektrolyse bzw. der Alkalidichromat-Elektrolyse in saurem Medium. Beispielsweise sind diese Elektroden auch bei der Elektrolyse von Salzsäure mit einer Konzentration von < 20 Gew.-% HCl bei Temperaturen bis zu 70°C und hohen spezifischen Stromdichten von bis zu 8kA/m2 äußerst stabil. Im Vergleich zu Zwischenschichten aus Titanoxid oder Titansuboxid zeichnen sich die Zwischenschichten aus Titancarbid und Titanborid dadurch aus, dass sie äußerst dicht sind. Dadurch wird ein Angriff von aggressiven Medien, etwa Salzsäure am Träger verhindert. Zudem wird die Haftung der elektrochemisch aktiven Schicht deutlich verbessert.
Die Beladung des Trägers mit der Zwischenschicht beträgt bevorzugt von 10-5000 g/m2.
In einer besonderen Ausführungsform besteht die Zwischenschicht aus mehr als einer Schicht, d.h. die Zwischenschicht ist mehrschichtig durch Flamm- oder Plasmaspritzen aufgebracht.
Vorzugsweise handelt es sich bei der Zwischenschicht um eine Schicht aus Titancarbid.
Die erfindungsgemäßen Elektroden lassen sich beispielsweise durch Aufbringen einer Zwischenschicht mittels Flamm- oder Plasmaspritzen auf einen Träger und anschließendes Aufbringen einer elektrochemisch aktiven Beschichtung auf die Zwischenschicht herstellen, wobei beim Aufbringen der Zwischenschicht durch Flamm- oder Plasmaspritzen, Titancarbid- und/oder Titanborid-Pulver unterschiedlicher Korngrößen, d.h. mit einer Korngrößenverteilung, verwendet werden.
Als Träger dient dabei ein Netz, Gewebe, Geflecht, Gewirke, Vlies oder Schaum aus einer Titan-Palladium-Legierung, Titan, Tantal oder Verbindungen oder Legierungen des Titans oder Tantals.
Die eingesetzten Titancarbid- und/oder Titanborid-Pulver zum Aufbringen der Zwischenschichten durch Flamm- oder Plasmaspritzen weisen vorzugsweise Korngrößen von 10 bis 200 µm auf.
Unter Korngröße wird im Sinne dieser Anmeldung der Partikeldurchmesser verstanden, wie er beispielsweise mittels Siebanalyse bestimmt wird.
Das Flamm- oder Plasmaspritzen erfolgt in üblicher Weise. Beispielsweise kann Titancarbid- oder Titanborid-Pulver mittels eines kommerziell verfügbaren PlasmaBrenners auf den Träger aufgebracht werden. Einzelheiten zur Plasmaspritztechnik können beispielsweise der Broschüre "Plasmaspritztechnik, Grundlagen und Anwendungen, 1975" der Firma Plasma-Technik AG entnommen werden. Als Plasmagas kann beispielsweise ein Gemisch von Stickstoff und Wasserstoff, wobei das Volumenverhältnis von Stickstoff zu Wasserstoff beispielsweise zwischen 70/30 und 95/5 liegen kann, in einer Menge von beispielsweise 5 bis 20 1/min und als Trägergas Stickstoff eingesetzt werden. Der Spritzvorgang kann beispielsweise bei einem Strom von 200 bis 400 Ampere und einer Spannung von 50 bis 90 Volt durchgeführt werden. Der Abstand zwischen Plasmabrenner und Träger kann beispielsweise 130 bis 200 mm betragen.
Das Aufbringen der elektrochemisch aktiven Beschichtung kann in an sich bekannter Weise erfolgen. Beispielsweise kann so vorgegangen werden, dass eine Lösung oder Dispersion einer Verbindung eines Elements der Platinmetall-Gruppe (Ru, Rh, Pd, Os, Ir, Pt) und gegebenenfalls einer Verbindung des Titans auf die Zwischenschicht aufgebracht und durch anschließende thermische Behandlung zu den entsprechenden Oxiden umgesetzt wird. Vorteilhafterweise wird dieses Vorgehen mehrmals wiederholt.
Die erfindungsgemäßen Elektroden können beispielsweise als gasentwickelnde Elektroden eingesetzt werden.
Bevorzugt ist die Verwendung der Elektroden in einer elektrochemischen Zelle zur Herstellung von Chlor aus wässrigen Salzsäurelösungen oder von Chromsäure aus einer Natriumdichromat/Chromsäure-Lösung unter Sauerstoffentwicklung.
Die eingesetzte elektrochemische Zelle kann dabei beispielsweise einen Anodenraum mit Anode und einen Kathodenraum mit Gasdiffusionselektrode und Stromkollektor enthalten, wobei Anodenraum und Kathodenraum durch eine Kationenaustauschermembran voneinander getrennt sind und als Anode, Kathode und/oder Stromkollektor eine erfindungsgemäße Elektrode eingesetzt wird.
In den Kathodenraum kann ein sauerstoffhaltiges Gas, beispielsweise reiner Sauerstoff, ein Gemisch aus Sauerstoff und inerten Gasen, insbesondere Stickstoff, oder Luft eingeleitet werden, vorzugsweise Sauerstoff oder ein sauerstoffreiches Gas.
Das sauerstoffhaltige Gas wird dabei vorteilhaft in einer solchen Menge zugeführt, dass Sauerstoff bezogen auf die gemäß Gleichung 1 theoretisch benötigte Menge überstöchiometrisch vorliegt.
Figure 00080001
Bei der Verwendung der Elektroden in einer elektrochemischen Zelle zur Herstellung von Chlor aus wässrigen Salzsäurelösungen wird die wässrige Lösung des Chlorwasserstoffs in der Regel in die Anodenkammer eingeleitet. Die Temperatur der zugeführten wässrigen Lösung von Chlorwasserstoff beträgt vorzugsweise 30 bis 90°C, insbesondere bevorzugt 50 bis 70°C.
Es können insbesondere wässrige Lösungen von Chlorwasserstoff mit einer Chlorwasserstoffkonzentration von < 20 Gew.-% eingesetzt werden.
Die Salzsäure-Elektrolyse wird vorzugsweise bei einem Druck im Anodenraum größer als 1 bar absolut durchgeführt, besonders bevorzugt 1,05 bis 1,4 bar.
Die erfindungsgemäßen Elektroden lassen sich aber auch vorteilhaft in einer elektrochemischen Zelle zur Herstellung von Chromsäure aus einer wässrigen Alkalidichromat-Lösung, insbesondere aus einer wässrigen Natriumdichromatlösung einsetzen. Besonders vorteilhaft ist die Verwendung dann, wenn die Elektrolyse der wässrigen Natriumdichromatlösung unter sauren Bedingungen erfolgt, weil in diesem Fall herkömmliche Elektroden rasch an Aktivität verlieren.
Es ist auch denkbar, die Elektroden in einer elektrochemischen Zelle zur Herstellung von Chlor aus wässrigen Salzsäurelösungen als elektrischer Stromverteiler einer Gasdiffusionselektrode zur Reduktion von Sauerstoff einzusetzen.
In den folgenden Beispielen wird das erfindungsgemäße Verfahren weiter erläutert, wobei die Beispiele nicht als Einschränkung des allgemeinen Erfindungsgedankens zu verstehen sind.
Beispiel 1
Die Oberfläche eines Streckmetalls aus einer Standard Titan-Palladium-Legierung (Titan Grade 11) wurde mittels Strahlen mit Stahlkies auf einer Rautiefe von 30 bis 40 µm aufgeraut. Anschließend wurde das Streckmetall mit einer 20 Gew.% Salzsäure ca. 10 Minuten gebeizt. Damit konnten auch die Reste des Strahlmittels entfernt werden.
Auf das vorbehandelte Streckmetall wurde mittels einer Plasmabeschichtungsanlage vom Typ Plasmatechnik eine Schicht Titancarbid aufgebracht. Dazu wurde Plasmapulver der Firma H.C. Starck, Typ AMPERIT 570.3, verwendet. Die Korngrößenverteilung wurde nach Microtrac zu - 5,6 µm und mittels Siebanalyse nach Rotap zu + 45 bestimmt.
Als Plasmagas wurde Helium mit einer Durchflussmenge von 1,3 l/Min. und Stickstoff mit einer Durchflussmenge von 2,5 l/Min. verwendet. Als Trägergas für den Transport des Plasmapulvers zum Brenner wurde Stickstoff mit 6,5 l/Min. verwendet. Die Brennerleistung betrug 560 A bei 62 V. Der Plasmabrenner wurde in der schallgeschützten Anlage von einem oszillierenden Hubgerüst bewegt. Die Hubgeschwindigkeit betrug 12 m/Min. Die horizontale Schrittlänge betrug 10 mm pro Doppelhub. Der Brennerabstand betrug ca. 150 mm bei einem Winkel von 90°. Die Titancarbidschicht wies ein Flächengewicht von 50 bis 80 g/m2 auf.
Anschließend wurde auf das mit der Zwischenschicht versehene Streckmetall eine elektrochemisch aktive Schicht aus RuO2 und TiO2 aufgebracht. Dazu wurde eine Mischung aus TiCl3 und RuCl3 (Molverhältnis 1 : 1) in verdünnter Salzsäure (ca. 2n HCl) gelöst und mittels eines Pinsels auf das Streckmetall aufgebracht. Das beschichtete Streckmetall wurde anschließend in Luft auf 500°C erhitzt. Dieser Vorgang wurde mehrmals, vorzugsweise 4 bis 12 mal, wiederholt.
Das beschichtete Streckmetall wurde als Anode und/oder Kathodennetz, welches als Stromzuführung einer Sauerstoffverzehrkathode diente, d.h. als Stromverteiler eingesetzt.
Beispiel 2 (Vergleichsbeispiel)
Die Oberfläche eines Streckmetalls aus einer Standard Titan-Palladium-Legierung (Titan Grade 11) wurde mittels Strahlen mit Stahlkies auf einer Rautiefe von 30 bis 40 µm aufgeraut. Anschließend wurde das Streckmetall mit einer 20 Gew.-% Salzsäure ca. 10 Minuten gebeizt. Damit konnten auch die Reste des Strahlmittels entfernt werden.
Auf das vorbehandelte Streckmetall wurde eine elektrochemisch aktive Schicht aus RuO2 und TiO2 aufgebracht. Das Aufbringen erfolgte wie in Beispiel 1 beschrieben.
Das beschichtete Streckmetall wurde als Anode und/oder Kathodennetz, welches als Stromzuführung einer Sauerstoffverzehrkathode diente, eingesetzt.
Beispiel 3 (Elektrodentest)
In eine elektrochemische Zelle enthaltend einen Anodenraum mit Anode, eine Kationenaustauschennembran und einen Kathodenraum mit Sauerstoffverzehrkathode und Stromkollektor wurden mit der notwendigen Peripherie als Anode und als Stromkollektor die in den Beispielen 1 bzw. 2 beschriebenen Elektroden mit aktiven Oberflächen von jeweils 100 cm2 eingebaut und getestet.
Aus einem Vorratsgefäß wurde eine wässrige Salzsäurelösung (15-30 Gew.-%) mittels einer Pumpe in einen Anolytkreislauf und von dort aus mittels einer weiteren Pumpe über einen Wärmetauscher in den Anodenraum einer elektrochemischen Zelle gepumpt. Ein Teil der abgereicherten Salzsäurelösung wurde zusammen mit dem an der Anode entwickelten Chlorgas über eine Leitung in ein säulenförmiges Gefäß, in dem eine Gas/Flüssigkeitstrennung erfolgte, abgeführt. Über eine Leitung, die in die Flüssigkeit des säulenförmigen Gefäßes eingetaucht war, wurde ein bestimmter Druck in der elektrochemischen Zelle und im Anolyten eingestellt. Dadurch wurde die Kationenaustauschermembran auf die Sauerstoffverzehrkathode gepresst, die ihrerseits auf dem Stromverteiler auflag.
Sauerstoff wurde über eine Leitung in ein Gefäß, welches mit Wasser gefüllt war und zur Anfeuchtung des Sauerstoffes diente, geleitet. Der angefeuchtete Sauerstoff wurde dem Kathodenraum zugeführt, wurde an der Sauerstoffverzehrkathode reduziert und reagierte mit den über die Kationenaustauschermembran gewanderten Protonen zu Wasser. Restsauerstoff wurde zusammen mit dem gebildeten Kondensat in einen Kondensatabscheider abgeführt. Der überschüssige Sauerstoff und das Kondensat wurden aus der elektrochemischen Zelle entfernt.
Der Test der Anode wurde wie folgt durchgeführt:
Eine wässrige ca. 30 gew.-%ige Salzsäurelösung wurde so in einen Salzsäurekreislauf eindosiert, dass die Säurekonzentration im Anolytkreislauf und in der Zelle ca. 12- 15 Gew.-% HCl betrug. Die Temperatur der Anolytlösung wurde auf 60-70°C eingestellt. Die Elektrolyse wurde mit einer Stromdichte von 5 kA/m2 betrieben. Als Kationenaustauschermembran wurde eine Membran auf Basis eines Perfluorsulfonatpolymers der Firma DuPont (Typ Nafion® 324) verwendet. Es wurde eine Sauerstoffverzehrkathode der Firma E-TEK auf Kohlenstoffbasis mit Platinkatalysator eingesetzt. Das komplette Zellengehäuse war aus PTFE (Polytetrafluorethylen) bzw. PVDF (Polyvinylidenfluorid) gefertigt.
Während der Laufzeit der Elektrolyse wurden in regelmäßigen Abständen die Anode und der Stromverteiler untersucht und der Grad der Zerstörung ermittelt. Die Ermittlung erfolgte qualitativ durch Untersuchung der Anode und des Stromverteilers unter dem Lichtmikroskop. Quantitativ wurde der Grad der Zerstörung durch Schichtdicken-Messungen mittels Röntgenfluoreszenzmessung bestimmt. Die Ergebnisse der Untersuchungen sind in Tabelle I (Anode) und Tabelle II (Stromverteiler) zusammengefasst. Der Grad der Zerstörung ist in % angegeben, wobei darunter der Anteil an aktiver Beschichtung zu verstehen ist, der im Vergleich zur ursprünglich vorhandenen Schichtdicke aktiver Beschichtung abgetragen worden ist.
Zustand der Anodenbeschichtungen:
Laufzeit [Tage] Grad der Zerstörung [%]
Anode gemäß Beispiel 1
Grad der Zerstörung [%]
Anode gemäß Beispiel 2
50 0 -
100 < 1 -
200 ~ 2 ~ 30
280 ~5 ~ 50 (neue Aktivierung)
408 < 10 Versuch abgebrochen
- : keine Bestimmung erfolgt
Zustand der Beschichtung der Kathoden-Stromverteiler:
Laufzeit [Tage] Grad der Zerstörung [%]
Stromverteiler gemäß Beispiel 1
Grad der Zerstörung [%]
Stromverteiler gemäß Beispiel 2
50 0 ~ 2
100 0 ~ 3
200 0 ~ 10
280 < 1 ~ 20
408 < 1 Versuch abgebrochen
Überraschenderweise haben die Untersuchungen ergeben, dass die in Beispiel 1 gefertigte Anode eine extrem hohe Stabilität unter den oben genannten Bedingungen zeigte. Das Anodenpotential war nach einer Laufzeit von 408 Tagen noch unverändert. Der Vergleichstest mit einer nach Beispiel 2 gefertigten Anode musste wegen Zerstörung der Anodenbeschichtung nach einer Laufzeit von 280 Tagen abgebrochen werden.
Auch der Grad der Zerstörung des eingesetzten Stromverteilers war bei Verwendung einer erfindungsgemäßen Elektrode gemäß Beispiel 1 deutlich niedriger, als bei Verwendung einer Elektrode nach Beispiel 2.

Claims (8)

  1. Elektrode wenigstens enthaltend einen elektrisch leitfähigen Träger aus einer Titan-Palladium-Legierung, Titan, Tantal oder Verbindungen oder Legierungen des Titans oder Tantals, eine elektrochemisch aktive Beschichtung und eine Zwischenschicht zwischen Träger und elektrochemisch aktiver Beschichtung, wobei die Zwischenschicht aus Titancarbid und/oder Titanborid besteht und durch Flamm- oder Plasmaspritzen auf den Träger aufgebracht ist, dadurch gekennzeichnet, dass die elektrochemisch aktive Schicht aus Rutheniumdioxid oder einem Metallmischoxid, welches Rutheniumdioxid enthält, oder aus Iridiumoxid oder einem Metallmischoxid, welches Iridiumoxid enthält, besteht..
  2. Elektrode nach Anspruch 1, dadurch gekennzeichnet, dass der Träger eine Beladung mit Zwischenschicht von 10-5000 g/m2 aufweist.
  3. Elektrode nach wenigstens einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Zwischenschicht mehrschichtig aufgetragen ist.
  4. Verfahren zur Herstellung einer Elektrode gemäß einem der Ansprüche 1 bis 3 durch Aufbringen einer Zwischenschicht auf einen Träger und anschließendes Aufbringen einer elektrochemisch aktiven Beschichtung auf die Zwischenschicht, dadurch gekennzeichnet, dass beim Aufbringen der Zwischenschicht durch Flamm- oder Plasmaspritzen, Titancarbid- und/oder Titanborid-Pulver unterschiedlicher Korngrößen verwendet werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass die eingesetzten Pulver Korngrößen von 10 bis 200 µm aufweisen.
  6. Verwendung einer Elektrode gemäß einem der Ansprüche 1 bis 3 als gasentwickelnde Elektrode.
  7. Verwendung einer Elektrode gemäß einem der Ansprüche 1 bis 3 in einer elektrochemischen Zelle zur Herstellung von Chlor aus wässrigen Salzsäurelösungen oder zur Herstellung von Chromsäure aus wässrigen Alkalidichromatlösungen.
  8. Verwendung einer Elektrode gemäß eines der Ansprüche 1 bis 3 in einer elektrochemischen Zelle zur Herstellung von Chlor aus wässrigen Salzsäurelösungen als elektrischer Stromverteiler einer Gasdiffusionselektrode zur Reduktion von Sauerstoff.
EP02805772A 2002-01-03 2002-12-23 Elektroden für die elektrolyse in sauren medien Expired - Lifetime EP1463847B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10200072A DE10200072A1 (de) 2002-01-03 2002-01-03 Elektroden für die Elektrolyse in sauren Medien
DE10200072 2002-01-03
PCT/EP2002/014713 WO2003056065A2 (de) 2002-01-03 2002-12-23 Elektroden für die elektrolyse in sauren medien

Publications (2)

Publication Number Publication Date
EP1463847A2 EP1463847A2 (de) 2004-10-06
EP1463847B1 true EP1463847B1 (de) 2005-12-28

Family

ID=7711470

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02805772A Expired - Lifetime EP1463847B1 (de) 2002-01-03 2002-12-23 Elektroden für die elektrolyse in sauren medien

Country Status (10)

Country Link
US (1) US7211177B2 (de)
EP (1) EP1463847B1 (de)
JP (1) JP4354821B2 (de)
KR (1) KR101081243B1 (de)
CN (1) CN100415937C (de)
AT (1) ATE314506T1 (de)
AU (1) AU2002367189A1 (de)
DE (2) DE10200072A1 (de)
ES (1) ES2255639T3 (de)
WO (1) WO2003056065A2 (de)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4670530B2 (ja) * 2005-08-01 2011-04-13 アイテック株式会社 電解用の貴金属電極とその製造方法
DE102006023261A1 (de) 2006-05-18 2007-11-22 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor aus Chlorwasserstoff und Sauerstoff
ITMI20061974A1 (it) * 2006-10-16 2008-04-17 Industrie De Nora Spa Anodo per elettrolisi
JP2008156684A (ja) * 2006-12-22 2008-07-10 Tanaka Kikinzoku Kogyo Kk 塩酸電解用の陽極電極
CN101280453B (zh) * 2008-01-31 2010-06-09 顿力集团有限公司 一种用三价铬进行镀铬的涂层阳极的制备方法
SG174715A1 (en) 2010-03-30 2011-10-28 Bayer Materialscience Ag Process for preparing diaryl carbonates and polycarbonates
ES2643234T3 (es) 2010-03-30 2017-11-21 Covestro Deutschland Ag Procedimiento para la preparación de carbonatos de diarilo y policarbonatos
CN101967654B (zh) * 2010-10-11 2012-06-27 福州大学 采用钛基材渗碳改性的含钌氧化物电极材料及其制备方法
DE102010043085A1 (de) 2010-10-28 2012-05-03 Bayer Materialscience Aktiengesellschaft Elektrode für die elektrolytische Chlorherstellung
ITMI20120158A1 (it) * 2012-02-07 2013-08-08 Industrie De Nora Spa Elettrodo per l¿abbattimento elettrochimico della domanda chimica di ossigeno in reflui industriali
US9815714B2 (en) 2012-12-11 2017-11-14 Slate Group, Llc Process for generating oxygenated water
CN104021947B (zh) * 2014-06-20 2017-04-12 贵州中航聚电科技有限公司 一种混合型超级电容器氧化钌电极的制备方法
CN106381507B (zh) * 2016-09-09 2018-10-09 武汉大学 一种用于熔融三元碳酸盐电解体系的惰性阳极
USD826300S1 (en) * 2016-09-30 2018-08-21 Oerlikon Metco Ag, Wohlen Rotably mounted thermal plasma burner for thermalspraying
CN109589974B (zh) * 2018-11-05 2021-08-06 中国科学院广州能源研究所 一种用于水电解器的低贵金属载量的析氧催化剂
DE102018132399A1 (de) * 2018-12-17 2020-06-18 Forschungszentrum Jülich GmbH Gasdiffusionskörper
CN114395779A (zh) * 2022-01-06 2022-04-26 清华大学 一种pem水电解用催化剂、制备方法及其用途

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2300422C3 (de) * 1973-01-05 1981-10-15 Hoechst Ag, 6000 Frankfurt Verfahren zur Herstellung einer Elektrode
SE392622B (sv) * 1973-09-05 1977-04-04 Basf Ag Forfarande for framstellning av en blydioxid-titanelektrod genom anodisk avskiljning av blydioxid pa en titanyta
CH665429A5 (en) * 1985-04-04 1988-05-13 Bbc Brown Boveri & Cie Electrochemical cell anode - with titanium carbide layer between titanium support and lead di:oxide layer
IT1282367B1 (it) * 1996-01-19 1998-03-20 De Nora Spa Migliorato metodo per l'elettrolisi di soluzioni acquose di acido cloridrico
KR100504412B1 (ko) * 1996-04-02 2005-11-08 페르메렉덴꾜꾸가부시끼가이샤 전해용전극및당해전극을사용하는전해조

Also Published As

Publication number Publication date
WO2003056065A2 (de) 2003-07-10
DE50205482D1 (de) 2006-02-02
ATE314506T1 (de) 2006-01-15
US20030136669A1 (en) 2003-07-24
JP2005513276A (ja) 2005-05-12
JP4354821B2 (ja) 2009-10-28
KR20050005405A (ko) 2005-01-13
AU2002367189A8 (en) 2003-07-15
WO2003056065A3 (de) 2004-03-11
EP1463847A2 (de) 2004-10-06
CN100415937C (zh) 2008-09-03
US7211177B2 (en) 2007-05-01
ES2255639T3 (es) 2006-07-01
CN1612949A (zh) 2005-05-04
DE10200072A1 (de) 2003-07-31
AU2002367189A1 (en) 2003-07-15
KR101081243B1 (ko) 2011-11-08

Similar Documents

Publication Publication Date Title
EP1463847B1 (de) Elektroden für die elektrolyse in sauren medien
DE10007448B4 (de) Aktivierte Kathode und Verfahren zu ihrer Herstellung
EP2765223B1 (de) Elektrokatalysator, Elektrodenbeschichtung und Elektrode zur Herstellung von Chlor
DE2113795C3 (de) Elektrode für elektrolytische Verfahren als Sauerstoffanode
EP2260124B1 (de) Elektrolysezelle zur chlorwasserstoffelektrolyse
DE3330388C2 (de)
EP2287363A2 (de) Elektrode und Elektrodenbeschichtung
EP2765222A1 (de) Katalysatorbeschichtung und Verfahren zu ihrer Herstellung
DE3001946A1 (de) Nickel-molybdaenkathode
DE112015004783B4 (de) Elektrode mit zweilagiger Beschichtung, Verfahren zu deren Herstellung und Verwendung derselben
DE10335184A1 (de) Elektrochemische Zelle
EP0384194B1 (de) Formstabile Anoden und deren Verwendung bei der Herstellung von Alkalidichromaten und Chromsäure
DE3003819A1 (de) Elektroden
DE4438275A1 (de) Elektrolyse einer Salzlösung und dafür geeignete Elektrolysezelle
DE102010039846A1 (de) Sauerstoffverzehrelektrode und Verfahren zu ihrer Herstellung
DE69922924T2 (de) Kohlenstoff-freie anoden auf basis von metallen für aluminium-elektrogewinnungszellen
DE19527642A1 (de) Verfahren zur elektrolytischen Reduktion einer Disulfid-Verbindung
DE3029364A1 (de) Verfahren zur herstellung von kathoden mit niedriger wasserstoffueberspannung und ihre verwendung
DE2844558A1 (de) Elektrode fuer die verwendung in einem elektrolytischen verfahren
WO2023025426A1 (de) Elektrolysezelle zur polymerelektrolytmembran-elektrolyse und beschichtung
EP2439314A2 (de) Verfahren zur Herstellung von transport- und lagerstabilen Sauerstoffverzehrelektroden
CH633321A5 (de) Verfahren zur herstellung von elektroden.
EP3597791B1 (de) Verfahren zur leistungsverbesserung von nickelelektroden
EP2580366B1 (de) Verfahren zur ein- oder mehrseitigen substratbeschichtung
DD207814A3 (de) Verfahren zur herstellung dimensionsstabiler anoden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK RO

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DE NORA ELETTRODI S.P.A.

Owner name: BAYER MATERIALSCIENCE AG

17P Request for examination filed

Effective date: 20040913

17Q First examination report despatched

Effective date: 20041013

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GESTERMANN, FRITZ

Inventor name: SPEER, GERD

Inventor name: FABIAN, PETER

Inventor name: SCANNEL, ROBERT

Inventor name: PINTER, HANS-DIETER

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SI SK TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051228

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50205482

Country of ref document: DE

Date of ref document: 20060202

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060328

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060328

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060328

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060328

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060529

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2255639

Country of ref document: ES

Kind code of ref document: T3

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20051228

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20060929

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061231

EN Fr: translation not filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

BERE Be: lapsed

Owner name: DE NORA ELETTRODI S.P.A.

Effective date: 20061231

Owner name: BAYER MATERIALSCIENCE A.G.

Effective date: 20061231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20061223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20051228

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20091201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101224

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20111228

Year of fee payment: 10

Ref country code: NL

Payment date: 20111221

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20111221

Year of fee payment: 10

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130701

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50205482

Country of ref document: DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121223

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121224