EP0384194B1 - Formstabile Anoden und deren Verwendung bei der Herstellung von Alkalidichromaten und Chromsäure - Google Patents

Formstabile Anoden und deren Verwendung bei der Herstellung von Alkalidichromaten und Chromsäure Download PDF

Info

Publication number
EP0384194B1
EP0384194B1 EP90102143A EP90102143A EP0384194B1 EP 0384194 B1 EP0384194 B1 EP 0384194B1 EP 90102143 A EP90102143 A EP 90102143A EP 90102143 A EP90102143 A EP 90102143A EP 0384194 B1 EP0384194 B1 EP 0384194B1
Authority
EP
European Patent Office
Prior art keywords
platinum
anodes
dimensionally stable
anode
iridium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP90102143A
Other languages
English (en)
French (fr)
Other versions
EP0384194A2 (de
EP0384194A3 (de
Inventor
Helmut Dr. Klotz
Rainer Dr. Weber
Norbert Dr. Lönhoff
Hans-Dieter Dr. Block
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer AG
Original Assignee
Bayer AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6374469&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0384194(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayer AG filed Critical Bayer AG
Publication of EP0384194A2 publication Critical patent/EP0384194A2/de
Publication of EP0384194A3 publication Critical patent/EP0384194A3/de
Application granted granted Critical
Publication of EP0384194B1 publication Critical patent/EP0384194B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/14Alkali metal compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/22Inorganic acids
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds

Definitions

  • the invention further relates to a process for the preparation of alkali dichromates and chromic acid by electrolysis of alkali monochromate and / or alkali dichromate solutions using the electrodes according to the invention.
  • anodes that consist of an electrically conductive valve metal such as titanium, tantalum and niobium and are coated with an electrocatalytically active substance. These anodes are commonly called dimensionally stable (“dimensionally stable”) anodes or referred to as DSA®. Metals from the platinum group and their oxides, as well as lead dioxide and manganese dioxide, are primarily used as electrocatalytically active substances. Such anodes are described for example in BE-A 710 551, DE-B 2 300 422 and US-A 3 711 385.
  • This intermediate layer can consist of one or more metal oxides, such as oxides of platinum metals, oxides of titanium, vanadium, niobium, Tantalum and other base metals exist.
  • metal oxides such as oxides of platinum metals, oxides of titanium, vanadium, niobium, Tantalum and other base metals exist.
  • Such anodes are described for example in DE-A 3 219 003, DE-C 3 330 388, DE-A 3 715 444 and DE-A 3 717 972.
  • US-A 3 775 284 discloses anodes which have intermediate layers of precious metals such as platinum and iridium, which are applied by wet electroplating processes.
  • the described intermediate layers can slow down the passivation and thus extend the life of the anodes, but these anodes still do not have sufficient durability, especially at temperatures above 60 ° C.
  • Typical processes in which oxygen is formed anodically are the electrolytic production of alkali dichromates, chromic acid, perchlorates, chlorates, persulphates and hydrogen peroxide, the electrolytic deposition of metals such as chromium, copper, zinc or noble metals and various electroplating processes or electroplating.
  • the object of the invention was to provide dimensionally stable anodes which do not have the disadvantages described.
  • the layer thickness of the intermediate layer according to the invention is preferably 1.5 to 30 ⁇ m, layer thicknesses of 1.5 to 5 ⁇ m being particularly preferred. However, layer thicknesses of less than 1.5 ⁇ m and greater than 30 ⁇ m are also possible.
  • valve metal of the dimensionally stable anode consists of titanium, tantalum, niobium, zirconium or their alloys, preference being given to titanium for reasons of cost.
  • Niobium and tantalum are used in particular when voltages above 10 V are required.
  • the electrode coating can consist of all electrocatalytically active substances that are customary in practice. Electrode coatings which consist of one or more oxides of titanium, tantalum, niobium, zirconium and / or one or more oxides of platinum metals are preferred. Such electrode coatings can be produced by means of pyrolytic processes, for example by thermal decomposition of compounds of the metals mentioned. Electrode coatings consisting of a platinum oxide and / or iridium oxide are particularly preferred.
  • the dimensionally stable anodes according to the invention are notable for excellent stability when used in electrolytic processes in which oxygen is anodically formed as the main or by-product. Even at temperatures above 6 ° C, the service life of the anodes required for the economical operation of electrolytic processes can be achieved with constant oxygen overvoltages over a long period of time. Of course, the dimensionally stable anodes according to the invention can also advantageously be used at temperatures below 60 ° C.
  • Another object of the invention is a process for the production of alkali dichromates and / or chromic acid by electrolysis of alkali monochromate and / or alkali dichromate solutions, which is characterized in that a dimensionally stable anode according to the invention is used.
  • alkali dichromates the electrolytic production of dichromates and chromic acid takes place in electrolytic cells, the electrode spaces of which are separated by cation exchange membranes.
  • alkali monochromate solutions or suspensions are introduced into the anode compartment of the cell and converted into an alkali dichromate solution by selectively transferring alkali ions through the membrane into the cathode compartment.
  • chromic acid alkali dichromate or alkali monochromate solutions are introduced into the anode compartment and into those containing chromic acid Solutions transferred.
  • sodium monochromate and / or sodium dichromate are used for these processes.
  • an alkaline solution containing alkali ions is obtained in the cathode compartment, which can consist, for example, of an aqueous sodium hydroxide solution or, as described in CA-A 739 447, of an aqueous solution containing sodium carbonate.
  • anodes made of lead and lead alloys and dimensionally stable anodes with electrocatalytically active layers made of noble metals or noble metal oxides are suitable as anode materials.
  • anodic current densities of 2 to 5 kA / m2 and electrolysis temperatures above 60 ° C these anodes have an insufficient service life for the reasons mentioned above.
  • the electrolytic cells used in the examples consisted of anode compartments made of pure titanium and cathode compartments made of stainless steel. Cation exchange membranes from DuPont with the designation Nafion® 324 were used as membranes. The cathodes were made of stainless steel and the anodes were made of titanium with the electrocatalytically active coatings described in the individual examples. The distance between the electrodes and the membrane was 1.5 mm in all cases.
  • Sodium dichromate solutions containing 800 g / l Na2Cr2O7 ⁇ 2 H2O were introduced into the anode compartments. The rate of introduction was chosen so that a molar ratio of sodium ions to chromium (VI) of 0.6 was established in the anolytes leaving the cells.
  • the electrolysis temperature was 80 ° C in all cases and the current density was 3 kA / m2 projected front surface of the anodes and cathodes.
  • a titanium anode with an iridium layer was used, which was produced according to the so-called baking process as follows: a titanium electrode with a front projected surface measuring 11.4 cm x 6.7 cm, after removal of the oxide layer and etching with oxalic acid, a solution with the following composition was wetted with a hair brush: 0.8 g IrCl4 ⁇ xH2O (51% Ir) 6.2 ml of 1-butanol 0.4 ml 37% hydrochloric acid 3 ml titanium tetrabutyl ester The wetted anode was dried at 250 ° C. for 15 minutes and then annealed in an oven at 450 ° C. for 20 to 30 minutes. This measure was repeated six times, the heat treatment being carried out only after every second step after wetting and drying.
  • This anode was used to convert a sodium dichromate solution into a solution containing chromic acid. During the test period of 250 days, a constant cell voltage of 3.8 V was established, which shows that no passivation of the anode occurred and that the electrocatalytically active layer was thus fully functional during the entire test period.
  • a dimensionally stable titanium anode was used, the electrocatalytically active layer of which consisted exclusively of a platinum layer electrodeposited from the melt.
  • the platinum layer thickness was 2.5 ⁇ m.
  • Example 3 shows, however, that the anode of Example 3 has a significantly higher oxygen voltage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Electrolytic Production Of Metals (AREA)
  • Catalysts (AREA)

Description

  • Die Erfindung betrifft formstabile Anoden, bestehend aus
    • a) einem elektrisch leitfähigen Ventilmetall
    • b) einer leitfähigen Zwischenschicht und
    • c) einem Elektrodenüberzug aus einer elektrokatalytisch aktiven Substanz.
  • Ferner betrifft die Erfindung ein Verfahren zur Herstellung von Alkalidichromaten und Chromsäure durch Elektrolyse von Alkalimonochromat und/oder Alkalidichromatlösungen unter Verwendung der erfindungsgemäßen Elektroden.
  • Bei vielen elektrochemischen Prozessen kommen Anoden zum Einsatz, die aus einem elektrisch leitfähigen Ventilmetall wie beispielsweise Titan, Tantal und Niob bestehen und mit einer elektrokatalytisch aktiven Substanz beschichtet sind. Diese Anoden werden allgemein als formstabile ("dimensionsstabil") Anoden bzw. als DSA® bezeichnet. Als elektrokatalytisch aytive Substanzen werden vornehmlich Metalle der Platingruppe und deren Oxide sowie Bleidioxid und Mangandioxid eingesetzt. Solche Anoden sind beispielsweise in der BE-A 710 551, DE-B 2 300 422 und der US-A 3 711 385 beschrieben.
  • Zur Einsparung des teuren Ventilmetalls wurde gemäß EP-A 5674 vorgeschlagen, Kupfer- oder Eisenanoden mit einer schmelzgalvanisch aufgebrachten Ventilmetallschicht zu versehen und anschließend zu aktivieren, wobei die Aktivierungsschicht ebenfalls schmelzgalvanisch oder naßgalvanisch aufgebracht wird.
  • Bei Einsatz dieser Anoden in der Chloralkalielektrolyse werden lange Laufzeiten bei einer niedrigen, über lange Zeit konstant bleibenden Chlorüberspannung erreicht.
  • In elektrolytischen Verfahren, bei denen an der Anode Sauerstoff als Haupt- oder Nebenprodukt gebildet wird, steigt die Spannung infolge einer Passivierung der Anode mit der Zeit an und die Laufzeiten sind wesentlich kürzer. Ursache dieser Passivierung, die letztendlich zum Ausfall der Anode führt, ist eine Korrosion des Ventilmetalls durch Permeation von Sauerstoff durch die elektrokatalytisch aktive Schicht, wobei die Passivierung insbesondere bei Temperaturen oberhalb 60°C sehr rasch erfolgt.
  • Zur Verbesserung der Haltbarkeit von sauerstoffentwickelnden formstabilen Anoden wurde vorgeschlagen, zwischen Ventilmetall und elektrokatalytisch aktiver Schicht eine leitfähige Zwischenschicht aufzubringen, die eine Permeation von Sauerstoff zum Ventilmetall unterdrücken soll. Diese Zwischenschicht kann aus einem oder mehreren Metalloxiden, wie beispielsweise Oxiden der Platinmetalle, Oxiden von Titan, Vanadium, Niob, Tantal und anderen Nichtedelmetallen bestehen. Solche Anoden sind beispielsweise in der DE-A 3 219 003, DE-C 3 330 388, DE-A 3 715 444 und DE-A 3 717 972 beschrieben. US-A 3 775 284 offenbart Anoden, die Zwischenschichten aus Edelmetallen wie Platin und Iridium aufweisen, die durch naßgalvanische Verfahren aufgebracht werden.
  • Die beschriebenen Zwischenschichten können zwar die Passivierung verlangsamen und damit die Lebensdauer der Anoden verlängern, jedoch weisen diese Anoden insbesondere bei Temperaturen über 60°C immer noch nicht ausreichende Haltbarkeiten auf.
  • Typische Verfahren, bei denen anodisch Sauerstoff gebildet wird, sind die elektrolytische Herstellung von Alkalidichromaten, Chromsäure, Perchloraten, Chloraten, Persulfaten und Wasserstoffperoxid, die elektrolytische Abscheidung von Metallen wie Chrom, Kupfer, Zink oder Edelmetalle und verschiedene Galvanisierverfahren bzw. Elektroplattieren.
  • Aufgrund der für ein wirtschaftliches Betreiben der Elektrolyten in vielen Fällen unzureichende Haltbarkeit der formstabilen Anoden, kommen auch heute noch massive Edelmetall-Anoden zum Einsatz, deren Verwendung sehr kostenintensiv ist bzw. es kommen Schwermetall-Anoden wie Bleianoden zum Einsatz, die zu Verunreinigungen der Elektrolyten und den damit verbundenen Folgeproblemen führen.
  • Die Aufgabe der Erfindung bestand darin, formstabile Anoden zur Verfügung zu stellen, die die beschriebenen Nachteile nicht aufweisen.
  • Es wurde nun gefunden, daß Anoden mit einer Zwischenschicht aus Edelmetallen, die durch elektrolytische Abscheidung aus edelmetallsalzhaltigen Schmelzen erzeugt wurden, hervorragend zur anodischen Sauerstoffentwicklung geeignet sind und lange Standzeiten aufweisen.
  • Gegenstand der Erfindung ist die Verwendung formstabiler Anoden, bestehend aus
    • a) einem elektrisch leitfähigen Ventilmetall
    • b) einer durch galvanische Abscheidung aus edelmetallsalzhaltigen Schmelzen auf das Ventilmetall aufgebrachten Zwischenschicht aus Platin und/oder Iridium, und/oder einer Platin-Iridium-Legierung, und
    • c) einer pyrolytisch erzeugten Überzugsschicht aus einer elektrokatalytisch aktiven Substanz
    in elektrolytischen Verfahren, bei denen an der Anode Sauerstoff als Haupt- oder Nebenprodukt gebildet wird.
  • Die Erzeugung solcher Edelmetallschichten auf Ventilmetallen durch galvanische Abscheidung aus edelmetallsalzhaltigen Schmelzen ist beispielsweise in "G. Dick, Galvanotechnik 79 (1988), Nr. 12, S. 4066-4071" beschrieben.
  • Die Schichtdicke der erfindungsgemäßen Zwischenschicht beträgt vorzugsweise 1,5 bis 30 µm, wobei Schichtdicken von 1,5 bis 5 µm besonders bevorzugt sind. Es sind aber auch Schichtdicken von kleiner 1,5 µm und größer 30 µm möglich.
  • Es ist vorteilhaft, wenn das Ventilmetall der formstabilen Anode aus Titan, Tantal, Niob, Zirkonium oder deren Legierungen besteht, wobei aus Kostengründen dem Titan der Vorzug gegeben wird. Niob und Tantal kommen insbesondere dann zum Einsatz, wenn Spannungen über 10 V erforderlich sind.
  • Der Elektrodenüberzug kann prinzipiell aus allen in der Praxis üblichen elektrokatalytisch aktiven Substanzen bestehen. Bevorzugt sind Elektrodenüberzüge, die aus einem oder mehreren Oxiden von Titan, Tantal, Niob, Zirkonium und/oder einer oder mehreren Oxiden der Platinmetalle bestehen. Solche Elektrodenüberzüge können mittels pyrolytischen Verfahren, beispielsweise durch thermische Zersetzung von Verbindungen der genannten Metalle erzeugt werden. Besonders bevorzugt sind Elektrodenüberzüge, die aus einem Platinoxid und/oder Iridiumoxid bestehen.
  • Die erfindungsgemäßen formstabilen Anoden zeichnen sich durch eine hervorragende Beständigkeit beim Einsatz in elektrolytischen Verfahren aus, bei denen anodisch Sauerstoff als Haupt- oder Nebenprodukt gebildet wird. Sogar bei Temperaturen über 6°C werden die für ein wirtschaftliches Betreiben von elektrolytischen Verfahren erforderlichen Standzeiten der Anoden bei langer Zeit konstant bleibenden Sauerstoffüberspannungen erreicht. Selbstverständlich können die erfindungsgemäßen formstabilen Anoden mit Vorteil ebenso bei Temperaturen unterhalb 60°C eingesetzt werden.
  • Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung von Alkalidichromaten und/oder Chromsäure durch Elektrolyse von Alkalimonochromat- und/oder Alkalidichromatlösungen, welches dadurch gekennzeichnet ist, daß eine erfindungsgemäße formstabile Anoden eingesetzt wird.
  • Gemäß US-A 3 305 463 und CA-A 739 447 erfolgt die elektrolytische Herstellung von Dichromaten und Chromsäure in Elektrolysezellen, deren Elektrodenräume durch Kationenaustauschermembranen getrennt sind. Bei der Erzeugung von Alkalidichromaten werden Alkalimonochromatlösungen oder -suspensionen in den Anodenraum der Zelle eingeleitet und in eine Alkalidichromatlösung umgewandelt, indem Alkaliionen selektiv durch die Membran in den Kathodenraum überführt werden. Zur Herstellung von Chromsäure werden Alkalidichromat- oder Alkalimonochromatlösungen in den Anodenraum eingeleitet und in Chromsäure-haltige Lösungen überführt. In der Regel kommen für diese Prozesse Natriummonochromat und/oder Natriumdichromat zum Einsatz. Im Kathodenraum wird bei beiden Prozessen eine alkalische Alkalionen-haltige Lösung erhalten, die beispielsweise aus einer wäßrigen Natriumhydroxidlösunge oder, wie in der CA-A 739 447 beschrieben, aus einer wäßrigen Natriumcarbonat-haltigen Lösung bestehen kann.
  • Als Anodenmaterialien sind nach der DE-A 3 020 260 Anoden aus Blei und Bleilegierungen und formstabile Anoden mit elektrokatalytisch aktiven Schichten aus Edelmetallen oder Edelmetalloxiden geeignet. Bei anodischen Stromdichten von 2 bis 5 kA/m² und Elektrolysetemperaturen oberhalb 60°C weisen diese Anoden aus den oben genannten Gründen jedoch nur unzureichende Standzeiten auf.
  • Bei Einsatz der erfindungsgemäßen Anoden werden dagegen lange Standzeiten bei gleichbleibender Zellspannung erreicht.
  • Vorzugsweise werden solche formstabile Anoden eingesetzt, die aus
    • a) Titan,
    • b) einer galvanisch aus der Schmelze aufgebrachten Zwischenschicht aus Platin und/oder Iridium und/oder einer Platin-Iridium-Legierung und
    • c) einem Elektrodenüberzug aus einem Platin- und/oder Iridiumoxid
    bestehen.
  • Die Erfindung wird anhand der folgenden Beispiele näher erläutert:
  • Beispiele
  • Die in den Beispielen verwendeten Elektrolysezellen bestanden aus Anodenräumen aus Rein-Titan und Kathodenräumen aus Edelstahl. Als Membranen wurden Kationenaustauschermembranen der Firma DuPont mit der Bezeichnung Nafion® 324 verwendet. Die Kathoden bestanden aus Edelstahl und die Anoden aus Titan mit den in den einzelnen Beispielen beschriebenen elktrokatalytisch aktiven Beschichtungen. Der Abstand der Elektroden zur Membran betrug in allen Fällen 1,5 mm. In die Anodenräume wurden Natriumdichromatlösungen mit 800 g/l Na₂Cr₂O₇ · 2 H₂O eingeleitet. Die Geschwindigkeit des Einleitens wurde so gewählt, daß sich in den die Zellen verlassenden Anolyten ein molares Verhältnis von Natriumionen zu Chrom(VI) von 0,6 einstellte. Den Kathodenräumen wurde Wasser mit einer solchen Geschwindigkeit zugeführt, so daß 20 %ige Natronlauge die Zellen verließ. Die Elektrolysetemperatur betrug in allen Fällen 80°C und die Stromdichte betrug 3 kA/m² projizierte vordere Fläche der Anoden und Kathoden.
  • Beispiel 1
  • In diesem Beispiel wurde eine Titananode mit einer Iridium-Schicht eingesetzt, die nach dem sogenannten Einbrennverfahren wie folgt hergestellt wurde: Eine Titanelektrode mit einer vorderen projizierten Fläche von 11,4 cm x 6,7 cm wurde nach Entfernung der Oxidschicht und Ätzen mit Oxalsäure mit einer Lösung folgender Zusammensetzung mit einem Haarpinsel benetzt:
    0,8 g IrCl₄ · xH₂O (51 % Ir)
    6,2 ml 1-Butanol
    0,4 ml 37 %ige Salzsäure
    3 ml Titansäuretetrabutylester
    Die benetzte Anode wurde 15 Minuten bei 250°C getrocknet und anschließend in einem Ofen bei 450°C 20 bis 30 Minuten getempert. Diese Maßnahme wurde sechsmal wiederholt, wobei die Temperung nur nach jedem zweiten Schritt nach erfolgter Benetzung und Trocknung durchgeführt wurde.
  • Auf der Titanelektrode wurde dabei ein Elektrodenüberzug erzeugt, der ca. 200 mg Iridium enthielt. Mit Hilfe dieser Anode wurde eine Natriumdichromatlösung in eine chromsäurehaltige Lösung umgewandelt. Während des Versuchs stieg die Zellspannung von anfänglich 4,4 V innerhalb von 32 Tagen allmählich auf 8,1 V an. Ursache dieses Spannungsanstiges war eine nahezu vollständige Zerstörung der elektrokatalytisch aktiven Platinschicht der Titananode.
  • Beispiel 2
  • In diesem Beispiel wurde ein erfindungsgemäße formstabile Anode eingesetzt, die wie folgt hergestellt wurde.
  • Eine durch galvanische Abscheidung aus einer platinhaltigen Schmelze mit Platin beschichteten Titanelektrode mit einer vorderen projizierten Fläche von 11,4 cm x 6,7 cm und einer Platinschichtdicke von 2,5 µm wurde mit einer Lösung folgender Zusammensetzung mit einem Haarpinsel benetzt:
    0,8 g IrCl₄ · xH₂O (51 % Ir)
    6,2 ml 1-Butanol
    0,4 ml 37 %ige Salzsäure
    Die benetzte Anode wurde 15 Minuten bei 250°C getrocknet und anschließend in einem Ofen bei 450°C 20 bis 30 Minuten getempert. Diese Maßnahme wurde sechsmal wiederholt, wobei die Temperung nur nach jedem zweiten Schritt nach erfolgter Benetzung und Trocknung durchgeführt wurde. Auf der Platinzwischenschicht der Titanelektrode wurde dabei ein Elektrodenüberzug erzeugt, der ca. 200 mg Iridium enthielt.
  • Mit dieser Anode wurde eine Natriumdichromatlösung in eine chromsäurehaltige Lösung umgewandelt. Während der Versuchsdauer von 250 Tagen stellte sich eine konstant bleibende Zellspannung von 3,8 V ein, was zeigt, daß keine Passivierung der Anode eingetreten ist und somit die elektrokatalytisch aktive Schicht während der gesamten Versuchszeit voll funktionsfähig war.
  • Beispiel 3
  • In diesem Beispiel wurde eine formstabile Titananode eingesetzt, deren elektrokatalytisch aktive Schicht ausschließlich aus einer galvanisch aus der Schmelze abgeschiedene Platinschicht bestand. Die Platinschichtdicke betrug 2,5 µm.
  • Mit dieser Anode wurde wie im Beispiel 1 und 2 eine Natriumdichromatlösung unter identischen Bedingungen in eine chromsäurehaltige Lösung umgewandelt.
  • Während der Versuchsdauer von 361 Tagen stellte sich eine konstant bleibende Zellspannung von 4,8 V ein. Es ist somit keine Passivierung der Anode eingetreten. Der Vergleich zu Beispiel 2 zeigt jedoch, daß die Anode des Beispiels 3 eine deutlich höhere Sauerstoffspannung hat.

Claims (5)

  1. Verwendung von formstabilen Anoden bestehend aus
    a) einem elektrisch leitfähigen Ventilmetall,
    b) einer durch galvanische Abscheidung aus edelmetallsalzhaltigen Schmelzen auf das Ventilmetall aufgebrachten Zwischenschicht aus Platin und/oder Iridium und/oder einer Platin-Iridium-Legierung, und
    c) einer pyrolytisch erzeugten Überzugsschicht aus einer elektrokatalytisch aktiven Substanz
    in elektrolytischen Verfahren, bei denen an der Anode Sauerstoff als Haupt- oder Nebenprodukt gebildet wird.
  2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß das elektrolytische Verfahren die Elektrolyse von Alkalimonochromaten oder Alkalidichromaten zur Herstellung von Chromsäure ist.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß die Überzugsschicht c) aus einem oder mehreren Oxiden der Platinmetalle besteht.
  4. Verwendung nach Anspruch 3, dadurch gekennzeichnet, daß der Überzug aus Platinoxid und/oder Iridiumoxid besteht.
  5. Verwendung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Zwischenschicht b) eine Dicke von 1,5 bis 30 µm aufweist.
EP90102143A 1989-02-18 1990-02-03 Formstabile Anoden und deren Verwendung bei der Herstellung von Alkalidichromaten und Chromsäure Revoked EP0384194B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3905082A DE3905082A1 (de) 1989-02-18 1989-02-18 Formstabile anoden und deren verwendung bei der herstellung von alkalidichromaten und chromsaeure
DE3905082 1989-02-18

Publications (3)

Publication Number Publication Date
EP0384194A2 EP0384194A2 (de) 1990-08-29
EP0384194A3 EP0384194A3 (de) 1991-06-05
EP0384194B1 true EP0384194B1 (de) 1994-03-09

Family

ID=6374469

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90102143A Revoked EP0384194B1 (de) 1989-02-18 1990-02-03 Formstabile Anoden und deren Verwendung bei der Herstellung von Alkalidichromaten und Chromsäure

Country Status (14)

Country Link
US (1) US5128000A (de)
EP (1) EP0384194B1 (de)
JP (1) JP2641584B2 (de)
KR (1) KR960016418B1 (de)
AR (1) AR246311A1 (de)
BR (1) BR9000721A (de)
CA (1) CA2010221A1 (de)
DD (1) DD298437A5 (de)
DE (2) DE3905082A1 (de)
ES (1) ES2050287T3 (de)
MX (1) MX173097B (de)
RU (1) RU1838450C (de)
TR (1) TR26579A (de)
ZA (1) ZA901196B (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556722B2 (en) 1996-11-22 2009-07-07 Metzger Hubert F Electroplating apparatus
US8298395B2 (en) 1999-06-30 2012-10-30 Chema Technology, Inc. Electroplating apparatus

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997028293A1 (en) * 1996-02-01 1997-08-07 Motorola Inc. Composite multilayer electrodes for electrochemical cells
FR2748495B1 (fr) * 1996-05-13 1998-07-17 Electricite De France Anode a longevite amelioree et son procede de fabrication
US6217729B1 (en) 1999-04-08 2001-04-17 United States Filter Corporation Anode formulation and methods of manufacture
DE10029837B4 (de) * 2000-06-16 2005-02-17 Degussa Galvanotechnik Gmbh Verfahren zur Herstellung von einseitig platinierten Platten und Streckmetallgittern aus Refraktärmetallen
JP4615847B2 (ja) * 2003-11-25 2011-01-19 株式会社フルヤ金属 耐食材及びその製造方法
JP2008156684A (ja) * 2006-12-22 2008-07-10 Tanaka Kikinzoku Kogyo Kk 塩酸電解用の陽極電極
US7713401B2 (en) * 2007-08-08 2010-05-11 Battelle Energy Alliance, Llc Methods for performing electrochemical nitration reactions
WO2010001971A1 (ja) * 2008-07-03 2010-01-07 旭化成ケミカルズ株式会社 水素発生用陰極およびその製造方法
US20110052896A1 (en) * 2009-08-27 2011-03-03 Shrisudersan Jayaraman Zinc Oxide and Cobalt Oxide Nanostructures and Methods of Making Thereof
US20110086238A1 (en) * 2009-10-09 2011-04-14 Shrisudersan Jayaraman Niobium Nanostructures And Methods Of Making Thereof
CN104593818B (zh) * 2014-12-24 2017-04-26 中南大学 一种钛基复合阳极及其制备方法和应用
CN113355705B (zh) * 2021-06-02 2022-05-03 建滔(连州)铜箔有限公司 一种电解铜箔用钛阳极板以及背面处理工艺

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3454478A (en) * 1965-06-28 1969-07-08 Ppg Industries Inc Electrolytically reducing halide impurity content of alkali metal dichromate solutions
US3663414A (en) * 1969-06-27 1972-05-16 Ppg Industries Inc Electrode coating
DE2113676C2 (de) * 1971-03-20 1985-09-12 Conradty GmbH & Co Metallelektroden KG, 8505 Röthenbach Elektrode für elektrochemische Prozesse
JPS5119429A (ja) * 1974-08-09 1976-02-16 Oki Electric Ind Co Ltd Fusetsukyokushikibetsuhoshiki
JPS5325838A (en) * 1976-08-23 1978-03-10 Matsushita Electric Ind Co Ltd Storage battery electrode plate
FR2426095A1 (fr) * 1978-05-19 1979-12-14 Anger Roger Electrode anodique stable en dimensions et procede de fabrication
US4157943A (en) * 1978-07-14 1979-06-12 The International Nickel Company, Inc. Composite electrode for electrolytic processes
JPS565986A (en) * 1979-05-29 1981-01-22 Diamond Shamrock Corp Cromic acid production by using three chambered electrolysis tank
JPS5940914A (ja) * 1982-08-31 1984-03-06 Mazda Motor Corp 車両の姿勢制御装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7556722B2 (en) 1996-11-22 2009-07-07 Metzger Hubert F Electroplating apparatus
US7914658B2 (en) 1996-11-22 2011-03-29 Chema Technology, Inc. Electroplating apparatus
US8298395B2 (en) 1999-06-30 2012-10-30 Chema Technology, Inc. Electroplating apparatus

Also Published As

Publication number Publication date
MX173097B (es) 1994-02-01
ZA901196B (en) 1990-11-28
DD298437A5 (de) 1992-02-20
KR960016418B1 (ko) 1996-12-11
BR9000721A (pt) 1991-01-22
CA2010221A1 (en) 1990-08-18
US5128000A (en) 1992-07-07
JP2641584B2 (ja) 1997-08-13
KR900013109A (ko) 1990-09-03
DE59004842D1 (de) 1994-04-14
AR246311A1 (es) 1994-07-29
TR26579A (tr) 1995-03-15
EP0384194A2 (de) 1990-08-29
RU1838450C (ru) 1993-08-30
DE3905082A1 (de) 1990-08-23
ES2050287T3 (es) 1994-05-16
JPH02247392A (ja) 1990-10-03
EP0384194A3 (de) 1991-06-05

Similar Documents

Publication Publication Date Title
DE1814576C2 (de) Elektrode zur Verwendung in elektrolytischen Prozessen und Verfahren zu deren Herstellung
DE2063238C3 (de) Verfahren zur Herstellung einer Elektrode zur Verwendung bei elektrolytischen Prozessen
DE1671422C2 (de) Elektrode zur Verwendung in elektrolytischen Prozessen und Verfahren zu deren Herstellung
EP0384194B1 (de) Formstabile Anoden und deren Verwendung bei der Herstellung von Alkalidichromaten und Chromsäure
DE60019256T2 (de) Kathode für die elektrolyse von wässrigen lösungen
DE3715444C2 (de)
DE2936033C2 (de)
DE2620589A1 (de) Aktivierte kathode zur verwendung bei der elektrolyse waessriger loesungen
DE3001946A1 (de) Nickel-molybdaenkathode
EP1463847B1 (de) Elektroden für die elektrolyse in sauren medien
EP0391192B1 (de) Verfahren zur Herstellung von Alkalidichromaten und Chromsäuren durch Elektrolyse
DD253648A1 (de) Verfahren zur herstellung einer kathode mit niedriger wasserstoffueberspannung
DE2909593C2 (de)
DE4020051A1 (de) Chromsaeure-herstellung unter verwendung von bipolaren membranen
DE2338549B2 (de)
DE3447733A1 (de) Verfahren zur elektrolytischen behandlung von metall durch energiezufuhr mittels fluessigkeit
DE3004080C2 (de) Verfahren zum Beschichten einer porösen Elektrode
EP0129088A1 (de) Kathode für wässrige Elektrolysen
DE2527386A1 (de) Kathodenoberflaechen mit niedrigen wasserstoffueberspannungen
DE3029364A1 (de) Verfahren zur herstellung von kathoden mit niedriger wasserstoffueberspannung und ihre verwendung
EP0356804B1 (de) Verfahren zur Herstellung von Alkalidichromaten und Chromsäure
DE2844558A1 (de) Elektrode fuer die verwendung in einem elektrolytischen verfahren
DE2434353B2 (de) Verfahren zur verminderung der titan- spaltkorrosion in einer bipolaren elektrolysiervorrichtung und vorrichtung dafuer
DE2638218B1 (de) Verfahren zur herstellung von elektroden
DE2233485B2 (de) Überzugselektrode

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900209

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19920908

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

REF Corresponds to:

Ref document number: 59004842

Country of ref document: DE

Date of ref document: 19940414

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2050287

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19940608

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: HERAEUS ELEKTROCHEMIE GMBH

Effective date: 19941208

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: HERAEUS ELEKTROCHEMIE GMBH

Effective date: 19941208

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAA Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOS REFN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970115

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970128

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970130

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 19970210

Year of fee payment: 8

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 19970604

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 970604

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO