EP1268045B1 - Nouvelles membranes constituees d'un melange de polymeres, destinees a etre utilisees dans des piles a combustible - Google Patents

Nouvelles membranes constituees d'un melange de polymeres, destinees a etre utilisees dans des piles a combustible Download PDF

Info

Publication number
EP1268045B1
EP1268045B1 EP01911711A EP01911711A EP1268045B1 EP 1268045 B1 EP1268045 B1 EP 1268045B1 EP 01911711 A EP01911711 A EP 01911711A EP 01911711 A EP01911711 A EP 01911711A EP 1268045 B1 EP1268045 B1 EP 1268045B1
Authority
EP
European Patent Office
Prior art keywords
polymer
polyether
membrane
membrane according
sulphonated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP01911711A
Other languages
German (de)
English (en)
Other versions
EP1268045A1 (fr
Inventor
Wei Cui
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF Fuel Cell GmbH
Original Assignee
Celanese Ventures GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Celanese Ventures GmbH filed Critical Celanese Ventures GmbH
Priority to DK01911711T priority Critical patent/DK1268045T3/da
Publication of EP1268045A1 publication Critical patent/EP1268045A1/fr
Application granted granted Critical
Publication of EP1268045B1 publication Critical patent/EP1268045B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/20Manufacture of shaped structures of ion-exchange resins
    • C08J5/22Films, membranes or diaphragms
    • C08J5/2206Films, membranes or diaphragms based on organic and/or inorganic macromolecular compounds
    • C08J5/2275Heterogeneous membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/52Polyethers
    • B01D71/522Aromatic polyethers
    • B01D71/5222Polyetherketone, polyetheretherketone, or polyaryletherketone
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1023Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon, e.g. polyarylenes, polystyrenes or polybutadiene-styrenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1027Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having carbon, oxygen and other atoms, e.g. sulfonated polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1032Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having sulfur, e.g. sulfonated-polyethersulfones [S-PES]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1039Polymeric electrolyte materials halogenated, e.g. sulfonated polyvinylidene fluorides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1044Mixtures of polymers, of which at least one is ionically conductive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • H01M8/1053Polymer electrolyte composites, mixtures or blends consisting of layers of polymers with at least one layer being ionically conductive
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2381/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing sulfur with or without nitrogen, oxygen, or carbon only; Polysulfones; Derivatives of such polymers
    • C08J2381/02Polythioethers; Polythioether-ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2427/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2427/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2427/12Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08J2427/16Homopolymers or copolymers of vinylidene fluoride
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to new blend polymer membranes based on sulfonated aromatic aryl polymers and their use as Polymer electrolyte membrane in fuel cells, especially in low-temperature fuel cells ,
  • Fuel cell technology has great application potential in areas Space travel, road vehicles, submarines and stationary energy supply.
  • the motor vehicles with fuel cell drives are considered A beacon of hope for improved environmental protection in the transport sector.
  • Besides some technical problems, however, is a particular problem of the "cost-benefit ratio" from.
  • the development of inexpensive elements with required performance for fuel cells of great interest is a particular problem of the "cost-benefit ratio" from.
  • a polymer electrolyte membrane fuel cell Cell units consisting of current arrester, gas distributor, electrodes and Polymer electrolyte membrane.
  • the electrodes usually contain platinum as Catalyst.
  • Such fuel cells work with gaseous hydrogen or with methanol (DMFC Direct Methanol Fuel Cell).
  • membranes do not only have to adequate chemical and mechanical stability as well as high Have proton conductivity, but also be inexpensive to manufacture. For this The reason are inexpensive raw materials with excellent properties Functionalization and the inexpensive processes for membrane production crucial roles.
  • perfluorinated cation exchange membranes used so far show here strong deficits.
  • this material is very expensive and has a high methanol permeability, which the application of these membranes in methanol fuel cells very limited.
  • PBI polybenzimidazole
  • PES polyether sulfone
  • PBI treated with phosphoric acid Wang, J.S .; Wang, J.-T .; Savinell, R.F. .; Litt, M .; Moaddel, H .; Rogers, C .: Acid Doped Polybenzimidazoles, A New Polymer electrolyte; The Electrochemical Society, Spring Meeting, San Francisco, May 22-27, Extended Abstracts, vol. 94-1, 982-983 (1994)].
  • phosphoric acid molecules are attached through hydrogen bonds Polymer attached and on the other hand by protonation of the imidazole groups tied up in the membrane.
  • the problem is that the Phosphoric acid gradually with the water, which during the operation of the Fuel cell is created, from which PBI-Materix is eliminated.
  • the PBI phosphoric acid membrane has a very low modulus of elasticity, which is why unsatisfactory membrane stability is to be expected in fuel cells.
  • blended polymer membrane development is that the membrane structure and properties can be optimized by varying the blend component and the mixing ratio.
  • DE-A-4422158 describes the blend polymer membranes made from sulfonated Polyether ketone (PEK) and unmodified polyether sulfone (PES).
  • PEK sulfonated Polyether ketone
  • PES unmodified polyether sulfone
  • DE-A-4422158 describes three or four component blends made from sulfonated PEK, PES, polyvinylpyrrolidone (PVP) and polyglycol dimethyl ether (PG) are described show better water absorption, but without a quantitative indication do.
  • Blended polymer membranes made from sulfonated aryl polymer PEEK or PSU with aminated polysulfone (PSU) are known from the prior art.
  • Cui, W describes in the development and characterization of cation exchange membranes made of aryl polymers (VDI-Verlag; ISBN 3-18-359603-2) that the aminated polysulfones are a weak polybase and consequently a polyacid-base mixture can be produced in the solution. Both the ionic interaction and the hydrogen bonds, ie the ring structures, which have a physical crosslinking, are located between the blend components.
  • This blend polymer membrane was tested in PEMFC and DMFC and resulted in a current density of 1.0-1.2 A / cm 2 at a voltage of 0.7V in H 2 / O 2 -PEMFC and from 0.4 to 0.6 A / cm 2 in air / H 2 -PEMFC. In DMFC, this membrane also showed a comparable UI characteristic such as Nafion-117. Against this background, the development of the blend polymer membranes crosslinked by ionic interaction for use in fuel cells has good prospects for low-temperature fuel cells.
  • the present invention has for its object an inexpensive To provide polymer blend from the polymer electrolyte membranes for Fuel cells can be produced, these being at least the same or have improved performance over the prior art.
  • the above task is solved by new ones through ionic interaction crosslinked blend polymer membranes based on modified polyether sulfone and Polyether ether sulfone, e.g. aminated polyethersulfone as amplifier and sulfonated aryl polymer as a functional polymer and a plasticizer.
  • modified polyether sulfone and Polyether ether sulfone e.g. aminated polyethersulfone as amplifier and sulfonated aryl polymer as a functional polymer and a plasticizer.
  • the functional polymer used according to the invention is sulfonated aryl polymers such as sulfonated PEEK (SPEEK), sulfonated PEK (SPEK), sulfonated PEEKK (SPEEKK), sulfonated PES (SPES) sulfonated PEES (SPEES).
  • SPEEK sulfonated PEEK
  • SPEK sulfonated PEK
  • SPEEKK sulfonated PEEKK
  • SPES sulfonated PES
  • the blend polymer membrane can be made of PBI and modified Polyether sulfone or modified polyether ether sulfone can be produced.
  • This Blended polymer membrane like PBI membrane, is functionalized by phosphoric acid.
  • Aryl polymers of this type contain aromatic building blocks selected from the group and temperature stable bonds selected from the group
  • the sulfonation of aryl polymers is known. So describes EP 0574791 Manufacture of sulfonated PEEK. From EP-A-008895, EP-A-041780 and EP 0576807 the production of sulfonated PEK is known. The production of sulfonated PEEKK is from E. Müller in "Crosslinked PEEKK sulfonamides for Separation of aliphatic / aromatic mixtures "[diploma thesis, 1995, Hoechst AG, Frankfurt / Main] known. The production is described in EP-A-0008894 and EP-A-0112724 described by polyethersulfone.
  • the degree of sulfonation is preferably between 0.1 and 100%
  • the functional polymer according to the invention is used in amounts between 30 and 99.9 % By weight based on the total polymer used.
  • the reinforcing polymer used according to the invention is aminated polyether sulfone and polyether ether sulfone containing the structural units or where x is independently an integer 0, 1, 2, 3 or 4, or nitrated polyether sulfone and polyether ether sulfone containing the structural units or where x is independently an integer 0, 1, 2, 3 or 4
  • Aminated polyether sulfones and polyether ether sulfones containing structural units of the types are particularly preferred or
  • Nitrated polyether sulfones and polyether ether sulfones containing structural units of the types are particularly preferred or
  • the reinforcing polymer according to the invention is used in amounts between 0.1 and 70 % By weight, preferably 10 to 50% by weight, based on the total polymer used.
  • polyacid-polybase blends or polyacid-polyacid blends can be represented as follows: PES-NH 2 + aryl polymer-SO 3 H ⁇ PES- (NH 3 ) + - SO 3 aryl polymer PES-NO 2 + aryl polymer- SO 3 H ⁇ PES- (NO 2 -H) + - SO 3 aryl polymer eg: PES-NH 2 + PES- SO 3 H ⁇ PES- (NH 3 ) + - SO 3 -PES PES-NO 2 + PES- SO 3 H ⁇ PES- (NO 2 -H) + - SO 3 -PES
  • the sulfonated polyether sulfone (PES-SO3H) and the nitrided PES (PES-N02) are both polyacid and therefore completely miscible with each other.
  • the compatibility between PES-SO3H and aminated PES (PES-NH 2 ) is harmless due to the complete miscibility of the polyacid-polybase mixture.
  • PES-NH 2 and PES-NO 2 serve as "macromolecular counterions" to reinforce the membrane. Although the ionic compound is dissolved in water at an elevated temperature, the interaction remains because of the location of the "macromolecular counterions" at the sites.
  • the membrane is reinforced by these "macromolecular counterions" at an elevated temperature and, on the other hand, the ion transport is favored because of this resolution.
  • the membrane according to the invention thus has the favorable properties for use in fuel cells at elevated temperature.
  • Polyether sulfones (PES) are commercially available and are characterized by high thermal, chemical resistance and mechanical stability. The polarity of the polymer promotes water absorption.
  • the production processes for nitrated and aminated polyether sulfone and nitrided and aminated polyether ether sulfone are described in German patent application No. 10010002.3, which was filed at the same time.
  • plasticizers are understood to be those which Reduce the brittleness of the membrane made from the polymer blend.
  • suitable Plasticizers must be used under the conditions prevailing in a fuel cell be intimate.
  • the plasticizers with the functional and Reinforcement polymers to be miscible and compatible, as well as in the same dipolar solvent for example dimethylformamide (DMF), dimethyl oxide (DMSO), N-methylpyrrolidone (NMP) or N, N-dimethylacetamide (DMAC).
  • PVDF polyvinylidene fluoride
  • the plasticizer content is up to 5% by weight, preferably between 0.001 and 3 wt .-%, in particular between 0.1 and 2 wt .-%, based on the Total polymers.
  • the PVDF is commercially available and is characterized by excellent chemical and thermal stability.
  • the chemical structure of PVDF can be described as follows [CF 2 ⁇ CF 2 ] n
  • the production of the three-component blend polymer membrane according to the invention is also carried out according to the following procedure.
  • the preparation of the blend polymer membranes according to the invention is as follows carried out: A solution of a homogeneous polymer mixture containing the sulfonated aryl polymer, the aminated PES or the nitrided PES and Plasticizer is poured onto a carrier and then a uniform thick film pulled out with a squeegee. The solvent in the film is e.g. by Evaporation removed. Dimethylformamide is particularly suitable as a solvent (DMF), dimethyl oxide (DMSO), N-methylpyrrolidone (NMP) or N, N-dimethylacetamide (DMAC). The dry film is then removed from the carrier detached and the membrane produced is conditioned.
  • DMF solvent
  • DMSO dimethyl oxide
  • NMP N-methylpyrrolidone
  • DMAC N-dimethylacetamide
  • the starting polymer is cheaper and Modification process of PES and PEES and the production of the Blend polymer membrane are simple.
  • the membrane structure or properties such as conductivity, Membrane swelling can be adjusted depending on the application Comparison to the membranes made of sulfonated aryl polymer blend polymer membranes according to the invention improved mechanical and have thermal properties.
  • the blend polymer membrane according to the invention can consist of one layer or of several identical or different layers (multilayer), for. B. from double layer of a) sulfonated aryl polymer and aminated polysulfone and b) sulfonated aryl polymer and nitrided polysulfone.
  • various multilayer membranes according to the invention the at least two different layers selected from the group SPEK and NH 2 -PES, SPEK and NO 2 -PES SPEK and NH 2 -PES and plasticizers, SPEK and NO 2 -PES and plasticizers.
  • the mechanical properties of the comparison membrane are shown in the table below: Modulus of elasticity (N / mm 2 ); in moisture; 23 ° C 300 N / mm 2 Modulus of elasticity (N / mm 2 ); in water; 80 ° C 50 N / mm 2 Elongation at break (%) in moisture; 23 ° C 175% Elongation at break (%) in water; 80 ° C 255%
  • the permeability of the comparison membrane is as follows: temperature (° C) Methanol / H 2 O (g / m 2 .d) (32g / 1000g H 2 O) O 2 permeability [cm 3 50 ⁇ m / (m 2 d bar)] H 2 permeability [cm 3 50 ⁇ m / (m 2 d bar)] 40 61.9 2350 9880 60 151 5250 18800 80 333 8590 36300 100 674 14300 65200 120 1266 23300 113100
  • the SPEEK has an ion exchange capacity of 1.73 meq / g.
  • the NH 2 -PES has a degree of substitution of 45% (1.9 meq / g).
  • the blend polymer membrane TE-4 consists of 90% by weight SPEEK and 10% by weight NH 2 -PES, TE-5 consists of 85% by weight SPEEK and 15% by weight NH 2 -PES.
  • the material permeability in the membrane TE-5 is 2.35 [g.50 ⁇ m / (m 2 .d)] at 40 ° C.
  • the SPEEKK has an ion exchange capacity of 1.65 meq / g.
  • the NH 2 -PES has a degree of substitution of 45% (1.9 meq / g).
  • the blend polymer membrane TE-8 consists of 90% by weight SPEEKK and 10% by weight NH 2 -PES, TE-9 consists of 85% by weight SPEEKK and 15% by weight NH 2 -PES.
  • the methanol permeability in the membrane TE-8 is 4.11 [g.50 ⁇ m / (m 2 .d)] at 40 ° C.
  • the SPEK has an ion exchange capacity of 2.13 meq / g.
  • the NO 2 -PES is the degree of substitution of 50% (1.97 meq / g).
  • the blend polymer membrane TE-23 consists of 80% by weight SPEK and 20% by weight NO 2 -PES, TE-24 from 75% by weight SPEK and 25% by weight NO 2 -PES TE-25 from 70% by weight % SPEK and 30% by weight NO 2 -PES.
  • Three-component blend polymer membranes made of SPEK, NH 2 -PES (IEC 1.9 meq / g) and PVDF.
  • the glass transition temperature was determined by means of DSC and the decomposition temperature was determined by means of TGA.
  • Such a membrane with the double layer consisting of a total of four components.
  • One of the double layers consists of sulfonated PEK, aminated PES and PVDF, the other of sulfonated PEK, nitrided PES and PVDF.
  • the component PES-NO 2 is very stable against oxidation under oxygen
  • PES-NH 2 is very stable against reduction under hydrogen or methanol. This improves chemical stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Claims (20)

  1. Membrane contenant
    A) au moins un polymère de fonction sur la base d'un ou de plusieurs arylpolymères porteur de groupes d'acide sulfonique,
    B) au moins un polymère renforçant sur la base d'un ou de plusieurs polyéthersulfones aminés et/ou polyétheréther-sulfones aminés ou polyéthersulfones nitrés et/ou polyétheréther-sulfones nitrés, lequel améliore par son interaction avec le polymère de fonction la stabilité de la membrane contre le gonflement et
    C) au moins un plastifiant qui réduit la fragilité des polymères cités ci-avant.
  2. Membrane selon l'une des revendications 1 ou 2, caractérisée en ce que l'arylpolymère sulfoné contient des constituants aromatiques choisis dans le groupe
    Figure 00330001
    et des liaisons stables à la température choisies dans le groupe
    Figure 00330002
  3. Membrane selon la revendication 1, caractérisée en ce que l'arylpolymère sulfoné utilisé est un polyétheréther-cétone sulfoné, un cétone de polyéther sulfoné, un cétone de polyétheréther-cétone sulfoné, un polyéthersulfone sulfoné et un polyétheréther-sulfone sulfoné ou un PBI.
  4. Membrane selon l'une des revendications 1 à 3, caractérisée en ce que l'arylpolymère sulfoné présente un degré de sulfonation entre 0,1 et 100 %.
  5. Membrane selon l'une des revendications 1 à 4, caractérisée en ce que l'arylpolymère sulfoné est utilisé dans des quantités entre 30 et 99,9 % en poids, rapporté au polymère total.
  6. Membrane selon l'une des revendications 1 à 5, caractérisée en ce que le polymère renforçant utilisé est un ou plusieurs polyéthersulfones aminés et polyétheréther-sulfones contenant les motifs constitutifs
    Figure 00340001
       ou
    Figure 00340002
    dans lesquels x est indépendamment un nombre entier 0, 1, 2, 3, ou 4.
  7. Membrane selon l'une des revendications 1 à 6, caractérisée en ce que le polymère renforçant utilisé est un ou plusieurs polyéthersulfones nitrés et des polyétheréther-sulfones contenant les motifs constitutifs
    Figure 00340003
       ou
    Figure 00350001
    dans lesquels x est indépendamment un nombre entier 0, 1, 2, 3, ou 4.
  8. Membrane selon l'une des revendications 1 à 7, caractérisée en ce que le polymère renforçant utilisé est un polyéthersulfone aminé ou un polyétheréther-sulfone aminé contenant les motifs constitutifs de types
    Figure 00350002
       ou
    Figure 00350003
  9. Membrane selon l'une des revendications 1 à 8, caractérisée en ce que le polymère renforçant utilisé est un polyéthersulfone nitré ou un polyétheréther-sulfone nitré contenant les motifs constitutifs de types
    Figure 00360001
       ou
    Figure 00360002
  10. Membrane selon l'une des revendications 1 à 9, caractérisée en ce que le polymère renforçant selon l'invention est utilisé dans des quantités entre 0,1 et 70 % en poids, rapporté au polymère total.
  11. Membrane selon l'une des revendications 1 à 10, caractérisée en ce que le plastifiant réduit la fragilité de la membrane fabriquée à partir du blend polymère.
  12. Membrane selon l'une des revendications 1 à 11, caractérisée en ce que le plastifiant est inerte dans les conditions qui règnent dans une pile à combustible.
  13. Membrane selon l'une des revendications 1 à 12, caractérisée en ce que le plastifiant est miscible et compatible avec le polymère de fonction et le polymère renforçant.
  14. Membrane selon l'une des revendications 1 à 13, caractérisée en ce que le plastifiant est soluble dans du diméthylformadide (DMF), du diméthylsulfoxyde (DMSO), du N-méthylpyrrolidone (NMP) ou du N,N-diméthylacétamide (DMCA).
  15. Membrane selon l'une des revendications 1 à 14, caractérisée en ce que le plastifiant utilisé est un polyfluorure de vinylidène (PVDF) linéaire.
  16. Membrane selon l'une des revendications 1 à 15, caractérisée en ce que la teneur en plastifiant s'élève à jusqu'à 5 % en poids, rapporté au poids du polymère total.
  17. Membrane selon l'une des revendications 1 à 16, caractérisée en ce que la membrane se compose de plusieurs couches pareilles ou différentes (multicouches).
  18. Membrane selon la revendication 17, caractérisée en ce que la membrane se compose d'au moins deux couches différentes choisies dans le groupe cétone de polyéther sulfoné et polyéthersulfone aminé, cétone de polyéther sulfoné et polyéthersulfone nitré, cétone de polyéther sulfoné et polyéthersulfone aminé et plastifiant, cétone de polyéther sulfoné et polyéthersulfone nitré et plastifiant.
  19. Utilisation de la membrane selon l'une ou plusieurs des revendications 1 à 18 pour la fabrication d'unités membrane-électrode (MEA) pour piles à combustibles, en particulier pour les piles à basse températures sollicitées à des températures de fonctionnement de 10 °C à 200 °C.
  20. Pile à combustible contenant une membrane d'électrolyte polymère selon l'une ou plusieurs des revendications 1 à 18.
EP01911711A 2000-03-02 2001-03-01 Nouvelles membranes constituees d'un melange de polymeres, destinees a etre utilisees dans des piles a combustible Expired - Lifetime EP1268045B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DK01911711T DK1268045T3 (da) 2001-03-01 2001-03-01 Nye blandingspolymermembraner til anvendelse i brændselsceller

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10010001A DE10010001A1 (de) 2000-03-02 2000-03-02 Neue Blendpolymermembranen zum Einsatz in Brennstoffzellen
DE10010001 2000-03-02
PCT/EP2001/002311 WO2001064322A1 (fr) 2000-03-02 2001-03-01 Nouvelles membranes constituees d'un melange de polymeres, destinees a etre utilisees dans des piles a combustible

Publications (2)

Publication Number Publication Date
EP1268045A1 EP1268045A1 (fr) 2003-01-02
EP1268045B1 true EP1268045B1 (fr) 2004-06-30

Family

ID=7633133

Family Applications (1)

Application Number Title Priority Date Filing Date
EP01911711A Expired - Lifetime EP1268045B1 (fr) 2000-03-02 2001-03-01 Nouvelles membranes constituees d'un melange de polymeres, destinees a etre utilisees dans des piles a combustible

Country Status (11)

Country Link
US (1) US6869980B2 (fr)
EP (1) EP1268045B1 (fr)
JP (1) JP2003526716A (fr)
KR (1) KR100734800B1 (fr)
CN (1) CN1227056C (fr)
AT (1) ATE270141T1 (fr)
CA (1) CA2401838C (fr)
DE (2) DE10010001A1 (fr)
ES (1) ES2228818T3 (fr)
MX (1) MXPA02008584A (fr)
WO (1) WO2001064322A1 (fr)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE478913T1 (de) * 2000-06-02 2010-09-15 Stanford Res Inst Int Polymermembranzusammensetzung
DE10140147A1 (de) * 2001-08-16 2003-03-06 Celanese Ventures Gmbh Verfahren zur Herstellung einer Blend-Membran aus verbrücktem Polymer und Brennstoffzelle
JP3561250B2 (ja) 2001-09-21 2004-09-02 株式会社日立製作所 燃料電池
JP4399586B2 (ja) * 2002-01-08 2010-01-20 本田技研工業株式会社 高分子電解質膜、該高分子電解質膜を備える膜電極構造体及び該膜電極構造体を備える固体高分子型燃料電池
US7534515B2 (en) 2002-01-23 2009-05-19 Polyfuel, Inc. Acid-base proton conducting polymer blend membrane
AU2003209080A1 (en) * 2002-02-06 2003-09-02 Battelle Memorial Institute Polymer electrolyte membranes for use in fuel cells
US7625652B2 (en) * 2002-04-25 2009-12-01 Basf Fuel Cell Gmbh Multilayer electrolyte membrane
CN100509875C (zh) * 2002-05-13 2009-07-08 复合燃料公司 磺化共聚物
KR100977234B1 (ko) 2002-05-13 2010-08-23 더 유니버시티 오브 노스 플로리다 보드 오브 트러스티즈 술폰화된 공중합체
WO2004004037A1 (fr) * 2002-06-28 2004-01-08 Sumitomo Chemical Company, Limited Feuilles polymeres, procedes d'obtention desdites feuilles et leur utilisation
US7019819B2 (en) 2002-11-13 2006-03-28 Molecular Imprints, Inc. Chucking system for modulating shapes of substrates
US8003725B2 (en) 2002-08-12 2011-08-23 Exxonmobil Chemical Patents Inc. Plasticized hetero-phase polyolefin blends
US7531594B2 (en) 2002-08-12 2009-05-12 Exxonmobil Chemical Patents Inc. Articles from plasticized polyolefin compositions
US7271209B2 (en) 2002-08-12 2007-09-18 Exxonmobil Chemical Patents Inc. Fibers and nonwovens from plasticized polyolefin compositions
CA2492839C (fr) 2002-08-12 2011-02-01 Exxonmobil Chemical Patents Inc. Compositions de polyolefines plastifiees
US7998579B2 (en) 2002-08-12 2011-08-16 Exxonmobil Chemical Patents Inc. Polypropylene based fibers and nonwovens
DE10246461A1 (de) * 2002-10-04 2004-04-15 Celanese Ventures Gmbh Protonenleitende Polymermembran enthaltend Polyazolblends und deren Anwendung in Brennstoffzellen
US7641840B2 (en) * 2002-11-13 2010-01-05 Molecular Imprints, Inc. Method for expelling gas positioned between a substrate and a mold
DE10301810A1 (de) * 2003-01-20 2004-07-29 Sartorius Ag Membran-Elektroden-Einheit, Polymermembranen für eine Membran-Elektroden-Einheit und Polymerelektrolyt-Brennstoffzellen sowie Verfahren zur Herstellung derselben
JP4852828B2 (ja) * 2003-07-31 2012-01-11 東洋紡績株式会社 電解質膜・電極構造体
US8192813B2 (en) 2003-08-12 2012-06-05 Exxonmobil Chemical Patents, Inc. Crosslinked polyethylene articles and processes to produce same
JP2008500701A (ja) * 2004-05-22 2008-01-10 フオスター・ミラー・インコーポレイテツド 固体ポリマー電解質膜
JP5028736B2 (ja) * 2004-09-02 2012-09-19 東レ株式会社 高分子電解質材、ならびにそれを用いた高分子電解質膜、膜電極複合体および高分子電解質型燃料電池
US8389615B2 (en) 2004-12-17 2013-03-05 Exxonmobil Chemical Patents Inc. Elastomeric compositions comprising vinylaromatic block copolymer, polypropylene, plastomer, and low molecular weight polyolefin
DE102005001599A1 (de) * 2005-01-12 2006-07-20 Basf Ag Funktionalisierte Polyarylether
FR2883292B1 (fr) * 2005-03-16 2008-01-04 Inst Nat Polytech Grenoble Extrusion de polymeres ioniques a groupements ioniques acides
FR2883293B1 (fr) * 2005-03-16 2007-05-25 Inst Nat Polytech Grenoble Extrusion de polymeres ioniques a groupements ioniques alcalins
ATE555166T1 (de) 2005-07-15 2012-05-15 Exxonmobil Chem Patents Inc Elastomere zusammensetzungen
US7615300B2 (en) * 2005-08-30 2009-11-10 The Board of Regents University and Community College System of Nevada on Behalf of the University of Nevada Development of novel proton-conductive polymers for proton exchange membrane fuel cell (PEMFC) technology
US7316554B2 (en) * 2005-09-21 2008-01-08 Molecular Imprints, Inc. System to control an atmosphere between a body and a substrate
US20070065700A1 (en) * 2005-09-22 2007-03-22 Sri International High temperature polymer electrolyte membranes
CA2878756A1 (fr) 2005-09-30 2007-04-12 Battelle Memorial Institute Polymeres utilises dans des composants de pile a combustible
KR100707163B1 (ko) * 2005-10-12 2007-04-13 삼성에스디아이 주식회사 고체산, 이를 포함하는 고분자 전해질막 및 이를 채용한연료전지
KR101324413B1 (ko) * 2006-02-27 2013-11-01 삼성에스디아이 주식회사 고온 고분자 전해질 연료전지 스택의 기동 방법 및 이를이용하는 연료전지 시스템
WO2007123805A2 (fr) * 2006-04-03 2007-11-01 Molecular Imprints, Inc. Système d'impression lithographique
JP5151074B2 (ja) * 2006-06-08 2013-02-27 株式会社日立製作所 固体高分子電解質膜,膜電極接合体およびそれを用いた燃料電池
KR100815117B1 (ko) 2006-06-30 2008-03-20 한국과학기술원 연료전지용 고분자 전해질 막의 제조방법
WO2008076637A1 (fr) * 2006-12-14 2008-06-26 Arkema Inc. Polyélectrolytes stables à haute température ayant des groupes aromatiques de squelette
ITMI20071034A1 (it) 2007-05-23 2008-11-24 St Microelectronics Srl Sintesi e caratterizzazione di una nuova membrana a scambio protonico (pem) per applicazioni in celle a combustibile
KR100986493B1 (ko) * 2008-05-08 2010-10-08 주식회사 동진쎄미켐 연료전지용 고분자 전해질 막
US20100096764A1 (en) * 2008-10-20 2010-04-22 Molecular Imprints, Inc. Gas Environment for Imprint Lithography
KR101118202B1 (ko) 2009-10-01 2012-03-28 한국과학기술연구원 연료전지용 고분자 전해질막 및 이의 제조방법
US8815467B2 (en) 2010-12-02 2014-08-26 Basf Se Membrane electrode assembly and fuel cells with improved lifetime
DE102010055143B4 (de) 2010-12-18 2022-12-01 Umicore Galvanotechnik Gmbh Direktkontakt-Membrananode für die Verwendung in Elektrolysezellen
US10139116B2 (en) 2014-06-16 2018-11-27 Core Energy Recovery Solutions Inc. Blended membranes for water vapor transport and methods for preparing same
JP6530630B2 (ja) * 2015-03-31 2019-06-12 株式会社Ihi 高分子アロイ電解質膜およびその製造方法
CN105789657B (zh) * 2016-04-27 2018-09-11 工业和信息化部电子第五研究所华东分所 一种用于钒电池的改性pes-pvp共混阴离子交换膜及其制备方法
CN106750436B (zh) * 2017-01-18 2019-07-23 吉林大学 一种表面磺化聚醚醚酮微纳米粒子/磺化聚醚醚酮复合膜及其制备方法
CN110197918A (zh) * 2018-02-27 2019-09-03 湖南省银峰新能源有限公司 一种全钒液流电池用全氟磺酸复合膜及其制备方法和用途
CN110731026A (zh) * 2018-05-17 2020-01-24 松下知识产权经营株式会社 液流电池
WO2020116650A1 (fr) * 2018-12-07 2020-06-11 Agc株式会社 Perfluoro-polymère, composition liquide, film électrolytique à polymère solide, corps lié membrane et électrode, et pile à combustible de type à polymère solide

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3936997A1 (de) * 1989-11-07 1991-05-08 Hoechst Ag Semipermeable membran aus polyetherketonen
DE19813613A1 (de) * 1998-03-27 1999-09-30 Jochen Kerres Modifiziertes Polymer und modifizierte Polymermembran
DE19817374A1 (de) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Engineering-Ionomerblends und Engineering-Ionomermembranen
DE19817376A1 (de) * 1998-04-18 1999-10-21 Univ Stuttgart Lehrstuhl Und I Säure-Base-Polymerblends und ihre Verwendung in Membranprozessen

Also Published As

Publication number Publication date
EP1268045A1 (fr) 2003-01-02
CN1406150A (zh) 2003-03-26
CA2401838C (fr) 2007-09-18
US6869980B2 (en) 2005-03-22
KR100734800B1 (ko) 2007-07-03
DE10010001A1 (de) 2001-09-06
MXPA02008584A (es) 2003-02-24
KR20020084165A (ko) 2002-11-04
CA2401838A1 (fr) 2001-09-07
ATE270141T1 (de) 2004-07-15
JP2003526716A (ja) 2003-09-09
WO2001064322A1 (fr) 2001-09-07
ES2228818T3 (es) 2005-04-16
US20030187081A1 (en) 2003-10-02
DE50102740D1 (de) 2004-08-05
CN1227056C (zh) 2005-11-16

Similar Documents

Publication Publication Date Title
EP1268045B1 (fr) Nouvelles membranes constituees d'un melange de polymeres, destinees a etre utilisees dans des piles a combustible
EP1073690B1 (fr) Melanges constitues d'acides, de bases et de polymeres, et leur utilisation dans des procedes a membrane
DE60020915T2 (de) Polymere Kompositmembran und Verfahren zu ihrer Herstellung
EP1337319B1 (fr) Nouvelles membranes presentant de meilleures proprietes mecaniques, destinees a un usage dans des piles a combustible
DE60114776T2 (de) Verfahren zur herstellung einer polymerelektrolytmembran
DE60214166T2 (de) Polymerelektrolyt für eine brennstoffzelle des festpolymertyps und brennstoffzelle
EP1425336B1 (fr) Procede de fabrication d'une membrane constituee d'un melange a base de polymere ponte et pile a combustible associee
DE60013843T2 (de) Verbesserte polymerelektrolytmembrane aus gemischten dispersionen
EP0688824B1 (fr) Allignes polymériques homogènes à la base de polyéther cétones aromatiques sulfonés
EP2009728B1 (fr) Procédé de fabrication d'un polymère poly(1,3,4-oxadiazol) sulfoné
DE60025101T2 (de) Protonenleitendes Polymer, Herstellungsverfahren dafür, fester Polymerelektrolyt und Elektrode
EP1144100A2 (fr) Composition polymere, membrane la contenant, son procede de production et son utilisation
DE10296922T5 (de) Elektrodenstruktur für Polymerelektrolytbrennstoffzellen, Verfahren zum Herstellen derselben und Polymerelektrolytbrennstoffzelle
DE102008043936A1 (de) Verstärkte Verbundmembran für Polymerelektrolytbrennstoffzelle
DE102012212420A1 (de) Membran mit laminierter Struktur und orientierungsgesteuerten Nanofaser-Verstärkungszusatzstoffen für Brennstoffzellen
DE10155543C2 (de) Protonenleitende Elektrolytmembran, Verfahren zu ihrer Herstellung und deren Verwendung
DE10296598T5 (de) Brennstoffzelle mit polymerem Elektrolyt
WO2003060012A1 (fr) Polymeres a chaine principale fonctionnalises
DE102020213449A1 (de) Membran-Elektrodeneinheit mit verbesserter Beständigkeit und Protonenleitfähigkeit und Verfahren zu deren Herstellung
DE19847782A1 (de) Verfahren zum Betrieb einer Brennstoffzelle
DE60212209T2 (de) Brennstoffzelle und membran-elektrodenanordnung dafür
DE60004148T2 (de) Verfahren zur Herstellung von meta-verknüpftem Polyanilin
DE102017208805A1 (de) Verfahren zur Herstellung von Blockcopolychinoxalinen mit Sulfon- oder Phosphonsäure-Gruppen und deren Einsatz als protonenleitende Membran
DE10296977T5 (de) Elektrodenstruktur für Polymerelektrolytbrennstoffzellen
DE10134793A1 (de) Membranen für Ionentransport

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20021002

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030314

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040630

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040630

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040630

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50102740

Country of ref document: DE

Date of ref document: 20040805

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040930

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20040930

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20050301

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050301

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2228818

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

ET Fr: translation filed
26N No opposition filed

Effective date: 20050331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: PEMEAS GMBH

Free format text: CELANESE VENTURES GMBH##65926 FRANKFURT (DE) -TRANSFER TO- PEMEAS GMBH#INDUSTRIEPARK HOECHST#65926 FRANKFURT AM MAIN (DE)

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: PEMEAS GMBH

Effective date: 20050815

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20041130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DK

Payment date: 20080313

Year of fee payment: 8

Ref country code: ES

Payment date: 20080328

Year of fee payment: 8

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100323

Year of fee payment: 10

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100313

Year of fee payment: 10

Ref country code: FR

Payment date: 20100324

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100224

Year of fee payment: 10

Ref country code: AT

Payment date: 20100312

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090302

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20100304

Year of fee payment: 10

Ref country code: DE

Payment date: 20100312

Year of fee payment: 10

Ref country code: BE

Payment date: 20100322

Year of fee payment: 10

BERE Be: lapsed

Owner name: *PEMEAS G.M.B.H.

Effective date: 20110331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20111001

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50102740

Country of ref document: DE

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110301