EP1245385B1 - Nassoffset-Druckform mit fotothermisch veränderbarem Material, Verfahren und Vorrichtung zur Erzeugung und/oder Löschung eines Druckbildes einer Nassoffset-Druckform - Google Patents

Nassoffset-Druckform mit fotothermisch veränderbarem Material, Verfahren und Vorrichtung zur Erzeugung und/oder Löschung eines Druckbildes einer Nassoffset-Druckform Download PDF

Info

Publication number
EP1245385B1
EP1245385B1 EP02405245A EP02405245A EP1245385B1 EP 1245385 B1 EP1245385 B1 EP 1245385B1 EP 02405245 A EP02405245 A EP 02405245A EP 02405245 A EP02405245 A EP 02405245A EP 1245385 B1 EP1245385 B1 EP 1245385B1
Authority
EP
European Patent Office
Prior art keywords
printing form
layer
printing
wet offset
offset printing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP02405245A
Other languages
English (en)
French (fr)
Other versions
EP1245385A2 (de
EP1245385A3 (de
Inventor
Matthias Riepenhoff
Olivier Stehlin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wifag Maschinenfabrik AG
Original Assignee
Wifag Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wifag Maschinenfabrik AG filed Critical Wifag Maschinenfabrik AG
Publication of EP1245385A2 publication Critical patent/EP1245385A2/de
Publication of EP1245385A3 publication Critical patent/EP1245385A3/de
Application granted granted Critical
Publication of EP1245385B1 publication Critical patent/EP1245385B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41CPROCESSES FOR THE MANUFACTURE OR REPRODUCTION OF PRINTING SURFACES
    • B41C1/00Forme preparation
    • B41C1/10Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme
    • B41C1/1041Forme preparation for lithographic printing; Master sheets for transferring a lithographic image to the forme by modification of the lithographic properties without removal or addition of material, e.g. by the mere generation of a lithographic pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41NPRINTING PLATES OR FOILS; MATERIALS FOR SURFACES USED IN PRINTING MACHINES FOR PRINTING, INKING, DAMPING, OR THE LIKE; PREPARING SUCH SURFACES FOR USE AND CONSERVING THEM
    • B41N3/00Preparing for use and conserving printing surfaces
    • B41N3/006Cleaning, washing, rinsing or reclaiming of printing formes other than intaglio formes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41PINDEXING SCHEME RELATING TO PRINTING, LINING MACHINES, TYPEWRITERS, AND TO STAMPS
    • B41P2227/00Mounting or handling printing plates; Forming printing surfaces in situ
    • B41P2227/70Forming the printing surface directly on the form cylinder

Definitions

  • the invention relates to a wet offset printing form having a surface which can be imaged or imaged with a printed image, wherein this surface is formed by a material which contains a photocatalytically and thermally variable material as a proportion in a uniform distribution or consists solely of such a material.
  • a photocatalytically and thermally changeable material is understood as meaning a material which, by irradiation with light, is photocatalytically displaceable into a hydrophilic state and thermally, namely by heating, into a lipophilic state.
  • the invention further relates to a method of producing the printed image, i.
  • the invention relates to a method and apparatus for imaging and erasing a printing form, for example for a multiple Imaging of the same printing form with different print images.
  • the printing form, the method and the device are preferably used in wet offset web-fed rotary printing, in particular in newspaper printing.
  • an imaging is understood to mean a process in which the printing form is acted upon at the locations which form the pixels, so that a latent image is produced on the printing form.
  • a deletion is understood to mean a process in which the printing form is preferably treated in a manner not dependent on the image but on the entire surface in such a way that the image information applied during the imaging, ie the printed image is eliminated.
  • the action in the imaging is preferably a image-wise heating, but in principle can also be a picture-wise irradiation with UV light.
  • Newspapers are mainly produced in wet offset.
  • Printing machines typically include printing units with blanket cylinders, plate cylinders, inking units and dampening units.
  • a printing form stretched onto a printing form cylinder usually has a surface in the form of a top layer which, in the illustrated state, has hydrophilic (water-friendly) and lipophilic (water-repellent) regions.
  • the printing form is formed by a printing plate, which is mounted on a plate cylinder designed as a plate cylinder.
  • the printing form has imagewise applied lipophilic areas.
  • the non-image sites are hydrophilic and bind water more strongly than paint.
  • the lipophilic areas repel water and therefore have a color-friendly effect.
  • any surface can be used for the offset process, which can be divided into hydrophilic and lipophilic areas.
  • printing plates For the production of printing plates a variety of methods and devices using appropriate printing forms are known. For example, it is possible to imagewise irradiate a printing plate with a laser and then develop it chemically. Furthermore, printing forms can be produced by laser ablation. In this case, either lipophilic areas under a hydrophilic layer or hydrophilic areas under a lipophilic layer are exposed.
  • the relevant for the imaging exposure process can either be done in a separate system or within the printing press, as the invention prefers this.
  • the outer drum principle is known. In most cases, so-called process-free printing plates are used, which do not require any chemical development.
  • Printing forms used today are used only once. For economic and ecological reasons, however, it is desirable to be able to use the same printing form multiple times.
  • EP 0 911 154 A1 describes the imaging by imagewise heating and erasure by UV irradiation. Further details are described in EP 1 020 304 A2.
  • a lithographic printing element which is made of a ceramic consisting of a zirconium alloy and an alpha-aluminum.
  • the zirconium alloy When the zirconium alloy is converted from a stoichiometric composition to a substoichiometric composition, the ceramic changes its property from hydrophilic to lipophilic.
  • the transition from a stoichiometric to a substoichiometric composition is achieved by reduction while the transition from the substoichiometric composition to the stoichiometric composition is achieved by oxidation.
  • the oxidation can be achieved by thermally assisted oxidation or laser assisted oxidation.
  • the oxidation converts the ceramic into a hydrophilic state.
  • the reduction leading to a lipophilic state of the ceramic is described as a laser assisted reduction by exposure to 1064 mm radiation.
  • EP 1 020 304 A2 discloses an offset printing method and a corresponding printing apparatus.
  • the printing plate becomes hydrophilic at a first temperature and hydrophobic at the second temperature.
  • a printing press and an image forming method for a printing press are known.
  • the wet offset printing is described.
  • a drying unit that uses hot air or UV radiation vaporizes a solvent.
  • a device for wetting a polymer coating with a water solution is also provided.
  • the printing form does not need to be specially cleaned after use for the deletion of the printed image.
  • the imaging of a printing form and / or the deletion of a printed image of a printing form should or should be facilitated, preferably in a wet offset printing machine.
  • the invention is based on the idea of achieving the local wetting behavior, that is to say the hydrophilic or lipophilic behavior of a printing form, by virtue of the atoms or molecules of a photocatalytically and thermally alterable material forming the imageable or imaged surface of the printing form. from an excited state in which they normally reside, be transferred by the imaging in a low-energy state. On deletion, conversely, the atoms or molecules are transferred from the low energy to the excited state.
  • the printing form is thus before carrying out a Berithungsvorgangs or after performing a deletion process in a hydrophilic starting state, which is converted by a local, image-wise, preferably short-term, heating of the photocatalytically and thermally variable material in the imagewise lipophilic and hydrophilic state of use.
  • An advantage of this type of imaging is that the unimaged printing form can be easily handled in daylight.
  • the deletion of the printed image and not the imaging is done by the action of natural or artificial daylight or UV light, preferably on the entire surface of the printed image surface.
  • the loss of an image in the installed state of the printing form is unlikely, since in the printing machine no more natural light impinges on the printing form, which would cause a deletion to a relevant extent.
  • Yet another advantage is the self-cleaning property of the surface formed by the photocatalytically and thermally alterable material that is effective in erasing the image. Not only is the printing plate hydrophilic in its surface, but also organic residues are catalytically oxidized.
  • the printing forme By imaging the printing forme by imagewise local irradiation, preferably laser irradiation, not the entire printing form, but only a near-surface depth range of the printing forme is briefly locally heated.
  • the overall printing plate remains at ambient temperature, which generally corresponds to the usual room temperature.
  • a printing form according to the invention has absorption centers for radiation in an upper layer, on the surface of which the printed image is produced, in order to generate heat by absorption of this radiation in the upper layer.
  • the absorption centers will be formed by particles of a material (semiconductor material) which absorbs light, preferably infrared light (IR), which can extend into the visible range, ie, into the near infrared range (NIR).
  • IR infrared light
  • NIR near infrared range
  • the absorbent material is uniformly dispersed in fine particles in the photocatalytic and thermally changeable material.
  • the particles of the absorption material are preferably nanoparticles, ie particles whose maximum spatial extent is in the nanoscale.
  • the known photocatalytic materials are transparent. Transparency is the immediate consequence of the band structure of the material. In fact, a band gap of more than 3 eV is required to cause the excitation of the photocatalytic material to a state in which the bonding of OH groups to the surface of the material in question is possible. At this bandgap energy, i. Band-gap energy, however, an interaction with low-energy, long-wave photons is not possible. Therefore, the known photocatalytic semiconductors are transparent in the visible range.
  • the invention provides a photocatalytically and photothermally variable material by the fine distribution of the absorption centers in the photocatalytically and thermally alterable material.
  • Semiconductors are particularly preferred examples of materials for forming the absorption centers.
  • the upper layer which forms the surface to be imaged or already illustrated, thus comprises a photocatalytically interacting with light material and the absorption centers, which are finely distributed in the photocatalytically interactive material, hereinafter also referred to simply as a photocatalytic material.
  • the photocatalytic material interacts with light whose wavelength is less than the wavelength or the wavelength range of the radiation absorbed by the absorption centers and converted into heat. Due to its bandgap energy of at least 3 eV, the photocatalytic material interacts only with light whose wavelength is less than 400 nm. The material forming the absorption centers interacts accordingly
  • Radiation whose wavelength is 400 nm or larger, preferably, it absorbs light from the IR wavelength range.
  • the invention provides a new material which has both photocatalytic and absorbing properties.
  • One advantage is that the coating of a support material can be simplified, since both interactions, namely the photocatalysis and the absorption, take place in a single layer and therefore an absorption layer serving exclusively for absorption can be saved.
  • the thickness of the photocatalytic and photothermally variable material layer is less critical. While in a multilayer system, the thickness of the photothermally variable top layer has a great influence on the heating, more uniform heating can be achieved within a single layer, as long as the absorption centers are homogeneously distributed in this layer. Furthermore, the heat-generating absorption centers are closer to the imageable or already imaged surface, so that sharper temperature gradients in the surface are possible.
  • the producibility of particularly sharp temperature gradients on the surface is advantageous, in particular, for the preferred imaging by imagewise heating since the sharpness of the printed image is improved.
  • the printing form according to the invention is in principle also advantageous for an imaging process in which the imaging is brought about by imagewise hydrophilization of the surface and erasure by full-surface hydrophobization.
  • Eme likewise inventive printing form has below one of the top layer according to claim 1 on the surface of the printed image is generated, an absorption layer.
  • the absorption layer is locally heated by short-term, local irradiation, ie it is heated according to image with locally warm and cold places.
  • the absorption layer should be uniformly thin in order to release the heat primarily normal to the absorption layer to the preferably immediately above upper layer with the photocatalytically and thermally variable material and a heat balance within the absorption layer in the tangential direction between the image locally warm and to prevent cold spots of the absorption layer.
  • the locally imagewise generated heat in the absorption layer is transferred by heat conduction from the absorption layer into the upper layer, so that the lipophilic areas of the printed image are formed on the surface of the upper layer.
  • the two layers are thermally conductively connected to each other over the entire surface.
  • the absorption layer preferably directly adjoins the upper layer.
  • Each of the two layers interacts with radiation from a certain wavelength range, wherein the upper layer with radiation, which is particularly strongly absorbed by the absorption layer, little or no interaction, that is permeable to this radiation.
  • the top layer interacts photocatalytically with light from the UV region, while the absorption layer is heated by interaction with radiation from another wavelength range, preferably from the IR region, which is transmitted by the top layer.
  • the upper layer is likewise heated in accordance with the image by heat conduction from the imagewise heated absorption layer and forms the lipophilic image areas on its surface due to this heating.
  • a thermal insulation layer is preferably provided between the absorption layer and a printing form support in order to minimize heat losses to the support. If an absorption layer is not present, a thermal insulation layer may nevertheless be formed between the upper layer and the support.
  • absorption centers in the top layer can be dispensed with (not claimed).
  • the absorption layer and the absorption centers in the upper layer may also be advantageously formed in combination.
  • the formation of a printing form according to the invention by means of the absorption layer is also advantageous for an imaging process in which the imaging is effected by irradiation with UV light and the deletion by heating.
  • the diffusion barrier can be formed, for example, by an SiO 2 quartz layer.
  • a layer acting as a diffusion barrier should be at most 1 ⁇ m thick, preferably such a layer has a uniform thickness of 100 nm less.
  • a gradual diffusion of, for example, Fe and / or Al atoms into the upper layer could interfere with the semiconductor effect used according to the invention, since the electronic band structure of the upper layer could be adversely affected by such diffusion effects during the course of the operation of the printing plate.
  • the diffusion barrier can simultaneously be formed as a thermal insulation layer.
  • a diffusion barrier may be formed by a layer provided for this purpose, which may in principle be arranged between each of the layers of a printing form according to the invention.
  • a layer provided specifically as a diffusion barrier is formed between the support and the absorption layer if an absorption layer is provided. If a thermal insulation layer is present, the diffusion barrier may be provided between the support and the insulation layer or between the insulation layer and the optional absorption layer.
  • such a layer acting as a diffusion barrier can be arranged directly below the upper layer. In this case, foreign atoms, which may possibly originate not only from one carrier but also from another functional layer, can be most reliably prevented from diffusing into the upper layer.
  • the erasing process of the printing form takes place by irradiation of the surface with UV light. According to the invention, it is ensured during the deletion process that care is taken at the surface of the printing forme to be activated for a high humidity which supports the extinguishing process. If there is no moisture at the activated surface, recombination of the electron-hole pairs produced by UV irradiation occurs so that a permanent hydrophilization of the surface is not achieved.
  • water is preferably supplied to the surface during the process by setting a high air humidity on the surface.
  • the increase in humidity relative to the environment can be particularly due to the Supply of water vapor can be effected or by means of the dampening unit of a printing press, which is assigned in this case a device for misting of water.
  • the moisture at and near the surface is preferably such that the air adjacent thereto is saturated with moisture.
  • high humidity is generally undesirable in the printing unit. For example, it can lead to the formation of condensation, which drips on the cylinder and causes disturbances in the printed image. Also, the offset process can be adversely affected in the course of a production, if due to a moisture-saturated ambient air evaporation of surface water is difficult, which is on the printing plate surface or passes when splitting a color film to the surface of the ink.
  • a moisturizing and preferably also a temperature maintenance i. an air conditioning of the printing unit made such that during the hydrophilization by UV radiation, a high humidity of more than 60%, more preferably more than 80%, and for the hydrophobization of the surface a significantly lower humidity is set. Furthermore, a significantly lower humidity is also set during the printing process and preferably during all times outside the hydrophilization by the humid, preferably air conditioning.
  • An encapsulation of the printing unit simplifies the setting and attitude of the desired values of the moisture and preferably also the temperature in the printing unit and in particular on the printing plate.
  • the humidity or the climate can be monitored by the arrangement of humidity sensors and preferably also by temperature sensors.
  • FIG. 1a shows a hydrophilic surface 130 of a wet offset printing form 31, which is also referred to below as a UV-hydrophilic surface, due to irradiation with light from the UV region.
  • the surface 130 is formed by a top layer 11 of the printing form 31, which contains a photocatalytically and thermally changeable material or consists entirely of such a material.
  • the normally existing excited state results, for example, from the irradiation with natural or artificial daylight.
  • the layer 11 is irradiated by a light source that emits UV light at least as part of its spectrum, preferably a daylight source and / or a UV light source 12, there is an irradiation of the layer 11 with high-energy photons 17, so that in near the surface 130 of the layer 11, electrons from the valence band of the photocatalytically and thermally alterable material are excited into the conduction band.
  • the missing electrons in the valence band leave positive holes h +.
  • the photocatalytically and thermally changeable material can react with water molecules 14, such that a hydroxyl radical OH is formed which adheres to the atoms or molecules of the photocatalytically and thermally changeable material binds.
  • a hydroxyl radical OH is formed which adheres to the atoms or molecules of the photocatalytically and thermally changeable material binds.
  • the hydrophilic character of the surface 130 increases.
  • water molecules 14 can bind via hydrogen bonds to the OH groups, which in turn are bound to the positive holes h + of the upper layer 11.
  • FIG. 1 b illustrates the wetting of the UV-hydrophilic surface 130 of the layer 11 with a water droplet 140.
  • the acute contact angle formed by the edge of the water droplet 140 with the surface 130 is a measure of the hydrophilicity of the surface 130.
  • a preferred photocatalytically and thermally alterable material for the topsheet 11 of the printing form 31 is titanium oxide TiO 2 in the anatase crystal structure.
  • the excitation energy from the valence band into the conduction band is about 3.2 eV, which corresponds to a wavelength of 387 nm.
  • the action of ultraviolet light whose wavelength is not greater than 387 nm excitation of valence electrons of TiO 2 occurs in the conduction band of the semiconductor.
  • a positive hole h + arises in the valence band.
  • a fall back of the excited electron on the positive hole h + is prevented when previously chemical bonding of another substance to the activated semiconductor surface occurs.
  • titanium oxide and certain other semiconductors for example, this is possible when water is present.
  • the hydrophilic state may persist even when no UV light is applied to the photothermally variable material.
  • the photocatalytically and thermally changeable material in the context of the invention should have a valence band energy and a conduction band energy, measured in each case on the two mutually facing edges of the energy bands, which are suitable for the reduction and oxidation of water.
  • the conduction band energy should therefore be at least as negative as that required to reduce water.
  • Energy (0.0V in acidic solution) and the valence band energy should be at least as positive as the energy required to oxidize water (+1.23V).
  • a surface-forming topsheet formed of, or at least in large part, the photothermally-variable material has band-gap energy, preferably at least 3.2 eV. Band-gap energy is the energy required to excite electrons from the valence band into the conduction band.
  • the positive holes of the valence band formed by the excitation have in this case an advantageously great potential for forming highly reactive OH radicals in conjunction with water.
  • Particularly preferred materials are the aforementioned anatase TiO 2 and other materials of suitable electronic structure to bond to the material surface by excitation with UV light in the manner described. Examples of such materials which are likewise suitable are zinc oxide, ZrO 2 , SrTiO 3 , KTaO 3 or KTa 0.77 Nb 0.23 O 3 , which, like TiO 2, the photocatalytically and thermally alterable material, either alone or in a material combination of at least two of the form materials including TiO 2 .
  • the printing form 31 preferably has at least 40% by weight of the photocatalytically and thermally variable material in the depth range relevant for the UV-hydrophilic surface, measured on the total weight of the material of the printing plate forming this region.
  • the photocatalytically and catalytically and thermally changeable material is formed by a combination of materials, a combination of TiO 2 and SiO 2 is a particularly preferred material.
  • SiO 2 can also advantageously form a material in combination with another or several of the materials mentioned contains the photocatalytically and thermally variable material.
  • hydrophilicity of anatase titanium oxide as an effect of a photocatalytic reaction is known and used, for example, in self-cleaning surfaces on buildings and anti-fog glasses, for example in the automotive sector.
  • titanium oxide layers Another advantageous property of titanium oxide layers is to have a self-cleaning effect, since organic particles on the surface are photocatalytically decomposed over time. This also applies to the other materials mentioned.
  • the printing form can be natural or artificial daylight be deleted.
  • the deletion can be supported by an additional UV source.
  • a UV emitter used for erasure alone or in combination with daylight should have a spectrum with a sufficient amount of UV light having a wavelength of 387 nm and smaller.
  • the peak of the emitted spectrum is at a wavelength of 387 nm, corresponding to a band-gap energy of 3.2 eV, or a shorter wavelength.
  • the spectral distribution of the radiation is preferably predominantly below 387 nm.
  • a UV laser or UV laser system can be used as the UV radiator. On a focusing optics for the laser or is preferably omitted.
  • the UV-hydrophilic surface is made locally friendly by irradiation with (IR) infrared laser light.
  • the printing form is not heated significantly overall. It remains at the temperature normally prevailing in a printing machine in the range of 10 ° C to 40 ° C.
  • Figure 1c illustrates the elimination of the hydrophilicity of the UV-hydrophilic surface 130.
  • the exposure or imaging is effected by irradiation with laser light 18.
  • the wavelength of the laser light 18 may be in the visible range up to the near infrared (NIR), ie between about 400 and 3000 nm.
  • NIR near infrared
  • laser light from the range of 700 nm to 3000 nm and particularly preferably from the range of 800 nm to 1100 nm is used for imaging. Due to the local action of the laser light 18, a lipophilic surface area 131 corresponding to the laser spot on the surface is produced on the surface 130.
  • Figure 1d illustrates the wetting of the layer 11 by water in the unirradiated surface area 130 and the irradiated surface area 131.
  • the water wetting is low.
  • the contact angle between the surface area 131 and the water drop 141 formed in the surface area 131 is large, and the layer 11 is lipophilic in this surface area 131.
  • Figures 2a to 2d show advantageous embodiments of a layered printing plate 31, which is preferably designed as a printing plate and can be clamped onto a printing form cylinder or is already clamped.
  • the printing form 31 of FIG. 2a has a two-layer structure with a carrier layer 21 and a single upper layer 24 applied directly to the carrier layer 21, on whose free surface the printed image is produced or is already present in the case of an imaged printing plate 31.
  • the layer 24 contains a photocatalytically and thermally alterable material 24a in a sufficiently large proportion to allow pixel-wise fine imaging. It should be the case, however, not claimed, that the layer 24 consists solely of a photocatalytically and thermally changeable material 24a.
  • the carrier layer 21 is formed as in the other embodiments of a flexible steel plate or aluminum plate and hereinafter also referred to simply as a carrier.
  • the topsheet 24 in the exemplary embodiment is a dispersion of the photocatalytically and thermally alterable material 24a and absorbent particles dispersed in the material 24a in a fine, uniform distribution.
  • the absorption particles are nanoparticles of a semiconductor material which absorbs radiation from the IR wavelength range, converts it into heat and delivers it to the surrounding, photocatalytically and thermally changeable material 24a.
  • the absorption particles form the absorption centers 24b for the heating radiation. Also, particles of multiple semiconductor materials can form the absorption centers 24b.
  • an underlayer immediately adjacent to the upper layer may be designed to absorb heat.
  • materials are suitable which allow a high heat conduction and have a high heat capacity. Since a printing plate support should have a high mechanical strength to allow permanent installation within the printing press, such a support may for example consist of steel or aluminum.
  • an insulating layer can be provided between the upper layer and the carrier, which reduces the heat conduction to the carrier.
  • the material of the insulating layer should naturally have a low thermal conductivity.
  • FIG. 2b shows an embodiment in which first an absorption layer 23 and then the upper layer 24 are applied to the carrier 21.
  • heat is generated locally as a result of the irradiation during the imaging in the absorption layer.
  • the heat generated in the absorption layer 23 is transferred via the contact surface into the top layer 24, which contains the photocatalytically and thermally alterable material 24a, and reaches the surface of the top layer 24.
  • a layer thickness of the absorption layer 23 of 1 ⁇ m to 5 ⁇ m is advantageous.
  • the upper layer 24, when forming a particular absorption layer 23, has a uniform thickness of preferably 0.05 ⁇ m to 5 ⁇ m, particularly preferably 0.05 ⁇ m to 2 ⁇ m.
  • the upper layer 24 advantageously has a layer thickness of 1 ⁇ m to 30 ⁇ m, particularly advantageously between 1 ⁇ m and 10 ⁇ m.
  • Figure 2c shows a third preferred embodiment.
  • a thermally insulating intermediate layer 22 on which the upper layer 24 with the photocatalytically and thermally active material 24a is directly arranged.
  • the thickness of the intermediate layer 22 is preferably between 1 ⁇ m and 30 ⁇ m.
  • absorption centers 24b are uniformly distributed again as in the first embodiment.
  • the upper layer 24 preferably has a thickness of 1 .mu.m to 30 .mu.m, more preferably a thickness of 1 .mu.m to 10 .mu.m.
  • FIG. 2d shows a fourth exemplary embodiment.
  • a thermally insulating intermediate layer 22 whose thickness is preferably between 1 .mu.m and 30 .mu.m.
  • an absorption layer 23 is provided, whose layer thickness is preferably between 1 .mu.m and 5 .mu.m.
  • an upper layer 24 is arranged, which contains the photocatalytically and thermally changeable material 24a or consists exclusively of such material and preferably has a thickness of 0.05 .mu.m to 5 .mu.m, more preferably from 0.05 .mu.m to 2 .mu.m ,
  • topsheets 24 of the embodiments of FIGS. 2b and 2d also have dispersed absorption centers according to the claims, although the incorporation of absorption centers into which the photocatalytically and thermally alterable material could be dispensed with is also not required because of the absorption layer 23.
  • a top layer 24 having dispersed absorption centers 24b is formed.
  • the sol-gel method and the CVD method are suitable.
  • the layer or layers may be applied directly over one another, i. without mediating layers such as adhesive layers.
  • Figure 3 shows a printing unit with a printing form cylinder 32, an associated blanket cylinder 38 and a counter-pressure cylinder 39 which forms a printing gap for a web to be printed 37 with the blanket cylinder 38.
  • On the printing form cylinder 32 two printing plates 31 are fixed in a known manner. However, each of the two printing plates 31 is formed by a printing plate according to the invention, for example according to one of the embodiments of FIGS. 2a to 2d.
  • an imaging device 33, two erasing devices 34, inking rollers 35 and a dampening roller 36 are arranged in the printing press.
  • a dampening solution film preferably a water film
  • the counter-pressure cylinder 39 may itself be a blanket cylinder of another printing unit for double-sided printing, a steel cylinder for only a single printing point or a steel cylinder of a satellite printing unit, for example a 9 or 10-cylinder printing unit.
  • the imaging device 33 faces directly to the surface of the printing forme 31 to be imaged and is arranged parallel to the axis of rotation of the printing forme cylinder 32.
  • the imaging unit 33 has a plurality of lasers arranged next to one another along the axis of rotation of the printing form cylinder 32. The laser spots of these lasers are focused on the surface of the printing plate 31.
  • the lasers of the imaging device 33 are preferably combined to form one or more laser arrays arranged next to one another.
  • the two extinguishing devices 34 each have at least one daylight emitter and / or at least one UV emitter.
  • the erasing devices 34 are arranged spaced apart from each other over the circumference of the printing forme cylinder 32, each being arranged parallel to the axis of rotation of the printing forme cylinder 32. Basically, a single one of the erasers 34 would be sufficient to erase the imaged surfaces of the printing plates 31 by the photothermally variable material forming the respective surfaces with respect to the respective printed image in the hydrophilic normal state by full-area irradiation with light from the UV range becomes.
  • the erasers 34 are turned off.
  • no rollers or cylinders are in contact with the printing form cylinder 32, in particular the printing plates 31, in order to allow the printing plate cylinder 32 to rotate as smoothly as possible.
  • the erasers 34 are turned on.
  • the surfaces of the printing plates 31 are wetted with water; around the UV-excited, previously rendered lipophilic surface areas permanently hydrophilic by binding of OH groups.
  • the dampening unit of the printing unit or a steam generator can be used.
  • the printing unit which comprises the printing form cylinder 32 and the blanket cylinder 38, is encapsulated with respect to the environment and conditioned to optimally adapt the humidity and also the temperature to the respective operating state within the encapsulation 40.
  • a uniformly high air humidity of at least 60% should prevail within the encapsulation 40 during the deletion process, preferably at least 80%, while for the imaging and the ongoing print production the humidity should be significantly lower.
  • the encapsulation 40 preferably encloses, as in the exemplary embodiment, the counter-pressure cylinder 39. If the printing unit comprises further cylinders, the further cylinders belonging to the printing unit are preferably also enclosed by the encapsulation 40.
  • the encapsulation 40 preferably encloses in each case the two mutually set blanket cylinders and their associated printing form cylinders. Encapsulants 40 in the case of printing units thus formed can also be used for the usual H or N bridges, i. for each four blanket cylinder and the plate cylinder, are formed. In satellite printing units with nine- or ten-cylinder units, these units are preferably enclosed in each case by a separate encapsulation 40.
  • the a predetermined humidity for adjusting and attitude F to and a predetermined temperature T set air conditioner used comprises on the encapsulation 40 and the means for the supply of water, in the embodiment, the dampener roller 36, a humidity and temperature controller 43 and at least one within the Encapsulation 40 arranged humidity sensor 41 and at least one within the Encapsulation 40 temperature sensor arranged 42.
  • the sensors 41 and 42 take place within the encapsulation 40, the humidity and the temperature and pass both the humidity and the temperature of each is provided as a control variable F and T to the controller 43.
  • the controller 43 forms from the Difference of the recorded values of the humidity and temperature and the given values the respective difference F soll -F ist and T soll -T is and forms depending on the humidity difference and the temperature difference the humidity order size F and the temperature control variable T for those acting within the enclosure 40 Facilities for supplying water and influencing the temperature.
  • the imaging and erasing in the printing press is preferred, especially the imaging and deletion on the printing form cylinder on which the printing form is also fixed in the printed production or integrated on the cylinder.
  • the imaging and deletion can also be made outside the printing press.
  • the implementation of one of the processes in the printing press and implementation of the other of the processes outside the printing press should not be excluded.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Printing Plates And Materials Therefor (AREA)
  • Manufacture Or Reproduction Of Printing Formes (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)
  • Materials For Photolithography (AREA)
  • Catalysts (AREA)
  • Printing Methods (AREA)
  • Rotary Presses (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Description

  • Die Erfindung betrifft eine Nassoffset-Druckform mit einer Oberfläche, die mit einem Druckbild bebilderbar oder bebildert ist, wobei diese Oberfläche von einem Werkstoff gebildet wird, der ein fotokatalytisch und thermisch veränderbares Material als Anteil in gleichmäßiger Verteilung enthält oder allein aus solch einem Material besteht. Unter einem fotokatalytisch und thermisch veränderbaren Material wird im Sinne der Erfindung ein Material verstanden, das durch Bestrahlung mit Licht fotokatalytisch in einen hydrophilen Zustand und thermisch, nämlich durch Erwärmung, in einen lipophilen Zustand versetzbar ist. Die Erfindung betrifft ferner ein Verfahren zur Erzeugung des Druckbilds, d.h. zur Bebilderung, ein Verfahren zum Löschen eines Druckbilds, eine Vorrichtung zur Bebilderung und eine Vorrichtung zur Löschung eines Druckbilds einer Nassoffset-Druckform der genannten Art. Besonders bevorzugt betrifft die Erfindung ein Verfahren und eine Vorrichtung zum Bebildern und Löschen einer Druckform, beispielsweise für ein mehrmaliges Bebildern der gleichen Druckform mit unterschiedlichen Druckbildern. Bevorzugt finden die Druckform, das Verfahren und die Vorrichtung Verwendung im Nassoffset-Rollenrotationsdruck, insbesondere im Zeitungsauflagendruck.
  • Unter einer Bebilderung wird im Folgenden ein Vorgang verstanden, bei dem auf die Druckform an den Stellen eingewirkt wird, die die Bildpunkte bilden, so dass ein latentes Bild auf der Druckform erzeugt wird. Unter einer Löschung wird im Sinne der Erfindung ein Vorgang verstanden, bei dem die Druckform vorzugsweise nicht bildabhängig, sondern ganzflächig derart behandelt wird, dass die bei der Bebilderung aufgebrachte Bildinformation, d.h. das Druckbild, beseitigt wird. Die Einwirkung bei der Bebilderung ist vorzugsweise eine bildgemäße Erwärmung, kann grundsätzlich aber auch eine bildgemäße Bestrahlung mit UV-Licht sein.
  • Zeitungen werden überwiegend im Nassoffset produziert. Druckmaschinen, wie die Erfindung sie vorzugsweise betrifft, enthalten typischerweise Druckwerke mit Gummituchzylindern, Plattenzylindern, Farbwerken und Feuchtwerken. Eine auf einen Druckformzylinder gespannte Druckform weist eine Oberfläche zumeist in Form einer Oberschicht auf, die im bebilderten Zustand hydrophile (wasserfreundliche) und lipophile (wasserabstoßende) Bereiche aufweist. Üblicherweise wird die Druckform von einer Druckplatte gebildet, die auf einen als Plattenzylinder ausgebildeten Druckformzylinder aufgespannt ist. Die Druckform besitzt bildmäßig aufgebrachte lipophile Bereiche. Die Nichtbildstellen sind hydrophil und binden Wasser stärker als Farbe. Die lipophilen Bereiche stoßen Wasser ab und wirken daher farbfreundlich. Prinzipiell kann jede Oberfläche für den Offsetprozess genutzt werden, die in hydrophile und lipophile Bereiche unterteilt werden kann.
  • Zur Herstellung von Druckformen sind eine Vielzahl von Verfahren und Vorrichtungen unter Verwendung entsprechender Druckformen bekannt. Man kann beispielsweise mit einem Laser eine Druckform bildmäßig bestrahlen und anschließend chemisch entwickeln. Ferner können Druckformen durch Laserablation hergestellt werden. Dabei werden entweder lipophile Bereiche unter einer hydrophilen Schicht oder hydrophile Bereiche unter einer lipophilen Schicht freigelegt. Der für die Bilderzeugung maßgebliche Belichtungsvorgang kann entweder in einer separaten Anlage erfolgen oder innerhalb der Druckmaschine, wie die Erfindung dies bevorzugt. Für die Belichtung bzw. Bebilderung in der Druckmaschine ist das Außentrommelprinzip bekannt. Meistens kommen sogenannte prozessfreie Druckformen zum Einsatz, die keine chemische Entwicklung benötigen.
  • Heutzutage eingesetzte Druckformen werden nur einmalig verwendet. Aus ökonomischen und ökologischen Gründen ist es allerdings wünschenswert, dieselbe Druckform mehrfach verwenden zu können.
  • Aus der EP 0 911 155 A1 ist die Bebilderung einer Druckform durch eine fotokatalytische Reaktion bekannt. Zur Erzeugung des Druckbilds werden die hydrophilen Nichtbildstellen mit UV-Laserlicht bestrahlt. Die derart belichtete und dadurch bebilderte Druckform wird durch Erhitzen gelöscht. Hierbei muss die Druckform eine hohe Temperatur erreichen. Des Weiteren ist für die Löschung des Druckbilds nach Gebrauch der Druckform ein Reinigungsvorgang mit einer Reinigungseinrichtung erforderlich, um die Farbreste von der Druckform zu entfernen. Ohne Reinigung würde eine Erwärmung der Druckform zur Löschung des Druckbilds ein Einbrennen von Farbresten in die Druckfbrmoberfläche bewirken, wodurch die Druckform unbrauchbar würde.
  • Die EP 0 911 154 A1 beschreibt die Bebilderung durch bildgemäße Erwärmung und die Löschung durch UV-Bestrahlung. Weitere Details werden in der EP 1 020 304 A2 beschrieben.
  • Aus EP 0 875 395 A1 ist ein lithografisches Druckelement bekannt, das aus einer Keramik hergestellt ist, die aus einer Zirkoniumlegierung und einem Alpha-Aluminium besteht. Wird die Zirkoniumlegierung von einer stöchiometrischen Zusammensetzung in eine unterstöchiometrische Zusammensetzung übergeführt, ändert die Keramik ihre Eigenschaft von hydrophil zu lipophil. Der Übergang von einer stöchiometrischen zu einer unterstöchiometrischen Zusammensetzung wird durch Reduktion erzielt, während der Übergang von der unterstöchiometrischen Zusammensetzung zur stöchiometrischen Zusammensetzung durch Oxidation erzielt wird. Die Oxidation kann durch thermisch unterstützte Oxidation oder laserunterstützte Oxidation erzielt werden. Die Oxidation führt die Keramik in einen hydrophilen Zustand über. Die Reduktion, die zu einem lipophilen Zustand der Keramik führt, ist als laserunterstützte Reduktion durch Belichtung mit einer Strahlung von 1064 mm beschrieben.
  • Aus EP 1 020 304 A2 ist ein Offsetprintverfahren und ein entsprechender Druckapparat bekannt. Die Druckplatte wird bei einer ersten Temperatur hydrophil und bei zweiten Temperatur hydrophob.
  • Aus DE 196 12 927 ist eine Druckmaschine und ein Bilderzeugungsverfahren für eine Druckmaschine bekannt. Insbesondere ist der Nass-Offsetdruck beschrieben. Eine Trocknungseinheit, die mit Heißluft oder UV-Strahlung arbeitet, verdampft ein Lösungsmittel. Eine Einrichtung zum Befeuchten einer Polymerbeschichtung mit einer Wasserlösung ist ebenfalls vorgesehen.
  • Es ist eine Aufgabe der Erfindung, eine Nassoffset-Druckform der genannten Art zu schaffen, die die Erzeugung eines Druckbilds mit guter Bildschärfe ermöglicht. Vorzugsweise muss die Druckform nach Gebrauch nicht eigens für die Löschung des Druckbilds gereinigt werden. Die Bebilderung einer Druckform und/oder die Löschung eines Druckbilds einer Druckform soll bzw. sollen erleichtert werden, bevorzugt in einer Nassoffset-Druckmaschine.
  • Die Aufgabe wird durch die Gegenstände der unabhängigen Ansprüche gelöst.. Vorteilhafte Weiterbildungen werden durch die Unteransprüche beschrieben.
  • Die Erfindung basiert in einer bevorzugten Ausführung auf dem Gedanken, das lokale Benetzungsverhalten, also das hydrophile oder lipophile Verhalten einer Druckform, dadurch zu erreichen, dass die Atome oder Moleküle eines fotokatalytisch und thermisch veränderbaren Materials, das die bebilderbare oder bebilderte Oberfläche der Druckform bildet, von einem angeregten Zustand, in dem sie sich normalerweise befinden, durch die Bebilderung in einen niederenergetischen Zustand überführt werden. Bei der Löschung werden umgekehrt die Atome oder Moleküle aus dem niederenergetischen in den angeregten Zustand überführt. Die Druckform befindet sich somit vor Durchführung eines Bebilderungsvorgangs oder nach Durchführung eines Löschungsvorgangs in einem hydrophilen Ausgangszustand, der durch eine lokale, bildgemäße, vorzugsweise kurzzeitige, Erwärmung des fotokatalytisch und thermisch veränderbaren Materials in den bildgemäß lipophilen und hydrophilen Gebrauchszustand überführt wird.
  • Ein Vorteil dieser Art der Bebilderung ist, dass die unbebilderte Druckform problemlos bei Tageslicht gehandhabt werden kann. Die Löschung des Druckbilds und nicht die Bebilderung erfolgt durch die Einwirkung von natürlichem oder künstlichem Tageslicht oder UV-Licht, und zwar vorzugsweise an der das Druckbild aufweisenden Oberfläche ganzflächig. Andererseits ist der Verlust einer Bebilderung im eingebauten Zustand der Druckform unwahrscheinlich, da in der Druckmaschine kein Tageslicht mehr auf der Druckform auftrifft, das eine Löschung in einem relevanten Umfang fürchten ließe. Noch ein Vorteil liegt in der selbstreinigenden Eigenschaft der von dem fotokatalytisch und thermisch veränderbaren Material gebildeten Oberfläche, die bei der Löschung des Bildes zum Tragen kommt. Die Druckform wird in ihrer Oberfläche nicht nur hydrophil, sondern es werden auch organische Rückstände katalytisch oxidiert. Gegenüber dem Löschvorgang mittels ganzflächiger Erwärmung ist daher eine Reinigung der Druckform zum Zwecke des Löschens nicht erforderlich. Eine ganzflächige Erwärmung auf die erforderlich hohen Temperaturen kann innerhalb der Druckmaschine nur mit wesentlich größerem Aufwand als eine Bestrahlung mit Tageslicht oder UV-Licht durchgeführt werden. Insbesondere besitzt das natürliche Tageslicht kurzwelliges, ultraviolettes Licht (UV), welches die normalerweise vorhandene Hydrophilie des fotokatalytisch und thermisch veränderbaren Materials bewirkt.
  • Durch die Bebilderung der Druckform durch bildgemäß lokale Bestrahlung, vorzugsweise Laserbestrahlung, wird nicht die gesamte Druckform, sondern nur ein oberflächennaher Tiefenbereich der Druckform kurzzeitig lokal erwärmt. Die Druckform insgesamt bleibt auf Umgebungstemperatur, die im Allgemeinen der üblichen Raumtemperatur entspricht.
  • Eine erfindungsgemäße Druckform weist in einer Oberschicht, an deren Oberfläche das Druckbild erzeugt wird, Absorptionszentren für eine Strahlung auf, um durch Absorption dieser Strahlung in der Oberschicht Wärme zu erzeugen. Die Absorptionszentren werden von Partikeln eines Materials (Halbleitermaterials) gebildet, das Licht absorbiert, vorzugsweise Infrarotlicht (IR), das sich bis in den sichtbaren Bereich, d.h. bis in den nahen Infrarotbereich (NIR) erstrecken kann. Das Absorptionsmaterial ist in feinen Partikeln in dem fotokatalytisch und thermisch veränderbaren Material gleichmäßig dispergiert. Bei den Partikeln des Absorptionsmaterials handelt es sich vorzugsweise um Nanopartikel, d.h. um Partikel, deren maximale räumliche Erstreckung im Nanobereich liegt.
  • Durch die gleichmäßige, feine Verteilung der Absorptionszentren in dem fotokatalytisch und thermisch veränderbarem Material wird in einer einzigen Materialschicht bereits ein fotokatalytisch und fotothermisch veränderbares Material geschaffen. Die bekannten fotokatalytischen Materialien sind nämlich transparent. Die Transparenz ist unmittelbare Folge der Bandstruktur des Materials. Tatsächlich ist eine Bandlücke von mehr als 3 eV erforderlich, um die Anregung des fotokatalytischen Materials in einen Zustand zu bewirken, in dem die Bindung von OH-Gruppen an die Oberfläche des betreffenden Materials möglich ist. Bei dieser Bandlückenenergie, d.h. Band-Gap-Energie, ist jedoch eine Wechselwirkung mit niederenergetischen, langwelligeren Photonen nicht möglich. Daher sind die bekannten fotokatalytischen Halbleiter im sichtbaren Bereich transparent. Eine photothermische Einwirkung und Veränderung des fotokatalytischen Materials kann deshalb nur indirekt herbeigeführt werden. Die Erfindung schafft ein fotokatalytisch und fotothermisch veränderbares Material durch die feine Verteilung der Absorptionszentren in dem fotokatalytisch und thermisch veränderbaren Material. Halbleiter sind besonders bevorzugte Beispiele für Materialien zur Bildung der Absorptionszentren.
  • Die Oberschicht, die die zu bebildernde oder bereits bebildere Oberfläche bildet, umfasst somit ein mit Licht fotokatalytisch wechselwirkendes Material und die Absorptionszentren, die in dem fotokatalytisch wechselwirkenden Material, im folgenden auch einfach als fotokatalytisches Material bezeichnet, feinverteilt sind. Das fotokatalytische Material wechselwirkt mit Licht, dessen Wellenlänge kleiner ist als die Wellenlänge oder der Wellenlängenbereich der Strahlung, die von den Absorptionszentren absorbiert und in Wärme umgewandelt wird. Aufgrund seiner Bandlückenenergie von wenigstens 3 eV wechselwirkt das fotokatalytische Material nur mit Licht, dessen Wellenlänge kleiner als 400 nm ist. Das Material, das die Absorptionszentren bildet, wechselwirkt demgemäß mit
  • Strahlung, deren Wellenlänge 400 nm oder größer ist, vorzugsweise absorbiert es Licht aus dem IR-Wellenlängenbereich.
  • Durch die Erfindung wird ein neues Material geschaffen, das sowohl fotokatalytische als auch absorbierende Eigenschaften hat. Ein Vorteil ist, dass die Beschichtung eines Trägermaterials vereinfacht werden kann, da beide Wechselwirkungen, nämlich die Fotokatalyse und die Absorption, in einer einzigen Schicht stattfinden und daher eine ausschließlich der Absorption dienende Absorptionsschicht eingespart werden kann. Ferner ist die Dicke der Schicht des fotokatalytisch und fotothermisch veränderbaren Materials weniger kritisch. Während bei einem mehrschichtigen System die Dicke der fotothermisch veränderbaren Oberschicht großen Einfluss auf die Erwärmung hat, kann innerhalb einer einzelnen Schicht eine gleichmäßigere Erwärmung erreicht werden, sofern die Absorptionszentren homogen in dieser Schicht verteilt sind. Ferner sind die wärmeerzeugenden Absorptionszentren näher an der bebilderbaren oder bereits bebilderten Oberfläche, so dass schärfere Temperaturgradienten in der Oberfläche möglich sind.
  • Die Erzeugbarkeit besonders scharfer Temperaturgradienten an der Oberfläche ist insbesondere für die bevorzugte Bebilderung durch bildgemäße Erwärmung von Vorteil, da die Schärfe des Druckbilds verbessert wird. Die erfindungsgemäße Druckform ist grundsätzlich jedoch auch vorteilhaft für ein Bebilderungsverfahren, in dem die Bebilderung durch bildgemäße Hydrophilisierung der Oberfläche und die Löschung durch ganzflächige Hydrophobisierung herbeigeführt werden.
  • Eme ebenfalls erfindungsgemaße Druckform weist unterhalb einer der Oberschicht gemäß Anspruch 1 an deren Oberfläche das Druckbild erzeugt wird, eine Absorptionsschicht auf. Die Absorptionsschicht wird durch kurzzeitige, lokale Bestrahlung entsprechend lokal erwärmt, d.h. sie wird bildgemäß erwärmt mit bildgemäß lokal warmen und demgegenüber kalten Stellen. Für die bildgemäße Erwärmung sollte die Absorptionsschicht gleichmäßig dünn sein, um die Wärme in erster Linie normal zur Absorptionsschicht an die vorzugsweise unmittelbar darüber liegende Oberschicht mit dem fotokatalytisch und thermisch veränderbaren Material abzugeben und einen Wärmeausgleich innerhalb der Absorptionsschicht in tangentialer Richtung zwischen den bildgemäß lokal warmen und kalten Stellen der Absorptionsschicht zu verhindern. Die lokal bildgemäß erzeugte Wärme in der Absorptionsschicht wird über Wärmeleitung von der Absorptionsschicht in die Oberschicht übertragen, so dass an der Oberfläche der Oberschicht die lipophilen Stellen des Druckbilds entstehen. Die zwei Schichten sind ganzflächig wärmeleitend miteinander verbunden. Die Absorptionsschicht grenzt vorzugsweise unmittelbar an die Oberschicht. Jede der zwei Schichten wechselwirkt mit Strahlung aus einem bestimmten Wellenlängenbereich, wobei die Oberschicht mit Strahlung, die in besonders starkem Maße von der Absorptionsschicht absorbiert wird, wenig oder gar nicht wechselwirkt, d.h. für diese Strahlung durchlässig ist. Die Oberschicht wechselwirkt fotokatalytisch mit Licht aus dem UV-Bereich, während die Absorptionsschicht durch Wechselwirkung mit Strahlung aus einem anderen Wellenlängenbereich, vorzugsweise aus dem IR-Bereich, das von der Oberschicht durchgelassen wird, erwärmt wird. Die Oberschicht wird durch Wärmeleitung von der bildgemäß erwärmten Absorptionsschicht entsprechend ebenfalls bildgemäß erwärmt und bildet an ihrer Oberfläche aufgrund dieser Erwärmung die lipophilen Bildstellen.
  • Zwischen der Absorptionsschicht und einem Druckformträger ist vorzugsweise eine thermische Isolationsschicht vorgesehen, um Wärmeverluste an den Träger zu minimieren. Ist eine Absorptionsschicht nicht vorhanden, so kann eine thermische Isolationsschicht dennoch zwischen der Oberschicht und dem Träger ausgebildet sein.
  • Falls unterhalb der Oberschicht eine dünne Absorptionsschicht ausgebildet ist, kann auf Absorptionszentren in der Oberschicht verzichtet werden (nicht beansprucht). Die Anmelderin behält es sich vor, hierauf separat Anspruch zu erheben. Andererseits können die Absorptionsschicht und die Absorptionszentren in der Oberschicht auch vorteilhaft in Kombination ausgebildet sein.
  • Auch die Bildung einer erfindungsgemäßen Druckform mittels der Absorptionsschicht ist vorteilhaft auch für ein Bebilderungsverfahren, bei dem die Bebilderung durch Bestrahlung mit UV-Licht und die Löschung durch Erwärmung bewirkt werden.
  • Es kann vorteilhafterweise eine Diffusionsbarriere zwischen dem Träger und der Oberschicht vorgesehen sein, um eine Diffusion von Atomen des Trägers, insbesondere von Fe oder Al Atomen, zu verhindern. Die Diffusionsbarriere kann beispielsweise von einer SiO2 Quarzschicht gebildet werden. Eine als Diffusionsbarriere wirksame Schicht sollte höchstens 1 µm dick sein, vorzugsweise weist solch eine Schicht eine gleichmäßige Dicke von 100 nm der weniger auf. Eine allmähliche Diffusion von beispielsweise Fe und/oder A1 Atomen in die Oberschicht könnte den erfindungsgemäß genutzten Halbleitereffekt stören, da die Elektronenbandstruktur der Oberschicht sich im Laufe des Betriebs der Druckform durch solche Diffusionseffekte nachteilig verändern könnte. Die Diffusionsbarriere kann gleichzeitig als thermische Isolationsschicht ausgebildet sein. Ebenso kann eine Diffusionsbarriere durch eine eigens hierfür vorgesehene Schicht gebildet werden, die grundsätzlich zwischen jeder der genannten Schichten einer erfindungsgemäßen Druckform angeordnet sein kann. In bevorzugten Ausführungen ist eine eigens als Diffusionsbarriere vorgesehene Schicht zwischen dem Träger und der Absorptionsschicht gebildet, falls eine Absorptionsschicht vorgesehen ist. Falls eine thermische Isolationsschicht vorhanden ist, kann die Diffusionsbarriere zwischen dem Träger und der Isolationsschicht oder zwischen der Isolationsschicht und der gegebenenfalls vorhandenen Absorptionsschicht vorgesehen sein. Besonders bevorzugt kann solch eine als Diffusionsbarriere wirkende Schicht unmittelbar unter der Oberschicht angeordnet sein. In diesem Falle können Fremdatome, die möglicherweise nicht nur von einem Träger, sondern auch von einer anderen Funktionsschicht stammen können, am sichersten von einem Eindiffundieren in die Oberschicht abgehalten werden.
  • Der Löschprozess der Druckform erfolgt durch Bestrahlung der Oberfläche mit UV-Licht. Erfindungsgemäß wird während des Löschprozesses dafür gesorgt, dass an der zu aktivierenden Oberfläche der Druckform für eine den Löschprozess unterstützende hohe Feuchtigkeit gesorgt wird. Fehlt es an der aktivierten Oberfläche nämlich an Feuchtigkeit, so kommt es zu einer Rekombination der durch UV-Bestrahlung erzeugten Elektron-Loch-Paare, so dass eine dauerhafte Hydrophilisierung der Oberfläche nicht erreicht wird. Vorzugsweise wird der Oberfläche während des Löschprozesses Wasser dadurch zugeführt, dass an der Oberfläche eine hohe Luftfeuchtigkeit eingestellt wird. Die Erhöhung der Luftfeuchtigkeit gegenüber der Umgebung kann insbesondere durch die Zufuhr von Wasserdampf bewirkt werden oder auch mittels des Feuchtwerks einer Druckmaschine, den in diesem Falle eine Einrichtung zur Vemebelung von Wasser zugeordnet wird. Die Feuchtigkeit an der Oberfläche und in der Nähe der Oberfläche ist vorzugsweise derart, dass die dort angrenzende Luft mit Feuchtigkeit gesättigt ist.
  • Hohe Luftfeuchtigkeit ist im Druckwerk im allgemeinen allerdings nicht erwünscht. So kann es beispielsweise zur Bildung von Kondenswasser kommen, welches auf die Zylinder tropft und Störungen im Druckbild bewirkt. Auch kann der Offset-Prozess im Verlauf einer Produktion nachteilig beeinflusst werden, wenn wegen einer feuchtigkeitsgesättigten Umgebungsluft die Verdunstung von Oberflächenwasser erschwert wird, das auf der Druckformoberfläche liegt oder beim Spalten eines Farbfilms an die Oberfläche der Druckfarbe gelangt.
  • In einer Weiterbildung der Erfindung wird daher eine Feuchthaltung und vorzugsweise auch eine Temperaturhaltung, d.h. eine Klimatisierung des Druckwerks derart vorgenommen, dass während der Hydrophilisierung mittels UV-Strahlung eine hohe Luftfeuchtigkeit von mehr als 60%, bevorzugter von mehr als 80%, und für die Hydrophobisierung der Oberfläche eine deutlich niedrigere Luftfeuchtigkeit eingestellt wird. Desweiteren wird eine deutlich niedrigere Luftfeuchtigkeit auch während des Druckprozesses und vorzugsweise während aller Zeiten außerhalb der Hydrophilisierung durch die Feuchthaltung, vorzugsweise Klimatisierung eingestellt. Eine Kapselung des Druckwerks vereinfacht die Einstellung und Haltung der gewünschten Werte der Feuchte und vorzugsweise auch der Temperatur im Druckwerk und insbesondere an der Druckform. Ferner kann die Feuchte bzw. das Klima durch die Anordnung von Feuchtigkeitssensoren und vorzugsweise auch von Temperatursensoren überwacht werden.
  • Bevorzugte Ausführungsbeispiele der Erfindung werden nachfolgend anhand von Figuren beschrieben. An den Ausführungsbeispielen offenbar werdende Merkmale bilden je einzeln und in jeder Merkmalskombination die Gegenstände der Ansprüche vorteilhaft weiter. Dies gilt auch für Kombinationen von Merkmalen, die an unterschiedlichen Ausführungsbeispielen nur explizit beschrieben werden, soweit die Kombination solcher Merkmale nicht zu Widersprüchen führt, die nicht auflösbar sind. Es zeigen:
  • Figur 1 a
    eine UV-hydrophile Oberfläche,
    Figur 1b
    eine Benetzung der Oberfläche,
    Figur 1c
    einen Belichtungsvorgang zur lokalen Aufhebung der Hydrophilie der Oberfläche,
    Figur 1d
    die Benetzung der Oberfläche nach dem Belichtungsvorgang,
    Figur 2a
    eine Druckform nach einem ersten Ausführungsbeispiel in einem Querschnitt,
    Figur 2b
    eine Druckform nach einem zweiten Ausführungsbeispiel in einem Querschnitt,
    Figur 2c
    eine Druckform nach einem dritten Ausführungsbeispiel in einem Querschnitt,
    Figur 2d
    eine Druckform nach einem vierten Ausführungsbeispiel in einem Querschnitt und
    Figur 3
    ein Druckwerk einer Nassoffset-Rotationsdruckmaschine.
  • Figur 1a zeigt eine aufgrund Bestrahlung mit Licht aus dem UV-Bereich hydrophile Oberfläche 130 einer Nassoffset-Druckform 31, die im Folgenden auch als UV-hydrophile Oberfläche bezeichnet wird. Die Oberfläche 130 wird von einer Oberschicht 11 der Druckform 31 gebildet, die ein fotokatalytisch und thermisch veränderbares Material enthält oder gänzlich aus solch einem Material besteht. Der im Normalfall bestehende angeregte Zustand ergibt sich beispielsweise aus der Bestrahlung mit natürlichem oder künstlichem Tageslicht. Wird nämlich die Schicht 11 durch eine Lichtquelle bestrahlt, die UV-Licht zumindest als Bestandteil ihres Spektrums ausstrahlt, vorzugsweise eine Tageslichtquelle und/oder eine UV-Lichtquelle 12, kommt es zu einer Bestrahlung der Schicht 11 mit hoch energetischen Photonen 17, so dass in der Nähe der Oberfläche 130 der Schicht 11 Elektronen aus dem Valenzband des fotokatalytisch und thermisch veränderbaren Materials in das Leitungsband angeregt werden. Die im Valenzband fehlenden Elektronen hinterlassen positive Löcher h+. Ist das elektrische Potential der Löcher h+ ausreichend hoch, so kann das fotokatalytisch und thermisch veränderbare Material mit Wassermolekülen 14 reagieren, derart, dass ein Hydroxylradikal OH gebildet wird, das sich an die Atome oder Moleküle des fotokatalytisch und thermisch veränderbaren Materials bindet. Mit zunehmender Zahl von an die Oberfläche 130 gebundenen OH-Gruppen nimmt der hydrophile Charakter der Oberfläche 130 zu. Insbesondere können sich Wassermoleküle 14 über Wasserstoffbrücken an die OH-Gruppen binden, die ihrerseits an die positiven Löcher h+ der Oberschicht 11 gebunden sind.
  • Figur 1b veranschaulicht die Benetzung der UV-hydrophilen Oberfläche 130 der Schicht 11 mit einem Wassertropfen 140. Der spitze Kontaktwinkel, den der Rand des Wassertropfens 140 mit der Oberfläche 130 bildet, ist ein Maß für die Hydrophilie der Oberfläche 130.
  • Ein bevorzugtes fotokatalytisch und thermisch veränderbares Material für die Oberschicht 11 der Druckform 31 ist Titanoxid TiO2 in der Anatase-Kristallstruktur. In der Anatase-Struktur beträgt die Anregungsenergie vom Valenzband in das Leitungsband etwa 3.2 eV, was einer Wellenlänge von 387 nm entspricht. Durch Einwirkung von ultraviolettem Licht, dessen Wellenlänge nicht größer ist als 387 nm, erfolgt eine Anregung von Valenzelektronen des TiO2 in das Leitungsband des Halbleiters. Dabei entsteht gleichzeitig ein positives Loch h+ im Valenzband. Ein Rückfallen des angeregten Elektrons auf das positive Loch h+ wird verhindert, wenn zuvor eine chemische Bindung eines anderen Stoffs an die aktivierte Halbleiteroberfläche erfolgt. Bei Anatase-Titanoxid und bestimmten anderen Halbleitern ist dies zum Beispiel möglich, wenn Wasser vorhanden ist. Der hydrophile Zustand kann andauern, auch wenn kein UV-Licht mehr auf das fotothermisch veränderbare Material einwirkt.
  • Das im Sinne der Erfindung fotokatalytisch und thermisch veränderbare Material sollte eine Valenzbandenergie und eine Leitungsbandenergie aufweisen, jeweils gemessen an den beiden einander zugewandten Kanten der Energiebänder, die für die Reduzierung und Oxidierung von Wasser geeignet sind. Die Leitungsbandenergie sollte daher zumindest so negativ sein, wie die zur Reduzierung von Wasser erforderliche. Energie (0.0 V in saurer Lösung), und die Valenzbandenergie sollte zumindest so positiv sein, wie die zur Oxidierung von Wasser erforderliche Energie (+1.23 V). Eine die Oberfläche bildende Oberschicht, die von oder zumindest zu einem großen Teil aus dem fotothermisch veränderbarem Material gebildet ist, weist eine Band-Gap-Energie auf, die vorzugsweise wenigstens 3.2 eV beträgt. Als Band-Gap-Energie wird die Energie bezeichnet, die erforderlich ist, um Elektronen aus dem Valenzband in das Leitungsband anzuregen. Die durch die Anregung entstandenen positiven Löcher des Valenzbands besitzen in diesem Fall ein vorteilhaft großes Potential, um in Verbindung mit Wasser hochreaktive OH-Radikale zu bilden. Besonders bevorzugte Materialien sind das bereits genannte Anatase-TiO2 und andere Materialien mit geeigneter Elektronenstruktur, um durch Anregung mit UV-Licht in der beschriebenen Weise Hydroxylgruppen an der Materialoberfläche zu binden. Beispiele für solche, ebenfalls geeignete Materialien sind Zinkoxid, ZrO2, SrTiO3, KTaO3 oder KTa0,77 Nb0,23 O3, die wie TiO2 das fotokatalytisch und thermisch veränderbare Material je alleine oder in einer Materialkombination aus wenigstens zwei der genannten Materialien einschließlich TiO2 bilden. Die Druckform 31 weist in dem für die UV-hydrophile Oberfläche maßgeblichen Tiefenbereich vorzugsweise wenigstens 40 Gew.-% des fotokatalytisch und thermisch veränderbaren Materials auf, gemessen am Gesamtgewicht des diesen Bereich bildenden Materials der Druckform. Wird das fotokatalytisch und katalytisch und thermisch veränderbare Material durch eine Materialkombination gebildet, so stellt eine Kombination von TiO2 und SiO2 einen besonders bevorzugten Werkstoff dar. SiO2 kann auch in Kombination mit einem anderen oder mehreren der genannten Materialien vorteilhafterweise einen Werkstoff bilden, der das fotokatalytisch und thermisch veränderbare Material enthält.
  • Die Hydrophilie von Anatase-Titanoxid als Effekt einer fotokatalytischen Reaktion ist bekannt und wird beispielsweise bei selbstreinigenden Oberflächen an Gebäuden und Antibeschlagsgläsem, beispielsweise im Automobilbereich, genutzt.
  • Eine weitere vorteilhafte Eigenschaft von Titanoxid-Schichten besteht darin, selbstreinigend zu wirken, da organische Partikel auf der Oberfläche mit der Zeit fotokatalytisch zersetzt werden. Dies gilt auch für die anderen der genannten Materialien.
  • Da in einer normalen Arbeitsumgebung stets ein gewisser Anteil ultravioletten Lichts vorhanden ist, das eine von einem fotokatalytisch und thermisch veränderbaren Material gebildete Oberfläche stets anregt, kann davon ausgegangen werden, dass solch eine Oberfläche normalerweise hydrophil ist. Die Druckform kann durch natürliches oder künstliches Tageslicht gelöscht werden. Unterstützt werden kann die Löschung durch eine zusätzliche UV-Quelle. Ein für die Löschung allein oder in Verbindung mit Tageslicht verwendeter UV-Strahler sollte ein Spektrum mit einem ausreichenden Anteil von UV-Licht mit einer Wellenlänge von 387 nm und kleiner haben. Vorzugsweise liegt der Peak des ausgestrahlten Spektrums bei einer Wellenlänge von 387 nm, entsprechend einer Band-Gap-Energie von 3.2 eV, oder einer kürzeren Wellenlänger. Es liegt die spektrale Verteilung der Strahlung vorzugsweise überwiegend unterhalb von 387 nm. Insbesondere kann als UV-Strahler ein UV-Laser oder UV-Lasersystem zum Einsatz kommen. Auf eine Fokussieroptik für den oder die Laser wird vorzugsweise verzichtet.
  • Die UV-hydrophile Oberfläche wird lokal durch Bestrahlung mit (IR) Infrarot-Laserlicht farbfreundlich gemacht. Dabei wird die Druckform insgesamt nicht wesentlich erwärmt. Sie bleibt auf der normalerweise in einer Druckmaschine herrschenden Temperatur im Bereich von 10 °C bis 40 °C.
  • Figur 1c veranschaulicht die Beseitigung der Hydrophilie der UV-hydrophilen Oberfläche 130. Dies geschieht, indem die Oberschicht 11 bildgemäß lokal erwärmt wird. Die Belichtung bzw. Bebilderung erfolgt durch Bestrahlung mit Laserlicht 18. Die Wellenlänge des Laserlichts 18 kann im sichtbaren Bereich bis zum nahen Infrarot (NIR) liegen, d.h. zwischen etwa 400 und 3000 nm betragen. Bevorzugt wird Laserlicht aus dem Bereich von 700 nm bis 3000 nm und besonders bevorzugt aus dem Bereich von 800 nm bis 1100 nm zur Bebilderung verwendet. Durch die lokale Einwirkung des Laserlichts 18 wird an der Oberfläche 130 ein dem Laserspot auf der Oberfläche entsprechender lipophiler Oberflächenbereich 131 erzeugt. Die Wärmeübertragung zu den Atomen oder Molekülen, an denen die OH-Gruppen gebunden sind, bewirkt eine Aufspaltung der Bindungen. Anschließend kommt es zu einer Rekombination von Elektronen aus dem Leitungsband des fotokatalytisch und thermisch veränderbaren Materials der Schicht 11 mit den positiven Löchern h+. Dadurch nimmt die Hydrophilie ab und die Druckform 31 wird im bestrahlten Oberflächenbereich 131 lipophil, während in dem nicht mit dem Laserlicht 18 bestrahlten Oberflächenrestbereich 130 der hydrophile Zustand erhalten bleibt. Bei der Bebilderung werden lokale Flächenelemente, die je einem Bildpunkt entsprechen, von beispielsweise 50 x 50 µm2 für eine Dauer von 1 µs bis 100 µs auf eine Temperatur von 400 °C bis 600 °C erwärmt, während die übrigen Bereiche 130 der Schicht 11 bei Umgebungstemperatur bleiben. Nach der Bebilderung ist auf der Nassoffset-Druckform 31 ein latentes Bild vorhanden, das während des Drucks erhalten bleibt. Die lipophilen Bildpunkte 131 übertragen während des Druckvorgangs die Farbe.
  • Figur 1d veranschaulicht die Benetzung der Schicht 11 durch Wasser in dem nicht bestrahlten Oberflächenbereich 130 und dem bestrahlten Oberflächenbereich 131. In dem bestrahlten und dadurch erwärmten Material in dem Oberflächenbereich 131 ist die Wasserbenetzung gering. Der in dem Oberflächenbereich 131 gebildete Kontaktwinkel zwischen dem Oberflächenbereich 131 und dem Wassertropfen 141 ist groß, und die Schicht 11 ist in diesem Oberflächenbereich 131 lipophil. Um zu verhindern, dass von dem Zeitpunkt des Beginns der Belichtung bis zu dem Ende eines Druckvorgangs UV-Licht aus der Umgebung zu einer Neuanregung des fotokatalytisch und thermisch veränderbaren Materials führt, genügt es, dass sich die Druckform im Schatten befindet. Dies ist im Normalfall nach Einbau der Druckform in eine Druckmaschine gegeben.
  • Die Figuren 2a bis 2d zeigen vorteilhafte Ausführungsbeispiele für eine schichtweise aufgebaute Druckform 31, die vorzugsweise als Druckplatte ausgebildet ist und auf einen Druckformzylinder aufgespannt werden kann oder bereits aufgespannt ist.
  • Die Druckform 31 der Figur 2a ist zweischichtig aufgebaut mit einer Trägerschicht 21 und einer einzigen, unmittelbar auf der Trägerschicht 21 aufgebrachten Oberschicht 24, an deren freien Oberfläche das Druckbild erzeugt wird oder im Falle einer bebilderten Druckform 31 bereits vorhanden ist. Die Schicht 24 enthält ein fotokatalytisch und thermisch veränderbares Material 24a in einem ausreichend großen Anteil, um eine pixelweise feine Bebilderung zu ermöglichen. Es soll der Fall mit eingeschlossen jedoch nicht beansprucht, sein, dass die Schicht 24 ausschließlich aus einem fotokatalytisch und thermisch veränderbaren Material 24a besteht.
  • Die Trägerschicht 21 wird wie auch in den weiteren Ausführungsbeispielen von einer biegsamen Stahlplatte oder Aluminiumplatte gebildet und nachfolgend auch einfach nur als Träger bezeichnet.
  • Aus der Elektronenbandstruktur eines fotokatalytisch und thermisch veränderbaren Materials, das durch UV-Bestrahlung eine hydrophile Oberfläche bildet, kann geschlossen werden, dass solch ein Material im sichtbaren Bereich des Spektrums und im nahen Infrarot (NIR) transparent ist. Es kommt somit zu keiner Wechselwirkung mit Laserlicht aus dem sichtbaren Bereich des Spektrums und dem NIR oder noch längerwelligem Licht. Um dennoch die für die Bebilderung erforderliche Wärme zu erzeugen, können in der Oberschicht der Druckform vorteilhafterweise Absorptionszentren für Laserlicht im NIR oder dem gesamten IR-Bereich geschaffen werden. Es kommt so zu einer indirekten Erwärmung des fotokatalytisch und thermisch veränderbaren Materials der Oberschicht durch Wärmeleitung.
  • Die Oberschicht 24 ist im Ausführungsbeispiel eine Dispersion aus dem fotokatalytisch und thermisch veränderbaren Material 24a und Absorptionspartikeln, die in dem Material 24a in einer feinen, gleichmäßigen Verteilung dispergiert sind. Die Absorptionspartikel sind Nanopartikel eines Halbleitermaterials, das Strahlung aus dem IR-Wellenlängenbereich absorbiert, in Wärme umwandelt und an das umgebende, fotokatalytisch und thermisch veränderbare Material 24a abgibt. Die Absorptionspartikel bilden die Absorptionszentren 24b für die der Erwärmung dienende Strahlung. Es können auch Partikel von mehreren Halbleitermaterialien die Absorptionszentren 24b bilden.
  • Damit nicht zuviel Wärme in lateraler Richtung innerhalb der Oberschicht der Druckform 31 diffundiert, kann eine an die Oberschicht unmittelbar angrenzende Unterschicht so beschaffen sein, dass sie Wärme aufnimmt. Als Material für solch eine Unterschicht, die auch unmittelbar durch einen Druckformträger wie die Trägerschicht 21 gebildet sein kann, eignen sich Materialien, die eine hohe Wärmeleitung ermöglichen und eine große Wärmekapazität besitzen. Da ein Druckformträger über eine hohe mechanische Festigkeit verfügen sollte, um einen dauerhaften Einbau innerhalb der Druckmaschine zu ermöglichen, kann solch ein Träger beispielsweise aus Stahl oder Aluminium bestehen.
  • Je nach Empfindlichkeit der Oberschicht kann es vorteilhaft sein, die Wärmeabgabe an einen Träger zu vermindern, um die bilderzeugende Wirkung der in der Oberschicht lokal erzeugten Wärme zu erhöhen. So kann zwischen der Oberschicht und dem Träger beispielsweise eine Isolationsschicht vorgesehen sein, welche die Wärmeleitung zum Träger vermindert. Das Material der Isolationsschicht sollte naturgemäß eine geringe Wärmeleitfähigkeit aufweisen.
  • Figur 2b zeigt eine Ausführung, in der auf den Träger 21 zunächst eine Absorptionsschicht 23 und darauf die Oberschicht 24 aufgebracht sind. Zu diesem dreischichtigen Aufbau wird durch die Bestrahlung bei der Bebilderung in der Absorptionsschicht 23 lokal bildgemäß Wärme erzeugt. Die in der Absorptionsschicht 23 erzeugte Wärme wird über die Kontaktfläche in die Oberschicht 24, welche das fotokatalytisch und thermisch veränderbare Material 24a enthält, übertragen und erreicht die Oberfläche der Oberschicht 24. Wie bereits beschrieben, bewirkt die Wärmeübertragung zu den Atomen bzw. Molekülen an der Oberfläche, an denen die OH-Gruppen gebunden sind, eine Aufspaltung dieser Bindungen, wodurch es zu Rekombinationen und zur Abnahme der Hydrophilie kommt. Vorteilhaft ist eine Schichtdicke der Absorptionsschicht 23 von 1 µm bis 5 µm.
  • Die Oberschicht 24 weist bei Ausbildung einer besonderen Absorptionsschicht 23 eine gleichmäßige Dicke auf von vorzugsweise 0,05 µm bis 5 µm, besonders bevorzugt von 0,05 µm bis 2 µm. Ohne Absorptionsschicht, wie beispielsweise im ersten Ausführungsbeispiel, weist die Oberschicht 24 vorteilhafterweise eine Schichtdicke von 1 µm bis 30 µm, besonders vorteilhaft zwischen 1 µm bis 10 µm, auf.
  • Figur 2c zeigt ein drittes bevorzugtes Ausführungsbeispiel. Hierbei befindet sich unmittelbar über dem Träger 21 eine thermisch isolierende Zwischenschicht 22, auf der unmittelbar die Oberschicht 24 mit dem fotokatalytisch und thermisch wirksamen Material 24a angeordnet ist. Die Dicke der Zwischenschicht 22 beträgt vorzugsweise zwischen 1 µm und 30 µm. In der Oberschicht 25 sind wieder wie im ersten Ausführungsbeispiel gleichmäßig verteilt Absorptionszentren 24b vorhanden. Die Oberschicht 24 weist vorzugsweise eine Dicke von 1 µm bis 30 µm, besonders bevorzugt eine Dicke von 1 µm bis 10 µm, auf.
  • Figur 2d zeigt ein viertes Ausführungsbeispiel. In diesem Beispiel befindet sich unmittelbar über dem Substrat 21 eine thermisch isolierende Zwischenschicht 22, deren Dicke vorzugsweise zwischen 1 µm und 30 µm beträgt. Unmittelbar auf der Zwischenschicht 22 ist eine Absorptionsschicht 23 vorgesehen, deren Schichtdicke vorzugsweise zwischen 1 µm und 5 µm beträgt. Auf der Absorptionsschicht 23 ist eine Oberschicht 24 angeordnet, die das fotokatalytisch und thermisch veränderbare Material 24a enthält oder ausschließlich aus solchem Material besteht und vorzugsweise eine Dicke von 0,05 µm bis 5 µm, besonders bevorzugt von 0,05 µm bis 2 µm, aufweist.
  • Die Oberschichten 24 der Ausführungsbeispiele der Figuren 2b und 2d weisen gemäß den Ansprüchen ebenfalls dispergierte Absorptionszentren auf, obgleich wegen der Absorptionsschicht 23 auch auf den Einbau von Absorptionszentren in die das fotokatalytisch und thermisch veränderbare Material verzichtet werden könnte, was jedoch nicht beansprucht wird. Im Ausführungsbeispiel der Figur 2d ist eine Oberschicht 24 mit dispergierten Absorptionszentren 24b gebildet.
  • Zum Aufbringen der Oberschicht und einer oder mehreren weiteren Schicht bzw. Schichten sind beispielsweise das Sol-Gel-Verfahren und das CVD-Verfahren (Chemical Vapor Deposition) geeignet. Die Schicht oder Schichten kann bzw. können unmittelbar übereinander aufgetragen sein, d.h. ohne vermittelnde Schichten wie beispielsweise Haftschichten.
  • Figur 3 zeigt eine Druckeinheit mit einem Druckformzylinder 32, einem zugeordneten Gummituchzylinder 38 und einem Gegendruckzylinder 39, der mit dem Gummituchzylinder 38 einen Druckspalt für eine zu bedruckende Bahn 37 bildet. Auf dem Druckformzylinder 32 sind zwei Druckplatten 31 in bekannter Weise befestigt. Allerdings wird jede der beiden Druckplatten 31 von einer Druckform gemäß der Erfindung, beispielsweise gemäß einem der Ausführungsbeispiele der Figuren 2a bis 2d gebildet. Über den Umfang um den Druckformzylinder 32 verteilt, sind in der Druckmaschine angeordnet eine Bildgebungseinrichtung 33, zwei Löscheinrichtungen 34, Farbauftragswalzen 35 und eine Feuchtauftragswalze 36. Über die Feuchtauftragswalze 36 wird in bekannter Weise ein Feuchtmittelfilm, vorzugsweise ein Wasserfilm, an die Druckformen 31 herangeführt. Mittels der Farbauftragswalzen 35 wird während des Drucks in ebenfalls bekannter Weise bildmäßig Farbe auf die Druckformen 31 übertragen, die von den Druckformen 31 zunächst auf den Gummituchzylinder 38 und von diesem auf die Bahn 37 übertragen wird. Der Gegendruckzylinder 39 kann selbst ein Gummituchzylinder einer weiteren Druckeinheit zum beidseitigen Drucken, ein Stahlzylinder für nur eine einzige Druckstelle oder ein Stahlzylinder eines Satellitendruckwerks, beispielsweise eines 9- oder 10-Zylinderdruckwerks sein.
  • Die Bildgebungseinrichtung 33 ist der zu bebildernden Oberfläche der Druckform 31 unmittelbar zugewandt und parallel zur Drehachse des Druckformzylinders 32 angeordnet. Die Bildgebungseinheit 33 weist eine Mehrzahl von entlang der Drehachse des Druckformzylinders 32 nebeneinander angeordneten Lasern auf. Die Laserspots dieser Laser sind auf die Oberfläche der Druckform 31 fokussiert. Die Laser der Bildgebungseinrichtung 33 sind vorzugsweise zu einem oder mehreren nebeneinander angeordneten Laserarrays zusammengefasst. Eine Bildgebungseinrichtung in bevorzugten Ausführungen wird in der DE 199 11 907 A1 beschrieben,
  • Die beiden Löscheinrichtungen 34 weisen je wenigstens einen Tageslichtstrahler und/oder wenigstens einen UV-Strahler auf. Die Löscheinrichtungen 34 sind über den Umfang des Druckformzylinders 32 voneinander beabstandet je parallel zu der Drehachse des Druckformzylinders 32 angeordnet. Grundsätzlich würde eine einzige der Löscheinrichtungen 34 genügen, um die bebilderten Oberflächen der Druckformen 31 zu löschen, indem das die jeweiligen Oberflächen bildende, fotothermisch veränderbare Material in Bezug auf das jeweilige Druckbild in den hydrophilen Normalzustand durch ganzflächige Bestrahlung mit Licht aus dem UV-Bereich zurückversetzt wird.
  • Während der Bebilderung sind die Löscheinrichtungen 34 ausgeschaltet. Vorzugsweise stehen während der Bebilderung keinerlei Walzen bzw. Zylinder mit dem Druckformzylinder 32, insbesondere den Druckformen 31, in Berührung, um eine möglichst ruhige Drehung des Druckformzylinders 32 zu ermöglichen. Nach Beendigung des Drucks werden die Löscheinrichtungen 34 eingeschaltet. Während der Löschung werden die Oberflächen der Druckformen 31 mit Wasser benetzt; um die durch UV-Strahlung angeregten, zuvor lipophilen Oberflächenbereiche durch Bindung von OH-Gruppen dauerhaft hydrophil zu machen. Hierzu kann insbesondere das Feuchtwerk der Druckeinheit oder ein Dampferzeuger verwendet werden.
  • In einer Weiterentwicklung wird die Druckeinheit, die den Druckformzylinder 32 und den Gummituchzylinder 38 umfasst, gegenüber der Umgebung gekapselt und klimatisiert, um innerhalb der Kapselung 40 die Feuchtigkeit und auch die Temperatur dem jeweiligen Betriebszustand optimal anpassen zu können. So sollte innerhalb der Umkapselung 40 während dem Löschvorgang eine gleichmäßig hohe Luftfeuchte von wenigstens 60% herrschen, vorzugsweise wenigstens 80%, während für die Bebilderung und die laufende Druckproduktion die Luftfeuchte deutlich niedriger sein sollte. Bevorzugt umschließt die Umkapselung 40 wie im Ausführungsbeispiel auch den Gegendruckzylinder 39. Falls das Druckwerk weitere Zylinder umfasst, sind vorzugsweise auch die zu dem Druckwerk gehörenden weiteren Zylinder von der Umkapselung 40 eingeschlossen. Handelt es sich bei den Druckwerken der Druckmaschine um Gummi/Gummi-Druckwerke, so umschließt die Umkapselung 40 vorzugsweise jeweils die beiden gegeneinander angestellten Gummituchzylinder und deren zugeordnete Druckformzylinder. Es können Umkapselungen 40 im Falle von derart gebildeten Druckwerken auch für die üblichen H-oder N-Brücken, d.h. für jeweils vier Gummituchzylinder und deren Plattenzylinder, gebildet werden. Bei Satellitendruckwerken mit Neun- oder Zehn-Zylindereinheiten werden diese Einheiten vorzugsweise von jeweils einer eigenen Umkapselung 40 umschlossen.
  • Obgleich bereits eine reine Befeuchtungsanlage vorteilhaft ist, um innerhalb der Umkapselung 40 die hohe Luftfeuchte für die UV-Bestrahlung einzustellen und während der Bestrahlung zu halten, wird eine Klimatisierung mit der gleichzeitigen Einstellung und Haltung einer vorgegebenen Temperatur innerhalb der Umkapselung 40 bevorzugt. Die für die Einstellung und Haltung einer vorgegebenen Luftfeuchte Fsoll und einer vorgegebenen Temperatur Tsoll verwendete Klimaanlage umfasst über die Umkapselung 40 und die Einrichtung für die Zufuhr von Wasser, im Ausführungsbeispiel die Feuchtauftragswalze 36, einen Feuchtigkeits- und Temperaturregler 43 und wenigstens einen innerhalb der Umkapselung 40 angeordneten Feuchtigkeitssensor 41 und wenigstens einen innerhalb der Umkapselung 40 angeordneten Temperatursensor 42. Die Sensoren 41 und 42 nehmen innerhalb der Umkapselung 40 die Luftfeuchtigkeit und die Temperatur auf und geben sowohl die Luftfeuchtigkeit als auch die Temperatur je als Regelgröße Fist und Tist auf den Regler 43. Der Regler 43 bildet aus der Differenz der aufgenommenen Werte der Luftfeuchtigkeit und Temperatur und den vorgegebenen Werten die jeweilige Differenz Fsoll-Fist und Tsoll-Tist und bildet in Abhängigkeit von der Feuchtigkeitsdifferenz und der Temperaturdifferenz die Feuchtestellgröße F und die Temperaturstellgröße T für die innerhalb der Umkapselung 40 wirkenden Einrichtungen für die Zufuhr von Wasser und die Beeinflussung der Temperatur.
  • Die Bebilderung und Löschung in der Druckmaschine wird bevorzugt, besonders die Bebilderung und Löschung an dem Druckformzylinder, auf dem die Druckform auch in der Druckproduktion befestigt oder integriert am Zylinder ausgebildet ist. Grundsätzlich können jedoch die Bebilderung und die Löschung auch außerhalb der Druckmaschine vorgenommen werden. Auch die Durchführung des einen der Vorgänge in der Druckmaschine und Durchführung des anderen der Vorgänge außerhalb der Druckmaschine soll nicht ausgeschlossen werden.

Claims (30)

  1. Nassoffset-Druckform mit einer Oberschicht (24) für eine Nassoffset-Rollenrotationsdruckmaschine, die ein fotokatalytisch und thermisch veränderbares Material enthält und die eine bebilderbare oder bebilderte Oberfläche (130, 131) bildet,
    wobei das Material durch Bestrahlung mit Licht fotokatalytisch in einen hydrophilen und durch Erwärmung in einen lipophilen Zustand versetzbar ist und
    dadurch gekennzeichnet, dass
    die Oberschicht (24) Absorptionszentren (24b) für eine Strahlung aufweist, mit der eine bildgemäße Erwärmung der Oberschicht (24) bewirkt wird, wobei das fotokatalytische Material mit Licht wechselwirkt und die Absorptionszentren von Partiklen eines Halbleitermaterials gebildet werden, die in dem fotokatalytisch und thermisch veränderbaren Material dispergiert sind.
  2. Nassoffset-Druckform nach Anspruch 1, dadurch gekennzeichnet, dass die Absorptionszentren (24b) Nanopartikel sind.
  3. Nassoffset-Druckform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Halbleitermaterial ein Material mit einer an der Unterkante des Leitungsbands gemessenen Leitungsbandenergie, die zumindest so negativ ist wie die zur Reduktion von Wasser in Wasserstoffgas erforderliche Energie, und einer an der Oberkante des Valenzbands gemessenen Valenzbandenergie, die zumindest so positiv ist, wie eine zur Oxidation von Wasser zu Wasserstoffgas erforderliche Energie, ist.
  4. Nassoffset-Druckform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das fotokatalytisch und thermisch veränderbare Material (24a) der Oberschicht (24) Anatase-TiO2 oder Zinkoxid oder ZrO2 oder SrTiO3 oder KTaO3 oder KTa0,77 Nb0,23 03 oder eine Kombination von wenigstens zwei dieser Materialien ist.
  5. Nassoffset-Druckform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass ein die Oberfläche (130, 131) bildender Werkstoff das fotokatalytisch und thermisch veränderbare Material (24a) mit einem Anteil von wenigstens 40 Gew.-% enthält.
  6. Nassoffset-Druckform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass unterhalb der Oberschicht (24) eine Absorptionsschicht (23) für Strahlung einer Wellenlänge von 400 nm oder grösser angeordnet und wärmeleitend mit der Oberschicht (24) verbunden ist.
  7. Nassoffset-Druckform nach Anspruch 1, dadurch gekennzeichnet, dass die Absorptionsschicht (23) für einen direkten Wärmekontakt unmittelbar an die Oberschicht (24) grenzt.
  8. Nassoffset-Druckform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass unterhalb der Oberschicht (24), vorzugsweise unterhalb einer unterhalb der Oberschicht (24) angeordneten Absorptionsschicht (23), eine thermisch isolierende Schicht (22) ausgebildet ist.
  9. Nassoffset-Druckform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Druckform (31) einen Träger (21) für die Oberschicht (24) aufweist, der vorzugsweise aus Stahl oder Aluminium besteht.
  10. Nassoffset-Druckform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass zwischen einem Druckformträger (21) und der Oberschicht (24) eine als Diffusionsbarriere wirksame Schicht, die von einer thermisch isolierenden Schicht (22) gebildet werden kann, vorgesehen ist, wobei diese Schicht eine Diffusion von Atomen des Trägers (21) in die Oberschicht (24) verhindert oder behindert.
  11. Nassoffset-Druckform nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Diffusionsbarriere von einer zwischen der Oberschicht (24) und einem Träger (21) der Druckform (31) angeordneten Schicht (22) gebildet wird.
  12. Nassoffset-Druckform nach einem der Ansprüche 1 bis 11, wobei unterhalb der Oberschicht (24) eine Absorptionsschicht für eine Strahlung vorgesehen ist, mit der eine Erwärmung der Obeschicht (24) bewirkt wird.
  13. Verfahren zur Bebilderung einer Nassoffset-Druckform (31), die an einer bebilderbaren Oberfläche (130) ein fotokatalytisch und thermisch veränderbares Material aufweist, das durch Bestrahlung mit Licht fotokatalytisch in einen hydrophilen Zustand und durch Erwärmung in einen lipophilen Zustand versetzbar ist, bei dem
    die Druckform (31) durch eine bildgemässe Erwärmung des fotokatalytisch und thermisch veränderbaren Materials bebildert wird,
    dadurch gekennzeichnet, dass
    eine Druckform (31) nach einem der Ansprüche 1 bis 12 verwendet wird.
  14. Verfahren nach Anspruch 13, dadurch gekennzeichnet, dass die Druckform (31) mit Laserstrahlen, vorzugsweise IR-Laserstrahlen, bebildert wird.
  15. Verfahren nach Anspruch 14, dadurch gekennzeichnet, dass Laserlicht mit einer Wellenlänge zwischen 400 und 3000 nm verwendet wird.
  16. Verfahren nach Anspruch 15, dadurch gekennzeichnet, dass Laserlicht mit einer Wellenlänge von wenigstens 700 nm, vorzugsweise wenigstens 800 nm, verwendet wird.
  17. Verfahren nach einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass die Druckform (31) zur Löschung eines durch die bildgemässe Erwärmung erzeugten Druckbilds mit Tageslicht und/oder UV-Licht bestrahlt wird.
  18. Verfahren zur Löschung oder Bebilderung eines Druckbilds einer Nassoffset-Druckform, die an einer das Druckbild bildenden Oberfläche (130, 131) ein fotokatalytisch und thermisch veränderbares Material (24a) aufweist, das durch Bestrahlung mit Licht fotokatalytisch in einen hydrophilen Zustand und durch Erwärmung in einen lipophilen Zustand versetzbar ist, bei dem
    a) das Druckbild durch eine Bestrahlung der Oberfläche (130, 131) mit UV-Strahlung gelöscht oder erzeugt wird,
    b) und der Oberfläche (130, 131) während der Bestrahlung Wasser zugeführt wird, dadurch gekennzeichnet, dass
    eine Druckform nach einem der Ansprüche 1 bis 11 verwendet wird.
  19. Verfahren nach Anspruch 18, dadurch gekennzeichnet, dass an der Oberfläche (130, 131) für die UV-Bestrahlung eine Lunftfeuchte von wenigstens 60%, vorzugsweise von wenigstens 80%, erzeugt und vorzugsweise über die Dauer der UV-Bestrahlung aufrechterhalten wird.
  20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass über die Dauer der UV-Bestrahlung eine vorgegebene Temperatur eingestellt und aufrechterhalten wird.
  21. Verfahren nach einem der Ansprüche 17-20, dadurch gekennzeichnet, dass die bebilderte Oberfläche (130, 131) der Druckform (31) zur Löschung ganzflächig bestrahlt wird.
  22. Vorrichtung umfassend eine Nassoffset-Druckform nach einem der Ansprüche 1 bis 11 und zur wiederholten Bebilderung der Nassoffset-Druckform, wobei die Vorrichtung umfasst:
    eine Bildgebungseinrichtung (33) zur Erzeugung eines Druckbilds durch eine bildgemäße Erwärmung des fotokatalytisch und thermisch veränderbaren Materials (24a) und
    eine Löscheinrichtung (34) zur Löschung des erzeugten Druckbilds, wobei die Löscheinrichtung (34) einen oder mehrere Strahler für Tageslicht und/oder UV-Licht aufweist, wobei die Vorrichtung eine Befeuchtungsanlage (40, 41, 43) umfasst, durch die an der Nassoffset-Druckform (31) eine vorgegebene Luftfeuchte erzeugt und eingehalten werden kann.
  23. Vorrichtung nach Anspruch 22, dadurch gekennzeichnet, dass die Befeuchtungsanlage (40, 41, 43) eine Kapselung (40) für die Nassoffset-Druckform (31) und vorzugsweise für mehrere Zylinder (32, 38, 39) eines Druckwerks aufweist, um die vorgegebene Luftfeuchte innerhalb der Kapselung (40) zu erzeugen und aufrechtzuerhalten.
  24. Vorrichtung nach Anspruch 23 , dadurch gekennzeichnet, dass die Befeuchtungsanlage (40, 41, 43) wenigstens einen innerhalb der Kapselung (40) angeordneten Feuchtigkeitssensor (41) und einen Regler (43) umfasst, dem die von dem Feuchtigkeitssensor aufgenommene Luftfeuchte als Regelgrösse zugeführt wird.
  25. Vorrichtung nach einem der Ansprüche 22-24, dadurch gekennzeichnet, dass die Löscheinrichtung (34) einen oder mehrere Strahler für eine ganzflächige Bestrahlung der Oberfläche (130, 131) aufweist.
  26. Vorrichtung nach einem der Ansprüche 22-25, dadurch gekennzeichnet, dass der oder die Strahler der Löscheinrichtung (34) einen hohen Anteil von Strahlung einer Wellenlänge von höchstens 387 nm ausstrahlen, wobei ein von dem Strahler ausgestrahltes Wellenlängenspektrum einen Peak hat vorzugsweise bei einer Wellenlänge von 387 nm oder weniger.
  27. Vorrichtung nach einem der Ansprüche 22-26, dadurch gekennzeichnet, dass die Druckform (31) auf einem Druckformzylinder (32) in einer Nassoffset-Druckmaschine, insbesondere Rollenrotationsdruckmaschine, lösbar oder unlösbar angeordnet ist und die Löscheinrichtung (34) auf den Druckformzylinder (32) gerichtet ist und sich vorzugsweise soweit über die parallel zu einer Drehachse des Druckformzylinders (32) gemessene Länge der Druckform (31) erstreckt, dass eine ganzflächig gleichmässige Bestrahlung der Druckform (31) durchführbar ist.
  28. Vorrichtung nach einem der Ansprüche 22-27, dadurch gekennzeichnet, dass die Bildgebungseinrichtung (33) mehrere Strahler für eine bildgemässe Bestrahlung der Druckform (32) umfasst.
  29. Vorrichtung nach einem der Ansprüche 22-28, dadurch gekennzeichnet, dass die Strahler der Bildgebungseinrichtung (33) IR-Laser, vorzugsweise NIR-Laser, sind.
  30. Vorrichtung nach einem der Ansprüche 22-29, dadurch gekennzeichnet, dass die Druckform (31) auf einem Druckformzylinder in einer Nassoffset-Druckmaschine, insbesondere Rollenrotationsdruckmaschine, lösbar oder unlösbar angeordnet ist und die Strahler der Bildgebungseinrichtung (33) auf den Druckformzylinder (32) gerichtet und vorzugsweise parallel zu einer Drehachse des Druckformzylinders (32) nebeneinander angeordnet sind.
EP02405245A 2001-03-29 2002-03-27 Nassoffset-Druckform mit fotothermisch veränderbarem Material, Verfahren und Vorrichtung zur Erzeugung und/oder Löschung eines Druckbildes einer Nassoffset-Druckform Expired - Lifetime EP1245385B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10115435 2001-03-29
DE10115435A DE10115435B8 (de) 2001-03-29 2001-03-29 Verfahren zur Erzeugung eines Druckbilds und/oder zur Löschung eines Druckbilds einer Nassoffset-Druckform mit fotothermisch veränderbarem Material

Publications (3)

Publication Number Publication Date
EP1245385A2 EP1245385A2 (de) 2002-10-02
EP1245385A3 EP1245385A3 (de) 2002-11-20
EP1245385B1 true EP1245385B1 (de) 2006-03-29

Family

ID=7679484

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02405245A Expired - Lifetime EP1245385B1 (de) 2001-03-29 2002-03-27 Nassoffset-Druckform mit fotothermisch veränderbarem Material, Verfahren und Vorrichtung zur Erzeugung und/oder Löschung eines Druckbildes einer Nassoffset-Druckform

Country Status (7)

Country Link
US (2) US7051652B2 (de)
EP (1) EP1245385B1 (de)
JP (3) JP3874692B2 (de)
AT (1) ATE321661T1 (de)
DE (2) DE10115435B8 (de)
DK (1) DK1245385T3 (de)
ES (1) ES2261623T3 (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10213802B4 (de) 2002-03-27 2010-02-18 Wifag Maschinenfabrik Ag Verfahren zur Erhaltung von Bildinformation einer bebilderten Druckform
FI116389B (fi) * 2002-07-16 2005-11-15 Millidyne Oy Menetelmä pinnan ominaisuuksien säätämiseksi
DE102004007600A1 (de) 2004-02-17 2005-09-01 Heidelberger Druckmaschinen Ag Druckform mit mehreren flächigen Funktionszonen
JP2006062365A (ja) * 2004-08-25 2006-03-09 Heidelberger Druckmas Ag 版を製造する方法
DE202006004340U1 (de) * 2006-03-18 2006-05-11 Man Roland Druckmaschinen Ag Bogendruckmaschine
US20090130451A1 (en) * 2007-11-19 2009-05-21 Tony Farrell Laser-weldable thermoplastics, methods of manufacture, and articles thereof
US8246754B2 (en) * 2009-09-25 2012-08-21 Hewlett-Packard Development Company, L.P. Process for removing ink from printed substrate
CN102248688A (zh) * 2011-03-14 2011-11-23 北京工业大学 水膜快速擦写导电聚偏乙烯导电层的方法
DE102013114706B4 (de) * 2013-12-20 2017-02-16 Sandvik Surface Solutions Division Of Sandvik Materials Technology Deutschland Gmbh Reinigung von Pressblechen oder umlaufenden Pressbändern
CN114911141B (zh) * 2022-07-11 2022-09-23 上海传芯半导体有限公司 Euv光刻方法及euv光刻设备

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4004924A (en) * 1965-05-17 1977-01-25 Agfa-Gevaert N.V. Thermorecording
US4084023A (en) * 1976-08-16 1978-04-11 Western Electric Company, Inc. Method for depositing a metal on a surface
DE4123959C1 (de) * 1991-07-19 1993-02-04 Man Roland Druckmaschinen Ag, 6050 Offenbach, De
US5365847A (en) * 1993-09-22 1994-11-22 Rockwell International Corporation Control system for a printing press
DE19612927B4 (de) * 1995-05-11 2009-12-10 Kodak Graphic Communications Canada Company, Burnaby Druckmaschine und Bilderzeugungsverfahren für eine Druckmaschine
US5743188A (en) * 1995-10-20 1998-04-28 Eastman Kodak Company Method of imaging a zirconia ceramic surface to produce a lithographic printing plate
US5694848A (en) * 1996-03-13 1997-12-09 Heidelberger Druckmaschinen Ag Printing unit for water based inks
US5836248A (en) * 1997-05-01 1998-11-17 Eastman Kodak Company Zirconia-alumina composite ceramic lithographic printing member
EP0903223B1 (de) * 1997-09-12 2002-06-05 Fuji Photo Film Co., Ltd. Flachdruckverfahren und Druckplatte-Vorstufe für den Flachdruck
DE69805385T2 (de) 1997-10-24 2002-09-12 Fuji Photo Film Co., Ltd. Vorrichtung zur Herstellung einer Druckplatte und Drucker und Drucksystem die diese Vorrichtung verwenden
EP0911155B1 (de) 1997-10-24 2003-01-15 Fuji Photo Film Co., Ltd. Vorrichtung zur Herstellung einer Druckplatte und Drucker und Drucksystem die diese Vorrichtung verwenden
US6096471A (en) * 1998-05-25 2000-08-01 Agfa-Gevaert, N.V. Heat sensitive imaging element for providing a lithographic printing plate
DE19826377A1 (de) * 1998-06-12 1999-12-16 Heidelberger Druckmasch Ag Druckmaschine und Druckverfahren
US6391522B1 (en) * 1998-10-23 2002-05-21 Fuji Photo Film Co., Ltd. Offset printing plate precursor and method for offset printing using the same
DE60027059T2 (de) * 1999-01-18 2007-03-15 Fuji Photo Film Co., Ltd., Minami-Ashigara Flachdruck-Verfahren und -Vorrichtung
US6851364B1 (en) * 1999-02-05 2005-02-08 Mitsubishi Heavy Industries, Ltd. Printing plate material and production and regenerating methods thereof
DE19911907B4 (de) 1999-03-17 2005-01-20 Maschinenfabrik Wifag Belichtungsverfahren und Belichtungsvorrichtung zur Bebilderung einer Druckform für einen Nassoffsetdruck
JP2000272265A (ja) * 1999-03-29 2000-10-03 Kodak Polychrome Graphics Japan Ltd 直描型平版印刷版原版およびそれを用いた印刷刷版作製方法
JP2001105757A (ja) * 1999-10-08 2001-04-17 Fuji Photo Film Co Ltd 平版印刷用刷版の作製方法
JP2001105761A (ja) 1999-10-14 2001-04-17 Fuji Photo Film Co Ltd 平版印刷用ネガ型印刷原板、及び平版印刷用ネガ型印刷版の作製方法
DE10021451A1 (de) * 2000-05-03 2001-11-08 Heidelberger Druckmasch Ag Gesteuerte Bebilderung und Löschung einer Druckform aus metallischem Titan
DE10037998A1 (de) * 2000-08-04 2002-02-14 Heidelberger Druckmasch Ag Verfahren und Vorrichtung zum Löschen einer wiederbebilderbaren Druckform

Also Published As

Publication number Publication date
EP1245385A2 (de) 2002-10-02
JP2003011536A (ja) 2003-01-15
JP2004306613A (ja) 2004-11-04
JP2006137197A (ja) 2006-06-01
DE10115435B8 (de) 2007-02-08
US20040168599A1 (en) 2004-09-02
US7051652B2 (en) 2006-05-30
US6976428B2 (en) 2005-12-20
ATE321661T1 (de) 2006-04-15
JP3874692B2 (ja) 2007-01-31
ES2261623T3 (es) 2006-11-16
EP1245385A3 (de) 2002-11-20
DK1245385T3 (da) 2006-07-24
DE10115435B4 (de) 2006-11-02
US20020139269A1 (en) 2002-10-03
DE50206222D1 (de) 2006-05-18
DE10115435A1 (de) 2002-10-24

Similar Documents

Publication Publication Date Title
DE69330014T2 (de) Verfahren und Vorrichtung zur Laserbeschriftung
EP0963839B1 (de) Druckmaschine und Druckverfahren
DE69332092T2 (de) Flachdruckplatten zur Bebilderung mittels Lasererosion
DE60024190T2 (de) Infrarotlaser-bebilderbare Flachdruckplatte und Verfahren zu ihrer Herstellung
DE10206937A1 (de) Verfahren und Einrichtung zum Drucken, wobei vor dem Auftrag eines Feuchtmittels eine benetzungsfördernde Substanz in molekularer Schichtdicke aufgetragen wird
EP1245385B1 (de) Nassoffset-Druckform mit fotothermisch veränderbarem Material, Verfahren und Vorrichtung zur Erzeugung und/oder Löschung eines Druckbildes einer Nassoffset-Druckform
DE4442235C2 (de) Verfahren zur Herstellung einer Druckform für einen Formzylinder einer Druckmaschine und danach hergestellte Druckform
DE10206938A1 (de) Verfahren und Einrichtung zum Drucken, wobei eine hydrophile Schicht erzeugt und diese strukturiert wird
DE10021451A1 (de) Gesteuerte Bebilderung und Löschung einer Druckform aus metallischem Titan
DE69820219T2 (de) Formbeständige Lithographie-Druckplatten mit Sol-Gel-Schicht
DE60115067T2 (de) Druckplatte
DE69917126T2 (de) Vorläufer für eine Flachdruckplatte sowie Verfahren zu deren Herstellung
DE10213802B4 (de) Verfahren zur Erhaltung von Bildinformation einer bebilderten Druckform
DE19945847A1 (de) Druckform und Verfahren zum Ändern ihrer Benetzungseigenschaften
DE60308248T2 (de) Druckmaschine, Vorrichtung und Verfahren zum Regenerieren einer Druckplatte
DE10206944A1 (de) Verfahren und Einrichtung zum Drucken, wobei die Dicke der Feuchtmittelschicht gemessen und reduziert wird
DE60314994T2 (de) Drucker, druckplattenherstellungsverfahren, und druckplattenrecyclingverfahren
DE19602289A1 (de) Druckvorrichtung
WO2008087196A1 (de) Verfahren zum übertragen von strukturinformationen und vorrichtung hierfür
EP1476304B1 (de) Verfahren und einrichtung zum drucken, wobei eine hydrophilisierung des drucktr gers durch freie ionen erfolgt
DE102004011316A1 (de) Verfahren zur Strukturierung einer Glasoberfläche in hydrophile und hydrophobe Bereiche und Druckform
DE19953340B4 (de) Vor-Ort-Herstellung von prozeßfreien thermischen Druckplatten durch Verwenden reaktiver Materialien
DE102006047596A1 (de) Verfahren zur Behandlung einer wiederbebilderbaren Druckform

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20030520

AKX Designation fees paid

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

17Q First examination report despatched

Effective date: 20030710

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE TR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060329

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 50206222

Country of ref document: DE

Date of ref document: 20060518

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060530

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060829

ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2261623

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060630

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20090323

Year of fee payment: 8

Ref country code: DK

Payment date: 20090321

Year of fee payment: 8

Ref country code: ES

Payment date: 20090325

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20090325

Year of fee payment: 8

Ref country code: NL

Payment date: 20090324

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090324

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090330

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070327

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060329

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20090325

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060329

BERE Be: lapsed

Owner name: MASCHINENFABRIK *WIFAG

Effective date: 20100331

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101001

EUG Se: european patent has lapsed
REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100327

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100327

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20110415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110401

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110404

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20110620

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100328

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110329

Year of fee payment: 10

Ref country code: DE

Payment date: 20110526

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100328

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50206222

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120331

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120327

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002