EP1139857A2 - Anordnung und verfahren zur berührungslosen messung der achslänge und/oder der hornhautkrümmung und/oder der vorderkammertiefe des auges, vorzugsweise zur iol-berechnung - Google Patents
Anordnung und verfahren zur berührungslosen messung der achslänge und/oder der hornhautkrümmung und/oder der vorderkammertiefe des auges, vorzugsweise zur iol-berechnungInfo
- Publication number
- EP1139857A2 EP1139857A2 EP99963480A EP99963480A EP1139857A2 EP 1139857 A2 EP1139857 A2 EP 1139857A2 EP 99963480 A EP99963480 A EP 99963480A EP 99963480 A EP99963480 A EP 99963480A EP 1139857 A2 EP1139857 A2 EP 1139857A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- eye
- arrangement
- vkt
- arrangement according
- image
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Ceased
Links
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/1005—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring distances inside the eye, e.g. thickness of the cornea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0008—Apparatus for testing the eyes; Instruments for examining the eyes provided with illuminating means
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/0016—Operational features thereof
- A61B3/0025—Operational features thereof characterised by electronic signal processing, e.g. eye models
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/107—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for determining the shape or measuring the curvature of the cornea
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/117—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for examining the anterior chamber or the anterior chamber angle, e.g. gonioscopes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B3/00—Apparatus for testing the eyes; Instruments for examining the eyes
- A61B3/10—Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
- A61B3/14—Arrangements specially adapted for eye photography
- A61B3/15—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing
- A61B3/156—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking
- A61B3/158—Arrangements specially adapted for eye photography with means for aligning, spacing or blocking spurious reflection ; with means for relaxing for blocking of corneal reflection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B8/00—Diagnosis using ultrasonic, sonic or infrasonic waves
- A61B8/10—Eye inspection
Definitions
- a longitudinal section through the human eye is shown schematically.
- the axis length AL of the human eye is usually measured using ultrasound using the contact method.
- the curvature of the corneal radius HHR is determined using known keratometers / ophthalmometers (DD 251497, US 4572628, US 4660946, US 5212507, 5325134).
- the anterior chamber depth VKT can be measured by means of ultrasound or by means of an additional unit for a slit lamp (anterior chamber depth meter, adjustment via the slit lamp image).
- these parameters must be determined, which are also important for the selection of the IOL intraocular lens to be implanted.
- these devices In clinical practice, it is common to use these devices at least with two devices (eg ultrasound a-scan and automatic keratometer) to be measured.
- the measured variables are used in formulas which calculate the optical effect of the IOL.
- the object of the invention is to reduce these device-dependent measurement errors to a minimum.
- all the necessary parameters of the eye are advantageously determined by means of a device arrangement and corresponding measuring methods. Necessary settings that enable the device to be adjusted to the patient are also implemented in this arrangement.
- the calculation of the IOL is also carried out using this device arrangement. This also eliminates data loss or data falsification when the measured values are transmitted from various devices to the computer which carries out the IOL calculation.
- the invention and its advantages are explained below with reference to the schematic representations.
- the light of a laser diode 1 is adjustable via a Michelson interferometer (3-5), consisting of a fixed reference arm R1 with a reflector 4, here a triple prism and one based on different positions of a further reflector 5 (triple prism) Reference arm R2, and a beam splitter cube 3 for superimposing the radiation components reflected in Rl and R2, a splitter cube 8 and a diffractive optical element DOE 9 are imaged on the patient's eye 14.
- a diode 7 monitors the light output of the laser diode 1.
- the axis length measurement is carried out according to known methods, for example described in US5673096.
- part of the reflected light (light coming from the eye) is applied to a CCD using an achromatic lens 22 via mirror 20.
- An aperture 21 is in the switched-off position.
- the eye 14 is illuminated analogously to DD 251497 at an angle of approximately 18 ° to the optical axis AI by means of 6 preferably infrared LEDs ⁇ s 10, two of which are shown in FIG. 1 by way of example in the plane of the drawing are shown.
- Pinhole diaphragms 10 a are arranged downstream of the LEDs for generating point-shaped lighting images.
- the diode light To collimate the diode light, six lenses 11 are arranged downstream of the LEDs in the direction of illumination.
- the images of these light sources created in the eye are imaged on the CCD camera via divider cubes 8 and 15 and achromats 18 and 19.
- the DOE 9 is advantageously pivoted out here, but can also remain in the beam path.
- the achromat 22 is pivoted out.
- each eye is LED at an angle of approx. 33 °
- slit diaphragm 12a and cylindrical lens 13 illuminated in the form of a slit.
- Divider cubes 8 and 15 and achromats 18 and 19 are imaged on the CCD camera 23 with the DOE preferably pivoted out.
- the achromat 22 is pivoted out.
- FIG. 3 shows a front view of the device in the direction of the observation, with the illustration of a known slit lamp cross table for x y / z adjustment being dispensed with.
- the DOE 9 at its center AI indicates the position of the optical axis in the device
- the lenses 11 for the determination of the corneal curvature with an invisible LED 10 behind it
- the cylindrical lenses 13 for the slit image for measuring the VKT and six IR diodes 24 for illuminating and adjusting the eye 14.
- the measurement tasks are to be explained in more detail with the aid of the beam path A-D from the eye 14 to the CCD camera 23.
- Beam path C adjustment of the device to the eye
- the eye is at the focal length of Achromat 18, is imaged to infinity and is imaged via Achromat 22 in the plane of the CCD camera.
- Achromat 19 is swung out here.
- the patient is offered a fixation light by means of a laser diode (LD) or LED 1 so that he can align the eye pupil in the direction of the optical axis. It is necessary to image a larger section of the eye 14 (for example 15 mm) on the CCD camera.
- DOE Due to its low efficiency (approx. 5% in the focusing part) DOE is for the
- Image of the iris structures less suitable, so that an optical system with a fixed
- Image scale consisting of achromats 18 and 22 realizes the image.
- the DOE is preferably swung out.
- the eye 14 is illuminated by means of IR diodes 24 (FIG. 2) (e.g. 880 nm), which are preferably characterized by a broad radiation characteristic (large half-value angle).
- IR diodes 24 e.g. 880 nm
- the device is adjusted to the patient via the well-known slit lamp cross table, which can be adjusted in the x, y, z direction.
- VCM 3405 from Phillips can be used as the CCD camera.
- Illumination of the eye is necessary in order to be able to adjust the patient to the device even in darker rooms.
- This illumination should be as diffuse as possible for a field of 15 mm, but an image of the light source through the cornea cannot be avoided (since the cornea acts as a convex mirror).
- the basic idea here is to advantageously use the means for lighting to adjust the patient's eye at the same time.
- the patient's eye is shown live on an LC display or monitor;
- a circle / crosshair is shown on the LCD / monitor for center marking.
- the 6 points must be set centrally to the circle shown - this is done by moving the cross table; the patient is correctly adjusted in height / side / depth when the points can be seen in the center and in focus.
- the patient himself looks into the device - from there an alignment laser 1 or LED la is projected, onto which the patient has to fixate.
- the laser reflex can be seen in the middle of the pupil.
- An additional setting aid should be shown on the LC display / monitor.
- Photodiode APD provided.
- the alignment laser 1 or LED 1a is reflected by the anterior surface of the cornea; the reflected light is reflected on the
- APD pictured. This generates a DC voltage signal from the APD
- (Relative) height represents a measure of the centering of the patient's eye.
- This DC voltage signal is fed to the internal computer via an A / D converter and from there is displayed in a suitable form (eg a bar / circle) on the LCD.
- a suitable form eg a bar / circle
- the operator is thus provided with further information on the adjustment state of the patient's eye by the different size of the bar / circle.
- the reflections of the laser diode 1 are imaged on the CCD camera 23 via the DOE as a parallel beam path and the achromatic lens 22, an eye segment of approximately 5 mm being shown with the optics 18, 19 pivoted out for observation and reflex adjustment.
- a large part, advantageously more than approx. 80-95% of the total energy is coupled out to the APD on the divider cube 15 shown in FIG. 2; only about 20 - 5% of the light falls on the CCD camera.
- Beam path B keratometer
- Illumination is preferably carried out analogously to DD 251497 by means of six IR diodes 10 (e.g. 880 nm) in order not to impede the fixation of the patient's eye 14 to the fixation light of the LD 1 or the LED 1a.
- six IR diodes 10 e.g. 880 nm
- the predetermined resolution of the CCD camera 23 requires the imaging of a field no larger than approx. 6 mm on the eye 14 in order to achieve a measuring accuracy of 0.05 mm.
- the effect of the DOE is preferably switched off again by swiveling out and the achromats 18 and 19 realize the 6 corneal reflex images. Serve to increase a measuring accuracy largely independent of the distance between the patient's eye and the device
- a telecentric aperture 21 which limits the aperture for the measurement to preferably less than 0.05 and
- the LED light is advantageously imaged via a pinhole 10a, which enables an exact adjustment of the keratometer measurement points.
- the focal length of the collimator should be more than 50 times the effective light source extension in order to achieve the desired measuring accuracy of the radius measurement regardless of the position.
- Light source can be selected (e.g. 400 - 600nm).
- a field no larger than approx. 6 mm is imaged on the eye 14 on the CCD camera 23.
- Achromat 22 is swung out.
- the telecentric aperture 21 pivoted or adjusted here must be larger
- the subject's eye is illuminated laterally at a fixed angle through the bright light gap.
- the resulting light cuts on the eye are visualized
- FIG. 8a b schematically shows the arrangement for determining the VKT, in Fig. 8a
- the light gap is formed by a row of bright LEDs 12, which have a defined one
- the gap 12a illuminated in this way is imaged by a cylindrical lens 13 as a gap image S on the subject's eye.
- the LEDs used typically have a lifespan of at least
- the subject's eye is imaged with the relevant image sections via a schematically illustrated imaging optics 18, 19, preferably on a CCD sensor 23.
- mapping is carried out telecentrically - telecentric aperture 21 to the influence of the
- the video signal is on a monitor or LC
- Display shown so that the operator can carry out the subject adjustment and measurement in a relaxed position.
- the measuring method is not based on the measurable shift of partial images; the pupil division can thus be omitted.
- the signal from the CCD camera 23 is stored in the memory of the
- VKT accuracy 0.1 mm
- An improvement in the relevant image content is achieved by switching the lighting LEDs on and off in a suitable form, synchronized with the video fields.
- An achromatic lens with a defined focal length is sufficient to image the eye on the CCD camera.
- the focal length is determined depending on the desired image section on the eye that is to be imaged.
- the aperture 23, which fulfills the telecentric condition, is arranged in the image-side focal length of the achromatic lens.
- This simple structure of the imaging system ensures that it can be easily integrated into other systems.
- a fixation light 1.1a (LED) is faded in via beam splitter 8 in FIG. 8b.
- a light source is integrated in the observation system (e.g. LED la or laser diode 1, on which the test subject is fixed.
- the video signal from the camera is shown on a monitor or LC display.
- the operator can convince himself that the test person is correctly fixed - and thus the measurement result is unadulterated.
- the gap illuminated in this way is placed on the test person's eye through a cylindrical lens
- the subject's eye is imaged with the relevant image sections via imaging optics 18, 19, preferably on a CCD sensor 8.
- the imaging is carried out telecentrically in order to minimize the influence of subject adjustment.
- the video signal is displayed on a monitor or LC display, so that the operator can carry out the subject adjustment and measurement in a relaxed position.
- the signal from the CCD camera is e.g. into the memory of a
- VKT accuracy 0.1 mm
- An improvement in the relevant image content is achieved by synchronizing the lighting LED in a suitable form
- Video fields are clocked on and off.
- the image of the eye which is captured by the CCD camera, is shown with the reflection image FI of the adjustment laser or the fixing LED, and the scattered light SH of the cornea and the lens SL when the illumination 1 is switched on. Determination of the distance between the leading edges of the scatter images of the cornea and lens in digitized images
- the starting point of the image processing is (n times) a pair of images taken immediately after one another: image 1 with the slit illumination switched on ("bright image"), image 2 without slit illumination with the image of the fixing lamp ("dark image”).
- image 1 with the slit illumination switched on (“bright image")
- image 2 without slit illumination with the image of the fixing lamp (“dark image”).
- Detection of the pupil in the dark image histogram-based selection of a threshold value for binarization taking into account boundary conditions. Determination of an ellipse circumscribing the pupil by evaluating the covariance matrix of the binary image.
- Detection of the fixation point in the pupil in the dark image determination of all connected regions whose gray values lie above the 0.9 quantile of the gray value distribution in the dark image. Determination of a probability measure for each region, which depends on the area, shape and distance from the center of the pupil. Selection of the focus of the most likely region as a fixed point.
- Determination of the edge profile of the scatter images of the slit lighting in the difference image histogram-based selection of a threshold value for binarization taking into account boundary conditions. Rough detection of the edges as the location of the threshold value being exceeded in a predetermined area around the fixing point. Fine detection of the edges as the location of the turning point of the gray value curve in the line profile that is closest to the roughly detected position. Elimination of reflex edges by outlier detection in the edge course (removal of a predetermined proportion of points which is furthest from the middle edge course).
- This formula applies exactly when the image of the fixing lamp is at the front edge of the lens scattering image, as shown in FIG. 7; otherwise the distance of the fixation lamp image from the front edge of the lens scatter image can be determined and from the amount of this "decentering" a correction value for the anterior chamber depth can be determined according to known imaging formulas.
- the corneal radius is preferably measured using the keratometer device described above.
- Wavelength IR e.g. 880nm
- 780nm e.g. 880nm
- VIS e.g. 400-600nm
- the divider cubes 8 and 15 come here are of great importance because the lighting, observation and measuring beam paths are separated from each other at these points.
- the laser light coming from the interferometer should be reflected at most in the direction of eye 14; the laser light coming from the eye 14 should have maximum transmission.
- LD 1 for example LT 023 Sharp
- a dielectric multilayer with a polarizing effect can preferably be used
- the vertically polarized light coming from 1 (s-pol, 780 nm) is reflected as far as possible (approx. 98%).
- Circularly polarized light is generated by the Lamba / 4 plate.
- the light reflected by the eye 14 is thus linearly polarized again after passing through the lambda / 4 plate; however, the direction of polarization is rotated by 90 ° (parallel polarized, p-pol).
- the dividing layer exhibits approximately 100% transmission in the direction of vibration.
- the IR and VIS LEDs emit unpolarized light.
- Wavelength range from 420 to 580 nm and in the range from 870 to 1000 nm greater than 90% for unpolarized light.
- this pole dividing cube fulfills the additional requirements of high transmission in the visual wavelength range (420 ... 560nm) and in the near infrared range (870 .... 1000nm).
- the layer design meets these requirements for a narrow angle of incidence around 46 °.
- L n 1.48
- the design consists of 17 alternating layers H L.
- HFO2 is H
- SIO2 is L.
- suitable dividers can be produced by a suitable choice of the refractive indices of the substrate and coating substances and the angle of incidence.
- the laser light coming from divider cube 8 should be reflected to approx. 80-95% with approximately 20-5% transmission.
- the divider layer should have max.
- This layer is also implemented by means of a pole divider, the properties of which approximate the divider layer in FIG. 8.
- the lambda / 2 plate arranged on divider cubes 15 rotates the polarization direction of the incoming light by 90 °, so that the s-pol component falls again on divider cubes 15.
- the transmission is greater than 90% for unpolarized light in the IR and VIS range.
- This divider cube fulfills the requirements of the reflection s-pol of 80 ... 95% at one
- the layer design meets these requirements for a narrow angle of incidence around 46 °.
- the materials used are in terms of refractive index substrate, putty index and
- L n 1.48
- the design consists of 13 alternating layers H L.
- suitable dividers can be produced by a suitable choice of the refractive indices of the substrate and coating substances and the angle of incidence.
- a central control is provided according to FIG. 5 for setting and controlling all adjustable units and optical elements such as optics 18, 19, 22, aperture 21, etc.
- the various imaging scales taking into account the effect of the DOE, require switching processes in the device. These are preferably motorized and program-controlled.
- a compact device was implemented in which the essential electronic components are integrated.
- the centerpiece is an embedded Pentium Controller C, to which a display D (display of the examined eye 14 and menu navigation for the operator), keyboard, mouse, foot switch and printer are connected as peripheral devices.
- a display D display of the examined eye 14 and menu navigation for the operator
- keyboard mouse
- foot switch printer
- the control of the laser diode 1 and the interferometer slide IS takes place via the controller C.
- a short measuring time (less than 0.5 sec) must be implemented.
- the signal generated by the APD 17 arrives in a signal processing unit SE Dependence of the signal size amplified, then frequency-selective amplification and with a
- Sampling frequency which corresponds to about 4 times the frequency of the useful signal, converted from analog to digital.
- the digital samples are taken from the high-speed port HS of the Pentium platform.
- the signal is shown on the display; the measuring system provides the associated
- the controller C is connected to the control of the CCD camera 23 and the diodes 10.
- the diodes 10 are preferably operated in the continuous light mode in order to flicker those shown on the LCD
- these diodes are switched on and off picture-wise;
- Controller C the diodes 10 in synchronism with the image pulse of the CCD camera 23, i.e. the
- Diodes are on for one picture and off for the next.
- the reflex images created on the camera 23 are digitized using the frame grabber FG and stored in the RAM of the Pentium platform (
- the controller C is still connected to the diodes 12.
- the diodes 12 are preferably operated in continuous light mode, similar to the keratometer.
- the lighting diodes for the left and right eyes are optionally clocked by the controller (analogous to keratometers)
- the device is moved to the left or right and adjusted to the center of the eye using ...
- the edge position of the scatter images is determined by means of image processing
- the VKT is calculated from the distance between the corneal and lens scattering images, as already described.
- the controller C is connected to the diodes 24.
- the IR diodes 24 for illuminating the eye can be switched on at any time
- Controllers can be switched on (controlled within the program or controlled by the operator)
- the controller is still (not shown) with the controls for the input and
- the IOL is calculated using the internationally customary calculation formulas, which are stored in the device memory and can be called up, from the measured values AL, HHR, VKT and are printed out on a printer.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Physics & Mathematics (AREA)
- Molecular Biology (AREA)
- Ophthalmology & Optometry (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Signal Processing (AREA)
- Eye Examination Apparatus (AREA)
- Prostheses (AREA)
Abstract
Description
Claims
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE1998157001 DE19857001A1 (de) | 1998-12-10 | 1998-12-10 | Anordnung und Verfahren zur berührungslosen Messung der Achslänge, der Hornhautkrümmung und/oder der Vorderkammertiefe des Auges |
DE19857001 | 1998-12-10 | ||
DE1998157000 DE19857000A1 (de) | 1998-12-10 | 1998-12-10 | Anordnung und Verfahren zur Vermessung von Teilabschnitten des Auges, insbesondere der Vorderkammertiefe |
DE19857000 | 1998-12-10 | ||
PCT/EP1999/009766 WO2000033729A2 (de) | 1998-12-10 | 1999-12-10 | Anordnung und verfahren zur berührungslosen messung der achslänge und/oder der hornhautkrümmung und/oder der vorderkammertiefe des auges, vorzugsweise zur iol-berechnung |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1139857A2 true EP1139857A2 (de) | 2001-10-10 |
Family
ID=26050675
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP99963480A Ceased EP1139857A2 (de) | 1998-12-10 | 1999-12-10 | Anordnung und verfahren zur berührungslosen messung der achslänge und/oder der hornhautkrümmung und/oder der vorderkammertiefe des auges, vorzugsweise zur iol-berechnung |
Country Status (8)
Country | Link |
---|---|
US (5) | US6779891B1 (de) |
EP (1) | EP1139857A2 (de) |
JP (3) | JP4769923B2 (de) |
CN (2) | CN101596096B (de) |
CA (2) | CA2648334C (de) |
EA (1) | EA004236B1 (de) |
HK (1) | HK1043031B (de) |
WO (1) | WO2000033729A2 (de) |
Families Citing this family (105)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050043808A1 (en) * | 1994-05-06 | 2005-02-24 | Advanced Bio Surfaces, Inc. | Knee joint prosthesis |
CN101596096B (zh) * | 1998-12-10 | 2015-11-25 | 卡尔蔡斯耶拿有限公司 | 无接触式测量眼睛轴长和/或角膜曲率和/或前房深度的,尤其是iol测量的装置 |
DE29913603U1 (de) * | 1999-08-04 | 1999-11-25 | Oculus Optikgeräte GmbH, 35582 Wetzlar | Spaltprojektor |
DE10042751A1 (de) * | 2000-08-31 | 2002-03-14 | Thomas Hellmuth | System zur berührungslosen Vermessung der optischen Abbildungsqualität eines Auges |
DE10108797A1 (de) | 2001-02-21 | 2002-09-05 | Zeiss Carl Jena Gmbh | Verfahren zur Ermittlung von Abständen am vorderen Augenabschnitt |
DE10307741A1 (de) * | 2003-02-24 | 2004-09-02 | Carl Zeiss Meditec Ag | Anordnung zur Bildfeldverbesserung bei ophthalmologischen Geräten |
DE10323920A1 (de) * | 2003-05-22 | 2004-12-16 | Carl Zeiss Meditec Ag | Verfahren und Anordnung zum Vermessen des vorderen Augenabschnitts |
DE20313745U1 (de) | 2003-09-02 | 2003-11-20 | Oculus Optikgeräte GmbH, 35582 Wetzlar | Ophthalmologisches Analysesystem |
DE10349230A1 (de) * | 2003-10-23 | 2005-07-07 | Carl Zeiss Meditec Ag | Gerät zur interferometrischen Augenlängenmessung mit erhöhter Empfindlichkeit |
US20050241653A1 (en) | 2004-04-20 | 2005-11-03 | Wavetec Vision Systems, Inc. | Integrated surgical microscope and wavefront sensor |
BRPI0401628B1 (pt) * | 2004-04-22 | 2017-04-11 | Fundação De Amparo À Pesquisa Do Estado de São Paulo | mira luminosa de projeção para medidas de precisão de raios de curvatura de superfícies refletoras esféricas e não esféricas |
EP1858402B1 (de) * | 2005-01-21 | 2017-11-29 | Massachusetts Institute Of Technology | Verfahren und vorrichtung zur tomographischen abtastung mit optischer kohärenz |
CA2598229A1 (en) * | 2005-02-25 | 2006-08-31 | Acri. Tec Gmbh | System and device for compensating a local deformation of the cornea of an eye |
US7347554B2 (en) * | 2005-03-15 | 2008-03-25 | Carl Zeiss Meditec, Inc. | Determining criteria for phakic intraocular lens implant procedures |
DE102005059923A1 (de) * | 2005-12-13 | 2007-06-14 | Oculus Optikgeräte GmbH | Verfahren und Vorrichtung zur Bestimmung des Abstandes zu einem Messpunkt auf einer Gewebefläche des Auges |
US8262646B2 (en) * | 2006-01-20 | 2012-09-11 | Lensar, Inc. | System and method for providing the shaped structural weakening of the human lens with a laser |
US9545338B2 (en) | 2006-01-20 | 2017-01-17 | Lensar, Llc. | System and method for improving the accommodative amplitude and increasing the refractive power of the human lens with a laser |
US10842675B2 (en) | 2006-01-20 | 2020-11-24 | Lensar, Inc. | System and method for treating the structure of the human lens with a laser |
US9889043B2 (en) | 2006-01-20 | 2018-02-13 | Lensar, Inc. | System and apparatus for delivering a laser beam to the lens of an eye |
JP4907227B2 (ja) | 2006-05-29 | 2012-03-28 | 株式会社ニデック | 眼内寸法測定装置 |
DE102006054774A1 (de) * | 2006-11-17 | 2008-05-21 | Carl Zeiss Meditec Ag | Ophthalmologisches Untersuchungsgerät |
JP5172141B2 (ja) * | 2006-12-26 | 2013-03-27 | 株式会社ニデック | 眼軸長測定装置 |
US20080218692A1 (en) * | 2007-03-06 | 2008-09-11 | Hopler Mark D | Reflectometry/Interferometry System and Method for Corneal Plane Positioning |
DE102007017599A1 (de) | 2007-04-13 | 2008-10-16 | Carl Zeiss Meditec Ag | Vorrichtung und Verfahren zur Achslängenmessung mit erweiterter Messfunktion im vorderen Augenabschnitt |
DE102007027683A1 (de) * | 2007-06-15 | 2008-12-18 | Carl Zeiss Meditec Ag | Vorrichtung und Verfahren zur Bestimmung von Vorderkammertiefe und Augenlänge eines Auges |
US8727532B2 (en) | 2007-07-24 | 2014-05-20 | Sis Ag, Surgical Instrument Systems | Ophthalmological measurement apparatus and measurement method |
EP2020205B1 (de) | 2007-07-24 | 2016-04-13 | SIS AG, Surgical Instrument Systems | Ophthalmologische Messvorrichtung und Messverfahren |
US7594729B2 (en) | 2007-10-31 | 2009-09-29 | Wf Systems, Llc | Wavefront sensor |
US7800759B2 (en) * | 2007-12-11 | 2010-09-21 | Bausch & Lomb Incorporated | Eye length measurement apparatus |
ES2609290T3 (es) * | 2007-12-21 | 2017-04-19 | Bausch & Lomb Incorporated | Aparato de alineación de instrumento oftálmico y método de usarlo |
WO2010064150A2 (en) * | 2008-04-04 | 2010-06-10 | Amo Regional Holdings | Systems and methods for determing intraocular lens power |
US8295903B2 (en) * | 2008-05-25 | 2012-10-23 | Auraprobe, Inc. | Electron avalanche putative energy field analyzer |
WO2010000279A1 (de) * | 2008-06-30 | 2010-01-07 | Wavelight Ag | Vorrichtung zur ophthalmologischen, insbesondere refraktiven laserchirurgie |
US8500723B2 (en) | 2008-07-25 | 2013-08-06 | Lensar, Inc. | Liquid filled index matching device for ophthalmic laser procedures |
US8480659B2 (en) | 2008-07-25 | 2013-07-09 | Lensar, Inc. | Method and system for removal and replacement of lens material from the lens of an eye |
WO2010017954A2 (de) * | 2008-08-12 | 2010-02-18 | Carl Zeiss Meditec Ag | Tiefenauflösende optische kohärenzreflektrometrie |
DE102008051147A1 (de) * | 2008-10-10 | 2010-04-15 | Carl Zeiss Meditec Ag | Anordnung und Verfahren zur Aufnahme und Auswertung von Spaltbildern überwiegend transparenter Medien, insbesondere im Auge |
EP2364105B1 (de) | 2008-11-04 | 2018-03-14 | Carl Zeiss Meditec AG | Ophthalmologisches messsystem und verfahren zu dessen kalibrierung und/oder justierung |
DE102008055755A1 (de) | 2008-11-04 | 2010-05-06 | Carl Zeiss Meditec Ag | Ophthalmologisches Messsystem, insbesondere zur Gewinnung der biometrischen Daten |
US8294971B2 (en) * | 2008-12-18 | 2012-10-23 | Bausch • Lomb Incorporated | Apparatus comprising an optical path delay scanner |
DE102008063225A1 (de) * | 2008-12-23 | 2010-07-01 | Carl Zeiss Meditec Ag | Vorrichtung zur Swept Source Optical Coherence Domain Reflectometry |
JP5232038B2 (ja) * | 2009-02-12 | 2013-07-10 | 株式会社ニデック | 眼寸法測定装置 |
US9119565B2 (en) * | 2009-02-19 | 2015-09-01 | Alcon Research, Ltd. | Intraocular lens alignment |
DE102009022958A1 (de) * | 2009-05-28 | 2010-12-02 | Carl Zeiss Meditec Ag | Vorrichtung und Verfahren zur optischen Messung von Relativabständen |
JP5545618B2 (ja) * | 2009-07-06 | 2014-07-09 | 株式会社ニデック | 眼寸法測定装置 |
KR101730675B1 (ko) * | 2009-07-14 | 2017-05-11 | 웨이브텍 비젼 시스템스, 인크. | 안과 수술 측정 시스템 |
US8758332B2 (en) | 2009-07-24 | 2014-06-24 | Lensar, Inc. | Laser system and method for performing and sealing corneal incisions in the eye |
US8617146B2 (en) | 2009-07-24 | 2013-12-31 | Lensar, Inc. | Laser system and method for correction of induced astigmatism |
CN102647954B (zh) | 2009-07-24 | 2016-02-03 | 能斯雅有限公司 | 一种为眼睛晶状体提供激光照射图案的系统和方法 |
CA2769097A1 (en) | 2009-07-24 | 2011-01-27 | Lensar, Inc. | System and method for performing ladar assisted procedures on the lens of an eye |
US8382745B2 (en) | 2009-07-24 | 2013-02-26 | Lensar, Inc. | Laser system and method for astigmatic corrections in association with cataract treatment |
US8210683B2 (en) * | 2009-08-27 | 2012-07-03 | Virginia Mason Medical Center | No-history method for intraocular lens power adjustment after excimer laser refractive surgery |
DE102009041995A1 (de) * | 2009-09-18 | 2011-03-24 | Carl Zeiss Meditec Ag | Optische Ablenkeinheit für scannende, ophthalmologische Mess- und Therapiesysteme |
JP5426339B2 (ja) * | 2009-12-02 | 2014-02-26 | 株式会社ニデック | 眼寸法測定装置 |
JP5410954B2 (ja) | 2009-12-29 | 2014-02-05 | 株式会社ニデック | 眼軸長測定装置 |
CN102843955A (zh) | 2010-02-01 | 2012-12-26 | 雷萨公司 | 眼科应用中吸环基于浦肯野图像的对准 |
JP5484157B2 (ja) * | 2010-03-30 | 2014-05-07 | 株式会社ニデック | 眼科装置 |
DE102010014114B4 (de) | 2010-04-07 | 2024-03-07 | Carl Zeiss Meditec Ag | Ophthalmologisches Gerät mit Abbildungsmodi für Justier- und Messaufgaben |
DE102010019657A1 (de) | 2010-05-03 | 2011-11-03 | Carl Zeiss Meditec Ag | Anordnung zur verbesserten Abbildung von Augenstrukturen |
DE102010047053A1 (de) | 2010-09-29 | 2012-03-29 | Carl Zeiss Meditec Ag | Verfahren und Vorrichtung zur interferometrischen Bestimmung verschiedener biometrischer Parameter eines Auges |
DE102010047010B4 (de) * | 2010-09-30 | 2017-03-09 | Carl Zeiss Meditec Ag | Steuerungsvorrichtung für ein ophthalmochirurgisches System |
USD694890S1 (en) | 2010-10-15 | 2013-12-03 | Lensar, Inc. | Laser system for treatment of the eye |
USD695408S1 (en) | 2010-10-15 | 2013-12-10 | Lensar, Inc. | Laser system for treatment of the eye |
EP2627240B1 (de) | 2010-10-15 | 2023-01-18 | LENSAR, Inc. | System und verfahren zur scanning-gesteuerten beleuchtung von strukturen innerhalb eines auges |
JP6007466B2 (ja) * | 2010-12-27 | 2016-10-12 | 株式会社ニデック | 角膜形状測定装置 |
EP2680738A1 (de) * | 2011-03-04 | 2014-01-08 | Eyesight & Vision GMBH | Projektorvorrichtung sowie medizingerät mit der projektorvorrichtung |
CN103501686B (zh) * | 2011-03-25 | 2017-02-08 | 雷萨公司 | 利用激光产生的角膜切口测量和校正散光的系统和方法 |
US10463541B2 (en) | 2011-03-25 | 2019-11-05 | Lensar, Inc. | System and method for correcting astigmatism using multiple paired arcuate laser generated corneal incisions |
EP2688460B1 (de) * | 2011-03-25 | 2018-09-26 | Novartis AG | Vorrichtung und verfahren zur modellierung von augenstrukturen |
DE102011106288A1 (de) | 2011-07-01 | 2013-01-03 | Carl Zeiss Meditec Ag | Gerät zur berührungslosen Messung von Augenparametern |
DE102011082500A1 (de) * | 2011-08-26 | 2013-02-28 | Oculus Optikgeräte GmbH | Ophthalmologisches Analysegerät und Verfahren |
WO2013053938A1 (en) | 2011-10-14 | 2013-04-18 | Amo Groningen B.V. | Apparatus, system and method to account for spherical aberration at the iris plane in the design of an intraocular lens |
US8556421B2 (en) * | 2011-10-19 | 2013-10-15 | Novartis Ag | Calculating an intraocular lens (IOL) power according to a directly determined IOL location |
CN103654710B (zh) * | 2012-09-03 | 2015-10-28 | 华晶科技股份有限公司 | 图像检测装置及图像检测方法 |
US9072462B2 (en) | 2012-09-27 | 2015-07-07 | Wavetec Vision Systems, Inc. | Geometric optical power measurement device |
DE102012019474A1 (de) * | 2012-09-28 | 2014-04-03 | Carl Zeiss Meditec Ag | Vorrichtung zur verlässlichen Bestimmung biometrischer Messgrößen des gesamten Auges |
DE102012019469A1 (de) | 2012-09-28 | 2014-04-03 | Carl Zeiss Meditec Ag | Verfahren zur Realisierung von OCT- und sonstigen Bildaufnahmen eines Auges |
US9622659B2 (en) | 2012-11-08 | 2017-04-18 | Carl Zeiss Meditec Ag | Method for determining the total refractive power of the cornea of an eye |
DE102013002828A1 (de) | 2013-02-15 | 2014-08-21 | Carl Zeiss Meditec Ag | Verfahren zur Bestimmung der Gesamtbrechkraft der Hornhaut eines Auges |
DE102012022059A1 (de) | 2012-11-08 | 2014-05-08 | Carl Zeiss Meditec Ag | Verfahren zur Bestimmung der Gesamtbrechkraft der Hornhaut eines Auges |
WO2014131917A1 (es) * | 2013-02-28 | 2014-09-04 | Tecnología Pro Informática, S. L. | Sistema para la obtención de parámetros de ajuste de monturas con lentes para un usuario |
US10117572B2 (en) | 2013-04-26 | 2018-11-06 | Carl Zeiss Meditec Ag | Method, ophthalmic measuring system and computer-readable storage medium for selecting an intraocular lens |
JP5650810B2 (ja) * | 2013-06-24 | 2015-01-07 | 株式会社ニデック | 眼軸長測定装置 |
DE102014210786A1 (de) | 2014-06-05 | 2015-12-17 | Carl Zeiss Meditec Ag | Topographiemodul für ophthalmologische Geräte mit entfernungsunabhängiger Keratometrie-Messeinrichtung und Verfahren zu dessen Anwendung |
DE102014210787A1 (de) | 2014-06-05 | 2015-12-17 | Carl Zeiss Meditec Ag | Entfernungskompensierte Messeinrichtung für topographische und keratometrische Messungen am Auge |
CN104116494B (zh) * | 2014-08-21 | 2016-08-24 | 太原中北新缘科技中心 | 基于远心光路系统的角膜曲率测量装置 |
JP5958525B2 (ja) * | 2014-11-26 | 2016-08-02 | 富士ゼロックス株式会社 | 眼球の光計測装置 |
JP5958635B2 (ja) * | 2014-11-26 | 2016-08-02 | 富士ゼロックス株式会社 | 眼球の光計測装置 |
US10048513B2 (en) * | 2015-11-02 | 2018-08-14 | Focure Inc. | Continuous autofocusing eyewear |
CN105640486B (zh) * | 2015-12-16 | 2018-01-12 | 上海杰视医疗科技有限公司 | 一种确定眼前房容积的方法及装置 |
CN109414162A (zh) * | 2016-05-13 | 2019-03-01 | 洛桑联邦理工学院 | 用于倾斜照明下视网膜吸收相以及暗场成像的系统、方法和装置 |
US10591648B2 (en) * | 2016-06-01 | 2020-03-17 | Arlo Technologies, Inc. | Camera with polygonal lens |
JP6928623B2 (ja) | 2016-07-01 | 2021-09-01 | シライト プロプライエタリー リミテッド | 分散型構造化照明を使用する共焦点顕微鏡法のための装置及び方法 |
CA3029876A1 (en) | 2016-07-06 | 2018-01-11 | Amo Wavefront Sciences, Llc | Retinal imaging for reference during laser eye surgery |
DE102016216615A1 (de) | 2016-09-02 | 2018-03-08 | Carl Zeiss Meditec Ag | Beleuchtungssystem für die Bestimmung der Topografie der Kornea eines Auges |
JP6819773B2 (ja) * | 2016-09-06 | 2021-01-27 | 株式会社ニコン | 反射屈折等倍アフォーカル瞳孔リレー及びこれを採用した光学撮影系 |
US11064184B2 (en) * | 2017-08-25 | 2021-07-13 | Aurora Flight Sciences Corporation | Aerial vehicle imaging and targeting system |
US10495421B2 (en) | 2017-08-25 | 2019-12-03 | Aurora Flight Sciences Corporation | Aerial vehicle interception system |
US11000362B2 (en) | 2017-09-11 | 2021-05-11 | Amo Groningen B.V. | Intraocular lenses with customized add power |
US10864075B2 (en) * | 2017-12-31 | 2020-12-15 | Rxsight, Inc. | Intraocular lens visualization and tracking system |
KR102140486B1 (ko) * | 2018-03-27 | 2020-08-03 | (주)위키옵틱스 | 망막 관찰용 조명장치 및 이를 가지는 안저 카메라 |
DE102018216674A1 (de) | 2018-09-28 | 2020-04-02 | Carl Zeiss Meditec Ag | Verfahren zur biometrischen Vermessung eines Auges |
EP4266977A1 (de) * | 2020-12-23 | 2023-11-01 | Essilor International | Verfahren zur bewertung der effizienz einer myopiekontrolllösung |
CN112945131B (zh) * | 2021-02-09 | 2022-12-09 | 中国商用飞机有限责任公司 | 一种划痕深度测量装置及方法 |
CN114129125B (zh) * | 2021-12-02 | 2024-07-26 | 广西秒看科技有限公司 | 一种用于计算不同看近距离所需屈光度数的智能换算系统 |
Family Cites Families (58)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE251497C (de) | ||||
US3785723A (en) * | 1973-02-27 | 1974-01-15 | D Guyton | Method and apparatus for locating a principal meridian of an astigmatic optical system |
US4019813A (en) * | 1976-01-19 | 1977-04-26 | Baylor College Of Medicine | Optical apparatus for obtaining measurements of portions of the eye |
US4420228A (en) * | 1980-06-12 | 1983-12-13 | Humphrey Instruments, Inc. | Method and apparatus for analysis of corneal shape |
US4572628A (en) | 1981-05-29 | 1986-02-25 | Nippon Kogaku K.K. | Method of and apparatus for measuring radius |
US4660946A (en) | 1981-09-21 | 1987-04-28 | Canon Kabushiki Kaisha | Cornea shape measuring method and apparatus |
DE3150124C2 (de) | 1981-12-18 | 1985-01-31 | Fa. Carl Zeiss, 7920 Heidenheim | Vorrichtung zur Untersuchung der vorderen Augenabschnitte |
DE3201801A1 (de) | 1982-01-21 | 1983-09-08 | Adolf Friedrich Prof. Dr.-Phys. 4300 Essen Fercher | Verfahren und anordnung zur messung der teilstrecken des lebenden auges |
US4533221A (en) * | 1983-01-25 | 1985-08-06 | Trachtman Joseph N | Methods and apparatus for accommodation training |
US4711541A (en) * | 1984-02-02 | 1987-12-08 | Tokyo Kogaku Kikai Kabushiki Kaisha | Slit lamp and accessory device thereof |
US4582404A (en) * | 1984-07-16 | 1986-04-15 | Hamilton C B | Sagometer |
US4764006A (en) * | 1985-09-13 | 1988-08-16 | Canon Kabushiki Kaisha | Ophthalmic measuring apparatus |
DD251497A1 (de) * | 1986-07-31 | 1987-11-18 | Zeiss Jena Veb Carl | Geraet zur messung der kruemmung torischer reflektierender flaechen, insbesondere der augenhornhaut |
JPS6357045A (ja) * | 1986-08-26 | 1988-03-11 | ドナルド・プレジヤ− | 眼内レンズ装置、近視処置方法、レンズ滑り、および眼内レンズ装置挿入方法 |
US5325135A (en) * | 1987-03-06 | 1994-06-28 | Canon Kabushiki Kaisha | Ophthalmologic apparatus having two measuring systems |
US4930512A (en) * | 1988-06-16 | 1990-06-05 | Sonomed, Inc. | Hand held spring-loaded ultrasonic probe |
US5092880A (en) * | 1988-10-21 | 1992-03-03 | Genjiro Ohmi | Method of determining the astigmatic power and the power for an intraocular lens, for a toric intraocular lens |
US5042938A (en) | 1989-05-09 | 1991-08-27 | Kabushiki Kaisha Topcon | Apparatus for measuring length of visual line length, depth of anterior chamber, thickness of crystal lens, etc. |
JPH02295537A (ja) * | 1989-05-09 | 1990-12-06 | Topcon Corp | 生体眼の前後径距離測定装置 |
JP2763584B2 (ja) * | 1989-05-09 | 1998-06-11 | 株式会社トプコン | 生体眼の前後径距離測定装置 |
JPH0779797B2 (ja) | 1989-07-28 | 1995-08-30 | キヤノン株式会社 | ケラトメータ |
JP3042851B2 (ja) | 1990-01-29 | 2000-05-22 | 株式会社ニデック | 角膜形状測定装置 |
US5139022A (en) * | 1990-10-26 | 1992-08-18 | Philip Lempert | Method and apparatus for imaging and analysis of ocular tissue |
US5094521A (en) * | 1990-11-07 | 1992-03-10 | Vision Research Laboratories | Apparatus for evaluating eye alignment |
US5386258A (en) * | 1991-01-17 | 1995-01-31 | Canon Kabushiki Kaisha | Optical apparatus having a visual axis direction detecting device |
EP0509903B1 (de) * | 1991-04-15 | 1996-09-18 | Kabushiki Kaisha TOPCON | Verfahren und Gerät zur Bestimmung der axialen Länge des Auges |
JPH05199993A (ja) * | 1992-01-29 | 1993-08-10 | Canon Inc | 検眼装置 |
US5280313A (en) | 1991-07-25 | 1994-01-18 | Canon Kabushiki Kaisha | Ophthalmic measuring apparatus |
JPH0531073A (ja) * | 1991-07-25 | 1993-02-09 | Canon Inc | 眼科測定装置 |
DE4210384A1 (de) | 1992-03-30 | 1993-10-07 | Stiller Henning | Vorrichtung und Verfahren zum Untersuchen des Auges |
JPH05277075A (ja) * | 1992-04-03 | 1993-10-26 | Topcon Corp | 眼軸長測定装置 |
JP3221733B2 (ja) * | 1992-06-30 | 2001-10-22 | 株式会社ニデック | レンズ測定装置 |
US5463430A (en) * | 1992-07-31 | 1995-10-31 | Nidek Co., Ltd. | Examination apparatus for examining an object having a spheroidal reflective surface |
US5282852A (en) | 1992-09-02 | 1994-02-01 | Alcon Surgical, Inc. | Method of calculating the required power of an intraocular lens |
JPH06137841A (ja) * | 1992-10-29 | 1994-05-20 | Nikon Corp | 眼科測定装置 |
JPH06205739A (ja) * | 1993-01-11 | 1994-07-26 | Topcon Corp | 生体眼計測装置 |
US5331962A (en) * | 1993-04-16 | 1994-07-26 | Cornell Research Foundation Inc. | Ultrasound system for corneal biometry |
AU716040B2 (en) * | 1993-06-24 | 2000-02-17 | Bausch & Lomb Incorporated | Ophthalmic pachymeter and method of making ophthalmic determinations |
JP3423030B2 (ja) * | 1993-06-29 | 2003-07-07 | 株式会社トプコン | 眼科装置 |
JP3408297B2 (ja) * | 1993-10-29 | 2003-05-19 | 株式会社ニデック | 眼科装置 |
US5493109A (en) | 1994-08-18 | 1996-02-20 | Carl Zeiss, Inc. | Optical coherence tomography assisted ophthalmologic surgical microscope |
US5491524A (en) * | 1994-10-05 | 1996-02-13 | Carl Zeiss, Inc. | Optical coherence tomography corneal mapping apparatus |
DE4446183B4 (de) * | 1994-12-23 | 2005-06-02 | Carl Zeiss Jena Gmbh | Anordnung zur Messung intraokularer Distanzen |
JP3347514B2 (ja) * | 1995-03-31 | 2002-11-20 | ホーヤ株式会社 | 眼光学系のシミュレーション装置 |
US5745176A (en) | 1995-10-12 | 1998-04-28 | Ppt Vision, Inc. | Machine-vision illumination system and method for delineating a lighted volume from an unlighted volume |
JP3592416B2 (ja) | 1995-10-31 | 2004-11-24 | 晃敏 吉田 | 眼内物質の測定装置 |
US5784146A (en) * | 1995-12-28 | 1998-07-21 | Nidek Co., Ltd | Ophthalmic measurement apparatus |
US5828489A (en) | 1996-04-12 | 1998-10-27 | Rockwell International Corporation | Narrow wavelength polarizing beamsplitter |
JP3615871B2 (ja) * | 1996-05-31 | 2005-02-02 | 株式会社ニデック | 前眼部断面撮影装置 |
US5735283A (en) | 1996-10-09 | 1998-04-07 | Snook; Richard Kieth | Surgical keratometer system for measuring surface topography of a cornea during surgery |
US6015435A (en) * | 1996-10-24 | 2000-01-18 | International Vision, Inc. | Self-centering phakic intraocular lens |
US5777719A (en) * | 1996-12-23 | 1998-07-07 | University Of Rochester | Method and apparatus for improving vision and the resolution of retinal images |
US6079831A (en) * | 1997-04-24 | 2000-06-27 | Orbtek, Inc. | Device and method for mapping the topography of an eye using elevation measurements in combination with slope measurements |
ATE223676T1 (de) * | 1998-03-09 | 2002-09-15 | Schwind Eye Tech Solutions Gmb | Verfahren und vorrichtung zur untersuchung eines augenabschnittes |
GB2336657B (en) * | 1998-04-09 | 2001-01-24 | Iain Sinclair | Improvements in or relating to electric lights |
US6404984B1 (en) * | 1998-11-19 | 2002-06-11 | Sony Corporation | Lighted camera for dental examinations and method of using the same |
CN101596096B (zh) * | 1998-12-10 | 2015-11-25 | 卡尔蔡斯耶拿有限公司 | 无接触式测量眼睛轴长和/或角膜曲率和/或前房深度的,尤其是iol测量的装置 |
DE10042751A1 (de) * | 2000-08-31 | 2002-03-14 | Thomas Hellmuth | System zur berührungslosen Vermessung der optischen Abbildungsqualität eines Auges |
-
1999
- 1999-12-10 CN CN200910140890.5A patent/CN101596096B/zh not_active Expired - Lifetime
- 1999-12-10 JP JP2000586226A patent/JP4769923B2/ja not_active Expired - Lifetime
- 1999-12-10 CN CNB998143537A patent/CN100502762C/zh not_active Expired - Lifetime
- 1999-12-10 EA EA200100626A patent/EA004236B1/ru not_active IP Right Cessation
- 1999-12-10 EP EP99963480A patent/EP1139857A2/de not_active Ceased
- 1999-12-10 US US09/857,599 patent/US6779891B1/en not_active Expired - Lifetime
- 1999-12-10 CA CA2648334A patent/CA2648334C/en not_active Expired - Lifetime
- 1999-12-10 CA CA002353921A patent/CA2353921C/en not_active Expired - Fee Related
- 1999-12-10 WO PCT/EP1999/009766 patent/WO2000033729A2/de active Application Filing
-
2002
- 2002-06-26 HK HK02104760.8A patent/HK1043031B/zh not_active IP Right Cessation
-
2004
- 2004-08-10 US US10/916,151 patent/US7322699B2/en not_active Expired - Fee Related
-
2007
- 2007-10-31 US US11/932,170 patent/US20080111972A1/en not_active Abandoned
-
2011
- 2011-01-24 JP JP2011012236A patent/JP5184662B2/ja not_active Expired - Lifetime
-
2012
- 2012-04-12 US US13/445,669 patent/US8764195B2/en not_active Expired - Fee Related
- 2012-09-13 JP JP2012201426A patent/JP5417507B2/ja not_active Expired - Fee Related
-
2014
- 2014-06-27 US US14/318,022 patent/US9504381B2/en not_active Expired - Fee Related
Non-Patent Citations (1)
Title |
---|
See references of WO0033729A2 * |
Also Published As
Publication number | Publication date |
---|---|
JP5417507B2 (ja) | 2014-02-19 |
US7322699B2 (en) | 2008-01-29 |
CA2648334A1 (en) | 2000-06-15 |
HK1043031A1 (en) | 2002-09-06 |
US6779891B1 (en) | 2004-08-24 |
CN101596096B (zh) | 2015-11-25 |
US9504381B2 (en) | 2016-11-29 |
EA200100626A1 (ru) | 2002-06-27 |
JP5184662B2 (ja) | 2013-04-17 |
WO2000033729A3 (de) | 2000-10-26 |
CA2353921C (en) | 2009-03-10 |
CA2648334C (en) | 2016-02-02 |
JP2013006068A (ja) | 2013-01-10 |
JP2011098220A (ja) | 2011-05-19 |
WO2000033729A2 (de) | 2000-06-15 |
US20080111972A1 (en) | 2008-05-15 |
US20120287399A1 (en) | 2012-11-15 |
CN100502762C (zh) | 2009-06-24 |
US20140375951A1 (en) | 2014-12-25 |
US8764195B2 (en) | 2014-07-01 |
US20050018137A1 (en) | 2005-01-27 |
CN101596096A (zh) | 2009-12-09 |
EA004236B1 (ru) | 2004-02-26 |
CA2353921A1 (en) | 2000-06-15 |
JP2002531205A (ja) | 2002-09-24 |
HK1043031B (zh) | 2010-03-12 |
CN1330524A (zh) | 2002-01-09 |
JP4769923B2 (ja) | 2011-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1139857A2 (de) | Anordnung und verfahren zur berührungslosen messung der achslänge und/oder der hornhautkrümmung und/oder der vorderkammertiefe des auges, vorzugsweise zur iol-berechnung | |
DE19857001A1 (de) | Anordnung und Verfahren zur berührungslosen Messung der Achslänge, der Hornhautkrümmung und/oder der Vorderkammertiefe des Auges | |
DE69420196T2 (de) | Ophtalmologische Vorrichtung für den vorderen Augenbereich | |
EP2134247B1 (de) | Verfahren zur achslängenmessung mit erweiterter messfunktion im vorderen augenabschnitt | |
DE69528024T2 (de) | Mit optischer Kohärenz-Tomographie gesteuerter chirurgischer Apparat | |
DE60121123T2 (de) | Verfahren und vorrichtung zur messung von refraktiven fehlern eines auges | |
DE60038008T2 (de) | Vorrichtung zur bilderzeugung von augengewebe | |
DE60105874T2 (de) | Ophthalmisches Gerät | |
WO2005045362A1 (de) | Gerät zur interferometrischen augenlängenmessung mit erhöhter empfindlichkeit | |
DE69931419T2 (de) | Ophthalmologisches Gerät | |
DE69020411T2 (de) | Verfahren und Gerät für augenoptische Messungen. | |
DE2654608C3 (de) | Refraktometer zur selbsttätigen objektiven Ermittlung des Refraktionszustandes eines Auges | |
DE10108797A1 (de) | Verfahren zur Ermittlung von Abständen am vorderen Augenabschnitt | |
DE68911975T2 (de) | Ophthalmoskopisches Diagnoseverfahren und Gerät. | |
DE60206510T2 (de) | System zur berechnung des durchmessers der vorderkammer aus messungen des limbusringes | |
DE102010008146A1 (de) | Messsystem und Verfahren zum Ermitteln der Refraktion eines Auges, des Krümmungsradius der Hornhaut oder des Innendrucks eines Auges | |
DE69020410T2 (de) | Verfahren und Gerät für augenoptische Messungen. | |
EP3313262B1 (de) | Purkinjemeter und verfahren zur automatischen auswertung | |
EP1308128A2 (de) | Vorrichtung und Verfahren zur Messung der Refraktion eines Auges | |
EP2465412B1 (de) | Verfahren zum Vermessen des vorderen Augenabschnitts | |
AT518602A1 (de) | Ophthalmologische Längenmessung mittels Doppelstrahl Raum-Zeit-Domäne Wavelength Tuning Kurzkohärenz-Interferometrie | |
EP0979634B1 (de) | Vorrichtung zur konfokalen Messung der Lichtreflexion eines Bereichs eines Körpers | |
AT511014B1 (de) | Optischer adapter für ein doppelstrahl kurzkohärenz-interferometrie verfahren und anordnung zur intraokulären distanzmessung | |
WO1998013665A1 (de) | Vorrichtung zum vermessen der erhebung einer oberfläche, insbesonder der netzhaut | |
DE3831461A1 (de) | Verfahren und anordnung zum vergleich von objekten im reflektierten licht |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20010608 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE |
|
17Q | First examination report despatched |
Effective date: 20080415 |
|
APBK | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOSNREFNE |
|
APBN | Date of receipt of notice of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA2E |
|
APBR | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3E |
|
APAF | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNE |
|
APBT | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9E |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R003 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED |
|
18R | Application refused |
Effective date: 20200203 |