EP1117664A1 - Imidazol[4,5-c-]-pyridin-4-on-derivate mit faktor xa hemmender wirkung - Google Patents

Imidazol[4,5-c-]-pyridin-4-on-derivate mit faktor xa hemmender wirkung

Info

Publication number
EP1117664A1
EP1117664A1 EP99946151A EP99946151A EP1117664A1 EP 1117664 A1 EP1117664 A1 EP 1117664A1 EP 99946151 A EP99946151 A EP 99946151A EP 99946151 A EP99946151 A EP 99946151A EP 1117664 A1 EP1117664 A1 EP 1117664A1
Authority
EP
European Patent Office
Prior art keywords
amidino
formula
compounds
imidazo
methyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99946151A
Other languages
English (en)
French (fr)
Inventor
Joachim Gante
Werner Mederski
Horst Juraszyk
Hanns Wurziger
Dieter Dorsch
Hans-Peter Buchstaller
Sabine Bernotat-Danielowski
Guido Melzer
Soheila Anzali
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Merck Patent GmbH
Original Assignee
Merck Patent GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Merck Patent GmbH filed Critical Merck Patent GmbH
Publication of EP1117664A1 publication Critical patent/EP1117664A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/04Ortho-condensed systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/437Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having nitrogen as a ring hetero atom, e.g. indolizine, beta-carboline
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P7/00Drugs for disorders of the blood or the extracellular fluid
    • A61P7/02Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P9/00Drugs for disorders of the cardiovascular system
    • A61P9/10Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis

Definitions

  • the invention relates to compounds of the formula I.
  • R H unbranched or branched alkyl having 1-6 C atoms or
  • Ar, Ar ' are each independently of one another unsubstituted or mono-, di- or triple by R, OH, Hai, CN, N0 2 , CF 3l NH 2l NHR, NR 2 , pyrrolidin-1-yl, piperidin-1-yl, benzyloxy , SO 2 NH 2 , S0 2 NHR, SO 2 NR 2 , -CONHR, -CONR 2 , - (CH 2 ) n-NH 2 ,
  • the invention also relates to the optically active forms, the racemates, the diastereomers and the hydrates and solvates, e.g. Alcohololates, these compounds.
  • the invention was based on the task of finding new compounds with valuable properties, in particular those which can be used for the production of medicaments.
  • the compounds of the formula i and their salts have very valuable pharmacological properties with good tolerability.
  • they show factor Xa inhibitory properties and can therefore be used to combat and prevent thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis after angioplasty and claudication intermittently.
  • the compounds of the formula I according to the invention can furthermore be inhibitors of the coagulation factors factor VIIa, factor IXa and thrombin of the blood coagulation cascade.
  • Aromatic amidine derivatives with antithrombotic activity are e.g. known from EP 0 540 051 B1.
  • Cyclic guanidines for the treatment of thromboembolic disorders are e.g. described in WO 97/08165.
  • Aromatic heterocycles with factor Xa inhibitory activity are e.g. known from WO 96/10022.
  • Substituted N - [(aminoimino-methyl) phenylalkyl] azaheterocyclylamides as factor Xa inhibitors are described in WO 96/40679.
  • the antithrombotic and anticoagulant effect of the compounds according to the invention is based on the inhibitory effect on the activated coagulation protease, known under the name of factor Xa, or attributed to the inhibition of other activated serine proteases such as factor VIIa, factor IXa or thrombin.
  • Factor Xa is one of the proteases involved in the complex process of blood clotting. Factor Xa catalyzes the conversion of prothrombin to thrombin. Thrombin cleaves fibrinogen into fibrin monomers, which after cross-linking make an elementary contribution to thrombus formation. Activation of thrombin can lead to the occurrence of thromboembolic disorders. However, inhibition of thrombin can inhibit fibrin formation involved in thrombus formation.
  • the measurement of the inhibition of thrombin can e.g. using the method of G.F. Cousins et al. in Circulation 1996, 94, 1705-1712.
  • Inhibition of factor Xa can thus prevent thrombin from being formed.
  • the compounds of formula I according to the invention and their salts interfere with the blood coagulation process by inhibiting factor Xa and thus inhibit the formation of thrombi.
  • the inhibition of factor Xa by the compounds according to the invention and the measurement of the anticoagulant and antithrombotic activity can be determined by customary in vitro or in vivo methods.
  • a suitable method is e.g. by J. Hauptmann et al. in Thrombosis and Haemostasis 1990, 63, 220-223.
  • the measurement of the inhibition of factor Xa can e.g. using the method of T. Hara et al. in thromb. Haemostas. 1994, 71, 314-319 he olgen.
  • the coagulation factor Vlla initiates the extrinsic part of the coagulation cascade after binding to the tissue factor and contributes to the activation of the
  • Factor X to factor Xa.
  • An inhibition of factor VIIa thus prevents the development of factor Xa and thus a subsequent one
  • Activity can be determined using conventional in vitro or in vivo methods the.
  • a common method for measuring the inhibition of factor VIIa is described, for example, by HF Ronning et al. in Thrombosis Research 1996, 84, 73-81.
  • Coagulation factor IXa is generated in the intrinsic coagulation cascade and is also involved in the activation of factor X to factor Xa. Inhibition of factor IXa can therefore otherwise prevent factor Xa from being formed.
  • the inhibition of factor IXa by the compounds according to the invention and the measurement of the anticoagulant and antithrombotic activity can be determined by customary in vitro or in vivo methods. A suitable method is e.g. by J. Chang et al. in Journal of Biological Chemistry 1998, 273, 12089-12094.
  • the compounds of formula I can be used as active pharmaceutical ingredients in the
  • thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis after angioplasty and claudication intermediate.
  • the invention relates to the compounds of the formula I and their salts and to a process for the preparation of compounds of the formula I according to claim 1 and their salts, characterized in that
  • R represents alkyl, is unbranched (linear) or branched, and has 1 to 6, preferably 1, 2, 3, 4, 5 or 6 carbon atoms.
  • R is preferably methyl, furthermore ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl, and also also pentyl, 1-, 2- or 3-methylbutyl, 1, 1-, 1, 2 - or 2,2-dimethylpropyl, 1-ethylpropyl, hexyl, 1-, 2-, 3- or 4-methylpentyl, 1, 1-, 1, 2-, 1, 3-, 2,2-, 2,3 - or 3,3-dimethyibutyl, 1- or 2-ethylbutyl, 1-ethyl-1-methylpropyl, 1-ethyl-2-methylpropyl, 1, 1, 2- or 1, 2,2-trimethylpropyl.
  • R is also cycloalkyl and preferably means cyclopropyl, cyclo
  • A means alkyl with 1, 2, 3 or 4 carbon atoms and preferably means methyl, furthermore ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl or tert-butyl.
  • Ar and Ar 'each independently of one another are preferably unsubstituted phenyl, naphthyl or biphenyl, further preferably, for example, by methyl, ethyl, propyl, isopropyl, butyl, cyclopentyl, cyclohexyl, fluorine, chlorine, bromine, iodine, hydroxy, methoxy, ethoxy, propoxy, Butoxy, pentyloxy, hexyloxy, cyano, nitro, trifluoromethyl, amino, methylamino, ethylamino, dimethylamino, diethylamino, pyrrolidin-1-yl, pipehdin-1-yl, benzyloxy, sulfonamido, methylsulfonamido, ethylsulfonamido, propylsulfonamido Butylsulfonamido, dimethylsulfona
  • Ar and Ar ' are therefore, in each case independently of one another, very particularly preferably, for example, o-, m- or p-tolyl, o-, m- or p-ethylphenyl, o-, m- or p-propylphenyl, o-, m- or p-isopropylphenyl, o-, m- or p-tert-butylphenyl, o-, m- or p-hydroxyphenyl, o-, m- or p-nitrophenyl, o-, m- or p-aminophenyl, o-, m- or p- (N-methylamino) phenyl, o-, m- or p- (N-methylaminocarbonyl) phenyl, o-, m- or p-acetamidophenyl, o-, m- or p-methoxypheny
  • R 3 preferably denotes, for example, H, shark, COOH, COOA or CONH 2 .
  • n is preferably 0 or 1, and also 2 or 3.
  • the compounds of the formula I can have one or more chiral centers and therefore exist in various stereoisomeric forms.
  • Formula I encompasses all of these forms.
  • the invention relates in particular to those compounds of the formula I in which at least one of the radicals mentioned has one of the preferred meanings indicated above.
  • Some preferred groups of compounds can be expressed by the following sub-formulas la to li, which correspond to the formula I and in which the radicals not specified have the meaning given for the formula I, but in which
  • Ig n denotes 1; in lh RH, unbranched or branched alkyl with 1-6 C-
  • R 1 Ar, R 2 Ar ', R 3 H, R, Hai, COOH or COOA, Ar, Ar' are each independently of one another simply by -CONR 2 ,
  • Ar, Ar ' each independently of one another, simply substituted by R 4, phenyl, naphthyl or biphenyl,
  • P means 0 or 1.
  • the compounds of the formula I and also the starting materials for their preparation are otherwise prepared by methods known per se, as described in the literature (for example in the standard works such as Houben-Weyl, methods of organic chemistry, Georg-Thieme-Verlag, Stuttgart) are described, namely under reaction conditions which are known and suitable for the reactions mentioned. Use can also be made of variants which are known per se and are not mentioned here in detail. If desired, the starting materials can also be formed in situ, so that they are not isolated from the reaction mixture, but instead are immediately reacted further to give the compounds of the formula I.
  • Compounds of formula I can preferably be obtained by liberating compounds of formula I from one of their functional derivatives by treatment with a solvolysing or hydrogenolysing agent.
  • Preferred starting materials for solvolysis or hydrogenolysis are those which otherwise correspond to the formula I, but instead of one or more free amino and / or hydroxyl groups contain corresponding protected amino and / or hydroxyl groups, preferably those which instead of an H atom, which is connected to an N atom carry an amino protective group, in particular those which instead of an HN
  • Group carry an R'-N group, in which R 'represents an amino protecting group and / or those which carry a hydroxy protecting group instead of the H atom of a hydroxy group, e.g. those which correspond to the formula I, but instead of a group -COOH carry a group -COOR "in which R" denotes a hydroxyl protective group.
  • Preferred starting materials are also the oxadiazole derivatives, which can be converted into the corresponding amidino compounds.
  • the release of the amidino group from its oxadiazole derivative can e.g. by treatment with hydrogen in the presence of a catalyst (e.g.
  • Suitable solvents are those specified below, in particular alcohols such as methanol or ethanol, organic acids such as acetic acid or propionic acid or mixtures thereof.
  • the hydrogenolysis is generally carried out at temperatures between about 0 and 100 ° and pressures between about 1 and 200 bar, preferably at 20-30 ° (room temperature) and 1-10 bar.
  • the oxadiazole group can be introduced, for example, by reacting the cyano compounds with hydroxylamine and reacting with phosgene, dialkyl carbonate, chloroformate, N, N'-carbonyldiimidazole or acetic anhydride.
  • phosgene dialkyl carbonate
  • chloroformate N, N'-carbonyldiimidazole
  • acetic anhydride Several - identical or different - protected amino and / or hydroxy groups can also be present in the molecule of the starting material. If the existing protective groups are different from one another, they can in many cases be split off selectively.
  • amino protecting group is generally known and refers to groups which are suitable for protecting (blocking) an amino group from chemical reactions, but which are easily removable after the desired chemical reaction at other locations on the
  • acyl group is to be understood in the broadest sense in connection with the present process. It encompasses acyl groups derived from aliphatic, araliphatic, aromatic or heterocyclic carboxylic acids or sulfonic acids, in particular alkoxycarbonyl, aryloxycarbonyl and especially aralkoxycarbonyl groups.
  • acyl groups are alkanoyl such as acetyl, propionyl, butyryl; Aralkanoyl such as phenylacetyl; Aroyl such as benzoyl or toluyl; Aryloxyalkanoyl such as POA; Alkoxycarbonyl such as methoxycarbonyl, ethoxycarbonyl, 2,2,2-trichloroethoxycarbonyl, BOC (tert-butyloxycarbonyl), 2-iodoethoxycarbonyl; Aralkyloxycarbonyl such as CBZ ("carbobenzoxy"), 4-methoxybenzyloxycarbonyl, FMOC; Aryisulfonyl such as Mtr.
  • Preferred amino protecting groups are BOC and Mtr, furthermore CBZ, Fmoc, benzyl and acetyl.
  • hydroxyl protecting group is also generally known and refers to groups which are suitable for protecting a hydroxyl group against chemical reactions, but which are easily removable after the desired chemical reaction has been carried out elsewhere in the molecule. Typical of such groups are the unsubstituted or substituted aryl, aralkyl or acyl groups mentioned above, and also alkyl groups.
  • the nature and size of the hydroxy Protecting groups are not critical since they are removed again after the desired chemical reaction or reaction sequence; groups with 1-20, in particular 1-10, carbon atoms are preferred.
  • hydroxyl protecting groups include benzyl, 4-methoxybenzyl, p-nitrobenzoyl, p-toluenesulfonyl, tert-butyl and acetyl, with benzyl and tert-butyl being particularly preferred.
  • Carboxylic acids such as acetic acid, ethers such as tetrahydrofuran or dioxane, amides such as DMF, halogenated hydrocarbons such as dichloromethane, and also alcohols such as methanol, ethanol or isopropanol, and water. Mixtures of the abovementioned solvents are also suitable. TFA is preferably used in excess without the addition of another solvent, perchloric acid in the form of a mixture of acetic acid and 70% perchloric acid in a ratio of 9: 1.
  • the reaction temperatures for the cleavage are advantageously between about 0 and about 50 °, preferably between 15 and 30 ° (room temperature).
  • the groups BOC, OBut and Mtr can e.g. B. preferably with TFA in dichloromethane or with about 3 to 5N HCl in dioxane at 15-30 °, the FMOC group with an about 5 to 50% solution of dimethylamine, diethylamine or piperidine in DMF at 15-30 °.
  • Hydrogenolytically removable protective groups can, for. B. by treatment with hydrogen in the presence of a catalyst (z. B. a noble metal catalyst such as palladium, advantageously on a support such as coal).
  • a catalyst z. B. a noble metal catalyst such as palladium, advantageously on a support such as coal.
  • Suitable solvents are the above, especially z. B. alcohols such as methanol or etha- noi or amides like DMF.
  • the hydrogenolysis is generally carried out at temperatures between about 0 and 100 ° and pressures between about 1 and 200 bar, preferably at 20-30 ° and 1-10 bar.
  • Hydrogenolysis of the CBZ group succeeds e.g. B. good on 5 to 10% Pd / C in methanol or with ammonium formate (instead of hydrogen) on Pd / C in methanol / DMF at 20-30 °.
  • Suitable inert solvents are e.g. Hydrocarbons such as hexane, petroleum ether, benzene, toluene or xylene; chlorinated hydrocarbons such as trichlorethylene, 1, 2-dichloroethane, carbon tetrachloride, trifluoromethylbenzene, chloroform or dichloromethane; Alcohols such as methanol, ethanol, isopropanol, n-propanol, n-butanol or tert-butanol; Ethers such as diethyl ether, diisopropyl ether, tetrahydrofuran (THF) or dioxane; Glycol ethers such as ethylene glycol monomethyl or monoethyl ether (methyl glycol or ethyl glycol), ethylene glycol dimethyl ether (diglyme); Ketones such as acetone or
  • Butanone Amides such as acetamide, dimethylacetamide, N-methylpyrrolidone (NMP) or dimethylformamide (DMF); Nitriles such as acetonitrile; Suifoxides such as dimethyl sulfoxide (DMSO); Carbon disulfide; Carboxylic acids such as formic acid or acetic acid; Nitro compounds such as nitromethane or nitrobenzene; Esters such as ethyl acetate or mixtures of the solvents mentioned.
  • Amides such as acetamide, dimethylacetamide, N-methylpyrrolidone (NMP) or dimethylformamide (DMF); Nitriles such as acetonitrile; Suifoxides such as dimethyl sulfoxide (DMSO); Carbon disulfide; Carboxylic acids such as formic acid or acetic acid; Nitro compounds such as nitromethane or nitrobenzene; Esters such as ethyl acetate or mixtures of the solvents mentioned
  • the biphenyl-SO 2 NH 2 group is preferably used in the form of its tert-butyl derivative.
  • the tert-butyl group is cleaved off, for example, using TFA with or without the addition of an inert solvent, preferably with the addition of a small amount of anisole (1% by volume).
  • the conversion of a cyano group into an amidino group takes place by reaction with e.g. Hydroxylamine and subsequent reduction of the N-hydroxyamidine with hydrogen in the presence of a catalyst such as e.g. Pd / C.
  • a catalyst such as e.g. Pd / C.
  • ammonia can also be added to a nitrite.
  • the addition is preferably carried out in several stages by, in a manner known per se, a) converting the nitrii with H 2 S into a thioamide which is mixed with an alkylating agent, for example CH 3 I, in the corresponding S-alkyl imidothioester is converted, which in turn reacts with NH 3 to form the amidine, b) converts the nitrii with an alcohol, for example ethanol in the presence of HCI, into the corresponding imidoester and treats it with ammonia, or c) the nitrii with lithium bis (trimethylsilyl) ) amide and then hydrolyzed the product.
  • an alkylating agent for example CH 3 I
  • R 2 or - (CH 2 ) n -R 1 radicals are introduced into the dihydro-imidazo [4,5-c] pyridin-4-one system by customary alkylation methods.
  • a compound of formula II is introduced into the dihydro-imidazo [4,5-c] pyridin-4-one system by customary alkylation methods.
  • R has the meaning given in claim 1 and R 1 and R 3 each represent a radical which is not alkylatable, such as for R 1
  • L is preferably Cl, Br, I or a reactively modified OH group such as an activated ester, an imidazolide or alkylsulfonyloxy with 1-6 C atoms (preferably methylsulfonyloxy) or arylsulfonyloxy with 6-10 C atoms (preferably phenyl - or p-tolylsulfonyloxy).
  • a reactively modified OH group such as an activated ester, an imidazolide or alkylsulfonyloxy with 1-6 C atoms (preferably methylsulfonyloxy) or arylsulfonyloxy with 6-10 C atoms (preferably phenyl - or p-tolylsulfonyloxy).
  • the solvents listed above are suitable as solvents.
  • the reaction is carried out in the presence of an acid-binding agent, preferably an alkali or alkaline earth metal hydroxide, carbonate or bicarbonate or another salt of a weak acid of the alkali or alkaline earth metals, preferably potassium, sodium, calcium or cesium.
  • an acid-binding agent preferably an alkali or alkaline earth metal hydroxide, carbonate or bicarbonate or another salt of a weak acid of the alkali or alkaline earth metals, preferably potassium, sodium, calcium or cesium.
  • reaction time is between a few minutes and 14 days, the reaction temperature is between about 0 ° and 150 °, normally between 20 ° and 130 °.
  • R 2 is introduced via a boronic acid derivative.
  • R 1 and R has the meaning given in claim 1 and R 2 and R 3 each represent a radical which cannot be alkylated, with a compound of the formula V.
  • R 1 - (CH 2 ) n -LV are implemented.
  • R 1 is a non-alkylatable radical, such as, for example, a phenyl radical substituted by 5-methyl- [1, 2,4] oxadiazol-3-yl and L has the meaning as in the compounds of the formula III.
  • This process gives compounds of the formula (IA) and / or (IB).
  • Esters can e.g. are saponified with acetic acid or with NaOH or KOH in water, water-THF or water-dioxane at temperatures between 0 and 100 °.
  • free amino groups can be acylated in the usual way with an acid chloride or anhydride or alkylated with an unsubstituted or substituted alkyl halide, advantageously in an inert solvent such as dichloromethane or THF and / or in the presence of a base such as triethylamine or pyridine at temperatures between -60 and + 30 °.
  • a base of the formula I can be converted into the associated acid addition salt using an acid, for example by reacting equivalent amounts of the base and the acid in an inert solvent such as ethanol and subsequent evaporation.
  • acids that provide physiologically acceptable salts are suitable for this implementation.
  • So inorganic acids can be used, for example sulfuric acid, nitric acid, hydrohalic acids such as hydrochloric acid or hydrobromic acid, phosphoric acids such as orthophosphoric acid, sulfamic acid, furthermore organic acids, in particular aliphatic, alicyclic, araliphatic, aromatic or heterocyclic mono- or polycarbonate, sulfonic or Sulfuric acids, e.g.
  • acetic acid formic acid, acetic acid, propionic acid, pivalic acid, diethyl acetic acid, malonic acid, succinic acid, pimeic acid, fumaric acid, maleic acid, lactic acid, tartaric acid, malic acid, citric acid, gluconic acid, ascorbic acid, nicotinic acid, isonicotonic acid, methanedio disulphonic acid, methane acid, Hydroxyethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, naphthalene mono- and disulfonic acids, lauryl sulfuric acid.
  • Salts with physiologically unacceptable acids for example picrates, can be used for the isolation and / or purification of the compounds of the formula I.
  • compounds of the formula I with bases for example sodium or potassium hydroxide or carbonate
  • bases for example sodium or potassium hydroxide or carbonate
  • compounds of the formula I with bases can be converted into the corresponding metal, in particular alkali metal or alkaline earth metal, or into the corresponding ammonium salts.
  • physiologically harmless organic bases e.g. Ethanolamine can be used.
  • the pharmaceutical activity of the racemates or the stereo isomers of the compounds according to the invention can differ, it may be desirable to use the enantiomers.
  • the end product or even the intermediates can be separated into enantiomeric compounds by chemical or physical measures known to the person skilled in the art or can already be used as such in the synthesis.
  • diastereomers are formed from the mixture by reaction with an optically active release agent.
  • Suitable release agents are e.g. optically active acids, such as the R and S forms of tartaric acid, diacetyltartaric acid, dibenzoyltartaric acid, mandelic acid, malic acid, lactic acid, suitable N-protected amino acids (e.g. N-benzoylproline or N-benzenesulfonylproline) or the various optically active camphorsulfonic acids.
  • Aqueous or alcoholic solvent mixtures such as e.g. Hexane / isopropanol / acetonitrile e.g. in the ratio 82: 15: 3.
  • the invention furthermore relates to the use of the compounds of the formula I and / or their physiologically acceptable salts for the preparation of Provision of pharmaceutical preparations, especially by non-chemical means. They can be brought into a suitable dosage form together with at least one solid, liquid and / or semi-liquid carrier or auxiliary and, if appropriate, in combination with one or more further active ingredients.
  • the invention further relates to pharmaceutical preparations containing at least one compound of the formula I and / or one of its physiologically acceptable salts.
  • Suitable carriers are organic or inorganic substances which are suitable for enteral (for example oral), parenteral or topical application and do not react with the new compounds, for example water, vegetable oils, benzyl alcohols, alkylene glycols, polyethylene glycols, glycerol triacetate , Gelatin, carbohydrates such as lactose or starch, magnesium stearate, talc, petroleum jelly.
  • Tablets, pills, dragees, capsules, powders, granules, syrups, juices or drops are used in particular for oral use, suppositories for rectal use, solutions, preferably oily or aqueous solutions, and also suspensions, emulsions or implants for parenteral use topical application ointments, creams or powder.
  • the new compounds can also be lyophilized and the lyophilizates obtained e.g. can be used for the production of injectables.
  • the specified preparations can be sterilized and / or contain auxiliary substances such as lubricants, preservatives, stabilizers and / or wetting agents, emulsifiers, salts for influencing the osmotic pressure, buffer substances, coloring, flavoring and / or several other active substances, e.g. one or more vitamins.
  • auxiliary substances such as lubricants, preservatives, stabilizers and / or wetting agents, emulsifiers, salts for influencing the osmotic pressure, buffer substances, coloring, flavoring and / or several other active substances, e.g. one or more vitamins.
  • the compounds of formula I and their physiologically acceptable salts can be used in the control and prevention of thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis after angioplasty and intermittent claudication.
  • thromboembolic disorders such as thrombosis, myocardial infarction, arteriosclerosis, inflammation, apoplexy, angina pectoris, restenosis after angioplasty and intermittent claudication.
  • the substances according to the invention are generally preferably administered in doses between about 1 and 500 mg, in particular between 5 and 100 mg, per dosage unit.
  • the daily dosage is preferably between about 0.02 and 10 mg / kg body weight.
  • the specific dose for each patient depends on a wide variety of factors, for example on the effectiveness of the particular compound used, on the age, body weight, general health, sex, on the diet, on the time and route of administration, on the rate of elimination and combination of drugs and severity of the disease to which the therapy applies.
  • Oral application is preferred.
  • customary work-up means: if necessary, water is added, if necessary, depending on the constitution of the end product, the pH is adjusted to between 2 and 10, extracted with ethyl acetate or dichloromethane, and the mixture is separated off, dries the organic phase over sodium sulfate, evaporates and purifies by chromatography on silica gel and / or by crystallization. Rf values on silica gel; Eluent: ethyl acetate / methanol 9: 1.
  • the compound is obtained from "DF" by conventional methods by splitting off the tert-butyl group in TFA
  • the diamidino compounds are obtained therefrom by reaction with hydroxylammonium chloride and subsequent hydrogenation.
  • the following examples relate to pharmaceutical preparations:
  • Example A Injection glasses
  • a solution of 100 g of an active ingredient of the formula I and 5 g of disodium hydrogenphosphate is adjusted to pH 6.5 in 3 l of double-distilled water with 2N hydrochloric acid, sterile filtered, filled into injection glasses, lyophilized under sterile conditions and sealed sterile. Each injection jar contains 5 mg of active ingredient.
  • a mixture of 20 g of an active ingredient of the formula I is melted with 100 g of soy lecithin and 1400 g of cocoa butter, poured into molds and allowed to cool. Each suppository contains 20 mg of active ingredient.
  • a solution is prepared from 1 g of an active ingredient of the formula I, 9.38 g of NaH 2 PO 4 • 2 H 2 0, 28.48 g of Na 2 HPO 4 • 12 H 2 0 and 0.1 g of benzalkonium chloride in 940 ml of double distilled water. It is adjusted to pH 6.8, made up to 1 I and sterilized by irradiation. This solution can be used in the form of eye drops.
  • Example D ointment
  • 500 mg of an active ingredient of the formula I are mixed with 99.5 g of petroleum jelly under aseptic conditions.
  • Example F coated tablets
  • Example E tablets are pressed, which are then coated in a conventional manner with a coating of sucrose, potato starch, talc, tragacanth and colorant.
  • Example G capsules
  • each capsule contains 20 mg of the active ingredient.
  • a solution of 1 kg of active ingredient of the formula I in 60 l of double-distilled water is sterile filtered, filled into ampoules, lyophilized under sterile conditions and sealed sterile. Each ampoule contains 10 mg of active ingredient.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Vascular Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Cardiology (AREA)
  • Diabetes (AREA)
  • Hematology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Nitrogen Condensed Heterocyclic Rings (AREA)

Abstract

Neue Verbindungen der Formel (I), worin R, R?1, R2, R3¿, n und p die in Patentanspruch 1 angegebene Bedeutung haben, sind Inhibitoren des Koagulationsfaktors Xa und können zur Prophylaxe und/oder Therapie von thromboembolischen Erkrankungen eingesetzt werden.

Description

IMIDAZ0L[4,5-C-]-PYRIDIN-4-0N-DERIVATE MIT FAKTOR XA HEMMENDER WIRKUNG
Die Erfindung betrifft Verbindungen der Formel I
worin
R H, unverzweigtes oder verzweigtes Alkyl mit 1-6 C-Atomen oder
Cycloalkyl mit 3-6 C-Atomen,
R1 Ar,
R2 Ar1,
R3 H, R, R4, Hai, CN, COOH, COOA oder CONH2,
Ar, Ar' jeweils unabhängig voneinander unsubstituiertes oder ein-, zwei- oder dreifach durch R, OH, Hai, CN, N02, CF3l NH2l NHR, NR2, Pyrrolidin-1-yl, Piperidin-1-yl, Benzyloxy, SO2NH2, S02NHR, SO2NR2, -CONHR, -CONR2, -(CH2)n-NH2,
-(CH2)n-NHR, -(CH2)n-NR2, -O-(CH2)π-NH2, -0-(CH2)n-NHR, -0-(CH2)n-NR2, R4 oder zusammen durch -0-(CH2)m-0- substituiertes Phenyl, Naphthyl oder Biphenyl, R4 unsubstituiertes oder einfach durch -COR, -COOR, -OH oder durch eine konventionelle Aminoschutzgruppe substituiertes -C(=NH)-NH2 oder -NH-C(=NH)-NH2, -C(=O)-N=C(NH2)2,
A Alkyl mit 1-4 C-Atomen,
Hai F, Cl, Br oder I, m 1 oder 2, n 0, 1 , 2 oder 3, p 0 oder 1 bedeutet, sowie deren Salze.
Gegenstand der Erfindung sind auch die optisch aktiven Formen, die Ra- cemate, die Diastereomeren sowie die Hydrate und Solvate, z.B. Alkoho- late, dieser Verbindungen.
Der Erfindung lag die Aufgabe zugrunde, neue Verbindungen mit wertvollen Eigenschaften aufzufinden, insbesondere solche, die zur Herstellung von Arzneimitteln verwendet werden können.
Es wurde gefunden, daß die Verbindungen der Formel i und ihre Salze bei guter Verträglichkeit sehr wertvolle pharmakologische Eigenschaften besitzen. Insbesondere zeigen sie Faktor Xa inhibierende Eigenschaften und können daher zur Bekämpfung und Verhütung von thromboembolischen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens eingesetzt werden.
Die erfindungsgemäßen Verbindungen der Formel I können weiterhin Inhibitoren der Gerinnungsfaktoren Faktor Vlla, Faktor IXa und Thrombin der Blutgerinnungskaskade sein.
Aromatische Amidinderivate mit antithrombotischer Wirkung sind z.B. aus der EP 0 540 051 B1 bekannt. Cyclische Guanidine zur Behandlung thromboembolischer Erkrankungen sind z.B. in der WO 97/08165 beschrieben. Aromatische Heterocyclen mit Faktor Xa inhibitorischer Aktivität sind z.B. aus der WO 96/10022 bekannt. Substituierte N-[(Aminoimino- methyl)phenylalkyl]-azaheterocyclylamide als Faktor Xa Inhibitoren sind in WO 96/40679 beschrieben.
Der antithrombotische und antikoagulierende Effekt der erfindungsgemäßen Verbindungen wird auf die inhibierende Wirkung gegenüber der aktivierten Gerinnungsprotease, bekannt unter dem Namen Faktor Xa, oder auf die Hemmung anderer aktivierter Serinproteasen wie Faktor Vlla, Faktor IXa oder Thrombin zurückgeführt.
Faktor Xa ist eine der Proteasen, die in den komplexen Vorgang der Blut- gerinnung involviert ist. Faktor Xa katalysiert die Umwandlung von Pro- thrombin in Thrombin. Thrombin spaltet Fibrinogen in Fibrinmonomere, die nach Quervernetzung elementar zur Thrombusbildung beitragen. Eine Aktivierung von Thrombin kann zum Auftreten von thromboembolischen Erkrankungen führen. Eine Hemmung von Thrombin kann jedoch die in die Thrombusbildung involvierte Fibrinbildung inhibieren.
Die Messung der Inhibierung von Thrombin kann z.B. nach der Methode von G. F. Cousins et al. in Circulation 1996, 94, 1705-1712 erfolgen.
Eine Inhibierung des Faktors Xa kann somit verhindern, daß Thrombin ge- bildet wird.
Die erfindungsgemäßen Verbindungen der Formel I sowie ihre Salze greifen durch Inhibierung des Faktors Xa in den Blutgerinnungsprozeß ein und hemmen so die Entstehung von Thromben.
Die Inhibierung des Faktors Xa durch die erfindungsgemäßen Verbindungen und die Messung der antikoagulierenden und antithrombotischen Aktivität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt werden. Ein geeignetes Verfahren wird z.B. von J. Hauptmann et al. in Thrombosis and Haemostasis 1990, 63, 220-223 beschrieben.
Die Messung der Inhibierung von Faktor Xa kann z.B. nach der Methode von T. Hara et al. in Thromb. Haemostas. 1994, 71, 314-319 er olgen.
Der Gerinnungsfaktor Vlla initiiert nach Bindung an Tissue Faktor den ex- trinsischen Teil der Gerinnungskaskade und trägt zur Aktivierung des
Faktors X zu Faktor Xa bei. Eine Inhibierung von Faktor Vlla verhindert somit die Entstehung des Faktors Xa und damit eine nachfolgende
Thrombinbildung.
Die Inhibierung des Faktors Vlla durch die erfindungsgemäßen Verbin- düngen und die Messung der antikoagulierenden und antithrombotischen
Aktivität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt wer- den. Ein übliches Verfahren zur Messung der Inhibierung von Faktor Vlla wird z.B. von H. F. Ronning et al. in Thrombosis Research 1996, 84, 73-81 beschrieben.
Der Gerinnungsfaktor IXa wird in der intrinsischen Gerinnungskaskade generiert und ist ebenfalls an der Aktivierung von Faktor X zu Faktor Xa beteiligt. Eine Inhibierung von Faktor IXa kann daher auf andere Weise verhindern, daß Faktor Xa gebildet wird. Die Inhibierung von Faktor IXa durch die erfindungsgemäßen Verbindun- gen und die Messung der antikoagulierenden und antithrombotischen Aktivität kann nach üblichen in vitro- oder in vivo-Methoden ermittelt werden. Ein geeignetes Verfahren wird z.B. von J. Chang et al. in Journal of Biolo- gical Chemistry 1998, 273, 12089-12094 beschrieben.
Die Verbindungen der Formel I können als Arzneimittelwirkstoffe in der
Human- und Veterinärmedizin eingesetzt werden, insbesondere zur Bekämpfung und Verhütung von thromboembolischen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio in- termittens.
Gegenstand der Erfindung sind die Verbindungen der Formel I und ihre Salze sowie ein Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 1 sowie ihrer Salze, dadurch gekennzeichnet, daß man
a) sie aus einem ihrer funktionellen Derivate durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel in Freiheit setzt, indem man
i) eine Amidinogruppe aus ihrem Oxadiazolderivat oder Oxaz- olidinonderivat durch Hydrogenolyse oder Solvolyse freisetzt,
ii) eine konventionelle Aminoschutzgruppe durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel durch Wasserstoff ersetzt oder eine durch eine konventionelle
Schutzgruppe geschützte Aminogruppe in Freiheit setzt, - O -
oder
b) in einer Verbindung der Formel I einen oder mehrere Rest(e) R, R1, R2 und/oder R3 in einen oder mehrere Rest(e) R, R1, R2 und/oder R3 umwandelt,
indem man beispielsweise
i) eine Estergruppe zu einer Carboxygruppe hydrolysiert,
ii) eine Nitrogruppe reduziert,
iii) eine Aminogruppe acyliert,
iv) eine Cyangruppe in eine Amidinogruppe
und/oder
c) eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.
Für alle Reste, die mehrfach auftreten, gilt, daß deren Bedeutungen unabhängig voneinander sind.
Vor- und nachstehend haben die Reste bzw. Parameter R, R1, R2, R3 und n die bei der Formel I angegebenen Bedeutungen, falls nicht ausdrücklich etwas anderes angegeben ist.
R bedeutet Alkyl, ist unverzweigt (linear) oder verzweigt, und hat 1 bis 6, vorzugsweise 1 , 2, 3, 4, 5 oder 6 C-Atome. R bedeutet vorzugsweise Me- thyl, weiterhin Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.- Butyl, ferner auch Pentyl, 1-, 2- oder 3-Methylbutyl, 1 ,1- , 1 ,2- oder 2,2- Dimethylpropyl, 1-Ethylpropyl, Hexyl, 1- , 2- , 3- oder 4-Methylpentyl, 1 ,1- , 1 ,2- , 1 ,3- , 2,2- , 2,3- oder 3,3-Dimethyibutyl, 1- oder 2-Ethylbutyl, 1-Ethyl- 1-methylpropyl, 1-Ethyl-2-methylpropyl, 1 ,1 ,2- oder 1 ,2,2-Trimethylpropyl. R ist auch Cycloalkyl und bedeutet vorzugsweise Cyclopropyl, Cyclobutyl, Cylopentyl, Cyclohexyl oder Cycloheptyl. R bedeutet weiterhin H.
A bedeutet Alkyl mit 1 , 2, 3 oder 4 C-Atomen und bedeutet vorzugsweise Methyl, weiterhin Ethyl, Propyl, Isopropyl, Butyl, Isobutyl, sek.-Butyl oder tert.-Butyl.
Hai bedeutet vorzugsweise F, Cl oder Br, aber auch I.
Ar und Ar' bedeuten jeweils unabhängig voneinander unsubstituiertes oder ein-, zwei- oder dreifach durch R, OH, OR, Hai, CN, N02l CF3, NH2, NHR, NR2, Pyrrolidin-1-yl, Piperidin-1-yl, Benzyloxy, SO2NH2, S02NHA, SO2NR2, Phenylsulfonamido, -(CH2)n-NH2, -(CH2)n-NHR, -(CH2)n-NR2, -O-(CH2)n- NH2, -0-(CH2)n-NHR, -O-(CH2)n-NR2, -O-(CH2)m-0- oder R4 substituiertes Phenyl, Benzodioxol-5-yl, Naphthyl oder Biphenyl, wobei einfach durch Amidino substituiertes Naphthyl oder Biphenyl bevorzugt ist. Bevorzugte Substituenten für Biphenyl sind Amidino, Fluor, SO2NH2 oder SO2NHR.
Ar und Ar' bedeuten jeweils unabhängig voneinander vorzugsweise unsubstituiertes Phenyl, Naphthyl oder Biphenyl, weiterhin vorzugsweise z.B. durch Methyl, Ethyl, Propyl, Isopropyl, Butyl, Cyclopentyl, Cyclohexyl, Fluor, Chlor, Brom, lod, Hydroxy, Methoxy, Ethoxy, Propoxy, Butoxy, Pentyl- oxy, Hexyloxy, Cyan, Nitro, Trifluormethyl, Amino, Methylamino, Ethyl- amino, Dimethylamino, Diethylamino, Pyrrolidin-1-yl, Pipehdin-1-yl, Benzyloxy, Sulfonamido, Methylsulfonamido, Ethylsulfonamido, Propylsulfon- amido, Butylsulfonamido, Dimethylsulfonamido, Phenylsulfonamido, Ami- nomethyl, Aminoethyl, N-Methylaminomethyl, N-Ethylaminomethyl, N,N- Dimethylaminomethyl, Aminomethyloxy, Aminoethyloxy oder R4 mono-, dioder trisubstituiertes Phenyl, Naphthyl oder Biphenyl, femer Benzodioxolyl.
Ar und Ar' bedeuten daher, jeweils unabhängig voneinander, ganz besonders bevorzugt z.B. o-, m- oder p-Tolyl, o-, m- oder p-Ethylphenyl, o-, m- oder p-Propylphenyl, o-, m- oder p-lsopropylphenyl, o-, m- oder p-tert- Butylphenyl, o-, m- oder p-Hydroxyphenyl, o-, m- oder p-Nitrophenyl, o-, m- oder p-Aminophenyl, o-, m- oder p-(N-Methylamino)-phenyl, o-, m- oder p- (N-Methylaminocarbonyl)-phenyl, o-, m- oder p-Acetamidophenyl, o-, m- oder p-Methoxyphenyi, o-, m- oder p-Ethoxyphenyl, o-, m- oder p-(N,N-Di- methylamino)-phenyl, o-, m- oder p-(N,N-Dimethyiaminocarbonyl)-phenyl, o-, m- oder p-(N-Ethylamino)-phenyl, o-, m- oder p-(N,N-Diethylamino)- phenyl, o-, m- oder p-Fluorphenyl, o-, m- oder p-Bromphenyl, o-, m- oder p- Chlorphenyl, o-, m- oder p-(Methylsulfonamido)-phenyl, o-, m- oder p- Amidinophenyl, 7-Amidino-2-naphthyl, 2'-Amidino-biphenyl-3-yl, 3-Fluor-2'- sulfamoyl-biphenyl-4-yl, 3-Fluor-2'-N-tert.-butyl-sulfamoyl-biphenyl-4-yl, 2'-
SuIfamoyl-biphenyl-4-yl, 2'-N-tert.-Butyl-sulfamoyl-biphenyl-4-yl, o-, m- oder p-(Pyrrolidin-1-yl)-phenyl, o-, m- oder p-(Piperidin-1-yl)-phenyl, o-, m- oder p-{5-Methyl-[1 ,2,4]-oxadiazol-3-yl)}-phenyl, 7-{5-Methyl-[1 ,2,4]- oxadiazol-3-yl)}-naphth-2-yl, o-, m- oder p-{5-Oxo-[1 ,2,4]-oxadiazol-3-yl)}- phenyl, 7-{5-Oxo-[1 ,2,4]-oxadiazol-3-yl)}-naphth-2-yl, weiter bevorzugt 2,3-,
2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Difluorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dichlorphenyl, 2,3-, 2,4-, 2,5-, 2,6-, 3,4- oder 3,5-Dibromphenyl, 2,4- oder 2,5-Dinitrophenyl, 2,5- oder 3,4-Dimethoxyphenyl, 3-Nitro-4-chlor- phenyl, 3-Amino-4-chlor-, 2-Amino-3-chlor-, 2-Amino-4-chlor-, 2-Amino-5- chlor- oder 2-Amino-6-chlorphenyl, 2-Nitro-4-N,N-dimethylamino- oder 3-
Nitro-4-N,N-dimethylaminophenyl, 2,3-Diaminophenyl, 2,3,4-, 2,3,5-, 2,3,6- , 2,4,6- oder 3,4,5-Trichlorphenyl, 2,4,6-Trimethoxyphenyl, 2-Hydroxy-3,5- dichlorphenyl, p-lodphenyl, 3,6-Dichlor-4-aminophenyl, 4-Fluor-3- chlorphenyl, 2-Fluor-4-bromphenyl, 2,5-Difluor-4-bromphenyl, 3-Brom-6- methoxyphenyl, 3-Chlor-6-methoxyphenyl, 3-Chlor-4-acetamidophenyl, 3-
Fluor-4-methoxyphenyl, 3-Amino-6-methy!phenyl, 3-Chlor-4- acetamidophenyl oder 2,5-Dimethyl-4-chlorphenyl.
R3 bedeutet vorzugsweise z.B. H, Hai, COOH, COOA oder CONH2.
R4 bedeutet vorzugsweise z.B. unsubstituiertes -C(=NH)-NH2, -NH-C(=NH)-NH2, -C(=O)-N=C(NH2)2, das auch einfach durch OH substituiert sein kann,
ganz besonders bevorzugt unsubstituiertes -C(=NH)-NH2 oder m bedeutet 1 oder 2. n bedeutet vorzugsweise 0 oder 1 , ferner auch 2 oder 3.
Die Verbindungen der Formel I können ein oder mehrere chirale Zentren besitzen und daher in verschiedenen stereoisomeren Formen vorkommen. Die Formel I umschließt alle diese Formen.
Dementsprechend sind Gegenstand der Erfindung insbesondere diejenigen Verbindungen der Formel I, in denen mindestens einer der genannten Reste eine der vorstehend angegebenen bevorzugten Bedeutungen hat. Einige bevorzugte Gruppen von Verbindungen können durch die folgenden Teilformeln la bis li ausgedrückt werden, die der Formel I entsprechen und worin die nicht näher bezeichneten Reste die bei der Formel I angegebene Bedeutung haben, worin jedoch
in la Ar einfach durch R substituiertes Phenyl, Naphthyl oder Biphenyl, bedeutet; in lb Ar' einfach durch R substituiertes Phenyl, Naphthyl oder Biphenyl, bedeutet; in Ic Ar, Ar' jeweils unabhängig voneinander einfach durch R4 substituiertes Phenyl, Naphthyl oder Biphenyl, bedeutet; in ld Ar, Ar' jeweils unabhängig voneinander einfach durch -CONR2, SO2NH2 oder R4 substituiertes Phenyl, Naphthyl oder Biphenyl, bedeutet; in le R3 H, R, Hai, COOH oder COOA, bedeutet; in If R4 -C(=NH)-NH2 oder
bedeutet; in Ig n 1 bedeutet; in lh R H, unverzweigtes oder verzweigtes Alkyl mit 1-6 C-
Atomen oder Cycloalkyl mit 3-6 C-Atomen,
R1 Ar, R2 Ar', R3 H, R, Hai, COOH oder COOA, Ar, Ar' jeweils unabhängig voneinander einfach durch -CONR2,
SO2NH2 oder R4 substituiertes Phenyl, Naphthyl oder
Biphenyl,
R4 -C(=NH)-NH2 oder
A Alkyl mit 1-4 C-Atomen,
Hai F, Cl, Br oder l, m 1 oder 2, n 0, 1 , 2 oder 3 bedeutet, n li R H, unverzweigtes oder v
Atomen oder Cycloalkyl mit 3-6 C-Atomen, R1 Ar, R2 Ar',
R3 H, R, Hai, COOH oder COOA,
Ar, Ar' jeweils unabhängig voneinander einfach durch R4 substituiertes Phenyl, Naphthyl oder Biphenyl,
R4 -C(=NH)-NH2 oder
A Alkyl mit 1-4 C-Atomen,
Hai F, Cl, Br oder l, m 1 oder 2, n 0, 1 , 2 oder 3,
P 0 oder 1 bedeutet.
Die Verbindungen der Formel I und auch die Ausgangsstoffe zu ihrer Herstellung werden im übrigen nach an sich bekannten Methoden hergestellt, wie sie in der Literatur (z.B. in den Standardwerken wie Houben-Weyl, Methoden der organischen Chemie, Georg-Thieme-Verlag, Stuttgart) beschrieben sind, und zwar unter Reaktionsbedingungen, die für die genannten Umsetzungen bekannt und geeignet sind. Dabei kann man auch von an sich bekannten, hier nicht näher erwähnten Varianten Gebrauch machen. Die Ausgangsstoffe können, falls erwünscht, auch in situ gebildet werden, so daß man sie aus dem Reaktionsgemisch nicht isoliert, sondern sofort weiter zu den Verbindungen der Formel I umsetzt.
Verbindungen der Formel I können vorzugsweise erhalten werden, indem man Verbindungen der Formel I aus einem ihrer funktionellen Derivate durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel in Freiheit setzt.
Bevorzugte Ausgangsstoffe für die Solvolyse bzw. Hydrogenolyse sind solche, die sonst der Formel I entsprechen, aber anstelle einer oder mehrerer freier Amino- und/oder Hydroxygruppen entsprechende geschützte Amino- und/oder Hydroxygruppen enthalten, vorzugsweise solche, die anstelle eines H-Atoms, das mit einem N-Atom verbunden ist, eine Ami- noschutzgruppe tragen, insbesondere solche, die anstelle einer HN-
Gruppe eine R'-N-Gruppe tragen, worin R' eine Aminoschutzgruppe bedeutet, und/oder solche, die anstelle des H-Atoms einer Hydroxygruppe eine Hydroxyschutzgruppe tragen, z.B. solche, die der Formel I entsprechen, jedoch anstelle einer Gruppe -COOH eine Gruppe -COOR" tragen, worin R" eine Hydroxyschutzgruppe bedeutet.
Bevorzugte Ausgangsstoffe sind auch die Oxadiazolderivate, die in die entsprechenden Amidinoverbindungen überführt werden können.
Die Freisetzung der Amidinogruppe aus ihrem Oxadiazolderivat kann z.B. durch Behandeln mit Wasserstoff in Gegenwart eines Katalysators (z.B.
Raney-Nickel) erfolgen. Als Lösungsmittel eignen sich die nachfolgend angegebenen, insbesondere Alkohole wie Methanol oder Ethanol, organische Säuren wie Essigsäure oder Propionsäure oder Mischungen daraus. Die Hydrogenolyse wird in der Regel bei Temperaturen zwischen etwa 0 und 100° und Drucken zwischen etwa 1 und 200 bar, bevorzugt bei 20-30° (Raumtemperatur) und 1-10 bar durchgeführt.
Die Einführung der Oxadiazolgruppe gelingt z.B. durch Umsetzung der Cyanverbindungen mit Hydroxylamin und Reaktion mit Phosgen, Dialkyl- carbonat, Chlorameisensäureester, N,N'-Carbonyldiimidazol oder Acetan- hydrid. Es können auch mehrere - gleiche oder verschiedene - geschützte Amino- und/oder Hydroxygruppen im Molekül des Ausgangsstoffes vorhanden sein. Falls die vorhandenen Schutzgruppen voneinander verschieden sind, können sie in vielen Fällen selektiv abgespalten werden.
Der Ausdruck "Aminoschutzgruppe" ist allgemein bekannt und bezieht sich auf Gruppen, die geeignet sind, eine Aminogruppe vor chemischen Umsetzungen zu schützen (zu blockieren), die aber leicht entfernbar sind, nachdem die gewünschte chemische Reaktion an anderen Stellen des
Moleküls durchgeführt worden ist. Typisch für solche Gruppen sind insbesondere unsubstituierte oder substituierte Acyl-, Aryl-, Araikoxymethyl- oder Aralkylgruppen. Da die Aminoschutzgruppen nach der gewünschten Reaktion (oder Reaktionsfolge) entfernt werden, ist ihre Art und Größe im übrigen nicht kritisch; bevorzugt werden jedoch solche mit 1-20, insbesondere 1-8 C-Atomen. Der Ausdruck "Acylgruppe" ist im Zusammenhang mit dem vorliegenden Verfahren in weitestem Sinne aufzufassen. Er umschließt von aliphatischen, araliphatischen, aromatischen oder hetero- cyclischen Carbonsäuren oder Sulfonsäuren abgeleitete Acylgruppen so- wie insbesondere Alkoxycarbonyl-, Aryloxycarbonyl- und vor allem Aral- koxycarbonylgruppen. Beispiele für derartige Acylgruppen sind Alkanoyl wie Acetyl, Propionyl, Butyryl; Aralkanoyl wie Phenylacetyl; Aroyl wie Ben- zoyl oder Toluyl; Aryloxyalkanoyl wie POA; Alkoxycarbonyl wie Methoxy- carbonyl, Ethoxycarbonyl, 2,2,2-Trichlorethoxycarbonyl, BOC (tert.-Butyl- oxycarbonyl), 2-lodethoxycarbonyl; Aralkyloxycarbonyl wie CBZ ("Carbo- benzoxy"), 4-Methoxybenzyloxycarbonyl, FMOC; Aryisulfonyl wie Mtr. Bevorzugte Aminoschutzgruppen sind BOC und Mtr, ferner CBZ, Fmoc, Ben- zyl und Acetyl.
Der Ausdruck "Hydroxyschutzgruppe" ist ebenfalls allgemein bekannt und bezieht sich auf Gruppen, die geeignet sind, eine Hydroxygruppe vor chemischen Umsetzungen zu schützen, die aber leicht entfernbar sind, nachdem die gewünschte chemische Reaktion an anderen Stellen des Moleküls durchgeführt worden ist. Typisch für solche Gruppen sind die oben genannten unsubstituierten oder substituierten Aryl-, Aralkyl- oder Acylgruppen, ferner auch Alkylgruppen. Die Natur und Größe der Hydroxy- schutzgruppen ist nicht kritisch, da sie nach der gewünschten chemischen Reaktion oder Reaktionsfolge wieder entfernt werden; bevorzugt sind Gruppen mit 1-20, insbesondere 1-10 C-Atomen. Beispiele für Hydroxy- schutzgruppen sind u.a. Benzyl, 4-Methoxybenzyl, p-Nitrobenzoyl, p- Toluolsulfonyl, tert.-Butyl und Acetyl, wobei Benzyl und tert.-Butyl besonders bevorzugt sind.
Das In-Freiheit-Setzen der Verbindungen der Formel I aus ihren funktioneilen Derivaten gelingt - je nach der benutzten Schutzgruppe - z. B. mit star- ken Säuren, zweckmäßig mit TFA oder Perchlorsäure, aber auch mit anderen starken anorganischen Säuren wie Salzsäure oder Schwefelsäure, starken organischen Carbonsäuren wie Trichioressigsäure oder Sulfonsäu- ren wie Benzol- oder p-Toluolsulfonsäure. Die Anwesenheit eines zusätzlichen inerten Lösungsmittels ist möglich, aber nicht immer erforderlich. Als inerte Lösungsmittel eignen sich vorzugsweise organische, beispielsweise
Carbonsäuren wie Essigsäure, Ether wie Tetrahydrofuran oder Dioxan, Amide wie DMF, halogenierte Kohlenwasserstoffe wie Dichlormethan, ferner auch Alkohole wie Methanol, Ethanol oder Isopropanol, sowie Wasser. Ferner kommen Gemische der vorgenannten Lösungsmittel in Frage. TFA wird vorzugsweise im Überschuß ohne Zusatz eines weiteren Lösungsmittels verwendet, Perchlorsäure in Form eines Gemisches aus Essigsäure und 70 %iger Perchlorsäure im Verhältnis 9:1. Die Reaktionstemperaturen für die Spaltung liegen zweckmäßig zwischen etwa 0 und etwa 50°, vorzugsweise arbeitet man zwischen 15 und 30° (Raumtemperatur).
Die Gruppen BOC, OBut und Mtr können z. B. bevorzugt mit TFA in Dichlormethan oder mit etwa 3 bis 5n HCI in Dioxan bei 15-30° abgespalten werden, die FMOC-Gruppe mit einer etwa 5- bis 50 %igen Lösung von Dimethylamin, Diethylamin oder Piperidin in DMF bei 15-30°.
Hydrogenolytisch entfernbare Schutzgruppen (z. B. CBZ, Benzyl oder die Freisetzung der Amidinogruppe aus ihrem Oxadiazolderivat)) können z. B. durch Behandeln mit Wasserstoff in Gegenwart eines Katalysators (z. B. eines Edelmetallkatalysators wie Palladium, zweckmäßig auf einem Träger wie Kohle) abgespalten werden. Als Lösungsmittel eignen sich dabei die oben angegebenen, insbesondere z. B. Alkohole wie Methanol oder Etha- noi oder Amide wie DMF. Die Hydrogenolyse wird in der Regel bei Temperaturen zwischen etwa 0 und 100° und Drucken zwischen etwa 1 und 200 bar, bevorzugt bei 20-30° und 1-10 bar durchgeführt. Eine Hydrogenolyse der CBZ-Gruppe gelingt z. B. gut an 5 bis 10 %igem Pd/C in Methanol oder mit Ammomiumformiat (anstelle von Wasserstoff) an Pd/C in Metha- noI/DMF bei 20-30°.
Als inerte Lösungsmittel eignen sich z.B. Kohlenwasserstoffe wie Hexan, Petrolether, Benzol, Toluol oder Xylol; chlorierte Kohlenwasserstoffe wie Trichlorethylen, 1 ,2-Dichlorethan, Tetrachlorkohlenstoff, Trifluormethylben- zol, Chloroform oder Dichlormethan; Alkohole wie Methanol, Ethanol, Iso- propanol, n-Propanol, n-Butanol oder tert.-Butanol; Ether wie Diethylether, Diisopropylether, Tetrahydrofuran (THF) oder Dioxan; Glykolether wie Ethylenglykolmonomethyl- oder -monoethylether (Methylglykol oder Ethyl- glykol), Ethylenglykoldimethylether (Diglyme); Ketone wie Aceton oder
Butanon; Amide wie Acetamid, Dimethylacetamid, N-Methylpyrrolidon (NMP) oder Dimethylformamid (DMF); Nitrile wie Acetonitril; Suifoxide wie Dimethylsulfoxid (DMSO); Schwefelkohlenstoff; Carbonsäuren wie Ameisensäure oder Essigsäure; Nitroverbindungen wie Nitromethan oder Nitro- benzol; Ester wie Ethylacetat oder Gemische der genannten Lösungsmittel.
Die Biphenyl-SO2NH2-Gruppe wird vorzugsweise in Form ihres tert- Butylderivates eingesetzt. Die Abspaltung der tert.-Butylgruppe erfolgt z.B. mit TFA mit oder ohne Ziisatz eines inerten Lösungsmittels, vorzugsweise unter Zusatz einer geringen Menge an Anisol (1 Vol %).
Die Umwandlung einer Cyangruppe in eine Amidinogruppe erfolgt durch Umsetzung mit z.B. Hydroxylamin und anschließender Reduktion des N- Hydroxyamidins mit Wasserstoff in Anwesenheit eines Katalysators wie z.B. Pd/C.
Zur Herstellung eines Amidins der Formel I (z.B. Ar = einfach durch C(=NH)-NH2 substituiertes Phenyl) kann man an ein Nitrii auch Ammoniak anlagern. Die Anlagerung erfolgt bevorzugt mehrstufig, indem man in an sich bekannter Weise a) das Nitrii mit H2S in ein Thioamid umwandelt, das mit einem Alkylierungsmittel, z.B. CH3I, in den entsprechenden S-Alkyl- imidothioester übergeführt wird, welcher seinerseits mit NH3 zum Amidin reagiert, b) das Nitrii mit einem Alkohol, z.B. Ethanol in Gegenwart von HCI in den entsprechenden Imidoester umwandelt und diesen mit Ammoniak behandelt, oder c) das Nitrii mit Lithium-bis-(trimethylsilyl)-amid umsetzt und das Produkt anschließend hydrolysiert.
Die Einführung der Reste R2 bzw. -(CH2)n-R1 in das Dihydro-imidazo[4,5- c]-pyridin-4-on-System erfolgt nach üblichen Alkylierungsmethoden. So kann man z.B. eine Verbindung der Formel II
worin R die in Anspruch 1 angegebene Bedeutung hat und R1 und R3 jeweils einen solchen Rest bedeuten, der nicht alkylierbar ist, wie z.B. für R1
einen durch substituierten Phenyl- oder Naphthylrest, mit einer Verbindung der Formel III
2-(CH2)P-L III
worin L Cl, Br, I oder eine freie oder reaktionsfähig funktionell abgewandelte OH-Gruppe bedeutet, und p 1 bedeutet, umsetzen und erhält durch dieses Verfahren Verbindungen der Formel (IA).
L bedeutet vorzugsweise Cl, Br, I oder eine reaktionsfähig abgewandelte OH-Gruppe wie z.B. ein aktivierter Ester, ein Imidazolid oder Alkylsulfony- loxy mit 1-6 C-Atomen (bevorzugt Methylsulfonyloxy) oder Arylsulfonyloxy mit 6-10 C-Atomen (bevorzugt Phenyl- oder p-Tolylsulfonyloxy). - 10 -
Als Lösungsmittel eignen sich die oben angeführten. Die Reaktion erfolgt in Gegenwart eines säurebindenden Mittels vorzugsweise eines Alkalioder Erdalkalimetall-hydroxids, -carbonats oder -bicarbonats oder eines anderen Salzes einer schwachen Säure der Alkali- oder Erdalkalimetalle, vorzugsweise des Kaliums, Natriums, Calciums oder Cäsiums. Auch der
Zusatz einer organischen Base wie Triethylamin, Dimethylanilin, Pyridin oder Chinolin kann günstig sein. Die Reaktionszeit liegt je nach den angewendeten Bedingungen zwischen einigen Minuten und 14 Tagen, die Reaktionstemperatur zwischen etwa 0° und 150°, normalerweise zwischen 20° und 130°.
In Verbindungen mit p = 0, wird R2 über ein Boronsäurederivat eingeführt.
Analog kann auch zuerst R2-(CH2)P -, worin p = 1 ist, in das Dihydro- imidazo[4,5-c]-pyridin-4-on-System eingeführt werden und anschließend eine Verbindung der Formel IV
worin p = 1 ist und R die in Anspruch 1 angegebene Bedeutung hat und R2 und R3 jeweils einen solchen Rest bedeuten, der nicht alkylierbar ist, mit einer Verbindung der Formel V
R1-(CH2)n-L V umgesetzt werden. in den Verbindungen der Formel V bedeutet R1 einen nicht alkylierbaren Rest, wie z.B. einen durch 5-Methyl-[1 ,2,4]oxadiazol-3-yl substituierten Phenylrest und L hat die Bedeutung wie in den Verbindungen der Formel III. Man erhält durch dieses Verfahren Verbindungen der Formel (IA) und/oder (IB).
Es ist femer möglich, eine Verbindung der Formel I in eine andere Ver- bindung der Formel I umzuwandeln, indem man einen oder mehrere
Rest(e) R, R1, R2 und/oder R3 in einen oder mehrere Rest(e) R, R1, R2, und/oder R3 umwandelt, z.B. indem man eine Aminogruppe acyliert oder Nitrogruppen (beispielsweise durch Hydrierung an Raney-Nickel oder Pd- Kohle in einem inerten Lösungsmittel wie Methanol oder Ethanol) zu Ami- nogruppen reduziert.
Ester können z.B. mit Essigsäure oder mit NaOH oder KOH in Wasser, Wasser-THF oder Wasser-Dioxan bei Temperaturen zwischen 0 und 100° verseift werden.
Ferner kann man freie Aminogruppen in üblicher Weise mit einem Säurechlorid oder -anhydrid acylieren oder mit einem unsubstituierten oder substituierten Alkylhalogenid alkylieren, zweckmäßig in einem inerten Lösungsmittel wie Dichlormethan oder THF und /oder in Gegenwart einer Base wie Triethylamin oder Pyridin bei Temperaturen zwischen -60 und +30°.
Eine Base der Formel I kann mit einer Säure in das zugehörige Säureadditionssalz übergeführt werden, beispielsweise durch Umsetzung äquivalenter Mengen der Base und der Säure in einem inerten Lösungsmittel wie Ethanol und anschließendes Eindampfen. Für diese Umsetzung kommen insbesondere Säuren in Frage, die physiologisch unbedenkliche Salze liefern. So können anorganische Säuren verwendet werden, z.B. Schwefelsäure, Salpetersäure, Halogenwasserstoffsäuren wie Chlorwasserstoffsäure oder Bromwasserstoffsäure, Phosphorsäuren wie Ortho- phosphorsäure, Sulfaminsäure, ferner organische Säuren, insbesondere aliphatische, alicyclische, araliphatische, aromatische oder heterocyclische ein- oder mehrbasige Carbon-, Sulfon- oder Schwefelsäuren, z.B. Ameisensäure, Essigsäure, Propionsäure, Pivalinsäure, Diethylessigsäure, Malonsäure, Bernsteinsäure, Pimeiinsäure, Fumarsäure, Maleinsäure, Milchsäure, Weinsäure, Äpfelsäure, Citronensäure, Gluconsäure, Ascor- binsäure, Nicotinsäure, Isonicotinsäure, Methan- oder Ethansulfonsäure, Ethandisulfonsäure, 2-Hydroxyethansuifonsäure, Benzolsulfonsäure, p- Toluolsulfonsäure, Naphthalin-mono- und -disulfonsäuren, Laurylschwefel- säure. Salze mit physiologisch nicht unbedenklichen Säuren, z.B. Pikrate, können zur Isolierung und /oder Aufreinigung der Verbindungen der Formel I verwendet werden. Andererseits können Verbindungen der Formel I mit Basen (z.B. Natriumoder Kaliumhydroxid oder -carbonat) in die entsprechenden Metall-, insbesondere Alkalimetall- oder Erdalkalimetall-, oder in die entsprechenden Ammoniumsalze umgewandelt werden.
Auch physiologisch unbedenkliche organische Basen, wie z.B. Ethanol- amin können verwendet werden.
Erfindungsgemäße Verbindungen der Formel I können aufgrund ihrer Mo- lekülstruktur chiral sein und können dementsprechend in verschiedenen enantiomeren Formen auftreten. Sie können daher in racemischer oder in optisch aktiver Form vorliegen.
Da sich die pharmazeutische Wirksamkeit der Racemate bzw. der Stereo- isomeren der erfindungsgemäßen Verbindungen unterscheiden kann, kann es wünschenswert sein, die Enantiomere zu verwenden. In diesen Fällen kann das Endprodukt oder aber bereits die Zwischenprodukte in enantiomere Verbindungen, durch dem Fachmann bekannte chemische oder physikalische Maßnahmen, aufgetrennt oder bereits als solche bei der Synthese eingesetzt werden.
Im Falle racemischer Amine werden aus dem Gemisch durch Umsetzung mit einem optisch aktiven Trennmittel Diastereomere gebildet. Als Trennmittel eignen sich z.B. optisch aktiven Säuren, wie die R- und S-Formen von Weinsäure, Diacetylweinsäure, Dibenzoylweinsäure, Mandelsäure, Äpfelsäure, Milchsäure, geeignet N-geschützte Aminosäuren (z.B. N-Ben- zoylprolin oder N-Benzolsulfonylprolin) oder die verschiedenen optisch aktiven Camphersulfonsäuren. Vorteilhaft ist auch eine chromatographische Enantiomerentrennung mit Hilfe eines optisch aktiven Trennmittels (z.B. Dinitrobenzoylphenylglycin, Cellulosetriacetat oder andere Derivate von Kohlenhydraten oder auf Kieselgel fixierte chiral derivatisierte Methacrylat- polymere). Als Laufmittel eignen sich hierfür wäßrige oder alkoholische Lösungsmittelgemische wie z.B. Hexan/Isopropanol/ Acetonitril z.B. im Verhältnis 82:15:3.
Gegenstand der Erfindung ist ferner die Verwendung der Verbindungen der Formel I und/oder ihrer physiologisch unbedenklichen Salze zur Her- Stellung pharmazeutischer Zubereitungen, insbesondere auf nicht-chemischem Wege. Hierbei können sie zusammen mit mindestens einem festen, flüssigen und/oder halbflüssigen Träger- oder Hilfsstoff und gegebenenfalls in Kombination mit einem oder mehreren weiteren Wirkstoffen in eine geeignete Dosierungsform gebracht werden.
Gegenstand der Erfindung sind ferner pharmazeutische Zubereitungen, enthaltend mindestens eine Verbindung der Formel I und/oder eines ihrer physiologisch unbedenklichen Salze.
Diese Zubereitungen können als Arzneimittel in der Human- oder Veterinärmedizin verwendet werden. Als Trägerstoffe kommen organische oder anorganische Substanzen in Frage, die sich für die enterale (z.B. orale), parenterale oder topische Applikation eignen und mit den neuen Verbin- düngen nicht reagieren, beispielsweise Wasser, pflanzliche Öle, Benzyl- alkohole, Alkylenglykole, Polyethylenglykole, Glycerintriacetat, Gelatine, Kohlehydrate wie Lactose oder Stärke, Magnesiumstearat, Talk, Vaseline. Zur oralen Anwendung dienen insbesondere Tabletten, Pillen, Dragees, Kapseln, Pulver, Granulate, Sirupe, Säfte oder Tropfen, zur rektalen An- wendung Suppositorien, zur parenteralen Anwendung Lösungen, vorzugsweise ölige oder wässrige Lösungen, ferner Suspensionen, Emulsionen oder Implantate, für die topische Anwendung Salben, Cremes oder Puder. Die neuen Verbindungen können auch lyophilisiert und die erhaltenen Lyo- philisate z.B. zur Herstellung von Injektionspräparaten verwendet werden. Die angegebenen Zubereitungen können sterilisiert sein und/oder Hilfsstoffe wie Gleit-, Konservierungs-, Stabilisierungs- und/oder Netzmittel, Emulgatoren, Salze zur Beeinflussung des osmotischen Druckes, Puffersubstanzen, Färb-, Geschmacks- und /oder mehrere weitere Wirkstoffe enthalten, z.B. ein oder mehrere Vitamine.
Die Verbindungen der Formel I und ihre physiologisch unbedenklichen Salze können bei der Bekämpfung und Verhütung von thromboemboli- schen Erkrankungen wie Thrombose, myocardialem Infarkt, Arteriosklero- se, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angiopla- stie und Claudicatio intermittens verwendet werden. Dabei werden die erfindungsgemäßen Substanzen in der Regel vorzugsweise in Dosierungen zwischen etwa 1 und 500 mg, insbesondere zwischen 5 und 100 mg pro Dosierungseinheit verabreicht. Die tägliche Dosierung liegt vorzugsweise zwischen etwa 0,02 und 10 mg/kg Körperge- wicht. Die spezielle Dosis für jeden Patienten hängt jedoch von den verschiedensten Faktoren ab, beispielsweise von der Wirksamkeit der eingesetzten speziellen Verbindung, vom Alter, Körpergewicht, allgemeinen Gesundheitszustand, Geschlecht, von der Kost, vom Verabreichungszeitpunkt und -weg, von der Ausscheidungsgeschwindigkeit, Arzneistoffkom- bination und Schwere der jeweiligen Erkrankung, welcher die Therapie gilt.
Die orale Applikation ist bevorzugt.
Vor- und nachstehend sind alle Temperaturen in °C angegeben. In den nachfolgenden Beispielen bedeutet "übliche Aufarbeitung": Man gibt, falls erforderlich, Wasser hinzu, stellt, falls erforderlich, je nach Konstitution des Endprodukts auf pH-Werte zwischen 2 und 10 ein, extrahiert mit Ethyla- cetat oder Dichlormethan, trennt ab, trocknet die organische Phase über Natriumsulfat, dampft ein und reinigt durch Chromatographie an Kieselgel und /oder durch Kristallisation. Rf-Werte an Kieselgel; Laufmittel: Ethyla- cetat/Methanol 9:1.
Massenspektrometrie (MS): El (Elektronenstoß-Ionisation) M+
FAB (Fast Atom Bombardment) (M+H)+ Beispiel 1
Zu 50,0 g 3,4-Diamino-2-chlorpyridin werden 140 mL Isobuttersäure und 250 mL rauchende Salzsäure gegeben. Das Reaktionsgemisch wird 7 Tage unter Rückfluß erhitzt. Man gießt in Eiswasser, trennt den ausgefallenen Niederschlag ab und erhält 2-lsopropyl-3,5-dihydro-imidazo[4,5-c]- pyridin-4-on ("AB"), F. 310-311° (Zersetzung), El 177
In der Mutterlauge befindet sich ein Gemisch aus "AB" und 4-Chloro-2- isopropyl-3H-imidazo[4,5-c]-pyridin. Eine Lösung von 0,877 g "AB" und 0,691 g Kaliumcarbonat in 30 mL DMF wird 30 Minuten bei Raumtemperatur gerührt. Man fügt 1 ,5 g 3-(7-Bromo- methyl-naphthalin-2-yl)-5-methyl-[1 ,2,4]oxadiazol (F. 149-150°) hinzu und rührt 16 Stunden nach und arbeitet wie üblich auf. Nach Chromatographie über Kieselgel erhält man neben den beiden regioisomeren Dialkylierungs- produkten die Verbindung 2-lsopropyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3- yl)-naphth-2-yl-methyl]-5H-imidazo[4,5-c]pyridin-4-on ("BB"), F. 214-215°, El 399
Ein alternatives Verfahren führt wie folgt zu "BB" (analog Mederski et al., J. Med. Chem. 1994, 1632 ff):
Umsetzung von 3,4-Diamino-2-chlorpyridin mit Isobutyranhydrid zu N-(4- Amino-2-chloro-pyridin-3-yl)-isobutyramid. Die anschließende Umsetzung mit 3-(7-Bromomethyl-naphthalin-2-yl)-5-methyl-[1 ,2,4]oxadiazol führt zu einem Gemisch aus 4-Chloro-2-isopropyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol- 3-yl)-naphth-2-yl-methyl]-3/-/-imidazo[4,5-c]pyridin und N-(4-Amino-2- chloro-pyridin-3-yl)-N-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-yl- methylj-isobutyramid. Beide Verbindungen werden zu "BB" umgesetzt.
Zu einer Lösung von 0,2 g "BB" in 10 mL DMF gibt man 62 mg Kaliumter- tiärbutylat und rührt 30 Minuten. Anschließend fügt man 0,140 g 3-(3- Bromomethylphenyl)-5-methyl-[1 ,2,4]oxadiazol dazu und rührt weitere 2 Stunden nach. Nach üblicher Aufarbeitung erhält man die Verbindung
2-lsopropyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-yl-methyl]- 5-[3-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-benzyl]-3,5-dihydro-imidazo[4,5-c]- pyridin-4-on ("BC1"), F. 108-109°, El 571
Analog erhält man durch Umsetzung von "BB" mit
3-(7-Bromomethyl-naphthalin-2-yl)-5-methyl-[1 ,2,4]oxadiazol,
3-(4-Bromomethylphenyl)-5-methyl-[1 ,2,4]oxadiazol,
3-(2-Bromomethylphenyl)-5-methyl-[1 ,2,4]oxadiazol,
Benzylbromid,
3-Dimethylaminocarbonyl-benzylbromid, 3'-(N-tert.-Butyl-sulfonamido)-biphenyl-3-yl-methylbromid,
die nachstehenden Verbindungen
2-lsopropyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-yl-methyl]-5-[7- (5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-ylmethyl]-3,5-dihydro-imidazo-
[4,5-c]pyridin-4-on ("BC2"), F. 201-202°;
2-lsopropyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-yl-methyl]-5-[4- (5-methyl-[1 ,2,4]oxadiazol-3-yl)-benzyl]-3,5-dihydro-imidazo[4,5-c]pyridin- 4-on ("BC3"), F. 172-173°;
2-lsopropyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-yl-methyl]-5-[2- (5-methyl-[1 ,2,4]oxadiazol-3-yl)-benzyl]-3,5-dihydro-imidazo[4,5-c]pyridin- 4-on ("BC4"), F. 149-150°;
2-lsopropyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-yl-methyl]-5- benzyl-5H-imidazo[4,5-c]pyridin-4-on ("BC5"), F. 112-113°;
2-lsopropyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-yl-methyl]-5-(3- dimethylaminocarbonyl-benzyl)-5/-/-imidazo[4,5-c]pyridin-4-on ("BC6"), 2-lsopropyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-yl-methyl]-5-[3'- (N-tert.-butyl-sulfonamido)-biphenyl-3-ylmethyl]-5H-imidazo[4,5-c]pyridin-4- on ("BC7"), FAB 639.
Beispiel 2
Alternatives Verfahren zur Herstellung von "BC1"
Durch Umsetzung von 3,4-Diamino-2-chlorpyhdin mit Isobuttersäure und anschließend mit Di-(tert.-butyloxy)-anhydrid (analog WO 97/21437, S. 44-
45) erhält man ein Gemisch von 2-lsopropyl-3-tert.-butyloxycarbonyl-5H- imidazo[4,5-c]pyridin-4-on und 2-lsopropyl-1 -tert.-butyloxycarbonyl-5/-/- imidazo[4,5-c]pyridin-4-on.
Das Gemisch der beiden Verbindungen wird analog Beispiel 1 mit 3-(3- Bromomethylphenyl)-5-methyl-[1 ,2,4]oxadiazol umgesetzt und man erhält ein Gemisch der beiden Verbindungen
2-lsopropyl-3-tert.-butyloxycarbonyl-5-[3-(5-methyl-[1 ,2,4]oxadiazol-3- yl)-benzyl]-3,5-dihydro-imidazo[4,5-c]pyridin-4-on und
2-lsopropyl-1-tert.-butyloxycarbonyl-5-[3-(5-methyl-[1 ,2,4]oxadiazol-3- yl)-benzyl]-1 ,5-dihydro-imidazo[4,5-c]pyridin-4-on.
Nach Abspaltung der BOC-Schutzgruppen mit TFA in Dioxan und üblicher Aufarbeitung wird mit 3-(7-Bromomethyl-naphthalin-2-yl)-5-methyl-[1 ,2,4]- oxadiazol analog Beispiel 1 umgesetzt. Nach üblicher Aufarbeitung erhält man ein Gemisch regioisomerer Produkte, aus dem "BC1" durch Chromatographie abgetrennt wird.
Beispiel 3
Eine Lösung von 0,2 g "BC1" in 20 mL Methanol wird mit 100 mg Raney- Nickel und einem Tropfen Essigsäure versetzt und 8 Stunden bei Raumtemperatur hydriert. Der Katalysator wird abfiltriert, das Lösungsmittel entfernt und man erhält die Verbindung
2-lsopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(3-amidino-benzyl)- 3,5-dihydro-imidazo[4,5-c]pyridin-4-on, F. > 300° (Zersetzung), FAB 492. Analog erhält man aus "BC2", "BC3", "BC4", "BC5", "BC6" und "BC7" die nachstehenden Verbindungen
2-lsopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(7-amidino-naphth-2- ylmethyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on, F. > 300°, El 166;
2-lsopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(4-amidino-benzyl)- 3,5-dihydro-imidazo[4,5-c]pyridin-4-on, F. 208-209° (Zersetzung), FAB 492;
2-lsopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(2-amidino-benzyl)- 3,5-dihydro-imidazo[4,5-c]pyridin-4-on, F. > 300°, FAB 492;
2-lsopropyl-3-[7-amidino-naphth-2-yl-methyl]-5-benzyl-5/-/- imidazo[4,5-c]pyridin-4-on, F. 206-207 (Zersetzung), FAB 450;
2-lsopropyl-3-[7-amidino-naphth-2-yl-methyl]-5-(3-dimethylamino- carbonyl-benzyl)-5H-imidazo[4,5-c]pyridin-4-on,
2-lsopropyl-3-[7-amidino-naphth-2-yl-methyl]-5-[3'-(N-tert.-butyl- sulfonamido)-biphenyl-3-ylmethyl]-5/-/-imidazo[4,5-c]pyridin-4-on ("DF").
Analog erhält man 3-(7-amidino-naphth-2-yl-methyl)-5-(3-amidino-benzyl)- 3,5-dihydro-imidazo[4,5-c]pyridin-4-on, F. > 300°, FAB 450.
Beispiel 4
Analog Beispiel 1 erhält man durch Umsetzung von "AB" mit 3-(3- Bromomethylphenyl)-5-methyl-[1 ,2,4]oxadiazol die Verbindung 2- lsopropyl-3-[3-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-benzyl]-5H-imidazo[4,5-c]- pyridin-4-on ("CA").
Durch Umsetzung von "CA" mit
3-(3-Bromomethyiphenyl)-5-methyl-[1 ,2,4]oxadiazol,
3-(7-Bromomethyl-naphthalin-2-yl)-5-methyl-[1 ,2,4]oxadiazol, 3-(4-Bromomethylphenyl)-5-methyl-[1 ,2,4]oxadiazol, 3-(2-Bromomethylphenyl)-5-methyl-[1 ,2,4]oxadiazol,
erhält man die dialkylierten Imidazoderivate, die durch Hydrierung analog Beispiel 3 in die nachstehenden Verbindungen überführt werden
2-lsopropyl-3-(3-amidino-benzyl)-5-(3-amidino-benzyl)-3,5-dihydro- imidazo[4,5-c]pyridin-4-on,
2-lsopropyl-3-(3-amidino-benzyl)-5-(7-amidino-naphth-2-ylmethyl)-
3,5-dihydro-imidazo[4,5-c]pyridin-4-oπ,
2-lsopropyl-3-(3-amidino-benzyl)-5-(4-amidino-benzyl)-3,5-dihydro- imidazo[4,5-c]pyridin-4-on,
2-lsopropyl-3-(3-amidino-benzyl)-5-(2-amidino-benzyl)-3,5-dihydro- imidazo[4,5-c]pyridin-4-on.
Beispiel 5
Durch Umsetzung von 3,4-Diamino-2-chlorpyridin analog Beispiel 1 mit den nachstehenden Carbonsäuren
Propionsäure, Cyclopropylcarbonsäure,
anschließender Alkylierung der entstehenden Imidazoderivate analog den Beispielen 1 und 4 und Hydrierung analog Beispiel 3 erhält man die nachstehenden Verbindungen
2-Ethyl-3-(7-amidino-naphth-2-yl-methyl)-5-(3-amidino-benzyl)-3,5- dihydro-imidazo[4,5-c]pyridin-4-on, F. 145°, FAB 478;
2-Ethyl-3-(7-amidino-naphth-2-yl-methyl)-5-(7-amidino-naphth-2- ylmethyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on, 2-Ethyl-3-(7-amidino-naphth-2-yl-methyl)-5-(4-amidino-benzyl)-3,5- dihydro-imidazo[4,5-c]pyridin-4-on,
2-Ethyl-3-(7-amidino-naphth-2-yl-methyl)-5-(2-amidino-benzyl)-3,5- dihydro-imidazo[4,5-c]pyridin-4-on.
2-Ethyl-3-(3-amidino-benzyl)-5-(3-amidino-benzyl)-3,5-dihydro- imidazo[4,5-c]pyridin-4-on,
2-Ethyl-3-(3-amidino-benzyl)-5-(7-amidino-naphth-2-ylmethyl)-3,5- dihydro-imidazo[4,5-c]pyhdin-4-on,
2-Ethyl-3-(3-amidino-benzyl)-5-(4-amidino-benzyl)-3,5-dihydro- imidazo[4,5-c]pyridin-4-on,
2-Ethyl-3-(3-amidino-benzyl)-5-(2-amidino-benzyl)-3,5-dihydro- imidazo[4,5-c]pyridin-4-on,
2-Cyclopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(3-amidino-benzyl)- 3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
2-Cyclopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(7-amidino-naphth- 2-ylmethyl)-3,5-dihydro-imidazo[4,5-c]pyhdin-4-on,
2-Cyclopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(4-amidiπo-benzyl)-
3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
2-Cyclopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(2-amidino-benzyl)- 3,5-dihydro-imidazo[4,5-c]pyridin-4-on.
2-Cyclopropyl-3-(3-amidino-benzyl)-5-(3-amidino-benzyl)-3,5-dihydro- imidazo[4,5-c]pyridin-4-on,
2-Cyclopropyl-3-(3-amidino-benzyl)-5-(7-amidino-naphth-2-ylmethyl)- 3,5-dihydro-imidazo[4,5-c]pyridin-4-on, 2-Cyclopropyl-3-(3-amidino-benzyl)-5-(4-amidino-benzyl)-3,5-dihydro- imidazo[4,5-c]pyridin-4-on,
2-Cyclopropyl-3-(3-amidino-benzyl)-5-(2-amidino-benzyl)-3,5-dihydro- imidazo[4,5-c]pyridin-4-on.
Analog erhält man die Verbindungen
2-lsobutyl-3-(7-amidino-naphth-2-yl-methyl)-5-(3-amidino-benzyl)-3,5- dihydro-imidazo[4,5-φyridin-4-on, F. 69-70°, FAB 506;
2-Methyl-3-(7-amidino-naphth-2-yl-methyl)-5-(3-amidino-benzyl)-3,5- dihydro-imidazo[4,5-c]pyridin-4-on, F. 171-172°, FAB 464;
2-Butyl-3-(7-amidino-naphth-2-yl-methyl)-5-(3-amidino-benzyl)-3,5-dihydro- imidazo[4,5-c]pyridin-4-on, F. 190-191°, FAB 506.
Beispiel 6
Durch Umsetzung von 3,4-Diamino-2-chlor-5-methoxycarbonylpyridin (F.
181-184°) analog Beispiel 1 mit Isobuttersäure erhält man 2-lsopropyl-3,5- dihydro-7-carboxy-imidazo[4,5-c]pyridin-4-on. Die Carbonsäure wird nach üblichen Methoden zu 2-lsopropyl-3,5-dihydro-7-methoxycarbonyl-imidazo- [4,5-c]pyridin-4-on umgesetzt und anschließend analog den Beispielen 1 und 4 alkyliert und analog Beispiel 3 hydriert. Dabei werden nachstehende
Carbonsäurederivate erhalten
7-Carboxy-2-isopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(3- amidino-benzyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
7-Carboxy-2-isopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(7- amidino-naphth-2-ylmethyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
7-Carboxy-2-isopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(4- amidino-benzyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on, 7-Carboxy-2-isopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(2- amidino-benzyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on.
7-Carboxy-2-isopropyl-3-(3-amidino-benzyl)-5-(3-amidino-benzyl)- 3,5-dihydro- imidazo[4,5-c]pyridin-4-on,
7-Carboxy-2-isopropyl-3-(3-amidino-benzyl)-5-(7-amidino-πaphth-2- ylmethyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
7-Carboxy-2-isopropyl-3-(3-amidino-benzyl)-5-(4-amidino-benzyl)-
3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
7-Carboxy-2-isopropyl-3-(3-amidino-benzyl)-5-(2-amidino-benzyl)- 3,5-dihydro-imidazo[4,5-c]pyridin-4-on.
Beispiel 7
Durch Umsetzung von 3,4-Diamino-2-chlor-5-brompyridin (F. 206-208°) analog Beispiel 1 mit Isobuttersäure erhält man 2-lsopropyl-3,5-dihydro-7- brom-imidazo[4,5-c]pyridin-4-on. Dieses wird anschließend analog den
Beispielen 1 und 4 alkyliert und analog Beispiel 3 hydriert. Dabei werden nachstehende Verbindungen erhalten
7-Brom-2-isopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(3-amidino- benzyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
7-Brom-2-isopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(7-amidino- naphth-2-ylmethyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
7-Brom-2-isopropyl-3-(7-amidino-naphth-2-yl-methyl)-5-(4-amidino- benzyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
7-Brom-2-isopropyl-3-(7-amidino-naphth-2-yl-methyi)-5-(2-amidino- benzyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on. 7-Brom-2-isopropyl-3-(3-amidino-benzyl)-5-(3-amidino-benzyl)-3,5- dihydro- imidazo[4,5-c]pyridin-4-on,
7-Brom-2-isopropyl-3-(3-amidino-benzyl)-5-(7-amidino-naphth-2- ylmethyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
7-Brom-2-isopropyl-3-(3-amidino-benzyl)-5-(4-amidino-benzyl)-3,5- dihydro-imidazo[4,5-c]pyridin-4-on,
7-Brom-2-isopropyl-3-(3-amidino-benzyl)-5-(2-amidino-benzyl)-3,5- dihydro-imidazo[4,5-c]pyridin-4-on.
Beispiel 8
Durch Umsetzung von 2-lsopropyl-3,5-dihydro-7-brom-imidazo[4,5-c]- pyridin-4-on nach üblichen Methoden mit CuCN in DMF (Ellefson et al., J.
Med. Chem. 1976, 19) erhält man 2-lsopropyl-3,5-dihydro-7-cyan- imidazo[4,5-c]pyridin-4-on.
Dieses wird anschließend verseift und analog den Beispielen 1 und 4 alky- liert und analog Beispiel 3 hydriert. Dabei werden die unter Beispiel 6 aufgeführten Carbonsäurederivate erhalten.
Beispiel 9
Analog Beispiel 1 erhält man durch Umsetzung von "AB" mit 3-(3-Bromo- methyl-biphenyl-3'-yl)-5-methyl-[1 ,2,4]oxadiazol, üblicher Aufarbeitung und Chromatographie die Verbindung 2-lsopropyl-3-[3'-(5-methyl-[1 ,2,4]oxa- diazol-3-yl)-biphenyl-3-yl-methyl]-5H-imidazo[4,5-c]pyridin-4-on ("CD").
Durch Umsetzung von "CD" mit
3-(3-Bromomethylphenyl)-5-methyl-[1 ,2,4]oxadiazol, 3-(3-Bromomethyl-biphenyl-3'-yl)-5-methyl-[1 ,2,4]oxadiazol,
und anschließender Hydrierung erhält man die nachstehenden Verbindungen 2-lsopropyl-3-[3'-amidino-biphenyl-3-yl-methyl]-5-(3-amidinobenzyl)- 5H-imidazo[4,5-c]pyridin-4-on und
2-lsopropyl-3-[3'-amidino-biphenyl-3-yl-methyl]-5-[3'-amidino- biphenyl-3-yl-methyl]-5H-imidazo[4,5-c]pyridin-4-on.
Analog erhält man die Verbindung
2-lsopropyl-3-[4'-amidino-biphenyl-3-yl-methyl]-5-benzyl-5H-imidazo[4,5-c]- pyridin-4-on, F. > 300°; El 475.
Beispiel 10
Aus "DF" erhält man nach üblichen Methoden durch Abspaltung der tert.- Butylgruppe in TFA die Verbindung
2-lsopropyl-3-[7-amidino-naphth-2-yl-methyl]-3-(3'-sulfonamido- biphenyl-3-ylmethyl)-5H-imidazo[4,5-c]pyridin-4-on.
Analog erhält man die Verbindungen 2-lsopropyl-5-(3-amidino-benzyl)-3-(3'-sulfonamido-biphenyl-3- ylmethyl)-5H-imidazo[4,5-c]pyridin-4-on und
2-lsopropyl-5-(4-amidino-benzyl)-3-(3'-sulfonamido-biphenyl-3- ylmethyl)-5 -/-imidazo[4,5-c]pyridin-4-on.
Beispiel 11
Durch Umsetzung von 2-lsopropyl-3-[3-(5-methyl-[1 ,2,4]oxadiazol-3-yl)- benzyl]-3,5-dihydro-imidazo[4,5-c]pyridin-4-on mit 3-Cyan-phenylboron- säure unter Kupferacetatkatalyse in Dichiormethan erhält man 2-lsopropyl- 3-[3-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-benzyl]-5-(3-cyanphenyl)-3,5-dihydro- imidazo[4,5-c]pyridin-4-on. Durch anschließende Umsetzung in Ethanol NaHCθ3 und danach mit Hydroxylammoniumchlorid erhält man 2-lso- propyl-3-[3-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-benzyl]-5-(3-N-hydroxy- amidinophenyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on. Nach Hydrierung analog Beispiel 3 erhält man 2-lsopropyl-3-[3-amidino- benzyl]-5-(3-amidinophenyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on, FAB 428.
Analog erhält man nachstehende Verbindungen
2-lsoρropyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-ylmethyl]-5-(3- cyanphenyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
2-tert.-Butyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yi)-naphth-2-ylmethyl]-5-(3- cyanphenyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
2-Butyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-ylmethyl]-5-(3- cyanphenyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
2-lsobutyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-ylmethyl]-5-(3- cyanphenyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
2-lsopropyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-ylmethyl]-5-(4- cyanphenyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
2-tert.-Butyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-ylmethyl]-5-(4- cyanphenyI)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
2-Butyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yl)-naphth-2-ylmethyl]-5-(4- cyanphenyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on,
2-lsobutyl-3-[7-(5-methyl-[1 ,2,4]oxadiazol-3-yi)-naphth-2-ylmethyi]-5-(4- cyanphenyl)-3,5-dihydro-imidazo[4,5-c]pyridin-4-on.
Durch Umsetzung mit Hydroxylammoniumchlorid und nachfolgender Hydrierung erhält man daraus die Diamidinoverbindungen. Die nachfolgenden Beispiele betreffen pharmazeutische Zubereitungen:
Beispiel A: Injektionsgläser
Eine Lösung von 100 g eines Wirkstoffes der Formel I und 5 g Dinatrium- hydrogenphosphat wird in 3 I zweifach destilliertem Wasser mit 2 n Salzsäure auf pH 6,5 eingestellt, steril filtriert, in Injektionsgläser abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jedes Injektionsglas enthält 5 mg Wirkstoff.
Beispiel B: Suppositorien
Man schmilzt ein Gemisch von 20 g eines Wirkstoffes der Formel I mit 100 g Sojalecithin und 1400 g Kakaobutter, gießt in Formen und läßt er- kalten. Jedes Suppositorium enthält 20 mg Wirkstoff.
Beispiel C: Lösung
Man bereitet eine Lösung aus 1 g eines Wirkstoffes der Formel I, 9,38 g NaH2PO4 2 H20, 28,48 g Na2HPO4 • 12 H20 und 0,1 g Benzalkonium- chlorid in 940 ml zweifach destilliertem Wasser. Man stellt auf pH 6,8 ein, füllt auf 1 I auf und sterilisiert durch Bestrahlung. Diese Lösung kann in Form von Augentropfen verwendet werden.
Beispiel D: Salbe
Man mischt 500 mg eines Wirkstoffes der Formel I mit 99,5 g Vaseline unter aseptischen Bedingungen.
Beispiel E: Tabletten
Ein Gemisch von 1 kg Wirkstoff der Formel I, 4 kg Lactose, 1 ,2 kg Kartoffelstärke, 0,2 kg Talk und 0,1 kg Magnesiumstearat wird in üblicher Weise zu Tabletten verpreßt, derart, daß jede Tablette 10 mg Wirkstoff enthält. Beispiel F: Dragees
Analog Beispiel E werden Tabletten gepreßt, die anschließend in üblicher Weise mit einem Überzug aus Saccharose, Kartoffelstärke, Talk, Tragant und Farbstoff überzogen werden.
Beispiel G: Kapseln
2 kg Wirkstoff der Formel I werden in üblicher Weise in Hartgelatine- kapseln gefüllt, so daß jede Kapsel 20 mg des Wirkstoffs enthält.
Beispiel H: Ampullen
Eine Lösung von 1 kg Wirkstoff der Formel I in 60 I zweifach destilliertem Wasser wird steril filtriert, in Ampullen abgefüllt, unter sterilen Bedingungen lyophilisiert und steril verschlossen. Jede Ampulle enthält 10 mg Wirkstoff.

Claims

Patentansprüche
Verbindungen der Formel I
R2 worin R H, unverzweigtes oder verzweigtes Alkyl mit 1-6 C-
Atomen oder Cycloalkyl mit 3-6 C-Atomen, R1 Ar,
R2 Ar',
R3 H, R, R4, Hai, CN, COOH, COOA oder CONH2,
Ar, Ar' jeweils unabhängig voneinander unsubstituiertes oder ein-, zwei- oder dreifach durch R, OH, Hai, CN, NO2, CF3, NH2, NHR, NR2, Pyrrolidin-1-yl, Piperidin-1-yl, Benzyloxy, SO2NH2, SO2NHR, S02NR2, -CONHR,
-CONR2, -(CH2)n-NH2, -(CH2)n-NHR, -(CH2)n-NR2, -O-(CH2)π-NH2, -O-(CH2)n-NHR, -0-(CH2)n-NR2, R4 oder zusammen durch -O-(CH2)m-0- substituiertes Phenyl, Naphthyl oder Biphenyl,
R4 unsubstituiertes oder einfach durch -COR, -COOR, -OH oder durch eine konventionelle Aminoschutzgruppe substituiertes -C(=NH)-NH2 oder -NH-C(=NH)-NH2, -C(=O)-N=C(NH2)2,
A Alkyl mit 1-4 C-Atomen,
Hai F, Cl, Br oder l, m 1 oder 2, n 0, 1 , 2 oder 3, p 0 oder 1 bedeutet, sowie deren Salze.
2. Verbindungen gemäß Anspruch 1
a) 5-(3-Amidino-benzyl)-3-(7-amidino-naphth-2-ylmethyl)-2- isopropyl-3,5-dihydro-imidazo[4,5-c]-pyridin-4-on;
b) 3,5-Bis-(7-amidino-naphth-2-ylmethyl)-2-isopropyl-3,5-dihydro- imidazo[4,5-c]-pyridin-4-on;
5 sowie deren Salze.
3. Verfahren zur Herstellung von Verbindungen der Formel I nach Anspruch 1 sowie ihrer Salze, dadurch gekennzeichnet, daß man
Q a) sie aus einem ihrer funktionellen Derivate durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel in Freiheit setzt, indem man
i) eine Amidinogruppe aus ihrem Oxadiazolderivat oder Oxaz- 5 olidinonderivat durch Hydrogenolyse oder Solvolyse freisetzt,
ii) eine konventionelle Aminoschutzgruppe durch Behandeln mit einem solvolysierenden oder hydrogenolysierenden Mittel durch Wasserstoff ersetzt oder Q eine durch eine konventionelle Schutzgruppe geschützte
Aminogruppe in Freiheit setzt,
oder
5 WO 00/20416 _ 3g _ PCT/EP99/06655
b) in einer Verbindung der Formel I einen oder mehrere Rest(e) R, R1, R2 und/oder R3 in einen oder mehrere Rest(e) R, R1, R2 und/oder R3 umwandelt,
indem man beispielsweise
i) eine Estergruppe zu einer Carboxygruppe hydrolysiert,
ii) eine Nitrogruppe reduziert,
iii) eine Aminogruppe acyliert,
iv) eine Cyangruppe in eine Amidinogruppe
und/oder
c) eine Base oder Säure der Formel I in eines ihrer Salze umwandelt.
4. Verfahren zur Herstellung pharmazeutischer Zubereitungen, dadurch gekennzeichnet, daß man eine Verbindung der Formel I nach Anspruch 1 und/oder eines ihrer physiologischen unbedenklichen Salze zusammen mit mindestens einem festen, flüssigen oder halbflüssigen Träger- oder Hilfsstoff in eine geeignete Dosierungsform bringt.
5. Pharmazeutische Zubereitung, gekennzeichnet durch einen Gehalt an mindestens einer Verbindung der Formel l nach Anspruch 1 und/oder einem ihrer physiologisch unbedenklichen Salze.
6. Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze oder Solvate als Arzneimittelwirkstoffe.
7. Verbindungen der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze zur Bekämpfung von Thrombosen, myocar- dialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens.
8. Arzneimittel der Formel I nach Anspruch 1 und ihre physiologisch unbedenklichen Salze als Inhibitoren des Koagulationsfaktors Xa.
9. Verwendung von Verbindungen der Formel I nach Anspruch 1 und/oder ihre physiologisch unbedenklichen Salze zur Herstellung eines Arzneimittels.
10. Verwendung von Verbindungen der Formel I nach Anspruch 1 und/oder ihrer physiologisch unbedenklichen Salze zur Herstellung eines Arzneimittels zur Bekämpfung von Thrombosen, myocardialem Infarkt, Arteriosklerose, Entzündungen, Apoplexie, Angina pectoris, Restenose nach Angioplastie und Claudicatio intermittens.
EP99946151A 1998-10-01 1999-09-09 Imidazol[4,5-c-]-pyridin-4-on-derivate mit faktor xa hemmender wirkung Withdrawn EP1117664A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19845153A DE19845153A1 (de) 1998-10-01 1998-10-01 Imidazo[4,5]-pyridin-4-on-derivate
DE19845153 1998-10-01
PCT/EP1999/006655 WO2000020416A1 (de) 1998-10-01 1999-09-09 Imidazo[4,5-c-]-pyridin-4-on-derivate mit faktor xa hemmender wirkung

Publications (1)

Publication Number Publication Date
EP1117664A1 true EP1117664A1 (de) 2001-07-25

Family

ID=7883005

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99946151A Withdrawn EP1117664A1 (de) 1998-10-01 1999-09-09 Imidazol[4,5-c-]-pyridin-4-on-derivate mit faktor xa hemmender wirkung

Country Status (18)

Country Link
US (1) US6492384B1 (de)
EP (1) EP1117664A1 (de)
JP (1) JP2002526542A (de)
KR (1) KR20010074980A (de)
CN (1) CN1324358A (de)
AR (1) AR020688A1 (de)
AU (1) AU752574B2 (de)
BR (1) BR9914213A (de)
CA (1) CA2346033A1 (de)
DE (1) DE19845153A1 (de)
HU (1) HUP0104164A3 (de)
ID (1) ID29466A (de)
MY (1) MY130736A (de)
NO (1) NO20011638L (de)
PL (1) PL346542A1 (de)
SK (1) SK4282001A3 (de)
WO (1) WO2000020416A1 (de)
ZA (1) ZA200103498B (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6858616B2 (en) 1998-12-23 2005-02-22 Bristol-Myers Squibb Pharma Company Nitrogen containing heterobicycles as factor Xa inhibitors
ATE280171T1 (de) 1998-12-23 2004-11-15 Bristol Myers Squibb Pharma Co Stickstoffhaltige heterobicyclen als faktor-xa- hemmer
JP2004501918A (ja) * 2000-06-23 2004-01-22 ブリストル−マイヤーズ スクイブ ファーマ カンパニー Xa因子阻害剤としての1−(ヘテロアリール−フェニル)−縮合ピラゾール誘導体
EP1414449A4 (de) 2001-05-22 2005-04-06 Bristol Myers Squibb Co Bizyklische faktor-xa-hemmer
EP1472254A4 (de) * 2002-02-08 2006-02-15 Glsynthesis Inc Purin- und isostere antibakterielle verbindungen
GB0215293D0 (en) 2002-07-03 2002-08-14 Rega Foundation Viral inhibitors
PT1569912E (pt) 2002-12-03 2015-09-15 Pharmacyclics Llc Derivados 2-(2-hidroxibifenil-3-il)-1h-benzoimidazole-5- carboxamidina como inibidores do fator viia
US7135469B2 (en) * 2003-03-18 2006-11-14 Bristol Myers Squibb, Co. Linear chain substituted monocyclic and bicyclic derivatives as factor Xa inhibitors
AU2004309390B2 (en) * 2003-12-22 2011-06-02 Gilead Sciences, Inc. Imidazo[4,5-c]pyridine compounds and methods of antiviral treatment
US7381732B2 (en) 2004-10-26 2008-06-03 Bristol-Myers Squibb Company Pyrazolobenzamides and derivatives as factor Xa inhibitors
JP2008524335A (ja) * 2004-12-21 2008-07-10 ギリアド サイエンシズ, インコーポレイテッド イミダゾ[4,5−c]ピリジン化合物および抗ウイルス処置法
EP1942898B2 (de) 2005-09-14 2014-05-14 Takeda Pharmaceutical Company Limited Dipeptidyl-peptidase-hemmer zur behandlung von diabetes
JP5122462B2 (ja) 2005-09-16 2013-01-16 武田薬品工業株式会社 ジペプチジルペプチダーゼ阻害剤
TW200734338A (en) * 2006-01-16 2007-09-16 Organon Nv 6-Phenyl-1H-imidazo [4,5-c] pyridine-4-carbonitrile derivatives
WO2007112347A1 (en) 2006-03-28 2007-10-04 Takeda Pharmaceutical Company Limited Dipeptidyl peptidase inhibitors
ES2339298T3 (es) * 2006-07-07 2010-05-18 Gilead Sciences, Inc. Compuesto de piridazina novedoso y uso del mismo.
TW200838536A (en) 2006-11-29 2008-10-01 Takeda Pharmaceutical Polymorphs of succinate salt of 2-[6-(3-amino-piperidin-1-yl)-3-methyl-2,4-dioxo-3,4-dihydro-2H-pyrimidin-1-ylmethy]-4-fluor-benzonitrile and methods of use therefor
UA99466C2 (en) 2007-07-06 2012-08-27 Гилиад Сайенсиз, Инк. Crystalline pyridazine compound
WO2011031935A1 (en) 2009-09-11 2011-03-17 Glsynthesis Inc. Selective antibacterials for clostridium difficile infections

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE574846C (de) * 1933-04-21 Wilhelm Germann Schienenbefestigung unter Verwendung von Schienenfuehrungsleisten
DE602521C (de) * 1934-09-10 Wilhelm Stoeckicht Dipl Ing Umlaufraederwechselgetriebe, insbesondere fuer Kraftfahrzeuge
DE546449C (de) * 1932-03-12 Mueller Paul Verbindung von Belagblechen
DE595151C (de) * 1934-04-04 Buderus Eisenwerk Verfahren und Vorrichtung zum Regeln des Gewichts von in Schleudergussmaschinen herzustellenden Rohren
DE505893C (de) * 1926-08-07 1930-08-26 Medizinische Produkte Ag F Verfahren zur Herstellung von Eiweiss-Halogen-Schwefelverbindungen
DE564960C (de) * 1931-05-13 1932-11-24 Siemens Schuckertwerke Akt Ges Einrichtung zur Anpassung der Drehzahlregelung, insbesondere von Dampfturbinen, an veraenderte Betriebsverhaeltnisse
DE628556C (de) * 1932-12-07 1936-04-08 Wolf Johannes Mueller Dr Verfahren zur Herstellung von insbesondere hochkonzentrierten Wasserglasloesungen
DE702013C (de) * 1933-07-17 1941-01-29 Union Oil Co Verfahren zur Abscheidung von Paraffin aus paraffinhaltigen OElen
US5798364A (en) * 1992-03-26 1998-08-25 Merck Patent Gesellschaft Mit Beschrankter Haftung Imidazopyridines
DE4110019C2 (de) 1991-03-27 2000-04-13 Merck Patent Gmbh Imidazopyridine, Verfahren zu ihrer Herstellung und diese enthaltende pharmazeutische Zubereitungen
DE4140519A1 (de) * 1991-12-09 1993-06-17 Merck Patent Gmbh Benzofurane
DE4211474A1 (de) 1992-04-06 1993-10-07 Merck Patent Gmbh Imidazopyridine
DE4305602A1 (de) * 1992-06-17 1993-12-23 Merck Patent Gmbh Imidazopyridine
DE4236026A1 (de) * 1992-10-24 1994-04-28 Merck Patent Gmbh Imidazopyridine
DE4242459A1 (de) * 1992-12-16 1994-06-23 Merck Patent Gmbh Imidazopyridine
DE4318813A1 (de) * 1993-06-07 1994-12-08 Merck Patent Gmbh Imidazopyridine
DE4432860A1 (de) 1994-09-15 1996-03-21 Merck Patent Gmbh Imidazopyridine
NZ333696A (en) 1996-07-08 2000-06-23 Du Pont Pharm Co Amidinoindoles, amidinoazoles, and analogs thereof as inhibitors of trypsin like protease enzymes like thrombin and Xa factor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0020416A1 *

Also Published As

Publication number Publication date
AR020688A1 (es) 2002-05-22
KR20010074980A (ko) 2001-08-09
HUP0104164A2 (hu) 2002-04-29
NO20011638D0 (no) 2001-03-30
NO20011638L (no) 2001-03-30
ZA200103498B (en) 2002-08-13
DE19845153A1 (de) 2000-04-06
MY130736A (en) 2007-07-31
CN1324358A (zh) 2001-11-28
WO2000020416A1 (de) 2000-04-13
AU5861899A (en) 2000-04-26
PL346542A1 (en) 2002-02-11
SK4282001A3 (en) 2002-10-08
HUP0104164A3 (en) 2002-08-28
US6492384B1 (en) 2002-12-10
CA2346033A1 (en) 2000-04-13
BR9914213A (pt) 2001-06-26
JP2002526542A (ja) 2002-08-20
ID29466A (id) 2001-08-30
AU752574B2 (en) 2002-09-26

Similar Documents

Publication Publication Date Title
EP1117664A1 (de) Imidazol[4,5-c-]-pyridin-4-on-derivate mit faktor xa hemmender wirkung
CA2930754C (en) Pyrazolopyridine derivatives as modulators of tnf activity
EP1797071A1 (de) Carbonylverbindungen verwendbar als inhibitoren des koagulationsfaktors xa
WO2000040583A2 (de) Imidazo[4,5-c]-pyridin-4-on-derivate
DE10112768A1 (de) Phenylderivate 3
EP1157010A1 (de) Pyrazol-3-on-derivate als faktor xa inhibitoren
DE10117823A1 (de) Oxalsäurederivate
EP1414456B1 (de) Phenylderivate als faktor xa inhibitoren
DE10214832A1 (de) Phenylderivate 4
DE19819548A1 (de) Biphenylderivate
WO2005073201A1 (de) Harnstoffderivate
DE10220048A1 (de) Semicarbazidderivate
WO2000012479A1 (de) 2-oxo-2h-chinolinderivate
DE19835950A1 (de) Piperazinonderivate
MXPA01006942A (en) Imidazo[4,5-c]-pyridine-4-on-derivatives
WO2003074479A1 (de) Semicarbazidderivate und ihre verwendung als antithrombotika
DE10037146A1 (de) Acetamidderivate
DE10130718A1 (de) Kohlenhydratderivate

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010203

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT PAYMENT 20010203;LV PAYMENT 20010203;MK;RO PAYMENT 20010203;SI PAYMENT 20010203

17Q First examination report despatched

Effective date: 20030820

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20031230

RTI1 Title (correction)

Free format text: IMIDAZO??4,5-C- -PYRIDINE-4-ONE DERIVATIVES WITH FACTOR XA INHIBITING EFFECT