EP1102302B1 - Monochromatische Röntgenstrahlenquelle - Google Patents

Monochromatische Röntgenstrahlenquelle Download PDF

Info

Publication number
EP1102302B1
EP1102302B1 EP00203920A EP00203920A EP1102302B1 EP 1102302 B1 EP1102302 B1 EP 1102302B1 EP 00203920 A EP00203920 A EP 00203920A EP 00203920 A EP00203920 A EP 00203920A EP 1102302 B1 EP1102302 B1 EP 1102302B1
Authority
EP
European Patent Office
Prior art keywords
target
window
secondary target
ray source
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00203920A
Other languages
English (en)
French (fr)
Other versions
EP1102302A1 (de
Inventor
Geoffrey Prof. C/O Philips Corporate Harding
Bernd C/O Philips Corporate Ulmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1102302A1 publication Critical patent/EP1102302A1/de
Application granted granted Critical
Publication of EP1102302B1 publication Critical patent/EP1102302B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • H01J35/186Windows used as targets or X-ray converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material
    • H01J2235/082Fluids, e.g. liquids, gases

Definitions

  • the invention relates to an X-ray source for generating a largely monochromatic fluorescent X-ray radiation having a primary and a secondary target.
  • An x-ray source of this kind is known from US Pat. No. 3,867,637 and comprises in an x-ray tube essentially a (primary) target, which is opposite to a cathode and in which x-rays are generated by the incidence of an electron beam.
  • the target rests on a substrate, which can be made of a light metal such as aluminum or beryllium, for example, and serves to mechanically hold the target and to ensure a vacuum-tight closure of the x-ray tube.
  • the substrate is substantially transmissive to the X-rays emanating from the target and selected to be thick enough to absorb any incident electrons.
  • a fluorescent material (secondary target) is applied, which may be, for example, cerium oxide, so that by the incident from the primary target X-rays, a material-dependent monochromatic fluorescence X-radiation is excited.
  • a problem with these known X-ray sources is that it is relatively difficult to couple a large proportion of the X-radiation generated in the primary target into the secondary target. This has the consequence that the intensity of the excited monochromatic fluorescence X-ray radiation is correspondingly low or can be increased by changing the targets only at the expense of the spectral purity.
  • the invention is therefore an object of the invention to provide an X-ray source of the type mentioned, can be generated with the substantially monochromatic fluorescence X-ray radiation with a higher radiation intensity at the same time high spectral purity.
  • an X-ray source of the type mentioned which is characterized in that the primary target is a liquid metal or a liquid metal alloy, the / between a first, permeable to an electron beam and a second, permeable to X-ray window to which the secondary target adjoins, is guided in such a way that electrons striking the primary target through the first window produce x-rays which, upon reaching the secondary target, substantially have a maximum energy corresponding to an absorption edge of the secondary target , so that in the secondary target a largely monochromatic fluorescence X-radiation is excited.
  • the (at least in the operating state of the X-ray source) liquid metal or the metal alloy fulfills not only the function of the primary target, but at the same time effective removal of heat from the target and cools the windows, in particular at the first window by the incident electron beam a relatively strong heat development occurs.
  • the cooling has the consequence that the electron radiation and thus the thermal power density can be significantly increased, so that also increases the radiation intensity of the monochromatic fluorescence X-rays accordingly.
  • the dependent claims have advantageous developments of the invention to the content.
  • the execution of the window according to claim 2 has the advantage that they are on the one hand particularly stable, so that they can withstand the flow pressure of the flowing liquid metal even at relatively low thickness and on the other hand elicit the electron or X-ray only a very small amount of energy.
  • the embodiment according to claim 3 has the advantage that a particularly effective dissipation of heat from the windows is achieved.
  • an electrically preferably grounded tube piston 1 is shown, which is closed vacuum-tight by a first window 2.
  • a cathode 3 which emits an electron beam 4 in the operating state, which passes through the first window 2 on a primary target 10 in the form of a liquid metal, so that by interaction with the electrons, an X-ray radiation.
  • the liquid metal (or liquid metal alloy) is in a system 5.
  • This system includes conduits 50 through which the liquid metal is driven by a pump 52 having a portion 51 opposite the first window 2 and a heat exchanger 53 the heat generated in the liquid metal can be dissipated by means of a cooling circuit.
  • the section 51 has a second window 6 through which the X-radiation excited in the liquid metal (primary target) enters a secondary target 11 to excite monochromatic fluorescent X-radiation there. This radiation is finally masked out via a device 8 adjacent to the secondary target.
  • the purpose of the first window 2 is to vacuum-tightly close both the tube piston 1 and the section 51 through which the liquid metal flows.
  • the first the window should be made of a material which is as transparent as possible to the electron beam, so that the energy loss of the electrons as they pass through the window and thus also the resulting heat is as low as possible.
  • the window should also have the highest possible thermal conductivity.
  • Diamond has proven to be a particularly suitable material, which offers sufficient mechanical stability even at a window thickness of 1 ⁇ m.
  • the energy loss that electrons with an energy of e.g. 150 keV in such a window is less than 1%, so that the heat flow in the window caused by the electrons is lower than 500 W when the liquid metal is heated by the electrons of 50 kW.
  • Further advantages of diamond include its high thermal conductivity and the fact that it can be heated up to 1500 ° C in an oxygen-free environment without irreversible changes.
  • the pump 52 preferably operates according to the magnetohydrodynamic principle, so that it has no mechanically moving parts.
  • An example of such a pump is described in U.S. Patent 4,953,191.
  • FIG. 2 shows the region of the section 51 of the system 5 with the first window 2, which comprises a silicon carrier 22 with a thickness of, for example, 300 ⁇ m, and a diamond layer 23 with a thickness of, for example, 100 ⁇ m, wherein in the region of the passage of the electron beam an opening 21 is made in the silicon carrier.
  • the production of such a window is described, for example, in EP-A-0 957 506 [PHD 98-044] .
  • the first window 2 opposite second window 6 of the section 51 is preferably constructed in the same manner as the first window. It is important here that it has a good permeability to the X-rays excited in the liquid metal. Diamond has also proved to be advantageous for this because it not only has a high thermal conductivity, but absorbs the X-rays generated in the target in only a very small extent, since on the one hand be very thin due to its strength can and on the other hand has a low atomic number.
  • a cross-sectional constriction 54 In order to increase the efficiency of the heat removal by the liquid metal, located in the region of the windows 2, 6 of the section 51, a cross-sectional constriction 54, with which an accelerated and turbulent flowing flow is generated in this area.
  • the cross-sectional constriction for example, is asymmetric as shown and has a cross-sectional wing-like profile, wherein the free passage area for the liquid metal may be about 100 microns versus a diameter of the conduit 50 of about 10 mm.
  • the cross-sectional constriction 54 and the second window 6 are preferably made of the same material and form an element fulfilling both functions.
  • the primary target metals or metal alloys can be used which have a high atomic number and are liquid at the lowest possible temperature, preferably room temperature.
  • Examples are mercury, a metal alloy of 62.5% Ga, 21.5% In and 16% Sn or a Mecallregierung of 43% Bi, 21.7% Pb, 18.3% In, 8% Sn, 5% Cd and 4% Hg (all figures in weight percent).
  • the secondary target may be, for example, tantalum.
  • non-liquid metals for example gold
  • metal alloys may also be used for the first target.
  • FIG. 3 shows a schematic cross section through a first target arrangement in the form of a layer structure.
  • the electron beam E hits through the first window 2 on the primary target 10, which serves as a converter and in which the X-rays are excited. These enter through the second window 6 in the secondary target 11 and produce there the largely monochromatic fluorescence X-ray Rfl.
  • the operating principle is based on the following considerations: Let it be assumed that the incident electron beam has the energy E 0 , while the energy of a (material-dependent) absorption edge K of the secondary target E k . As the electrons diffuse through the primary target 10, they produce x-rays (ie, essentially bremsstrahlung with a relatively broad frequency spectrum) in a known manner and thereby lose energy.
  • ⁇ E / ⁇ X means the mean energy loss of electrons per unit of path length over the energy interval E 0 -Ek .
  • the electrons, which have passed through the primary target or the path length R 1 now only have the energy E k and thus can not excite bremsstrahlung in the secondary target 11 with an energy that is greater than E k . Since this energy corresponds to an absorption edge of the secondary target, there rather takes place an absorption of the corresponding X-rays and an excitation of higher energy states, by their return to the ground state the characteristic radiation (monochromatic X-ray line, fluorescence X-radiation) is generated.
  • the intensity of the generated X-radiation is correspondingly lower. If the path length is significantly larger, although a much higher proportion of the electrons is converted into X-radiation, it is also absorbed in the primary target before it can reach the secondary target. In Thus, the intensity of the monochromatic X-ray radiation is very low in these two cases.
  • the photon energy at which ⁇ is calculated should be approximately (E 0 - E k ) / 2.
  • the monochromatic fluorescence X-radiation produced in the region of the secondary target calculated according to the above equation should be read out at an angle at which as far as possible no disturbing influence of Bremsstrahlung from the primary target with the path length R 1 occurs.
  • An optimal suppression of this Bremsstrahlung is observed when the fluorescent material itself serves as a radiation filter for this radiation. This is the case when the X-ray Rfl is read at a relatively small angle to the plane of the primary target. Such a direction is shown in FIG.
  • the electron beam strikes through the first window 2 onto the primary target 10, which may be a liquid or solid metal or a metal alloy.
  • the generated X-radiation enters the secondary target 11 through the second window 6.
  • the excited monochromatic fluorescence X-ray Rfl is masked out via the device 8.
  • This device 8 consists of a material substantially opaque to the X-radiation with a high atomic number. Due to the funnel-shaped opening in the material, which narrows in the direction of the secondary target and whose major axis is at an angle of between about 65 ° and 90 ° to the direction of the incident electron beam, only such radiation from the secondary target is hidden has traveled certain path length.
  • the design of the optimal path length depends on the intended use of the X-ray source and is always a compromise between maximum intensity of the monochromatic X-ray and its spectral purity, that is, the filtering effect of the secondary target.
  • FIGS. 5 and 6 These relationships are graphically illustrated in FIGS. 5 and 6, in both figures for a target assembly of a 5 ⁇ m primary target of gold, a diamond window of 195 ⁇ m thickness and a secondary target of tantalum with a thickness of 150 ⁇ m in which an electron beam E with an energy of 150 keV is incident on the primary target.
  • FIG. 5 shows the course of the energy spectra of the monochromatic fluorescence X-ray radiation read at different angles, curve (1) in reflection for an Z angle of 90 to 180 degrees, curve (2) in transmission for an Z angle from 0 to 90 degrees and curve (3) in transmission for an Z angle of 65 to 90 degrees.
  • the Z-angle extends as shown in Figures 5 and 6 between the direction of incidence of the electron beam and the readout direction.
  • Curve (1) shows the usual course in known X-ray tubes, which indeed show two distinct frequency lines, but also have a considerable Bremsstrahlung spectrum above and below these lines.
  • curve (2) indicates significantly reduced Bremsstrahlung spectrum and frequency lines with only slightly reduced intensity
  • curve (3) is characterized by an extraordinarily high spectral purity at a significantly reduced intensity of the two frequency lines.
  • Curve (2) in particular, however, represents a compromise between high spectral purity and only a slightly reduced intensity of monochromatic X-rays, which has not been achieved to that extent with the state of the art for many applications.
  • FIG. 6 shows the purity of the spectral monochromatic X-ray radiation (K ⁇ line) in percent at every 5 degree intervals as a function of the Z angle. These measurements yielded a clear maximum at an Z angle of 82.5 degrees.

Landscapes

  • X-Ray Techniques (AREA)

Description

  • Die Erfindung betrifft eine Röntgenstrahlenquelle zur Erzeugung einer weitgehend monochromatischen Fluoreszenz-Röntgenstrahlung mit einem primären und einem sekundären Target.
  • Eine Röntgenstrahlenquelle dieser Art ist aus der US-PS 3.867.637 bekannt und umfasst in einer Röntgenröhre im wesentlichen ein (primäres) Target, das einer Kathode gegenüberliegt und in dem durch Einfall eines Elektronenstrahls Röntgenstrahlen erzeugt werden. Das Target ruht auf einem Substrat, das zum Beispiel aus einem Leichtmetall wie Aluminium oder Beryllium sein kann und das dazu dient, das Target mechanisch zu halten und einen vakuumfesten Verschluss der Röntgenröhre zu gewährleisten. Das Substrat ist für die von dem Target ausgehenden Röntgenstrahlen im wesentlichen durchlässig und so dick gewählt, dass sämtliche einfallenden Elektronen absorbiert werden. Auf die andere Seite des Substrates ist ein fluoreszierendes Material (sekundäres Target) aufgebracht, das zum Beispiel Ceriumoxid sein kann, so dass durch die aus dem primären Target einfallenden Röntgenstrahlen eine materialabhängige monochromatische Fluoreszenz-Röntgenstrahlung angeregt wird.
  • Ein Problem bei diesen bekannten Röntgenstrahlenquellen besteht darin, dass es relativ schwierig ist, einen großen Anteil der in dem primären Target erzeugten Röntgenstrahlung in das sekundäre Target zu koppeln. Dies hat zur Folge, dass die Intensität der angeregten monochromatischen Fluoreszenz-Röntgenstrahlung entsprechend gering ist bzw. durch Veränderung der Targets nur auf Kosten der spektralen Reinheit erhöht werden kann.
  • Der Erfindung liegt deshalb die Aufgabe zugrunde, eine Röntgenstrahlenquelle der eingangs genannten Art zu schaffen, mit der im wesentlichen monochromatische Fluoreszenz-Rontgenstrahlung mit einer höheren Strahlungsintensität bei gleichzeitig hoher spektraler Reinheit erzeugt werden kann.
  • Gelöst wird diese Aufgabe mit einer Röntgenstrahlenquelle der eingangs genannten Art, die sich dadurch auszeichnet, dass das primäre Target ein flüssiges Metall oder eine flüssige Metalllegierung ist, das/die zwischen einem ersten, für einen Elektronenstrahl durchlässigen und einem zweiten, für eine Röntgenstrahlung durchlässigen Fenster, an das sich das sekundäre Target anschließt, in der Weise geführt ist, dass Elektronen, die durch das erste Fenster auf das primäre Target treffen, Röntgenstrahlen erzeugen, die beim Erreichen des sekundären Targets im wesentlichen eine einer Absorptionskante des sekundären Targets entsprechende maximale Energie aufweisen, so dass in dem sekundären Target eine weitgehend monochromatische Fluoreszenz-Röntgenstrahlung angeregt wird.
  • Das (zumindest im Betriebszustand der Röntgenstrahlenquelle) flüssige Metall bzw. die Metalllegierung erfüllt dabei nicht nur die Funktion des primären Targets, sondern bewirkt gleichzeitig eine wirksame Abführung von Wärme aus dem Target und kühlt die Fenster, wobei insbesondere an dem ersten Fenster durch den einfallenden Elektronenstrahl eine relativ starke Wärmeentwicklung auftritt. Die Kühlung hat zur Folge, dass die Elektroneneinstrahlung und damit die thermische Leistungsdichte wesentlich gesteigt werden kann, so dass sich auch die Strahlungsintensität der monochromatischen Fluoreszenz-Röntgenstrahlen entsprechend erhöht.
  • Die Unteransprüche haben vorteilhafte Weiterbildungen der Erfindung zum Inhalt. Die Ausführung der Fenster gemäß Anspruch 2 hat den Vorteil, dass sie einerseits besonders stabil sind, so dass sie dem Strömungsdruck des fließenden flüssigen Metalls schon bei relativ geringer Dicke standhalten können und andererseits dem Elektronen- bzw. Röntgenstrahl eine nur sehr geringe Energie entziehen.
  • Die Ausführung nach Anspruch 3 hat den Vorteil, dass eine besonders wirksame Abführung der Wärme von den Fenstern erzielt wird.
  • Die Ausführung nach den Ansprüchen 4 und 5 ermöglicht schließlich eine erhebliche Verbesserung der spektralen Reinheit der aus dem sekundären Target ausgekoppelten Röntgenstrahlung.
  • Weitere Einzelheiten, Merkmale und Vorteile der Erfindung ergeben sich aus der folgenden Beschreibung einer bevorzugten Ausführungsform anhand der Zeitung. Es zeigt:
    • Fig. 1 eine schematische Darstellung der Ausführungsform;
    • Fig. 2 eine schematische Darstellung eines Teils der Röntgenstrahlenquelle;
    • Fig. 3 einen schematischen Querschnitt durch eine erste Targetanordnung;
    • Fig. 4 einen schematischen Querschnitt durch eine zweite Targetanordnung;
    • Fig. 5 eine graphische Darstellung der spektralen Verläufe der Röntgenstrahlung bei verschiedenen Auslesewinkeln; und
    • Fig. 6 eine graphische Darstellung der spektralen Reinheit einer Röntgenlinie in Abhängigkeit von dem Auslesewinkel.
  • In Figur 1 ist ein elektrisch vorzugsweise geerdeter Röhrenkolben 1 dargestellt, der durch ein erstes Fenster 2 vakuumdicht abgeschlossen ist. In dem Vakuumraum des Röhrenkolbens befindet sich eine Kathode 3, die im Betriebszustand einen Elektronenstrahl 4 emittiert, der durch das erste Fenster 2 hindurch auf ein primäres Target 10 in Form eines flüssigen Metalls trifft, so dass durch Wechselwirkung mit den Elektronen eine Röntgenstrahlung entsteht. Das flüssige Metall (oder die flüssige Metalllegierung) befindet sich in einem System 5. Dieses System umfasst Rohrleitungen 50, durch die das flüssige Metall von einer Pumpe 52 getrieben wird, mit einem Abschnitt 51 gegenüber dem ersten Fenster 2, sowie einem Wärmetauscher 53, mit dem die in dem flüssigen Metall entstandene Wärme mittels eines Kühlkreislaufs abgeführt werden kann.
  • An der dem ersten Fenster 2 gegenüberliegenden Seite weist der Abschnitt 51 ein zweites Fenster 6 auf, durch das die in dem flüssigen Metall (primäres Target) angeregte Röntgenstrahlung in ein sekundäres Target 11 eintritt, um dort eine monochromatische Fluoreszenz-Röntgenstrahlung anzuregen. Diese Strahlung wird schließlich über eine an das sekundäre Target angrenzende Einrichtung 8 ausgeblendet.
  • Das erste Fenster 2 hat den Zweck, sowohl den Röhrenkolben 1, als auch den Abschnitt 51, der von dem flüssigen Metall durchströmt wird, vakuumdicht abzuschließen. Das erste Fenster sollte außerdem aus einem Material bestehen, das für den Elektronenstrahl möglichst transparent ist, so dass der Energieverlust der Elektronen beim Durchtritt durch das Fenster und damit auch die entstehende Wärme so gering wie möglich ist. Das Fenster sollte schließlich auch eine möglichst hohe Wärmeleitfähigkeit aufweisen.
  • Als besonders geeignetes Material hat sich Diamant erwiesen, das schon bei einer Fensterstärke von 1 µm eine ausreichende mechanische Stabilität bietet. Der Energieverlust, den Elektronen mit einer Energie von z.B. 150 keV in einem solchen Fenster erfahren, ist geringer als 1%, so dass der in dem Fenster durch die Elektronen hervorgerufene Wärmestrom niedriger als 500 W ist, wenn das flüssige Metall durch die Elektronen mit 50 kW erwärmt wird. Weitere Vorteile von Diamant sind schließlich seine hohe thermische Leitfähigkeit sowie die Tatsache, dass es in einer sauerstofffreien Umgebung ohne irreversible Veränderungen bis auf 1500°C erwärmt werden kann.
  • Die Pumpe 52 arbeitet vorzugsweise nach dem magnetohydrodynamischen Prinzip, so dass sie keine mechanisch bewegten Teile aufweist. Ein Beispiel für eine solche Pumpe ist in der US-PS 4.953.191 beschrieben.
  • Figur 2 zeigt den Bereich des Abschnitts 51 des Systems 5 mit dem ersten Fenster 2, das einen Siliziumträger 22 mit einer Dicke von zum Beispiel 300 µm sowie eine Diamantschicht 23 mit einer Dicke von zum Beispiel 100 µm umfasst, wobei im Bereich des Durchtritts des Elektronenstrahls eine Öffnung 21 in den Siliziumträger eingebracht ist. Die Herstellung eines solchen Fensters wird zum Beispiel in der EP-A-0 957 506 [PHD 98-044] beschrieben.
  • Das dem ersten Fenster 2 gegenüberliegende zweite Fenster 6 des Abschnitts 51 ist bevorzugt in gleicher Weise aufgebaut wie das erste Fenster. Wichtig ist hierbei, dass es eine gute Durchlässigkeit für die in dem flüssigen Metall angeregten Röntgenstrahlen aufweist. Diamant hat sich auch hierfür als vorteilhaft erwiesen, da es nicht nur eine hohe thermische Leitfähigkeit hat, sondern die in dem Target erzeugten Röntgenstrahlen in nur sehr geringem Maße absorbiert, da es einerseits auf Grund seiner Festigkeit sehr dünn sein kann und andererseits eine geringe Ordnungszahl aufweist.
  • An das zweite Fenster 6 wird schließlich das sekundäre Target 11 mit der Ausblendeinrichtung 8 angebracht, die mit Bezug auf die Figur 4 näher erläutert werden wird.
  • Um die Wirksamkeit der Wärmeabfuhr durch das flüssiges Metall zu erhöhen, befindet sich im Bereich der Fenster 2, 6 des Abschnitts 51 eine Querschnittsverengung 54, mit der eine beschleunigt und turbulent fließende Strömung in diesem Bereich erzeugt wird. Die Querschnittsverengung ist zum Beispiel in der dargestellten Weise asymmetrisch und hat ein im Querschnitt tragflügelähnliches Profil, wobei der freie Durchtrittsbereich für das flüssige Metall etwa 100 Mikron gegenüber einem Durchmesser der Rohrleitung 50 von etwa 10 mm betragen kann. Ferner sind die Querschnittsverengung 54 und das zweite Fenster 6 vorzugsweise aus dem gleichen Material hergestellt und bilden ein beide Funktionen erfüllendes Element.
  • Für das primäre Target können Metalle oder Metalllegierungen verwendet werden, die eine hohe Ordnungszahl aufweisen und bei einer möglichst niedrigen Temperatur, vorzugsweise Zimmertemperatur flüssig sind. Beispiele hierfür sind Quecksilber, eine Metalllegierung aus 62,5% Ga, 21,5% In und 16% Sn oder eine Mecallregierung aus 43% Bi, 21,7% Pb, 18,3% In, 8% Sn, 5% Cd und 4% Hg (alle Angaben in Gewichtsprozent). Das sekundäre Target kann zum Beispiel Tantal sein.
  • Insbesondere bei den in den Figuren 3 und 4 gezeigten Targetanordnungen können für das erste Target auch nichtflüssige Metalle (zum Beispiel Gold) oder Metalllegierungen verwendet werden.
  • Figur 3 zeigt einen schematischen Querschnitt durch eine erste Targetanordnung in Form einer Schichtstruktur. Der Elektronenstrahl E trifft durch das erste Fenster 2 auf das primäre Target 10, das als Konverter dient und in dem die Röntgenstrahlen angeregt werden. Diese treten durch das zweite Fenster 6 in das sekundäre Target 11 ein und erzeugen dort die weitgehend monochromatische Fluoreszenz-Röntgenstrahlung Rfl.
  • Das Funktionsprinzip beruht auf folgenden Überlegungen: Es sei angenommen, dass der einfallende Elektronenstrahl die Energie E0 habe, während die Energie einer (materialabhängigen) Absorptionskante K des sekundären Targets Ek sei. Während die Elektronen durch das primäre Target 10 diffundieren, erzeugen sie in bekannter Weise Röntgenstrahlen (d.h. im wesentlichen Bremsstrahlung mit einem relativ breiten Frequenzspektrum) und verlieren dabei Energie. Die Dicke R1 des primären Targets, das heißt die Weglänge der Elektronen durch das primäre Target, wird so gewählt, dass die folgende Bedingung näherungsweise erfüllt ist: R 1 = ( E 0 - E k ) X / E
    Figure imgb0001

    wobei in Figur 3 diese Dicke als Radius R1 um den Eintrittspunkt des Elektronenstrahls E in das primäre Target dargestellt ist.
  • ln dieser Gleichung bedeutet □E / □X den mittleren Energieverlust der Elektronen pro Einheit der Weglänge über das Energieintervall E0 - Ek. Die Elektronen, die das primäre Target bzw. die Weglänge R1 durchlaufen haben, haben nunmehr nur noch die Energie Ek und können somit in dem sekundären Target 11 keine Bremsstrahlung mit einer Energie anregen, die größer ist als Ek. Da diese Energie einer Absorptionskante des sekundären Targets entspricht, findet dort vielmehr eine Absorption der entsprechenden Röntgenstrahlen und eine Anregung höherer Energiezustände statt, durch deren Rückkehr in den Grundzustand die charakteristische Strahlung (monochromatische Röntgenlinie, Fluoreszenz-Röntgenstrahlung) erzeugt wird.
  • Wenn die Weglänge durch das primäre Target wesentlich kürzer ist, als der mit der obigen Gleichung errechnete Wert R1, so ist die Intensität der erzeugten Röntgenstrahlung entsprechend geringer. Wenn die Weglänge wesentlich größer ist, wird zwar ein wesentlich höherer Anteil der Elektronen in Röntgenstrahlung umgesetzt, diese wird jedoch in dem primären Target auch wieder absorbiert, bevor sie das sekundäre Target erreichen kann. In diesen beiden Fällen ist somit die Intensität der monochromatischen Röntgenstrahlung sehr gering.
  • Die Dicke des sekundären Targets, die in Figur 3 durch den Radius R2 um den Eintrittspunkt des Elektronenstrahls in das primäre Target dargestellt ist, wird so gewählt, dass die Intensität der Fluoreszenz-Röntgenstrahlung möglichst groß ist. Ein maximaler Wert wird erreicht, wenn folgende Bedingung erfüllt ist: R 2 - R 1 = 1 / μ
    Figure imgb0002

    wobei µ den linearen Dämpfungskoeffizienten für Röntgenstrahlen in dem sekundären Target darstellt. Die Photonen-Energie, bei der µ berechnet wird, sollte näherungsweise (E0 - Ek) / 2 betragen.
  • Die in dem gemäß obiger Gleichung bemessenen Bereich des sekundären Targets erzeugte monochromatische Fluoreszenz-Röntgenstrahlung sollte mit einem Winkel ausgelesen werden, bei dem möglichst kein störender Einfluss von Bremsstrahlung aus dem primären Target mit der Weglänge R1 auftritt. Eine optimale Unterdrückung dieser Bremsstrahlung ist dann zu beobachten, wenn das fluoreszierende Material selbst als Strahlungsfilter für diese Strahlung dient. Dies ist dann gegeben, wenn der Röntgenstrahl Rfl mit einem relativ geringen Winkel zu der Ebene des primären Targets ausgelesen wird. Eine solche Richtung ist in Figur 3 eingezeichnet.
  • Zur weiteren Verbesserung der spektralen Reinheit und zur weiteren Minimierung des in dem Fluoreszenz-Röntgenstrahlen-Spektrum vorhandenen Bremsstrahlungs-Spektrums kann eine erhöhte Filterwirkung mit der in Figur 4 gezeigten zweiten Targetanordnung erreicht werden.
  • Auch hierbei trifft der Elektronenstrahl durch das erste Fenster 2 hindurch auf das primäre Target 10, das ein flüssiges oder festes Metall oder eine Metalllegierung sein kann. Die erzeugte Röntgenstrahlung tritt durch das zweite Fenster 6 in das sekundäre Target 11 ein.
  • Die angeregte monochromatische Fluoreszenz-Röntgenstrahlung Rfl wird über die Einrichtung 8 ausgeblendet.
  • Diese Einrichtung 8 besteht aus einem für die Röntgenstrahlung im wesentlichen undurchlässigen Material mit einer hohen Ordnungszahl. Durch die trichterförmige Öffnung in dem Material, die sich in Richtung auf das sekundäre Target verengt und deren Hauptachse einen Winkel von zwischen etwa 65° und 90° zu der Richtung des einfallenden Elektronenstrahls aufweist, wird nur solche Strahlung aus dem sekundären Target ausgeblendet, die eine bestimmte Weglänge zurückgelegt hat.
  • Die Bemessung der optimalen Weglänge hängt von der vorgesehenen Anwendung der Röntgenstrahlenquelle ab und ist stets ein Kompromiss zwischen maximaler Intensität der monochromatischen Röntgenstrahlung und ihrer spektralen Reinheit, das heißt der Filterwirkung des sekundären Targets.
  • Diese Zusammenhänge sind in den Figuren 5 und 6 graphisch dargestellt, und zwar in beiden Figuren für eine Targetanordnung aus einem 5 µm starken primären Target aus Gold, einem Diamantfenster mit einer Stärke von 195 µm und einem sekundären Target aus Tantal mit einer Stärke von 150 µm, wobei auf das primäre Target ein Elektronenstrahl E mit einer Energie von 150 keV einfällt.
  • Figur 5 zeigt den Verlauf der Energiespektren der unter verschiedenen Winkeln ausgelesenen monochromatischen Fluoreszenz-Röntgenstrahlung, und zwar Kurve (1) in Reflektion für einen Z-Winkel von 90 bis 180 Grad, Kurve (2) in Transmission für einen Z-Winkel von 0 bis 90 Grad und Kurve (3) in Transmission für einen Z-Winkel von 65 bis 90 Grad. Der Z-Winkel erstreckt sich gemäß der Darstellung in den Figuren 5 und 6 zwischen der Einfallsrichtung des Elektronenstrahls und der Ausleserichtung.
  • Kurve (1) zeigt den üblichen Verlauf bei bekannten Röntgenstrahlenröhren, die zwar zwei deutliche Frequenzlinien zeigen, jedoch oberhalb und unterhalb dieser Linien auch ein erhebliches Bremsstrahlungsspektrum aufweisen. Kurve (2) zeigt demgegenüber ein deutlich vermindertes Bremsstrahlungsspektrum und Frequenzlinien mit nur geringfügig verminderter Intensität, während sich Kurve (3) durch eine außerordentlich hohe spektrale Reinheit bei allerdings deutlich verminderter Intensität der beiden Frequenzlinien auszeichnet. Insbesondere Kurve (2) stellt jedoch einen für viele Anwendungen günstigen Kompromiss zwischen hoher spektraler Reinheit bei nur geringfügig verminderter Intensität der monochromatischen Röntgenstrahlen dar, der in diesem Ausmaß mit dem Stand der Technik bisher nicht erreicht wurde.
  • Figur 6 zeigt die Reinheit der spektralen monochromatischen Röntgenstrahlung (K□-Linie) in Prozent pro 5 Grad-Intervallen in Abhängigkeit von dem Z-Winkel. Bei diesen Messungen hat sich ein klares Maximum bei einem Z-Winkel von 82,5 Grad ergeben.

Claims (5)

  1. Röntgenstrahlenquelle zur Erzeugung einer weitgehend monochromatischen Fluoreszenz-Röntgenstrahlung mit einem primären und einem sekundären Target,
    dadurch gekennzeichnet, dass das primäre Target (10) ein flüssiges Metall oder eine flüssige Metalllegierung ist, das/die zwischen einem ersten, für einen Elektronenstrahl durchlässigen und einem zweiten, für eine Röntgenstrahlung durchlässigen Fenster (2; 6), an das sich das sekundäre Target (11) anschließt, in der Weise geführt ist, dass Elektronen, die durch das erste Fenster auf das primäre Target treffen, Röntgenstrahlen erzeugen, die beim Erreichen des sekundären Targets im wesentlichen eine einer Absorptionskante des sekundären Targets entsprechende maximale Energie aufweisen, so dass in dem sekundären Target eine weitgehend monochromatische Fluoreszenz-Röntgenstrahlung angeregt wird.
  2. Röntgenstrahlenquelle nach Anspruch 1,
    dadurch gekennzeichnet, dass mindestens eines der beiden Fenster (2; 6) ein Diamantfenster ist.
  3. Röntgenstrahlenquelle nach Anspruch 1,
    dadurch gekennzeichnet, dass das flüssige Metall oder die flüssige Metalllegierung turbulent strömend zwischen dem ersten und dem zweiten Fenster (2; 6) geführt wird.
  4. Röntgenstrahlenquelle nach Anspruch 1,
    gekennzeichnet durch eine Einrichtung (8) zum Ausblenden eines monochromatischen Röntgenstrahls, der eine in der Weise vorbestimmte mittlere Weglänge durch das sekundäre Target (11) zurückgelegt hat, dass ein möglichst hoher Anteil an Bremsstrahlung aus dem primären Target (10) durch das sekundäre Target absorbiert wird.
  5. Röntgenstrahlenquelle nach Anspruch 4,
    dadurch gekennzeichnet, dass die Einrichtung (8) durch eine Röntgenstrahlen-Abschirmung an einer freien Fläche des sekundären Targets (11) gebildet ist, die eine trichterförmige Öffnung aufweist, die sich in Richtung auf das sekundäre Target verengt und deren Hauptachse einen Winkel von zwischen etwa 65° und 90° zu der Richtung des einfallenden Elektronenstrahls (E) aufweist.
EP00203920A 1999-11-18 2000-11-09 Monochromatische Röntgenstrahlenquelle Expired - Lifetime EP1102302B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19955392 1999-11-18
DE19955392A DE19955392A1 (de) 1999-11-18 1999-11-18 Monochromatische Röntgenstrahlenquelle

Publications (2)

Publication Number Publication Date
EP1102302A1 EP1102302A1 (de) 2001-05-23
EP1102302B1 true EP1102302B1 (de) 2006-03-01

Family

ID=7929407

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00203920A Expired - Lifetime EP1102302B1 (de) 1999-11-18 2000-11-09 Monochromatische Röntgenstrahlenquelle

Country Status (4)

Country Link
US (1) US6560313B1 (de)
EP (1) EP1102302B1 (de)
JP (1) JP2001155670A (de)
DE (2) DE19955392A1 (de)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129463A1 (de) * 2001-06-19 2003-01-02 Philips Corp Intellectual Pty Röntgenstrahler mit einem Flüssigmetall-Target
DE10130070A1 (de) * 2001-06-21 2003-01-02 Philips Corp Intellectual Pty Röntgenstrahler mit Flüssigmetall-Target
DE10147473C2 (de) * 2001-09-25 2003-09-25 Siemens Ag Drehanodenröntgenröhre
AU2003252819A1 (en) * 2002-03-08 2003-09-22 Koninklijke Philips Electronics N.V. A device for generating x-rays having a liquid metal anode
US7180981B2 (en) * 2002-04-08 2007-02-20 Nanodynamics-88, Inc. High quantum energy efficiency X-ray tube and targets
JP2007503703A (ja) * 2003-05-19 2007-02-22 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 蛍光x線源
GB2403388A (en) * 2003-06-24 2004-12-29 Secr Defence X-ray inspection system having X-ray source with compound fluorescent secondary target
DE102004013618B4 (de) * 2004-03-19 2007-07-26 Yxlon International Security Gmbh Verfahren zum Betrieb einer magnetohydrodynamischen Pumpe, Flüssigmetallanode für eine Röntgenquelle sowie Röntgenstrahler
DE102004013620B4 (de) * 2004-03-19 2008-12-04 GE Homeland Protection, Inc., Newark Elektronenfenster für eine Flüssigmetallanode, Flüssigmetallanode, Röntgenstrahler und Verfahren zum Betrieb eines solchen Röntgenstrahlers
DE102004015590B4 (de) * 2004-03-30 2008-10-09 GE Homeland Protection, Inc., Newark Anodenmodul für eine Flüssigmetallanoden-Röntgenquelle sowie Röntgenstrahler mit einem Anodenmodul
JP2007533093A (ja) * 2004-04-13 2007-11-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 液体金属アノードを有するx線発生装置
WO2006001459A1 (ja) 2004-06-24 2006-01-05 Nikon Corporation Euv光源、euv露光装置、及び半導体デバイスの製造方法
JP4337648B2 (ja) 2004-06-24 2009-09-30 株式会社ニコン Euv光源、euv露光装置、及び半導体デバイスの製造方法
US7319733B2 (en) * 2004-09-27 2008-01-15 General Electric Company System and method for imaging using monoenergetic X-ray sources
WO2007088934A1 (ja) * 2006-02-01 2007-08-09 Toshiba Electron Tubes & Devices Co., Ltd. X線源及び蛍光x線分析装置
US7634052B2 (en) * 2006-10-24 2009-12-15 Thermo Niton Analyzers Llc Two-stage x-ray concentrator
US7629593B2 (en) * 2007-06-28 2009-12-08 Asml Netherlands B.V. Lithographic apparatus, radiation system, device manufacturing method, and radiation generating method
DE102008026938A1 (de) * 2008-06-05 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Strahlungsquelle und Verfahren zum Erzeugen von Röntgenstrahlung
US8331534B2 (en) 2009-04-16 2012-12-11 Silver Eric H Monochromatic X-ray methods and apparatus
US20150117599A1 (en) 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
US9449781B2 (en) 2013-12-05 2016-09-20 Sigray, Inc. X-ray illuminators with high flux and high flux density
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US9448190B2 (en) 2014-06-06 2016-09-20 Sigray, Inc. High brightness X-ray absorption spectroscopy system
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US9390881B2 (en) 2013-09-19 2016-07-12 Sigray, Inc. X-ray sources using linear accumulation
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US9570265B1 (en) 2013-12-05 2017-02-14 Sigray, Inc. X-ray fluorescence system with high flux and high flux density
DE102013220189A1 (de) * 2013-10-07 2015-04-23 Siemens Aktiengesellschaft Röntgenquelle und Verfahren zur Erzeugung von Röntgenstrahlung
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US9823203B2 (en) 2014-02-28 2017-11-21 Sigray, Inc. X-ray surface analysis and measurement apparatus
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
WO2018175570A1 (en) 2017-03-22 2018-09-27 Sigray, Inc. Method of performing x-ray spectroscopy and x-ray absorption spectrometer system
KR20240055138A (ko) 2017-05-19 2024-04-26 이매진 싸이언티픽, 인크. 단색 엑스선 영상 시스템 및 방법
CA3129632A1 (en) 2018-02-09 2019-08-15 Imagine Scientific, Inc. Monochromatic x-ray imaging systems and methods
US10818467B2 (en) 2018-02-09 2020-10-27 Imagine Scientific, Inc. Monochromatic x-ray imaging systems and methods
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10845491B2 (en) 2018-06-04 2020-11-24 Sigray, Inc. Energy-resolving x-ray detection system
GB2591630B (en) 2018-07-26 2023-05-24 Sigray Inc High brightness x-ray reflection source
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
DE112019004433T5 (de) 2018-09-04 2021-05-20 Sigray, Inc. System und verfahren für röntgenstrahlfluoreszenz mit filterung
WO2020051221A2 (en) 2018-09-07 2020-03-12 Sigray, Inc. System and method for depth-selectable x-ray analysis
WO2020056281A1 (en) 2018-09-14 2020-03-19 Imagine Scientific, Inc. Monochromatic x-ray component systems and methods
WO2021011209A1 (en) 2019-07-15 2021-01-21 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure
US11170965B2 (en) 2020-01-14 2021-11-09 King Fahd University Of Petroleum And Minerals System for generating X-ray beams from a liquid target
US11882642B2 (en) 2021-12-29 2024-01-23 Innovicum Technology Ab Particle based X-ray source

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB957506A (en) * 1960-01-15 1964-05-06 Cav Ltd Cooling fans for vehicle engines
US4048496A (en) * 1972-05-08 1977-09-13 Albert Richard D Selectable wavelength X-ray source, spectrometer and assay method
US3894239A (en) * 1973-09-04 1975-07-08 Raytheon Co Monochromatic x-ray generator
US3867637A (en) * 1973-09-04 1975-02-18 Raytheon Co Extended monochromatic x-ray source
US3919548A (en) * 1974-07-24 1975-11-11 David E Porter X-Ray energy spectrometer system
DE3586244T2 (de) * 1984-12-26 2000-04-20 Toshiba Kawasaki Kk Vorrichtung zur Erzeugung von Weich-Röntgenstrahlen durch ein Hochenergiebündel.
US4953191A (en) * 1989-07-24 1990-08-28 The United States Of America As Represented By The United States Department Of Energy High intensity x-ray source using liquid gallium target
DE19639241C2 (de) * 1996-09-24 1998-07-23 Siemens Ag Monochromatische Röntgenstrahlenquelle
DE19805290C2 (de) * 1998-02-10 1999-12-09 Siemens Ag Monochromatische Röntgenstrahlenquelle
DE19808342C1 (de) * 1998-02-27 1999-08-19 Siemens Ag Abschaltbare Fluoreszenz-Röntgenstrahlenquelle
DE19821939A1 (de) * 1998-05-15 1999-11-18 Philips Patentverwaltung Röntgenstrahler mit einem Flüssigmetall-Target

Also Published As

Publication number Publication date
DE19955392A1 (de) 2001-05-23
DE50012305D1 (de) 2006-04-27
JP2001155670A (ja) 2001-06-08
EP1102302A1 (de) 2001-05-23
US6560313B1 (en) 2003-05-06

Similar Documents

Publication Publication Date Title
EP1102302B1 (de) Monochromatische Röntgenstrahlenquelle
EP0584871B1 (de) Röntgenröhre mit einer Transmissionsanode
EP0957506B1 (de) Röntgenstrahler mit einem Flüssigmetall-Target
DE69200648T2 (de) Mikrokanalplatte mit begrenzter Rückkopplung.
DE202005017496U1 (de) Target für eine Mikrofocus- oder Nanofocus-Röntgenröhre
DE2909066C2 (de)
DE102011109822B4 (de) Vorrichtung für einen Strahlungsdetektor sowie Strahlungsdetektor mit der Vorrichtung
DE2734799A1 (de) Radiologischer bildverstaerker
DE2441968C3 (de) Röntgenröhre zur Erzeugung monochromatischer Röntgenstrahlung
DE2533348B2 (de) Target zur Umwandlung eines Elektronenstrahlbfindels hoher kinetischer Energie in Rftntgen-Bremsstrahlung
DE3827511A1 (de) Roentgenstrahlquelle mit selektiver erzeugung punktfokussierter und linienfokussierter roentgenstrahlen
DE68923187T2 (de) Szintillator für einen Eingangsschirm einer Röntgenstrahl-Bildverstärkerröhre und sein Herstellungsverfahren.
DE102011079179A1 (de) Monochromatische Röntgenquelle
EP1266391B1 (de) Strahlungswandler mit einem szintillator, einer photokathode und einem elektronenvervielfacher
DE2840567C2 (de) Nahfokus-Bildverstärkerröhre einer Streak-Kamera
DE69007627T2 (de) Röntgenbildverstärkerröhre mit Selektivfilter.
DE3779472T2 (de) Roentgenstrahlbildverstaerker.
DE102012011309B4 (de) Röntgenstrahlröhre vom Transmissionstyp und Röntgenstrahlröhre vom Reflektionstyp
EP1383848A1 (de) Strahlungswandler und verfahren zur herstellung desselben
DE3001983C2 (de)
EP0033894B1 (de) Mehrstufiger Vakuum-Röntgenbildverstärker
DE1032440B (de) Strahlungsempfindliche Vorrichtung, besonders fuer Roentgenbildverstaerker
DE69720395T2 (de) Röntgenbildverstärkerröhre
EP2885807B1 (de) Vorrichtung mit anode zur erzeugung von röntgenstrahlung
EP0425718B1 (de) Röntgenstrahlerzeuger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011123

AKX Designation fees paid

Free format text: DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060317

REF Corresponds to:

Ref document number: 50012305

Country of ref document: DE

Date of ref document: 20060427

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061204

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121206

Year of fee payment: 13

Ref country code: DE

Payment date: 20121122

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121114

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012305

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131109