EP1102302B1 - Source monochromatique à rayons X - Google Patents

Source monochromatique à rayons X Download PDF

Info

Publication number
EP1102302B1
EP1102302B1 EP00203920A EP00203920A EP1102302B1 EP 1102302 B1 EP1102302 B1 EP 1102302B1 EP 00203920 A EP00203920 A EP 00203920A EP 00203920 A EP00203920 A EP 00203920A EP 1102302 B1 EP1102302 B1 EP 1102302B1
Authority
EP
European Patent Office
Prior art keywords
target
window
secondary target
ray source
ray
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00203920A
Other languages
German (de)
English (en)
Other versions
EP1102302A1 (fr
Inventor
Geoffrey Prof. C/O Philips Corporate Harding
Bernd C/O Philips Corporate Ulmer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Philips Intellectual Property and Standards GmbH
Koninklijke Philips NV
Original Assignee
Philips Intellectual Property and Standards GmbH
Koninklijke Philips Electronics NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Philips Intellectual Property and Standards GmbH, Koninklijke Philips Electronics NV filed Critical Philips Intellectual Property and Standards GmbH
Publication of EP1102302A1 publication Critical patent/EP1102302A1/fr
Application granted granted Critical
Publication of EP1102302B1 publication Critical patent/EP1102302B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J35/00X-ray tubes
    • H01J35/02Details
    • H01J35/16Vessels; Containers; Shields associated therewith
    • H01J35/18Windows
    • H01J35/186Windows used as targets or X-ray converters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2235/00X-ray tubes
    • H01J2235/08Targets (anodes) and X-ray converters
    • H01J2235/081Target material
    • H01J2235/082Fluids, e.g. liquids, gases

Definitions

  • the invention relates to an X-ray source for generating a largely monochromatic fluorescent X-ray radiation having a primary and a secondary target.
  • An x-ray source of this kind is known from US Pat. No. 3,867,637 and comprises in an x-ray tube essentially a (primary) target, which is opposite to a cathode and in which x-rays are generated by the incidence of an electron beam.
  • the target rests on a substrate, which can be made of a light metal such as aluminum or beryllium, for example, and serves to mechanically hold the target and to ensure a vacuum-tight closure of the x-ray tube.
  • the substrate is substantially transmissive to the X-rays emanating from the target and selected to be thick enough to absorb any incident electrons.
  • a fluorescent material (secondary target) is applied, which may be, for example, cerium oxide, so that by the incident from the primary target X-rays, a material-dependent monochromatic fluorescence X-radiation is excited.
  • a problem with these known X-ray sources is that it is relatively difficult to couple a large proportion of the X-radiation generated in the primary target into the secondary target. This has the consequence that the intensity of the excited monochromatic fluorescence X-ray radiation is correspondingly low or can be increased by changing the targets only at the expense of the spectral purity.
  • the invention is therefore an object of the invention to provide an X-ray source of the type mentioned, can be generated with the substantially monochromatic fluorescence X-ray radiation with a higher radiation intensity at the same time high spectral purity.
  • an X-ray source of the type mentioned which is characterized in that the primary target is a liquid metal or a liquid metal alloy, the / between a first, permeable to an electron beam and a second, permeable to X-ray window to which the secondary target adjoins, is guided in such a way that electrons striking the primary target through the first window produce x-rays which, upon reaching the secondary target, substantially have a maximum energy corresponding to an absorption edge of the secondary target , so that in the secondary target a largely monochromatic fluorescence X-radiation is excited.
  • the (at least in the operating state of the X-ray source) liquid metal or the metal alloy fulfills not only the function of the primary target, but at the same time effective removal of heat from the target and cools the windows, in particular at the first window by the incident electron beam a relatively strong heat development occurs.
  • the cooling has the consequence that the electron radiation and thus the thermal power density can be significantly increased, so that also increases the radiation intensity of the monochromatic fluorescence X-rays accordingly.
  • the dependent claims have advantageous developments of the invention to the content.
  • the execution of the window according to claim 2 has the advantage that they are on the one hand particularly stable, so that they can withstand the flow pressure of the flowing liquid metal even at relatively low thickness and on the other hand elicit the electron or X-ray only a very small amount of energy.
  • the embodiment according to claim 3 has the advantage that a particularly effective dissipation of heat from the windows is achieved.
  • an electrically preferably grounded tube piston 1 is shown, which is closed vacuum-tight by a first window 2.
  • a cathode 3 which emits an electron beam 4 in the operating state, which passes through the first window 2 on a primary target 10 in the form of a liquid metal, so that by interaction with the electrons, an X-ray radiation.
  • the liquid metal (or liquid metal alloy) is in a system 5.
  • This system includes conduits 50 through which the liquid metal is driven by a pump 52 having a portion 51 opposite the first window 2 and a heat exchanger 53 the heat generated in the liquid metal can be dissipated by means of a cooling circuit.
  • the section 51 has a second window 6 through which the X-radiation excited in the liquid metal (primary target) enters a secondary target 11 to excite monochromatic fluorescent X-radiation there. This radiation is finally masked out via a device 8 adjacent to the secondary target.
  • the purpose of the first window 2 is to vacuum-tightly close both the tube piston 1 and the section 51 through which the liquid metal flows.
  • the first the window should be made of a material which is as transparent as possible to the electron beam, so that the energy loss of the electrons as they pass through the window and thus also the resulting heat is as low as possible.
  • the window should also have the highest possible thermal conductivity.
  • Diamond has proven to be a particularly suitable material, which offers sufficient mechanical stability even at a window thickness of 1 ⁇ m.
  • the energy loss that electrons with an energy of e.g. 150 keV in such a window is less than 1%, so that the heat flow in the window caused by the electrons is lower than 500 W when the liquid metal is heated by the electrons of 50 kW.
  • Further advantages of diamond include its high thermal conductivity and the fact that it can be heated up to 1500 ° C in an oxygen-free environment without irreversible changes.
  • the pump 52 preferably operates according to the magnetohydrodynamic principle, so that it has no mechanically moving parts.
  • An example of such a pump is described in U.S. Patent 4,953,191.
  • FIG. 2 shows the region of the section 51 of the system 5 with the first window 2, which comprises a silicon carrier 22 with a thickness of, for example, 300 ⁇ m, and a diamond layer 23 with a thickness of, for example, 100 ⁇ m, wherein in the region of the passage of the electron beam an opening 21 is made in the silicon carrier.
  • the production of such a window is described, for example, in EP-A-0 957 506 [PHD 98-044] .
  • the first window 2 opposite second window 6 of the section 51 is preferably constructed in the same manner as the first window. It is important here that it has a good permeability to the X-rays excited in the liquid metal. Diamond has also proved to be advantageous for this because it not only has a high thermal conductivity, but absorbs the X-rays generated in the target in only a very small extent, since on the one hand be very thin due to its strength can and on the other hand has a low atomic number.
  • a cross-sectional constriction 54 In order to increase the efficiency of the heat removal by the liquid metal, located in the region of the windows 2, 6 of the section 51, a cross-sectional constriction 54, with which an accelerated and turbulent flowing flow is generated in this area.
  • the cross-sectional constriction for example, is asymmetric as shown and has a cross-sectional wing-like profile, wherein the free passage area for the liquid metal may be about 100 microns versus a diameter of the conduit 50 of about 10 mm.
  • the cross-sectional constriction 54 and the second window 6 are preferably made of the same material and form an element fulfilling both functions.
  • the primary target metals or metal alloys can be used which have a high atomic number and are liquid at the lowest possible temperature, preferably room temperature.
  • Examples are mercury, a metal alloy of 62.5% Ga, 21.5% In and 16% Sn or a Mecallregierung of 43% Bi, 21.7% Pb, 18.3% In, 8% Sn, 5% Cd and 4% Hg (all figures in weight percent).
  • the secondary target may be, for example, tantalum.
  • non-liquid metals for example gold
  • metal alloys may also be used for the first target.
  • FIG. 3 shows a schematic cross section through a first target arrangement in the form of a layer structure.
  • the electron beam E hits through the first window 2 on the primary target 10, which serves as a converter and in which the X-rays are excited. These enter through the second window 6 in the secondary target 11 and produce there the largely monochromatic fluorescence X-ray Rfl.
  • the operating principle is based on the following considerations: Let it be assumed that the incident electron beam has the energy E 0 , while the energy of a (material-dependent) absorption edge K of the secondary target E k . As the electrons diffuse through the primary target 10, they produce x-rays (ie, essentially bremsstrahlung with a relatively broad frequency spectrum) in a known manner and thereby lose energy.
  • ⁇ E / ⁇ X means the mean energy loss of electrons per unit of path length over the energy interval E 0 -Ek .
  • the electrons, which have passed through the primary target or the path length R 1 now only have the energy E k and thus can not excite bremsstrahlung in the secondary target 11 with an energy that is greater than E k . Since this energy corresponds to an absorption edge of the secondary target, there rather takes place an absorption of the corresponding X-rays and an excitation of higher energy states, by their return to the ground state the characteristic radiation (monochromatic X-ray line, fluorescence X-radiation) is generated.
  • the intensity of the generated X-radiation is correspondingly lower. If the path length is significantly larger, although a much higher proportion of the electrons is converted into X-radiation, it is also absorbed in the primary target before it can reach the secondary target. In Thus, the intensity of the monochromatic X-ray radiation is very low in these two cases.
  • the photon energy at which ⁇ is calculated should be approximately (E 0 - E k ) / 2.
  • the monochromatic fluorescence X-radiation produced in the region of the secondary target calculated according to the above equation should be read out at an angle at which as far as possible no disturbing influence of Bremsstrahlung from the primary target with the path length R 1 occurs.
  • An optimal suppression of this Bremsstrahlung is observed when the fluorescent material itself serves as a radiation filter for this radiation. This is the case when the X-ray Rfl is read at a relatively small angle to the plane of the primary target. Such a direction is shown in FIG.
  • the electron beam strikes through the first window 2 onto the primary target 10, which may be a liquid or solid metal or a metal alloy.
  • the generated X-radiation enters the secondary target 11 through the second window 6.
  • the excited monochromatic fluorescence X-ray Rfl is masked out via the device 8.
  • This device 8 consists of a material substantially opaque to the X-radiation with a high atomic number. Due to the funnel-shaped opening in the material, which narrows in the direction of the secondary target and whose major axis is at an angle of between about 65 ° and 90 ° to the direction of the incident electron beam, only such radiation from the secondary target is hidden has traveled certain path length.
  • the design of the optimal path length depends on the intended use of the X-ray source and is always a compromise between maximum intensity of the monochromatic X-ray and its spectral purity, that is, the filtering effect of the secondary target.
  • FIGS. 5 and 6 These relationships are graphically illustrated in FIGS. 5 and 6, in both figures for a target assembly of a 5 ⁇ m primary target of gold, a diamond window of 195 ⁇ m thickness and a secondary target of tantalum with a thickness of 150 ⁇ m in which an electron beam E with an energy of 150 keV is incident on the primary target.
  • FIG. 5 shows the course of the energy spectra of the monochromatic fluorescence X-ray radiation read at different angles, curve (1) in reflection for an Z angle of 90 to 180 degrees, curve (2) in transmission for an Z angle from 0 to 90 degrees and curve (3) in transmission for an Z angle of 65 to 90 degrees.
  • the Z-angle extends as shown in Figures 5 and 6 between the direction of incidence of the electron beam and the readout direction.
  • Curve (1) shows the usual course in known X-ray tubes, which indeed show two distinct frequency lines, but also have a considerable Bremsstrahlung spectrum above and below these lines.
  • curve (2) indicates significantly reduced Bremsstrahlung spectrum and frequency lines with only slightly reduced intensity
  • curve (3) is characterized by an extraordinarily high spectral purity at a significantly reduced intensity of the two frequency lines.
  • Curve (2) in particular, however, represents a compromise between high spectral purity and only a slightly reduced intensity of monochromatic X-rays, which has not been achieved to that extent with the state of the art for many applications.
  • FIG. 6 shows the purity of the spectral monochromatic X-ray radiation (K ⁇ line) in percent at every 5 degree intervals as a function of the Z angle. These measurements yielded a clear maximum at an Z angle of 82.5 degrees.

Landscapes

  • X-Ray Techniques (AREA)

Claims (5)

  1. Source de rayons X pour la production de rayons X à fluorescence en grande partie monochromatiques avec une cible primaire et une cible secondaire, caractérisée en ce que la cible primaire (10) est un métal liquide ou un alliage de métaux liquide qui est guidé entre une première fenêtre perméable à un faisceau d'électrons et une deuxième fenêtre (2 ; 6) perméable aux rayons X qui est suivie de la cible secondaire (11) de telle manière que les électrons qui frappent la cible primaire par la première fenêtre produisent des rayons X qui, lorsqu'ils atteignent la cible secondaire, présentent essentiellement une énergie maximale correspondant à un côté d'absorption de la cible secondaire de telle sorte que des rayons X à fluorescence, en grande partie monochromatiques, soient excités.
  2. Source de rayons X selon la revendication 1,
    caractérisée en ce qu'au moins une des deux fenêtres (2 ; 6) est une fenêtre de diamant.
  3. Source de rayons X selon la revendication 1,
    caractérisée en ce que le métal liquide ou l'alliage de métaux liquide est guidé en un flux turbulent entre les première et deuxième fenêtres (2 ; 6).
  4. Source de rayons X selon la revendication 1,
    caractérisée par un dispositif (8) pour la diffusion d'un faisceau de rayons X monochromatiques qui a parcouru une longueur de course moyenne préalablement déterminée par la cible secondaire (11) de telle manière qu'une proportion maximale de rayons de freinage de la cible primaire (10) soit absorbée par la cible secondaire.
  5. Source de rayons X selon la revendication 4,
    caractérisée en ce que le dispositif (8) est formé par un déflecteur de rayons X sur une surface libre de la cible secondaire (11) qui présente une ouverture en forme d'entonnoir qui se rétrécit dans la direction de la cible secondaire et dont l'axe principal présente un angle entre 65° et 90° environ par rapport à la direction du faisceau électronique (E) incident.
EP00203920A 1999-11-18 2000-11-09 Source monochromatique à rayons X Expired - Lifetime EP1102302B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19955392 1999-11-18
DE19955392A DE19955392A1 (de) 1999-11-18 1999-11-18 Monochromatische Röntgenstrahlenquelle

Publications (2)

Publication Number Publication Date
EP1102302A1 EP1102302A1 (fr) 2001-05-23
EP1102302B1 true EP1102302B1 (fr) 2006-03-01

Family

ID=7929407

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00203920A Expired - Lifetime EP1102302B1 (fr) 1999-11-18 2000-11-09 Source monochromatique à rayons X

Country Status (4)

Country Link
US (1) US6560313B1 (fr)
EP (1) EP1102302B1 (fr)
JP (1) JP2001155670A (fr)
DE (2) DE19955392A1 (fr)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10129463A1 (de) * 2001-06-19 2003-01-02 Philips Corp Intellectual Pty Röntgenstrahler mit einem Flüssigmetall-Target
DE10130070A1 (de) * 2001-06-21 2003-01-02 Philips Corp Intellectual Pty Röntgenstrahler mit Flüssigmetall-Target
DE10147473C2 (de) * 2001-09-25 2003-09-25 Siemens Ag Drehanodenröntgenröhre
JP4294492B2 (ja) * 2002-03-08 2009-07-15 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 液体金属アノードを有するx線発生装置
US7180981B2 (en) * 2002-04-08 2007-02-20 Nanodynamics-88, Inc. High quantum energy efficiency X-ray tube and targets
WO2004102609A1 (fr) * 2003-05-19 2004-11-25 Koninklijke Philips Electronics N.V. Source a rayons x fluorescents
GB2403388A (en) * 2003-06-24 2004-12-29 Secr Defence X-ray inspection system having X-ray source with compound fluorescent secondary target
DE102004013618B4 (de) * 2004-03-19 2007-07-26 Yxlon International Security Gmbh Verfahren zum Betrieb einer magnetohydrodynamischen Pumpe, Flüssigmetallanode für eine Röntgenquelle sowie Röntgenstrahler
DE102004013620B4 (de) * 2004-03-19 2008-12-04 GE Homeland Protection, Inc., Newark Elektronenfenster für eine Flüssigmetallanode, Flüssigmetallanode, Röntgenstrahler und Verfahren zum Betrieb eines solchen Röntgenstrahlers
DE102004015590B4 (de) * 2004-03-30 2008-10-09 GE Homeland Protection, Inc., Newark Anodenmodul für eine Flüssigmetallanoden-Röntgenquelle sowie Röntgenstrahler mit einem Anodenmodul
EP1738389B1 (fr) * 2004-04-13 2007-08-29 Koninklijke Philips Electronics N.V. Generateur de rayons x comprenant une anode a metal liquide
US7741616B2 (en) 2004-06-24 2010-06-22 Nikon Corporation EUV light source, EUV exposure equipment, and semiconductor device manufacturing method
JP4337648B2 (ja) * 2004-06-24 2009-09-30 株式会社ニコン Euv光源、euv露光装置、及び半導体デバイスの製造方法
US7319733B2 (en) * 2004-09-27 2008-01-15 General Electric Company System and method for imaging using monoenergetic X-ray sources
KR100974119B1 (ko) 2006-02-01 2010-08-04 도시바 덴시칸 디바이스 가부시키가이샤 X선원 및 형광 x선 분석 장치
US7634052B2 (en) * 2006-10-24 2009-12-15 Thermo Niton Analyzers Llc Two-stage x-ray concentrator
US7629593B2 (en) * 2007-06-28 2009-12-08 Asml Netherlands B.V. Lithographic apparatus, radiation system, device manufacturing method, and radiation generating method
DE102008026938A1 (de) * 2008-06-05 2009-12-17 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Strahlungsquelle und Verfahren zum Erzeugen von Röntgenstrahlung
WO2010120377A2 (fr) 2009-04-16 2010-10-21 Silver Eric H Procédés et appareil à rayons x monochromatiques
US20150117599A1 (en) 2013-10-31 2015-04-30 Sigray, Inc. X-ray interferometric imaging system
US9449781B2 (en) 2013-12-05 2016-09-20 Sigray, Inc. X-ray illuminators with high flux and high flux density
US10269528B2 (en) 2013-09-19 2019-04-23 Sigray, Inc. Diverging X-ray sources using linear accumulation
US10295485B2 (en) 2013-12-05 2019-05-21 Sigray, Inc. X-ray transmission spectrometer system
US9570265B1 (en) 2013-12-05 2017-02-14 Sigray, Inc. X-ray fluorescence system with high flux and high flux density
US9390881B2 (en) 2013-09-19 2016-07-12 Sigray, Inc. X-ray sources using linear accumulation
US10297359B2 (en) 2013-09-19 2019-05-21 Sigray, Inc. X-ray illumination system with multiple target microstructures
US9448190B2 (en) 2014-06-06 2016-09-20 Sigray, Inc. High brightness X-ray absorption spectroscopy system
DE102013220189A1 (de) * 2013-10-07 2015-04-23 Siemens Aktiengesellschaft Röntgenquelle und Verfahren zur Erzeugung von Röntgenstrahlung
USRE48612E1 (en) 2013-10-31 2021-06-29 Sigray, Inc. X-ray interferometric imaging system
US10304580B2 (en) 2013-10-31 2019-05-28 Sigray, Inc. Talbot X-ray microscope
US9823203B2 (en) 2014-02-28 2017-11-21 Sigray, Inc. X-ray surface analysis and measurement apparatus
US9594036B2 (en) 2014-02-28 2017-03-14 Sigray, Inc. X-ray surface analysis and measurement apparatus
US10401309B2 (en) 2014-05-15 2019-09-03 Sigray, Inc. X-ray techniques using structured illumination
US10352880B2 (en) 2015-04-29 2019-07-16 Sigray, Inc. Method and apparatus for x-ray microscopy
US10295486B2 (en) 2015-08-18 2019-05-21 Sigray, Inc. Detector for X-rays with high spatial and high spectral resolution
US10247683B2 (en) 2016-12-03 2019-04-02 Sigray, Inc. Material measurement techniques using multiple X-ray micro-beams
JP6937380B2 (ja) 2017-03-22 2021-09-22 シグレイ、インコーポレイテッド X線分光を実施するための方法およびx線吸収分光システム
CA3098114A1 (fr) 2017-05-19 2018-11-22 Imagine Scientific, Inc. Systemes et procedes d'imagerie par rayons x monochromatiques
US10818467B2 (en) 2018-02-09 2020-10-27 Imagine Scientific, Inc. Monochromatic x-ray imaging systems and methods
WO2019157386A2 (fr) 2018-02-09 2019-08-15 Imagine Scientific, Inc. Systèmes et procédés d'imagerie par rayons x monochromatiques
US10578566B2 (en) 2018-04-03 2020-03-03 Sigray, Inc. X-ray emission spectrometer system
US10989822B2 (en) 2018-06-04 2021-04-27 Sigray, Inc. Wavelength dispersive x-ray spectrometer
CN112470245A (zh) 2018-07-26 2021-03-09 斯格瑞公司 高亮度x射线反射源
US10656105B2 (en) 2018-08-06 2020-05-19 Sigray, Inc. Talbot-lau x-ray source and interferometric system
DE112019004433T5 (de) 2018-09-04 2021-05-20 Sigray, Inc. System und verfahren für röntgenstrahlfluoreszenz mit filterung
WO2020051221A2 (fr) 2018-09-07 2020-03-12 Sigray, Inc. Système et procédé d'analyse de rayons x sélectionnable en profondeur
WO2020056281A1 (fr) 2018-09-14 2020-03-19 Imagine Scientific, Inc. Systèmes de composant de rayons x monochromatiques et procédés
US11152183B2 (en) 2019-07-15 2021-10-19 Sigray, Inc. X-ray source with rotating anode at atmospheric pressure
US11170965B2 (en) 2020-01-14 2021-11-09 King Fahd University Of Petroleum And Minerals System for generating X-ray beams from a liquid target
US11882642B2 (en) 2021-12-29 2024-01-23 Innovicum Technology Ab Particle based X-ray source

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB957506A (en) * 1960-01-15 1964-05-06 Cav Ltd Cooling fans for vehicle engines
US4048496A (en) * 1972-05-08 1977-09-13 Albert Richard D Selectable wavelength X-ray source, spectrometer and assay method
US3867637A (en) * 1973-09-04 1975-02-18 Raytheon Co Extended monochromatic x-ray source
US3894239A (en) * 1973-09-04 1975-07-08 Raytheon Co Monochromatic x-ray generator
US3919548A (en) * 1974-07-24 1975-11-11 David E Porter X-Ray energy spectrometer system
EP0186491B1 (fr) * 1984-12-26 1992-06-17 Kabushiki Kaisha Toshiba Dispositif pour produire des rayons X mous par un faisceau de haute énergie
US4953191A (en) * 1989-07-24 1990-08-28 The United States Of America As Represented By The United States Department Of Energy High intensity x-ray source using liquid gallium target
DE19639241C2 (de) * 1996-09-24 1998-07-23 Siemens Ag Monochromatische Röntgenstrahlenquelle
DE19805290C2 (de) * 1998-02-10 1999-12-09 Siemens Ag Monochromatische Röntgenstrahlenquelle
DE19808342C1 (de) * 1998-02-27 1999-08-19 Siemens Ag Abschaltbare Fluoreszenz-Röntgenstrahlenquelle
DE19821939A1 (de) * 1998-05-15 1999-11-18 Philips Patentverwaltung Röntgenstrahler mit einem Flüssigmetall-Target

Also Published As

Publication number Publication date
EP1102302A1 (fr) 2001-05-23
JP2001155670A (ja) 2001-06-08
US6560313B1 (en) 2003-05-06
DE19955392A1 (de) 2001-05-23
DE50012305D1 (de) 2006-04-27

Similar Documents

Publication Publication Date Title
EP1102302B1 (fr) Source monochromatique à rayons X
EP0584871B1 (fr) Tube à rayons X ayant une anode en mode de transmission
EP0957506B1 (fr) Source à rayons X avec cible à métal liquide
DE69200648T2 (de) Mikrokanalplatte mit begrenzter Rückkopplung.
DE69726080T2 (de) Photokathode und solche Kathode enthaltende Elektronenröhre
DE202005017496U1 (de) Target für eine Mikrofocus- oder Nanofocus-Röntgenröhre
DE2909066C2 (fr)
DE102011109822B4 (de) Vorrichtung für einen Strahlungsdetektor sowie Strahlungsdetektor mit der Vorrichtung
DE2734799A1 (de) Radiologischer bildverstaerker
DE2441968C3 (de) Röntgenröhre zur Erzeugung monochromatischer Röntgenstrahlung
DE2533348B2 (de) Target zur Umwandlung eines Elektronenstrahlbfindels hoher kinetischer Energie in Rftntgen-Bremsstrahlung
DE68923187T2 (de) Szintillator für einen Eingangsschirm einer Röntgenstrahl-Bildverstärkerröhre und sein Herstellungsverfahren.
DE102011079179A1 (de) Monochromatische Röntgenquelle
DE3871913T2 (de) Roentgenroehre mit einer treffplatte aus molybdaen.
EP1266391B1 (fr) Convertisseur de rayonnement comprenant un scintillateur, une photocathode et un multiplicateur à électrons
DE2840567C2 (de) Nahfokus-Bildverstärkerröhre einer Streak-Kamera
DE69007627T2 (de) Röntgenbildverstärkerröhre mit Selektivfilter.
DE3779472T2 (de) Roentgenstrahlbildverstaerker.
DE102012011309B4 (de) Röntgenstrahlröhre vom Transmissionstyp und Röntgenstrahlröhre vom Reflektionstyp
EP1383848A1 (fr) Convertisseur de rayonnement et procede de fabrication associe
DE3001983C2 (fr)
EP0033894B1 (fr) Intensificateur à vide d'images aux rayons X à plusieurs étages
DE1032440B (de) Strahlungsempfindliche Vorrichtung, besonders fuer Roentgenbildverstaerker
DE69720395T2 (de) Röntgenbildverstärkerröhre
EP2885807B1 (fr) Dispositif doté d'une anode destinée à la génération de rayons x

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20011123

AKX Designation fees paid

Free format text: DE FR GB NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

Owner name: PHILIPS CORPORATE INTELLECTUAL PROPERTY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PHILIPS INTELLECTUAL PROPERTY & STANDARDS GMBH

Owner name: KONINKLIJKE PHILIPS ELECTRONICS N.V.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20060301

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20060317

REF Corresponds to:

Ref document number: 50012305

Country of ref document: DE

Date of ref document: 20060427

Kind code of ref document: P

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20061204

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121206

Year of fee payment: 13

Ref country code: DE

Payment date: 20121122

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121114

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131109

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50012305

Country of ref document: DE

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140603

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131202

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131109