EP1049705A1 - Monohalogenures de metallocene - Google Patents

Monohalogenures de metallocene

Info

Publication number
EP1049705A1
EP1049705A1 EP99956012A EP99956012A EP1049705A1 EP 1049705 A1 EP1049705 A1 EP 1049705A1 EP 99956012 A EP99956012 A EP 99956012A EP 99956012 A EP99956012 A EP 99956012A EP 1049705 A1 EP1049705 A1 EP 1049705A1
Authority
EP
European Patent Office
Prior art keywords
butyl
tert
mono
fluorine
zirconium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP99956012A
Other languages
German (de)
English (en)
Inventor
Carsten Bingel
Hans-Herbert Brintzinger
Hans-Robert-Hellmuth Damrau
Patrik MÜLLER
Jürgen Suhm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Basell Polyolefine GmbH
Original Assignee
Targor GmbH
Basell Polyolefine GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Targor GmbH, Basell Polyolefine GmbH filed Critical Targor GmbH
Priority to EP03026592A priority Critical patent/EP1396495B1/fr
Publication of EP1049705A1 publication Critical patent/EP1049705A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F17/00Metallocenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65912Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/60Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
    • C08F4/62Refractory metals or compounds thereof
    • C08F4/64Titanium, zirconium, hafnium or compounds thereof
    • C08F4/659Component covered by group C08F4/64 containing a transition metal-carbon bond
    • C08F4/65916Component covered by group C08F4/64 containing a transition metal-carbon bond supported on a carrier, e.g. silica, MgCl2, polymer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/941Synthetic resins or natural rubbers -- part of the class 520 series having the transition metal bonded directly to carbon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S526/00Synthetic resins or natural rubbers -- part of the class 520 series
    • Y10S526/943Polymerization with metallocene catalysts

Definitions

  • the present invention relates to specially substituted metallocenes, a process for their preparation and their use in the polymerization of olefins.
  • Metallocenes can be used as a catalyst component for the polymerization and copolymerization of olefins.
  • halogen-containing metallocenes are used as catalyst precursors, which can be converted, for example, by an aluminoxane into a polymerization-active cationic metallocene complex (EP-A-129368).
  • metallocenes are known per se (US 4,752,597; US 5,017,714; EP-A-320762; EP-A-416815; EP-A-537686; EP-A-669340; HH Brintzinger et al .; Angew. 107 (1995), 1255; HH Brintzinger et al., J. Organomet. Che. 232 (1982), 233).
  • cyclopentadienyl-metal compounds can be reacted with halides of transition metals such as titanium, zirconium and hafnium.
  • the metallocene dihalides formed are in the case of the technically interesting racemic ansa-bis-indenyl-metallocenes which are required for the production of isotactic polypropylene (EP 0485823, EP 0549900, EP 0576970, WO 98/40331 ), usually poorly soluble compounds.
  • a better solubility of the technically interesting metallocenes would be desirable both in the preparation of the polymerization-active cationic metallocene catalyst system in unsupported or supported form and in the purification of the racemic metallocene, ie the catalyst precursor, by crystallization techniques.
  • the task was therefore to find readily soluble metallocenes which, after conversion into the polymerization-active species, show at least the same polymerization performance as the catalyst systems which are prepared from the poorly soluble metallocene dichlorides.
  • M is a metal of III., IV., V. or VI.
  • Subgroup of the periodic table of the elements is, in particular Ti, Zr or Hf, particularly preferably zirconium,
  • R 1 are identical or different and is Si (R 12 ), in which R 12, identical or different, represents a hydrogen atom or a C ⁇ -C 4 o ⁇ carbon-containing group, preferably C ⁇ -C o-alkyl,
  • Ci-Cio-fluoroalkyl C ⁇ -C ⁇ 0 alkoxy, C 6 -C 20 aryl, C 6 -C ⁇ 0 -Fluoraryl, Ce-Cio-aryloxy, C -C ⁇ n alkenyl, C -C 4 o-arylalkyl, C -C 4 o ⁇ alkylyl or C 8 -C 4 o-arylalkenyl,
  • R 1 is a -C-C 30 - carbon-containing group, preferred
  • -CC 5 alkyl such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C 2 -C 25 alkenyl, C 3 -C 5 alkylalkenyl, C 6 -C 24 aryl, C 5 -C 24 -Heteroaryl, C -C 3 n-arylalkyl, C -C 3 o-alkylaryl, fluorine-containing C ⁇ -C 5 alkyl, fluorine-containing C 6 -C 4 aryl, fluorine-containing C -C o-arylalkyl, fluorine-containing C. _C 3 o _ is alkylaryl or -CC -alkoxy,
  • radicals R 1 can be linked to one another in such a way that the radicals R 1 and the atoms of the cyclopentadienyl ring connecting them form a C 4 -C 4 ring system, which in turn can be substituted,
  • R 2 are the same or different and Si (R 12 ) 3 , in which R 12 is the same or different is a hydrogen atom or a C ⁇ -C 4 o-carbon-containing group, preferably C ⁇ -C 0 alkyl,
  • R 2 is a C 1 -C 8 carbon-containing group, preferably C 1 -C 25 alkyl, such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C -C 25 alkenyl, C 3 -C 5 alkylalkenyl, C 6 -C 24 aryl, C 5 -C 24 heteroaryl, C 7 -C 30 arylalkyl, C 7 -C 30 alkylaryl, fluorine-containing C ⁇ -Cs-alkyl, fluorine-containing C 6 -C 4 aryl, fluorine-containing C. 7 -C 3 o-arylalkyl, fluorine-containing C 7 _C 3 o-alkylaryl or -C-C ⁇ 2 alkoxy,
  • radicals R 2 can be linked to one another in such a way that the radicals R 2 and the atoms of the cyclopentadienyl ring connecting them form a C 4 -C 4 ring system, which in turn can be substituted,
  • R 3 is a C 1 -C 40 - carbon-containing group, preferably C 1 -C 5 alkyl, such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C -C 25 alkenyl, C 3 -C 15 - Alkylalkenyl, C 6 -C 24 aryl, C 5 -C heteroaryl such as pyridyl, furyl or quinolyl, C 7 -C 3 o-arylalkyl, C 7 -C 3 o-alkylaryl, fluorine-containing c ⁇ ⁇ C 5 - Is alkyl, fluorine-containing C 6 -C 4 aryl, fluorine-containing C 7 -C 30 arylalkyl or fluorine-containing C 7 _C 3 o-alkylaryl,
  • X is a halogen atom, in particular chlorine,
  • n 1 to 3, preferably 1,
  • B denotes a bridging structural element between the two cyclopentadienyl rings.
  • B are groups M 3 R 13 R 14 , in which M 3 is carbon, silicon, germanium or tin and R 13 and R 14, the same or different, are a C 1 -C 8 -hydrocarbon-containing group such as Ci-Cin-alkyl, C 6 -Ci 4 aryl or trimethylsilyl.
  • B is preferably CH 2 , CH 2 CH 2 , CH (CH 3 ) CH 2 , CH (C 4 H 9 ) C (CH 3 ) 2 , C (CH 3 ) 2 , (CH 3 ) 2 Si, (CH 3 ) 2 Ge, (CH 3 ) 2 Sn, (C 6 H 5 ) 2 Si, (C 6 H 5 ) (CH 3 ) Si, Si (CH 3 ) (SiR 20 R 1 R 22 ), (C 6 H 5 ) 2 Ge, (C 6 H 5 ) 2 Sn, (CH 2 ) 4 Si, CH 2 Si (CH 3 ) 2 , oC 6 H 4 or 2, 2 '- (C 6 H 4 ) 2 -
  • R 20 R 21 R 22 identically or differently, mean a Cj_-C o-hydrocarbon-containing group such as C ⁇ -C ⁇ o-alkyl or C 6 ⁇ Ci 4 -aryl.
  • B can also form a mono- or polycyclic ring system with one or more radicals R 1 and / or R 2 .
  • Bridged metallocene compounds of the formula (I) are preferred, in particular those in which k is 1 and one or both cyclopentadienyl rings are substituted in such a way that they represent an index ring.
  • the indenyl ring is preferably substituted, in particular in the 2-, 4-, 2,4,5-, 2,4,6-, 2,4,7 or 2, 4, 5, 6-position, with -C-C 2 o-carbon-containing groups, such as Ci-Cig-alkyl or C 6 -Ci8-aryl, where two or more substituents of the indeyl ring together can form a ring system.
  • Bridged metallocene compounds of the formula (II) are particularly preferred.
  • M is Ti, Zr or Hf, particularly preferably zirconium,
  • R 3 identical or different, is a C 1 -C 30 - carbon-containing
  • R 5 , R 7 are the same or different and a hydrogen atom, a -C-C 20 - carbon-containing group, preferably Ci-Cis-alkyl, such as methyl, ethyl, n-butyl, cyclohexyl or octyl, C 2 -C ⁇ o-alkenyl, C 3 -C-alkylalkenyl, C ß- Cis-aryl, Cs-Ci ⁇ -heteroaryl such as pyridyl, - furyl or quinolyl, C 7 -C 2 o-arylalkyl, C 7 -C 2 o-alkylaryl, fluorine-containing
  • R 8 and R 9 are the same or different and mean a hydrogen atom, halogen atom or a -C-C 2 o - carbon-containing group, preferably a linear or branched Ci-Cis-alkyl group, such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C 2 -C 0 -alkenyl, C 3 -C 5 -alkylalkenyl, a Cö-Cis-aryl group, which may optionally be substituted, in particular phenyl, tolyl, xylyl, tert. -Butylphenyl, ethylphenyl, di-tert.
  • X is a halogen atom, in particular chlorine,
  • Y is an element of the 6th main group of the periodic table of the
  • 1, 1 ' identical or different, are an integer between zero and 4, preferably 1 or 2, particularly preferably equal to 1, B denotes a bridging structural element between the two idyl radicals.
  • Examples of B are groups M 3 R 13 R 14 , in which M 3 is carbon, silicon, germanium or tin, preferably carbon and silicon, and R 13 and R 14 are identical or different hydrogen, a C 1 -C 2 -hydrocarbon-containing Group such as Ci-Cio-alkyl, C 6 -Ci 4 aryl or trimethylsilyl mean.
  • B is preferably CH 2 , CH 2 CH 2 , CH (CH 3 ) CH 2 , CH (C 4 H 9 ) C (CH 3 ) 2 , C (CH 3 ) 2 , (CH 3 ) 2 Si, (CH 3 ) 2 Ge, (CH 3 ) 2 Sn, (C 6 H 5 ) 2 C, (C6H 5 ) 2 Si, (C 6 H 5 ) (CH 3 ) Si,
  • R 20 R 21 R 22 identical or different, mean a C 1 -C 2 -hydrocarbon-containing group such as C 1 -C 10 alkyl or C 6 -C 4 aryl.
  • Bridged metallocene compounds of the formula (II) are very particularly preferred,
  • M zirconium
  • R 3 is a C ⁇ -C 3 o - carbon-containing group, preferred
  • C 3 -C ⁇ o-alkyl such as iso-propyl, tert-butyl, cyclohexyl or octyl, C 6 -C 24 aryl, C 5 -C 24 heteroaryl such as pyridyl, furyl or quinolyl, C 7 -C 3 o- arylalkyl, C 7 -C 30 -alkylaryl, fluorinated C6-C 4 aryl, fluorinated C 7 -C3o arylalkyl or fluorinated C 7 _C 3 is o-alkylaryl,
  • R 4 , R 6 are the same or different and a hydrogen atom or a C 1 -C 2 alkyl group, preferably an alkyl group such as methyl, ethyl, n-propyl, isopropyl, n-butyl, n-pentyl, n-hexyl or octyl are, particularly preferably methyl or ethyl,
  • R 5 , R 7 are hydrogen atoms
  • R 8 and R 9 are identical or different and are a hydrogen atom
  • Halogen atom or a -CC 2 o ⁇ carbon-containing group preferably a linear or branched
  • Cx-Cs-alkyl group such as methyl, ethyl, tert-butyl, cyclohexyl or octyl, C 2 -C 6 alkenyl, C 3 -C 6 alkylalkenyl, a C6 "Ci8 aryl group which may optionally be substituted, in particular Phenyl, tolyl, xylyl, tert-butylphenyl, ethylphenyl, di-tert-butylphenyl, naphthyl, acenaphthyl, phenanthrenyl or anthracenyl, C 5 -C 8 heteroaryl such as pyridyl, furyl or quinolyl, C 7 -Ci 2 arylalkyl, C 7 -Ci 2 -alkylaryl, fluorine-containing Ci-Cs-alkyl, fluorine-containing C 6 -Ci 8 _ aryl,
  • 1, 1 ' is an integer between zero and 4, preferably 1 or 2, particularly preferably equal to 1,
  • B denotes a bridging structural element between the two indenyl radicals, B preferably being (CH 3 ) 2 Si, (CH 3 ) 2 Ge, (C 6 H 5 ) 2 Si, (C 6 H 5 ) (CH 3 ) Si, CH 2 CH 2 / CH (CH 3 ) CH 2 , CH (CH 9 ) C (CH 3 ) 2 , CH 2 , C (CH 3 ) 2 , (C 6 H 5 ) 2 C, particularly preferably (CH) Si , CH and CH 2 is CH 2 .
  • a significantly better solubility is said to mean that the molar concentrations in the organic solvent at least double, preferably more than fourfold and very particularly preferably more than eightfold.
  • Another advantage is that the compounds of the invention are better
  • Inert organic solvents for metallocenes are usually aliphatic or aromatic hydrocarbons, but also halogen-containing, oxygen-containing or nitrogen-containing hydrocarbons.
  • Non-limiting examples of the individual classes of solvents are heptane, toluene, dichlorobenzene, methylene chloride, tetrahydrofuran or triethylamine.
  • mixtures of the metallocenes of the formula (II) and the corresponding pseudo-meso metallocenes of the formula (Ha) can also be used in the catalyst preparation for catalyst preparation.
  • metallocenes according to the invention are:
  • Methylidenebis (2-methyl-indenyl) zirconium monochloro-mono- (2,4-di-tert-butyl-phenolate) isopropylidenebis (2-methyl-indenyl) -zirconium monochloro-mono- (2,4-di - tert - butyl phenolate)
  • Methylidenebis (2-methyl-4- (1-naphthyl) -indenyl) zirconium monochloro-mono- (2,4-di-tert-butyl-phenolate) isopropylidenebis (2-methyl-4- (1-naphthyl) -indenyl) -zirconium-mo-nochloro-mono- (2,4-di-ter-butyl-phenolate)
  • Dimethylsilanediylbis (2-methyl-4,6-diisopropyl-indenyl) zirconium monochloro-mono- (2,4-di-tert-butyl-phenolate)
  • Dimethylsilanediylbis (2-methyl-4,5-diisopropyl-indenyl) -zirconium- monochloro-mono- (2,4-di-tert-butyl-phenolate)
  • Dimethylsilanediylbis (2-methyl-4- (tert-butyl-phenyl-indenyl) zirconium monochloro-mono- (2,4-di-tert-butyl-phenolate)
  • Dimethylsilanediylbis (2-methyl-4- (4-methyl -phenyl-indenyl) -zirconium-monochloro-mono- (2, -di-tert.-butyl-phenolate) dimethylsilanediylbis (2-methyl-4- (4-ethyl-phenyl-indenyl) -zirconium-monochloro-mono- ( 2,4-di-tert-butyl-phenolate) dimethylsilanediylbis (2-methyl-4- (4-trifluoromethyl-phenyl-indeyl) zirconium monochloro-mono- (2,4-di-tert-butyl -phenolate)
  • Dimethylsilanediylbis (2-methyl-4- (4-methoxy-phenyl-indenyl) zirconium monochloro-mono- (2,4-di-tert-butyl-phenolate)
  • Dimethylsilanediylbis (2-ethyl-4- (4-tert -butyl-phenyl-indenyl) -zirconium-monochloro-mono- (2,4-di-tert.-butyl-phenolate) dimethylsilanediylbis (2-ethyl-4- (4-ethyl-phenyl-indenyl) -zirconium-monochloro- mono- (2,4-di-tert-butyl-phenolate) dimethylsilanediylbis (2-ethyl-4- (4-trifluoromethyl-phenyl-inde- nyl) zirconium monochloro-mono- (2,4-di-ter
  • Dimethylsilanediylbis (2-methyl-4- (4'-tert. -Butyl-phenyl) -indenyl) -zirconium monochloro-mono- (2,4-di-tert-butyl-phenolate)
  • Dimethylsilanediylbis (2-methyl-4 - (3 ', 5' -di-tert-butyl-phenyl) -indenyl) zirconium monochloro-mono- (2, 4-di-tert-butyl-phenolate) methylidenebis (2-methyl-4- ( 4'-tert.-butyl-phenyl) -indenyl) zirconium monochloro-mono- (2, 4-di-tert-butyl-phenolate) isopropylidenebis (2-methyl-4- (4 '-tert.
  • Methylidenebis (2-n-propyl-4- (4'-tert.-butyl-phenyl) -indenyl) zirconium monochloro-mono- (2,4-di-tert-butyl-phenolate) isopropylidenebis (2-n -propyl-4- (4'-tert.
  • Zirconium-monochloro-mono-neopentyl has examples of the metallocenes according to the invention.
  • the present invention furthermore relates to a process which can be carried out industrially for the preparation of the compounds of the formulas (I) and (II).
  • pseudo-rac M 1 is equal to a cation or a cation fragment such as Li, Na, K, MgCl, MgBr, Mgl and the other radicals are defined as above.
  • Metallocene dichloride of the formula III are preferably used as metallocenes: (EP 0485823, EP 0549900, EP 0576970, WO 98/22486, WO 98/40331).
  • the compound M ⁇ YR 3 can be prepared by deprotonating the compound HYR 3 with a suitable base, such as, for example, butyl lithium, methyl lithium, sodium hydride, potassium hydride, sodium, potassium or Grignard compounds in an inert solvent or solvent mixture.
  • a suitable base such as, for example, butyl lithium, methyl lithium, sodium hydride, potassium hydride, sodium, potassium or Grignard compounds in an inert solvent or solvent mixture.
  • Non-limiting examples of suitable solvents are hydrocarbons which can be halogenated, such as benzene, toluene, xylene, mesitylene, ethylbenzene, chlorobenzene, dichlorobenzene, fluorobenzene, decalin, tetralin, pentane, hexane, cyclohexane, ethers such as diethyl ether, di-n- Butyl ether, MTBE, THF, DME, anisole, triglyme, dioxane, amides such as DMF, dimethylacetamide, NMP, sulfoxides such as DMSO, phosphoramides such as hexamethylphosphoric triamide, urea derivatives such as DMPU, ketones such as acetone, ethyl methyl ketone, esters such as acetic acid and ethyl acetate any mix of those fabrics.
  • hydrocarbons which can be
  • Solvents or solvent mixtures in which the subsequent reaction with the metallocene dichloride can likewise be carried out directly are preferred.
  • Non-limiting examples of these are toluene, hexane, heptane, xylene, tetrahydrofuran (THF), dirthhoxyethane (DME), toluene / THF, heptane / DME or toluene / DME.
  • the compounds of the HYR 3 type are preferably the substance classes of the alcohols, the phenol, the primary and secondary amines and the primary and secondary anilines.
  • Compounds of type HYR 3 preferably contain only one functional group HY and the rest R 3 is defined as described above.
  • the process according to the invention is generally carried out in a temperature range from 0 ° C. to + 200 ° C., preferably in a temperature range from 40 ° C. to 140 ° C., particularly preferably at a temperature between 60 ° C. and 110 ° C.
  • the molar ratio of reagent M 1 -YR 3 to the metallocene halide, in particular to the metallocene dichloride (for example of the formula III) is in general between 5: 1 to 0.8: 1, preferably between 2: 1 and 0.9: 1.
  • the concentration of metallocene dichloride (for example of the formula III) or of reagent M 1 -YR 3 in the reaction mixture is generally in the range between 0.001 mol / 1 and 8 mol / 1, preferably in Range between 0.01 and 3 mol / 1, particularly preferably in the range between 0.05 mol / 1 and 2 mol / 1.
  • the duration of the reaction of metallocene dichloride (for example of the formula III) with reagent M x -YR 3 is generally in the range from 5 minutes to 1 week, preferably in the range from 15 minutes to 48 hours.
  • monoaryloxymonochlorozirconocenes of the formula (II) can also be prepared according to the process described in German patent application 199 12576.7 dated March 19, 1999, the disclosure of which is also the subject of the present description.
  • the metallocenes of the formulas I and II according to the invention are highly active catalyst components for olefin polymerization. Depending on the substitution pattern of the ligands, the metallocenes can be obtained as a mixture of isomers. The metallocenes are preferably used isomerically pure for the polymerization.
  • the pseudo-rac isomeric metallocenes of the formula II are preferably used.
  • the metallocenes of the formulas I and II according to the invention are particularly suitable as a constituent of catalyst systems for the preparation of polyolefins by polymerizing at least one olefin in the presence of a catalyst which comprises at least one cocatalyst and at least one metallocene.
  • the term polymerization is understood to mean homopolymerization as well as copolymerization.
  • olefins examples include 1-olefins having 2 to 40, preferably 2 to 10, carbon atoms, such as ethene, propene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene or 1- Octene, styrene, dienes such as 1,3-butadiene, 1,4-hexadiene, vinyl norbornene, norbornadiene, ethyl norbornadiene and cyclic olefins such as norbornene, tetracyclododecene or methyl norbornene.
  • 1-olefins having 2 to 40, preferably 2 to 10, carbon atoms, such as ethene, propene, 1-butene, 1-pentene, 1-hexene, 4-methyl-1-pentene or 1- Octene, styrene, dienes such as 1,3-butadiene, 1,4-hexadiene, vinyl norbornene
  • Ethylene or propylene are preferably homopolymerized, or ethylene is copolymerized with one or more cyclic olefins, such as norbornene, and / or one or more dienes having 4 to 20 carbon atoms, such as 1,3-butadiene or 1,4-hexadiene .
  • cyclic olefins such as norbornene
  • dienes having 4 to 20 carbon atoms, such as 1,3-butadiene or 1,4-hexadiene .
  • Examples of such copolymers are ethylene / norbornene copolymers, ethylene / propylene copolymers and ethylene / propylene / 1,4-hexadiene copolymers.
  • the polymerization is carried out at a temperature of from -60 to 300 ° C., preferably from 50 to 200 ° C., very particularly preferably from 50 to 80 ° C.
  • the pressure is 0.5 to 2000 bar, preferably 5 to 64 bar.
  • the polymerization can be carried out in solution, in bulk, in suspension or in the gas phase, continuously or batchwise, in one or more stages.
  • a preferred embodiment is gas phase and bulk polymerization.
  • the catalyst used preferably contains one of the metallocene compounds according to the invention. Mixtures of two or more metallocene compounds can also be used, e.g. B. for the production of polyolefins with broad or multimodal molecular weight distribution.
  • the cocatalyst which together with a metallocenes of the formulas I and II according to the invention forms the catalyst system, contains at least one compound of the type of an aluminoxane or a Lewis acid or an ionic compound, which converts this into a cationic compound by reaction with a metallocene.
  • a compound of the general formula (VII) is preferred as the aluminoxane
  • aluminoxanes can e.g. cyclic as in formula (VI)
  • radicals R in the formulas (IV), (V), (VI) and (VII) can be the same or different and a -C-C 2 o-hydrocarbon group such as a Ci-C ⁇ -alkyl group, a C 6 -C ⁇ 8 -Aryl group, benzyl or hydrogen, and p is an integer from 2 to 50, preferably 10 to 35.
  • the radicals R are preferably the same and are methyl, isobutyl, n-butyl, phenyl or benzyl, particularly preferably methyl.
  • radicals R are different, they are preferably methyl and hydrogen, methyl and isobutyl or methyl and n-butyl, with hydrogen or isobutyl or n-butyl preferably containing 0.01-40% (number of the radicals R).
  • the aluminoxane can be prepared in various ways by known methods.
  • One of the methods is, for example, that an aluminum-hydrocarbon compound and / or a hydrodaluminum-hydrocarbon compound is reacted with water (gaseous, solid, liquid or bound - for example as water of crystallization) in an inert solvent (such as toluene).
  • an inert solvent such as toluene
  • AIR 3 + AIR ' 3 two different aluminum trialkyls (AIR 3 + AIR ' 3 ) are reacted with water according to the desired composition and reactivity (see S. Pasynkiewicz, Polyhedron 9 (1990) 429 and EP-A-0,302,424).
  • the Lewis acid used is preferably at least one organoboron or organoaluminum compound which contains C 1 -C 2 -carbon-containing groups, such as branched or unbranched alkyl or haloalkyl, such as methyl, propyl, isopropyl, isobutyl, trifluoromethyl, unsaturated groups, such as aryl or haloaryl, such as phenyl, tolyl, benzyl groups, p-fluorophenyl, 3, 5-difluorophenyl, pentachlorophenyl, pentafluorophenyl, 3,4,5 trifluorophenyl and 3,5 di (trifluoromethyl) phenyl.
  • organoboron or organoaluminum compound which contains C 1 -C 2 -carbon-containing groups, such as branched or unbranched alkyl or haloalkyl, such as methyl, propyl, isopropyl, isobutyl, triflu
  • Lewis acids are trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, tributyl aluminum, trifluoroborane,
  • Tris (4-fluorophenyl) borane tris (3, 5-difluorophenyl) borane, tris (4-fluoromethylphenyl) borane, tris (pentafluorophenyl) borane, tris (tolyl) borane, tris (3, 5-dimethylphenyl) borane, tris ( 3, 5-difluorophenyl) borane, [(C 6 F 5 ) 2 BO] 2 A1-Me, [(C 6 F 5 ) 2 BO] 3 A1 and / or tris (3, 4, 5-trifluorophenyl) borane. Tris (pentafluorophenyl) borane is particularly preferred.
  • Compounds which contain a non-coordinating anion are preferably used as ionic cocatalysts.
  • a non-coordinating anion such as, for example, tetrakis (pentafluorophenyl) borates, tetraphenylborates, SbF 6 -, CF 3 S0 3 - or C10 4 ", are preferably used as ionic cocatalysts.
  • Protonated Lewis bases such as, for example, methylamine, aniline, dimethylamine, diethylamine, N-methylaniline, diphenylamine, N, N-dimethylaniline, trimethylamine, triethylamine, tri-n-butylamine, methyldiphenylamine, pyridine, p-bromo-N are used as the cationic counterion , N-dimethylaniline, p-nitro-N, N-dimethylaniline, triethylphosphine, triphenylphosphine, diphenylphosphine, tetrahydrothiophene or the triphenylcarbenium cation.
  • Examples of such ionic compounds are triethylammonium tetra (phenyl) borate, tributylammonium tetra (phenyl) borate, trimethylammonium tetra (tolyl) borate, Tributylammoniumtetra (tolyl) borate, Tributylammoniumtetra (pentafluorophenyl) borate, Tributylammoniumtetra (pentafluorophenyl) aluminate, Tripropylammoniumtetra (dimethylphenyl) borate, Tributylammoniumtetra (trifluoromethylphenyl) borathen, tetrahydrofuran (N) N-diethylanilinium tetra (phenyl) borate, N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate, N, N-dimethylanilinium te
  • Ferrocenium tetrakis (pentafluorophenyl) aluminate Ferrocenium tetrakis (pentafluorophenyl) aluminate.
  • Triphenylcarbenium tetrakis (pentafluorophenyl) borate and / or N, N-dimethylanilinium tetrakis (pentafluorophenyl) borate are preferred.
  • Mixtures of at least one Lewis acid and at least one ionic compound can also be used.
  • Borane or carborane compounds such as e.g. 7, 8-dicarbaundecaboran (13),
  • the carrier component of the catalyst system according to the invention can be any organic or inorganic, inert solid, in particular a porous carrier such as talc, inorganic oxides and finely divided polymer powders (e.g. polyolefins).
  • Suitable inorganic oxides can be found in groups 2,3,4,5,13,14,15 and 16 of the periodic table of the elements.
  • preferred oxides as carriers include silicon dioxide, aluminum oxide, and mixed oxides of the two elements and corresponding oxide mixtures.
  • Other inorganic oxides that can be used alone or in combination with the last-mentioned preferred oxide carriers are, for example, MgO, Zr0 2 , Ti0 or B 2 O 3 , to name just a few.
  • the carrier materials used have a specific surface area in the range from 10 to 1000 m 2 / g, a pore volume in the range from 0.1 to 5 ml / g and an average particle size from 1 to 500 ⁇ m.
  • Carriers with a specific surface area in the range from 50 to 500 m 2 / g, a pore volume in the range between 0.5 and 3.5 ml / g and an average particle size in the range from 5 to 350 ⁇ m are preferred.
  • Carriers with a specific surface area in the range from 200 to 400 m 2 / g, a pore volume in the range between 0.8 to 3.0 ml / g and an average particle size of 10 to 200 ⁇ m are particularly preferred.
  • the carrier material used naturally has a low moisture content or residual solvent content, dehydration or drying can be avoided before use. If this is not the case, as with the use of silica gel as a carrier material, dehydration or drying is recommended.
  • the thermal dehydration or drying of the carrier material can take place under vacuum and at the same time inert gas blanket (eg nitrogen).
  • the drying temperature is in the range between 100 and 1000 ° C, preferably between 200 and 800 ° C. In this case, the pressure parameter is not critical.
  • the drying process can take between 1 and 24 hours. Shorter or longer drying times are possible, provided that under the chosen conditions the equilibrium can be established with the hydroxyl groups on the support surface, which normally takes between 4 and 8 hours.
  • Dehydration or drying of the carrier material is also possible chemically by reacting the adsorbed water and the hydroxyl groups on the surface with suitable inerting agents.
  • suitable inerting agents are, for example, silicon halides and silanes, such as silicon tetrachloride, chlorotrimethylsilane, dimethylaminotrichlorosilane or organometallic compounds of aluminum, boron and magnesium, such as trimethyl aluminum, triethyl aluminum, triisobutyl aluminum, triethyl borane and dibutyl magnesium.
  • the chemical dehydration or inertization of the carrier material takes place, for example, in that a suspension of the
  • suitable solvents are e.g. aliphatic or aromatic hydrocarbons such as pentane, hexane, heptane, toluene or xylene.
  • the inerting takes place at temperatures between 25 ° C and 120 ° C, preferably between 50 and 70 ° C. Higher and lower temperatures are possible.
  • the duration of the reaction is between 30 minutes and 20 hours, preferably 1 to 5 hours.
  • the support material is isolated by filtration under inert conditions, washed one or more times with suitable inert solvents as described above and then dried in an inert gas stream or in vacuo.
  • Organic carrier materials such as finely divided polyolefin powders (e.g. polyethylene, polypropylene or polystyrene) can also be used and should also be freed of adhering moisture, solvent residues or other contaminants by appropriate cleaning and drying operations before use.
  • polyolefin powders e.g. polyethylene, polypropylene or polystyrene
  • the catalyst system is produced according to the invention by mixing at least one metallocene according to the invention, at least one cocatalyst and at least one inertized support.
  • the supported catalyst system At least one of the above-described metallocene components is brought into contact with at least one cocatalyst component in a suitable solvent, a soluble reaction product, an adduct or a mixture preferably being obtained. The so The preparation obtained is then mixed with the dehydrated or inert carrier material, the solvent is removed and the resulting supported metallocene catalyst system is dried to ensure that the solvent is completely or largely removed from the pores of the carrier material.
  • the supported catalyst is obtained as a free-flowing powder.
  • a method for the preparation of a free-flowing and optionally prepolymerized supported catalyst system comprises the following steps:
  • Preferred solvents for the preparation of the metallocene / Coka- talysator mixture are hydrocarbons and hydrocarbon - mixtures which are liquid at the chosen reaction temperature and ⁇ in which the individual components preferably dissolve.
  • the solubility of the individual components is not a prerequisite if it is ensured that the reaction product of metallocene and cocatalyst components is soluble in the chosen solvent.
  • suitable solvents include alkanes such as pentane, isopentane, hexane, heptane, octane, and nonane; Cycloalkanes such as cyclopentane and cyclohexane; and aromatics such as benzene, toluene. Ethylbenzene and diethylbenzene. Toluene is very particularly preferred.
  • a molar ratio of aluminum to transition metal in the metallocene is preferred 10: 1 to 1000: 1, most preferably a ratio of 50: 1 to 500: 1.
  • the metallocene is dissolved in the form of a solid in a solution of the aluminoxane in a suitable solvent. It is also possible to dissolve the metallocene separately in a suitable solvent and then to combine this solution with the aluminoxane solution. Toluene is preferably used.
  • the preactivation time is 1 minute to 200 hours.
  • the preactivation can take place at room temperature (25 ° C).
  • room temperature 25 ° C
  • the use of higher temperatures can shorten the time required for preactivation and cause an additional increase in activity.
  • a higher temperature means a range between 50 and 100 ° C.
  • the preactivated solution or the metallocene / cocatalyst mixture is then combined with an inert support material, usually silica gel, which is in the form of a dry powder or as a suspension in one of the abovementioned solvents.
  • the carrier material is preferably used as a powder. The order of addition is arbitrary.
  • the preactivated metallocene cocatalyst solution or the metallocene cocatalyst mixture can be metered into the support material provided, or the support material can be introduced into the solution presented.
  • the volume of the preactivated solution or of the metallocene cocatalyst mixture can exceed 100% of the total pore volume of the support material used, or can be up to 100% of the total pore volume.
  • the temperature at which the preactivated solution or the metal-locene-cocatalyst mixture is brought into contact with the support material can vary in the range between 0 and 100 ° C. However, lower or higher temperatures are also possible.
  • the solvent is then completely or largely removed from the supported catalyst system, and the mixture can be stirred and optionally also heated. Both the visible proportion of the solvent and also removed the portion in the pores of the carrier material.
  • the solvent can be removed in a conventional manner using vacuum and / or purging with inert gas. During the drying process, the mixture can be heated until the free solvent has been removed, which usually requires 1 to 3 hours at a preferably selected temperature between 30 and 60 ° C.
  • the free solvent is the visible proportion of solvent in the mixture. Residual solvent is the proportion that is enclosed in the pores.
  • the supported catalyst system can also be dried only to a certain residual solvent content, the free solvent having been removed completely.
  • the supported catalyst system can then be washed with a low-boiling hydrocarbon such as pentane or hexane and dried again.
  • the supported catalyst system shown can either be used directly for the polymerization of olefins or prepolymerized with one or more olefinic monomers before it is used in a polymerization process.
  • the prepolymerization of supported catalyst systems is described, for example, in WO 94/28034.
  • an olefin preferably an ⁇ -olefin (for example styrene or phenyldimethylvinylsilane) as an activity-increasing component, or for example an antistatic agent, can be added during or after the preparation of the supported catalyst system.
  • an olefin preferably an ⁇ -olefin (for example styrene or phenyldimethylvinylsilane) as an activity-increasing component, or for example an antistatic agent
  • a mixture of a metal salt of medialanic acid, a metal salt of anthranilic acid and a polyamine is usually used as the antistatic.
  • antistatic agents are described, for example, in EP-A-0, 636, 636.
  • the molar ratio of additive to metallocene component compound (I) is preferably between 1: 1000 to 1000: 1, very particularly preferably 1:20 to 20: 1.
  • the present invention also relates to a process for the preparation of a polyolefin by polymerizing one or more olefins in the presence of the catalyst system comprising at least one transition metal component of the metallocenes of the formula I or II according to the invention.
  • polymerisation is understood to mean homopolymerization as well as copolymerization.
  • the compounds of the formulas (I) and (II) according to the invention show at least equivalent, but in some cases higher, activities in the polymerization of olefins than the dihalogen compounds, and the polyolefins obtained show a reduction in the undesirable low molecular weight extractables.
  • the catalyst system shown can be used as the only catalyst component for the polymerization of olefins having 2 to 20 carbon atoms, or preferably in combination with at least one alkyl compound of the elements from I. to III.
  • Main group of the periodic table e.g. an aluminum, magnesium or lithium alkyl or an aluminoxane can be used.
  • the alkyl compound is added to the monomer or suspending agent and is used to purify the monomers from substances which can impair the catalyst activity. The amount of alkyl compound added depends on the quality of the monomers used.
  • hydrogen is added as a molecular weight regulator and / or to increase the activity.
  • the antistatic can be metered into the polymerization system together with or separately from the catalyst system used.
  • the polymers represented by the catalyst system which contains at least one of the metallocenes of the formulas (I) and / or (II) according to the invention have a uniform grain morphology and have no fine grain proportions. No deposits or caking occur during the polymerization with the catalyst system.
  • Triad tacticity (TT) and the proportion of 2-1-inserted propene units (RI), which can be determined from the 13 C-NMR spectra, are particularly characteristic of the stereo and region specificity of polymers, in particular of polypropylene.
  • RI () 0.5 I ⁇ , ß (I ⁇ , ⁇ + l ⁇ , ß + I ⁇ , ⁇ ) • 100,
  • the isotactic polypropylene which has been produced with the catalyst system, is characterized by a proportion of 2-1 inserted propene units RI ⁇ 0.5% with a triad tacticity TT> 98.0% and a melting point> 153 ° C, where M w / M n of the polypropylene according to the invention is between 2.5 and 3.5.
  • copolymers which can be prepared with the catalyst system are distinguished by a significantly higher molar mass than in the prior art. At the same time, such copolymers can be produced with high productivity and technically relevant process parameters without deposit formation by using the catalyst system.
  • the polymers produced by the process are particularly suitable tear-resistant, hard and stiff for producing moldings such as fibers, filaments, injection-molded parts t films, sheets or large hollow bodies (eg pipes).
  • Example la Catalyst representation with (1) and polymerization:
  • a dry 21 reactor was first flushed with nitrogen and then with propylene and filled with 1.5 l of liquid propylene. 2 ml of TEA (20% in Varsol) were added and the mixture was stirred for 15 minutes. The catalyst system prepared above (0.886 g) was then resuspended in 20 ml of heptane and rinsed with 15 ml of heptane. The reaction mixture was heated to the polymerization temperature of 60 ° C and polymerized for 1 hour. The polymerization was stopped by exhaust gases of the rest of propylene. The polymer was dried in a vacuum drying cabinet. The result was 470 g of polypropylene powder. The reactor showed no deposits on the inner wall or stirrer. The catalyst activity was 0.53 kg PP / g catalyst x h. 5
  • a dry 21 reactor was first flushed with nitrogen and then with propylene and filled with 1.5 l of liquid propylene. 2 ml TEA (20% in Varsol) were added and 15
  • the polymer was dried in a vacuum drying cabinet. The result was 410 g of polypropylene powder. The reactor showed no deposits on the inner wall or stirrer. The catalyst activity was 0.46 kg PP / g catalyst x h.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)

Abstract

La présente invention concerne de nouveaux monohalogénures de métallocène, leur procédé de production et leur utilisation dans la polymérisation d'oléfines.
EP99956012A 1998-11-25 1999-11-18 Monohalogenures de metallocene Withdrawn EP1049705A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03026592A EP1396495B1 (fr) 1998-11-25 1999-11-18 Métallocènes comprenant un unique halogénure lié au métal

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19854350 1998-11-25
DE19854350 1998-11-25
PCT/EP1999/008851 WO2000031090A1 (fr) 1998-11-25 1999-11-18 Monohalogenures de metallocene

Related Child Applications (2)

Application Number Title Priority Date Filing Date
EP03026592A Division EP1396495B1 (fr) 1998-11-25 1999-11-18 Métallocènes comprenant un unique halogénure lié au métal
EP03026592.0 Division-Into 2003-11-19

Publications (1)

Publication Number Publication Date
EP1049705A1 true EP1049705A1 (fr) 2000-11-08

Family

ID=7888955

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03026592A Expired - Lifetime EP1396495B1 (fr) 1998-11-25 1999-11-18 Métallocènes comprenant un unique halogénure lié au métal
EP99956012A Withdrawn EP1049705A1 (fr) 1998-11-25 1999-11-18 Monohalogenures de metallocene

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03026592A Expired - Lifetime EP1396495B1 (fr) 1998-11-25 1999-11-18 Métallocènes comprenant un unique halogénure lié au métal

Country Status (11)

Country Link
US (1) US7053160B1 (fr)
EP (2) EP1396495B1 (fr)
JP (1) JP5008794B2 (fr)
KR (1) KR100635413B1 (fr)
CN (1) CN100340568C (fr)
AU (1) AU1272100A (fr)
BR (1) BR9906934B1 (fr)
DE (1) DE59914158D1 (fr)
ES (1) ES2280674T3 (fr)
WO (1) WO2000031090A1 (fr)
ZA (1) ZA200003597B (fr)

Families Citing this family (103)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE59904565D1 (de) * 1998-11-25 2003-04-17 Basell Polyolefine Gmbh Verfahren zur herstellung von monoaryloxy-ansa-metallocenen
DE10028432A1 (de) 2000-06-13 2001-12-20 Basell Polyolefine Gmbh Auf calciniertes Hydrotalcit geträgerter Katalysatorfeststoff zur Olefinpolymerisation
JP2002088110A (ja) * 2000-09-13 2002-03-27 Denki Kagaku Kogyo Kk 重合用遷移金属触媒成分、それを用いたオレフィン−芳香族ビニル化合物重合体の製造方法
DE10145453A1 (de) 2001-09-14 2003-06-05 Basell Polyolefine Gmbh Monocyclopentadienylkomplexe mit einem kondensierten Heterocyclus
EP1430088B1 (fr) 2001-09-14 2008-10-22 Basell Polyolefine GmbH Procede de polymerisation d'olefines
US7732530B2 (en) * 2002-06-12 2010-06-08 Basell Polyolefine Gmbh Flexible propylene copolymer compositions having a high transparency
EP1527108A2 (fr) 2002-07-15 2005-05-04 Basell Polyolefine GmbH Preparation de systemes catalytiques sur support
US7285513B2 (en) 2002-07-15 2007-10-23 Basell Polyolefine Gmbh Preparation of catalyst systems
EP1539774B1 (fr) 2002-08-22 2007-06-06 Basell Polyolefine GmbH Complexes du type monocyclopentadienyle
EP1554297B1 (fr) * 2002-10-25 2006-07-12 Basell Polyolefine GmbH Synthese racemoselective de composes de rac-diorganosilylbis(2-methylbenzo¬e|indenyl)zirconium
JP2006504834A (ja) 2002-11-04 2006-02-09 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング 改良された活性を有する触媒組成物の製造方法
US7405261B2 (en) 2002-12-06 2008-07-29 Basell Polyolefine Gmbh Organometallic transition metal compound, biscyclopentadienyl ligand system, catalyst system and process for preparing polyolefins
JP2006509898A (ja) 2002-12-16 2006-03-23 バーゼル、ポリオレフィン、ゲゼルシャフト、ミット、ベシュレンクテル、ハフツング アルミノキサンを少量含む担持触媒組成物の製造
KR101028673B1 (ko) 2002-12-20 2011-04-14 바젤 폴리올레핀 게엠베하 에틸렌과 α-올레핀의 공중합체
EP1572360B1 (fr) 2002-12-20 2008-06-25 Basell Polyolefine GmbH Complexes de monocyclopentadienyle
DE602004006965T2 (de) 2003-02-07 2008-02-21 Basell Polyolefine Gmbh Polymerisationskatalysatoren, organische übergangsmetallverbindungen, verfahren zur herstellung von polyolefinen
US7834107B2 (en) 2003-04-03 2010-11-16 Basell Polyolefine Gmbh Preparation of polyolefins having high molecular weights in the presence of an organic transition metal compound in a gas-phase fluidized-bed reactor
EP1625168A1 (fr) 2003-05-21 2006-02-15 Basell Polyolefine GmbH Complexes metalliques de transition comprenant des ligands tridentates contenant de l'azote
US7589223B2 (en) 2003-09-25 2009-09-15 Basell Polyolefine Gmbh Polymerization catalysts, preparation of polyolefins, organotransition metal compounds and ligands
DE10348624A1 (de) 2003-10-15 2005-05-25 Basell Polyolefine Gmbh Geträgerte Metallalkylverbindung und Verfahren zu deren Herstellung
DE10352139A1 (de) 2003-11-04 2005-06-09 Basell Polyolefine Gmbh Organoübergangsmetallverbindung, Biscyclopentadienylligandsystem und Verfahren zur Herstellung von Polyolefinen
DE10358082A1 (de) 2003-12-10 2005-07-14 Basell Polyolefine Gmbh Organübergangsmetallverbindung, Bscyclopentadienyligandsystem, Katalysatorsystem und Hertellung von Polyolefinen
KR20060118552A (ko) 2003-12-16 2006-11-23 바젤 폴리올레핀 게엠베하 모노시클로펜타디에닐 착물
WO2005058983A2 (fr) 2003-12-19 2005-06-30 Basell Polyolefine Gmbh Complexes de monocyclopentadienyle
WO2005063829A1 (fr) 2003-12-23 2005-07-14 Basell Polyolefine Gmbh Systeme catalyseur pour polymerisation d'olefines
EP1730231B1 (fr) * 2004-03-24 2012-06-13 Basell Polyolefine GmbH Compositions de copolymere de propylene souple tres transparent
DE102004020524A1 (de) 2004-04-26 2005-11-10 Basell Polyolefine Gmbh Polyethylen und Katalysatorzusammensetzung zu dessen Herstellung
DE102004020525A1 (de) 2004-04-26 2005-11-10 Basell Polyolefine Gmbh Katalysatorsystem zur Olefinpolymerisation, dessen Herstellung und Verwendung
JP4897670B2 (ja) * 2004-05-04 2012-03-14 バーゼル・ポリオレフィン・ゲーエムベーハー アタクチック1−ブテンポリマー類の製造方法
DE102004027332A1 (de) * 2004-06-04 2005-12-22 Basell Polyolefine Gmbh Übergangsmetallverbindung, Ligandsystem, Katalysatorsystem und Verfahren zur Herstellung von Polyolefinen
JP4644445B2 (ja) * 2004-06-08 2011-03-02 日本ポリプロ株式会社 メタロセン化合物の精製方法
DE102004032581A1 (de) 2004-07-05 2006-02-09 Basell Polyolefine Gmbh Polymerisationskatalysatoren, Hauptgruppenkoordinationsverbindungen, Verfahren zur Herstellung von Polyolefinen und Polyolefine
US7776978B2 (en) * 2004-07-22 2010-08-17 Basell Polyolefine Gmbh Process for producing fractionable 1-butene polymers
DE102004039877A1 (de) * 2004-08-17 2006-02-23 Basell Polyolefine Gmbh Silylhalogenidsubstituierte Cyclopentadienylkomplexe der Gruppe 6
DE102004058578A1 (de) * 2004-12-03 2006-06-08 Basell Polyolefine Gmbh Verfahren zur Herstellung von Katalysatorsystemen später Übergangsmetalle
DE102004061618A1 (de) * 2004-12-17 2006-06-22 Basell Polyolefine Gmbh Monocyclopentadienylkomplexe
PL1858907T3 (pl) 2005-03-18 2009-04-30 Basell Polyolefine Gmbh Metalocenowe związki
JP2008536813A (ja) 2005-03-18 2008-09-11 バーゼル・ポリオレフィン・ゲーエムベーハー メタロセン化合物
AU2006226366A1 (en) 2005-03-23 2006-09-28 Basell Polyolefine Gmbh Process for the polymerizatio of olefins
JP2008534705A (ja) * 2005-03-23 2008-08-28 バーゼル・ポリオレフィン・ゲーエムベーハー オレフィン類の重合法
DE102005014395A1 (de) 2005-03-24 2006-09-28 Basell Polyolefine Gmbh Monocyclopentadienylkomplexe
EP1871832B1 (fr) * 2005-04-21 2012-06-13 Basell Poliolefine Italia S.r.l. Films de polymeres du propylene orientes biaxialement
DE102005019395A1 (de) * 2005-04-25 2006-10-26 Basell Polyolefine Gmbh Formmasse aus Polyethylen zur Folienherstellung und Verfahren zum Herstellen der Formmasse in Gegenwart eines Mischkatalysators
DE102005019393A1 (de) 2005-04-25 2006-10-26 Basell Polyolefine Gmbh Polyethylenformmassen für Spritzgussanwendungen
WO2006117285A1 (fr) 2005-05-03 2006-11-09 Basell Polyolefine Gmbh Procede de polymerisation d'alpha-olefines
US7985799B2 (en) 2005-05-11 2011-07-26 Basell Poliolefine Italia S.R.L. Polymerization process for preparing polyolefin blends
EP1902062B1 (fr) * 2005-06-30 2012-06-13 Basell Polyolefine GmbH Composes metalloceniques
DE102005035477A1 (de) 2005-07-26 2007-02-01 Basell Polyolefine Gmbh Verfahren zur Steuerung der relativen Aktivität der unterschiedlichen aktiven Zentren von Hybridkatalysatoren
WO2007028536A2 (fr) * 2005-09-06 2007-03-15 Basell Polyolefine Gmbh Procede de preparation de polymeres olefiniques en presence de systemes catalytiques comportant des groupes photochromes
DE102005056775A1 (de) * 2005-11-28 2007-05-31 Basell Polyolefine Gmbh Verfahren für den Katalysatorwechsel in einem Gasphasenwirbelschichtreaktor
DE102005057559A1 (de) * 2005-11-30 2007-05-31 Basell Polyolefine Gmbh Übergangsmetallverbindung, Ligandsystem, Katalysatorsystem und Verfahren zur Herstellung von Polyolefinen
DE102005061326A1 (de) * 2005-12-20 2007-06-21 Basell Polyolefine Gmbh Verfahren zur Herstellung von Metallocenen aus recycelten, substituierten Cyclopentadienylderivaten
DE102006001959A1 (de) 2006-01-13 2007-07-19 Basell Polyolefine Gmbh Verfahren zur Herstellung von unsymmetrischen Bis(imino)verbindungen
JP2009530341A (ja) * 2006-03-17 2009-08-27 バーゼル・ポリオレフィン・ゲーエムベーハー メタロセン化合物類
EP2004664B1 (fr) 2006-04-12 2016-12-14 Basell Polyolefine GmbH Composes de metallocene
EP2010580B1 (fr) * 2006-04-21 2016-07-13 Basell Polyolefine GmbH Procede de preparation de copolymeres d'ethylene
EP2010579A1 (fr) 2006-04-21 2009-01-07 Basell Polyolefine GmbH ProcÉdé PERMETTANT la prÉparation de copolymÈres ÉthylÈne-propylÈne
DE102006020486A1 (de) 2006-04-28 2007-10-31 Basell Polyolefine Gmbh Geträgerte Metallalkylverbindung und Verfahren zur Polymerisation von Olefinen in deren Gegenwart
ES2562434T3 (es) * 2006-09-20 2016-03-04 Albemarle Corporation Activadores de catalizadores, procesos para hacer los mismos, y uso de los mismos en catalizadores y polimerización de olefinas
ATE467647T1 (de) 2007-02-01 2010-05-15 Basell Polyolefine Gmbh Einmodus-copolymer von ethylen zum spritzgiessen und verfahren zu dessen herstellung
DE102007017903A1 (de) * 2007-04-13 2008-10-16 Basell Polyolefine Gmbh Polyethylen und Katalysatorzusammensetzung und Verfahren zu dessen Herstellung
DE102007022052A1 (de) 2007-05-08 2008-11-13 Basell Polyolefine Gmbh Katalysatorsystem zur Olefinpolymerisation, Verfahren zu ihrer Herstellung, sowie ein Verfahren zur Polymerisation von a-Olefinen unter Verwendung des Katalysatorsystems
EP2220101B1 (fr) 2007-12-18 2018-09-19 Basell Polyolefine GmbH Composés de métaux de transition
WO2009080174A1 (fr) 2007-12-19 2009-07-02 Basell Polyolefine Gmbh Terpolymères de l'éthylène
ATE524498T1 (de) 2007-12-20 2011-09-15 Basell Polyolefine Gmbh Verfahren zur gewinnung von polymeren aus ethylen und zykloolefinen
US7999043B2 (en) 2007-12-24 2011-08-16 Basell Polyolefine Gmbh Multistage process for the polymerization of olefins
ATE531776T1 (de) 2008-02-18 2011-11-15 Basell Polyolefine Gmbh Poylmer-haftzusammensetzung
WO2010022941A1 (fr) 2008-08-29 2010-03-04 Basell Polyolefine Gmbh Polyéthylène pour moulages par injection
RU2509782C2 (ru) 2008-09-25 2014-03-20 Базелль Полиолефине Гмбх Ударопрочная композиция лпэнп и полученные из нее пленки
MX349957B (es) 2008-09-25 2017-08-21 Basell Polyolefine Gmbh Composicion de polietileno lineal de baja dencidad (lldpe) resistente a impactos y peliculas hechas de la misma.
US8435911B2 (en) 2008-10-16 2013-05-07 Basell Polyolefine Gmbh Hybrid catalyst composition for polymerization of olefins
CN102227452B (zh) 2008-12-01 2015-02-04 巴塞尔聚烯烃股份有限公司 乙烯聚合的方法和具有宽的分子量分布和长支链的乙烯聚合物
EP2367854B1 (fr) 2008-12-17 2012-11-28 Basell Polyolefine GmbH Système catalyseur pour la polymérisation d'oléfines, sa production et son utilisation
CN102282207B (zh) 2009-01-13 2013-09-04 巴塞尔聚烯烃意大利有限责任公司 聚合物组合物
WO2010081676A1 (fr) 2009-01-13 2010-07-22 Basell Polyolefine Gmbh Copolymères de polyéthylène
WO2010112165A1 (fr) 2009-03-30 2010-10-07 Basell Polyolefine Gmbh Système de catalyseur pour la polymérisation d'alpha-oléfines
WO2011012245A1 (fr) 2009-07-27 2011-02-03 Basell Polyolefine Gmbh Composé de métal de transition organométallique, système catalytique et préparation de polyoléfines
EP2513166B1 (fr) 2009-12-18 2017-04-05 Basell Polyolefine GmbH Procédé de préparation de catalyseurs supportés
KR101271395B1 (ko) * 2009-12-21 2013-06-05 에스케이종합화학 주식회사 메탈로센 촉매를 이용한 에틸렌과 알파-올레핀의 공중합체를 제조하는 방법
WO2011085951A1 (fr) 2010-01-15 2011-07-21 Basell Polyolefine Gmbh Oligomérisation d'oléfines
US8618228B2 (en) 2010-01-21 2013-12-31 Basell Polyolefine Gmbh Process for the preparation of ethylene copolymer compositions in the presence of an oligomerization catalyst
WO2011147573A2 (fr) 2010-05-28 2011-12-01 Basell Polyolefine Gmbh Procédé pour préparer un système de catalyseur supporté afin de polymériser des oléfines, système de catalyseur et son utilisation
WO2011160828A1 (fr) 2010-06-25 2011-12-29 Basell Polyolefine Gmbh Procédé de fabrication de compositions de polyoléfine de grande résistance et compositions de polyoléfine fabriquées par ce procédé
WO2012055943A2 (fr) 2010-10-28 2012-05-03 Basell Polyolefine Gmbh Oligomérisation d'oléfines
CN103347910B (zh) 2010-12-22 2016-01-20 巴塞尔聚烯烃股份有限公司 控制包含至少一种后过渡金属催化剂组分和至少一种Ziegler催化剂组分的催化剂体系的活性中心的相对活性的工艺
DE102011009683A1 (de) 2011-01-28 2012-08-02 Trw Automotive Electronics & Components Gmbh Verfahren zum Montieren eines Bauteils und Befestigungsclip
US9029478B2 (en) 2011-02-07 2015-05-12 Equistar Chemicals, Lp High clarity polyethylene films
EP2606970A1 (fr) 2011-12-19 2013-06-26 Basell Polyolefine GmbH Complexes binucléaires monocyclopentadiényliques, des ligands utilisés dans leur préparation, des systèmes de catalyseurs comprenant les et processus de polymérisation des oléfines
EP2607391A1 (fr) 2011-12-21 2013-06-26 Basell Polyolefine GmbH Procédé de contrôle de la composition de polymère d'un copolymère d'éthylène obtenu par un système de catalyseur comportant un composant de catalyseur métallique d'un métal de transition et composant de catalyseur Ziegler
EP2676972A1 (fr) 2012-06-19 2013-12-25 Basell Polyolefine GmbH Procédé de fabrication d'une composition de polyoléfine
KR101583671B1 (ko) * 2012-12-11 2016-01-11 주식회사 엘지화학 리간드 화합물 및 전이금속 화합물의 제조방법
WO2014092327A1 (fr) * 2012-12-11 2014-06-19 주식회사 엘지화학 Nouveau composé de ligand et son procédé de production, et composé de métal de transition comprenant le nouveau composé de ligand et son procédé de production
EP2743000A1 (fr) 2012-12-13 2014-06-18 Basell Poliolefine Italia S.r.l. Système de catalyseur pour la préparation dès polyolefins
EP2767542A1 (fr) 2013-02-18 2014-08-20 Basell Polyolefine GmbH Catalyseur d'oligomérisation
EP2842912A1 (fr) 2013-08-26 2015-03-04 Basell Poliolefine Italia S.r.l. Procédé pour améliorer l'aptitude au fonctionnement d'un réacteur de polymérisation d'oléfines
CN105593249B (zh) 2013-10-14 2018-10-09 巴塞尔聚烯烃股份有限公司 耐热性提高的聚乙烯
US9580584B2 (en) 2013-10-15 2017-02-28 Basell Polyolefine Gmbh Polyethylene for injection molding
KR101813418B1 (ko) 2013-10-15 2017-12-28 바젤 폴리올레핀 게엠베하 사출 성형용 폴리에틸렌 조성물
KR101580591B1 (ko) 2014-06-10 2015-12-28 주식회사 엘지화학 프로필렌계 엘라스토머
US10844150B2 (en) * 2017-08-04 2020-11-24 Exxonmobil Chemical Patents Inc. Mixed catalysts with 2,6-bis(imino)pyridyl iron complexes and bridged hafnocenes
WO2021110769A1 (fr) 2019-12-03 2021-06-10 Basell Polyolefine Gmbh Composition de polyéthylène pour filaments ou fibres
US11999839B2 (en) 2019-12-03 2024-06-04 Basell Polyolefine Gmbh Polyethylene composition for filaments or fibers
CN115894758B (zh) * 2021-09-30 2024-05-07 中国石油化工股份有限公司 乙烯-环烯烃共聚物及其制备方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4582924A (en) 1983-03-09 1986-04-15 Daikin Kogyo Co., Ltd. α-Fluoroalkyl carboxylic acid esters and process for preparing the same
US4752597A (en) 1985-12-12 1988-06-21 Exxon Chemical Patents Inc. New polymerization catalyst
US5700750A (en) 1985-12-26 1997-12-23 Mitsui Petrochemical Industries, Ltd. Process for polymerization of alpha-olefins
JPH0780930B2 (ja) 1985-12-26 1995-08-30 三井石油化学工業株式会社 α−オレフインの重合方法
EP0594218B1 (fr) 1986-09-24 1999-03-17 Mitsui Chemicals, Inc. Procédé de polymérisation d'oléfines
JPH0780932B2 (ja) * 1987-01-14 1995-08-30 三井石油化学工業株式会社 α−オレフインの重合方法
DE3742934A1 (de) 1987-12-18 1989-06-29 Hoechst Ag Verfahren zur herstellung einer chiralen, stereorigiden metallocen-verbindung
US5017714A (en) 1988-03-21 1991-05-21 Exxon Chemical Patents Inc. Silicon-bridged transition metal compounds
KR920006464B1 (ko) * 1988-09-14 1992-08-07 미쓰이 세끼유 가가꾸 고오교오 가부시끼가이샤 올레핀중합용 촉매성분, 올레핀중합용 촉매 및 이 올레핀중합용 촉매를 사용한 올레핀의 중합방법
IT1237398B (it) 1989-01-31 1993-06-01 Ausimont Srl Catalizzatori per la polimerizzazione di olefine.
JPH0374415A (ja) 1989-08-15 1991-03-29 Asahi Chem Ind Co Ltd 高立体規則性ポリプロピレンの製造方法
NZ235032A (en) 1989-08-31 1993-04-28 Dow Chemical Co Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component
EP0485823B1 (fr) 1990-11-12 1995-03-08 Hoechst Aktiengesellschaft Bisindénylemétallocènes-2-substitués, procédé de préparation et application comme catalyseurs pour la polymérisation d'oléfines
EP0537686B1 (fr) 1991-10-15 2005-01-12 Basell Polyolefine GmbH Procédé de préparation d'un polymère oléfinique à l'aide de métallocènes ayant des ligands indényl substituées d'une manière spécifique
CA2084017C (fr) 1991-11-30 2006-11-21 Jurgen Rohrmann Metallocenes utilisant des derives indenyles a cycles benzocondenses comme ligands, procedes d'obtention et leur emploi comme catalyseurs
TW294669B (fr) 1992-06-27 1997-01-01 Hoechst Ag
CA2125247C (fr) 1993-06-07 2001-02-20 Daisuke Fukuoka Compose de metal de transition, composant catalytique pour la polymerisation des olefines renfermant ce compose, catalyseur pour la polymerisation des olefines renfermant ce composant catalytique, procede pour la polymerisation des olefines au moyen de ce catalyseur, homopolymere de propylene, copolymere de propylene et elastomere de propylene
DE4344688A1 (de) * 1993-12-27 1995-06-29 Hoechst Ag Metallocenverbindung
DE4406109A1 (de) 1994-02-25 1995-08-31 Witco Gmbh Verfahren zur Herstellung von verbrückten stereorigiden Metallocenen
TW454020B (en) * 1994-08-09 2001-09-11 Mitsui Chemicals Inc Olefin polymerization catalyst
UA47394C2 (uk) * 1995-05-16 2002-07-15 Юнівейшн Текнолоджіз, Ллс Етиленовий полімер, який має підвищену придатність до обробки та вирiб, що містить етиленовий полімер
JPH09176221A (ja) * 1995-12-27 1997-07-08 Sumitomo Chem Co Ltd オレフィン重合用触媒及びそれを使用したオレフィン重合体の製造方法
DE69703438T2 (de) * 1996-03-29 2001-03-08 The Dow Chemical Co., Midland Metallocen cokatalysator
EP0968158B1 (fr) 1997-03-07 2005-08-10 Basell Polyolefine GmbH Procede de preparation d'indanones substituees, indanones substituees et metallocenes preparees a partir de celles-ci
US6316562B1 (en) 1997-06-10 2001-11-13 Peroxid-Chemie Gmbh & Co. Kg Catalyst systems for (co-)polymerization reactions, metallocene amide halogenides, the production and use thereof
JPH11292891A (ja) * 1998-04-03 1999-10-26 Kanto Chem Co Inc メタロセン化合物の新規な合成方法
DE59904565D1 (de) * 1998-11-25 2003-04-17 Basell Polyolefine Gmbh Verfahren zur herstellung von monoaryloxy-ansa-metallocenen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0031090A1 *

Also Published As

Publication number Publication date
KR100635413B1 (ko) 2006-10-18
EP1396495B1 (fr) 2007-01-17
BR9906934B1 (pt) 2010-08-24
ES2280674T3 (es) 2007-09-16
KR20010034219A (ko) 2001-04-25
ZA200003597B (en) 2001-07-31
JP2002530415A (ja) 2002-09-17
WO2000031090A1 (fr) 2000-06-02
US7053160B1 (en) 2006-05-30
CN1289337A (zh) 2001-03-28
BR9906934A (pt) 2000-10-10
EP1396495A1 (fr) 2004-03-10
CN100340568C (zh) 2007-10-03
JP5008794B2 (ja) 2012-08-22
AU1272100A (en) 2000-06-13
DE59914158D1 (de) 2007-03-08

Similar Documents

Publication Publication Date Title
EP1396495B1 (fr) Métallocènes comprenant un unique halogénure lié au métal
EP1133504B1 (fr) Procede de production de monoaryloxy-ansa-metallocenes
EP1054911B1 (fr) Systeme catalyseur, son procede de production et son utilisation pour la polymerisation d'olefines
EP0942938B1 (fr) Systeme de catalyseur sur support, procede permettant de le produire et son utilisation pour la polymerisation d'olefines
EP0859800B1 (fr) Systeme de catalyseur supporte, son procede de production et son utilisation dans la polymerisation d'olefines
EP1074557A2 (fr) Complexes de métaux de transition, ligandes, catalyseurs, et leur utilisation dans la polymérisation d'oléfines
EP1082363A1 (fr) Compose organometallique, systeme catalyseur contenant ledit compose organometallique et son utilisation
EP1066330B1 (fr) Systeme catalyseur, son procede de production et son utilisation pour la polymerisation d'olefines
EP1082353B1 (fr) Systeme de catalyseur et son utilisation pour la polymerisation de propylene
EP1133503A1 (fr) Procede de purification de metallocenes
EP1003757B1 (fr) Procede de fabrication de metallocenes
EP1000073A1 (fr) Procede de fabrication de metallocenes
DE19922020A1 (de) Übergangsmetallverbindung, Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
EP1334107B1 (fr) Composes non metallocenes, leur procede de production et leur utilisation dans la polymerisation d'olefines
WO1999054367A1 (fr) Systeme catalyseur compose de metallocenes comprenant des substituants fluores
EP0780402B1 (fr) Système de catalyseur à support, procédé pour sa préparation et son utilisation dans la polymérisation des oléfines
DE19962905A1 (de) Übergangsmetallverbindung, Ligandensystem, Katalysatorsystem und seine Verwendung zur Polymerisation und Copolymerisation von Olefinen
DE19900585A1 (de) Verfahren zur Aufreinigung von Metallocenen
DE19912576A1 (de) Verfahren zur Herstellung von Monoaryloxy-Ansa-Metallocenen
DE19713549A1 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen
DE19713550A1 (de) Geträgertes Katalysatorsystem, Verfahren zu seiner Herstellung und seine Verwendung zur Polymerisation von Olefinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20000722

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASELL POLYOLEFINE GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASELL POLYOLEFINE GMBH

17Q First examination report despatched

Effective date: 20020220

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASELL POLYOLEFINE GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20040421