EP0979888B1 - Offenend-Spinnvorrichtung - Google Patents

Offenend-Spinnvorrichtung Download PDF

Info

Publication number
EP0979888B1
EP0979888B1 EP99107123A EP99107123A EP0979888B1 EP 0979888 B1 EP0979888 B1 EP 0979888B1 EP 99107123 A EP99107123 A EP 99107123A EP 99107123 A EP99107123 A EP 99107123A EP 0979888 B1 EP0979888 B1 EP 0979888B1
Authority
EP
European Patent Office
Prior art keywords
open
end spinning
spinning device
fibre guide
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP99107123A
Other languages
German (de)
English (en)
French (fr)
Other versions
EP0979888A1 (de
Inventor
Heinz-Georg Wassenhoven
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
W Schlafhorst AG and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=7876996&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0979888(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by W Schlafhorst AG and Co filed Critical W Schlafhorst AG and Co
Publication of EP0979888A1 publication Critical patent/EP0979888A1/de
Application granted granted Critical
Publication of EP0979888B1 publication Critical patent/EP0979888B1/de
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01HSPINNING OR TWISTING
    • D01H4/00Open-end spinning machines or arrangements for imparting twist to independently moving fibres separated from slivers; Piecing arrangements therefor; Covering endless core threads with fibres by open-end spinning techniques
    • D01H4/38Channels for feeding fibres to the yarn forming region

Definitions

  • the invention relates to an open-end spinning device according to the Preamble of claim 1.
  • Fiber routing channels are for example in the generic German utility model DE-GM 92 18 361 described.
  • open-end spinning is used in spinning cans stocked sliver by means of a so-called opening roller broken down into its individual fibers and these over one Pneumatic fiber guide channel on the sliding surface of a high Speed in a rotor housing revolving spinning rotor be fed.
  • the yarn qualities that can be achieved also depend, among other things depends on how many of the individual fibers are fed on the sliding surface of the spinning rotor has an elongated orientation have or how many of these fibers in a stretched Orientation into the rotor groove.
  • the fiber guide channel Such OE spinning devices is therefore usually like this constructed that a during fiber transport Acceleration of the transport air flow takes place, too an extension of those floating in the air current Leads single fibers.
  • the rate of entry of the individual fibers into the Fiber routing channel results, for example, from the Circumferential speed of the opening roller set.
  • This Circumferential speed should be in the interest of good fiber separation and sufficient cleaning of the sliver not fall below a certain value.
  • peripheral speeds of the opening roller sets however, the danger that there is fiber damage or that it undesirable in the area of the dirt outlet opening Excretions of so-called 'good' fibers come.
  • the maximum exit speed of the individual fibers from the Fiber channel is determined by the peripheral speed of the Fiber impact point on the sliding surface of the spinning rotor limited. To avoid individual fibers from hitting a slower sliding surface must be compressed be sure that the feeding speed of the Individual fibers at least not above the peripheral speed their point of impact on the sliding surface of the spinning rotor lies.
  • this fiber braking surface is to be achieved that the the fiber guide channel emerging individual fibers, the first with their fiber start in the area of effect one with the Spinning rotor circulating air flow and one Be subjected to acceleration at the same time on their Thread end mechanically delayed by the braking surface and thereby being stretched.
  • Open-end spinning devices in particular their fiber guide channels, to improve.
  • the design of the fiber guide channel according to the invention has the advantage that the individual fibers on the one hand still have a largely elongated orientation when leaving the fiber guide channel, and on the other hand the exit speed of these fibers is sufficiently far below the rotational speed of their point of impact on the sliding surface of the spinning rotor. This means that the individual fibers detached from the opening roller are initially accelerated significantly less in the input-side fiber guide channel section due to the relatively high roughness of the channel wall there than in conventional fiber guide channels or even somewhat slowed down on the relatively rough channel wall.
  • the roughness of the channel wall of the input-side fiber channel section > 4 ⁇ m, preferably Is 4 to 6 ⁇ m.
  • the roughness is therefore clear below the diameter of a cotton fiber ( ⁇ 10 ⁇ m), see above that on the one hand fiber deposits on the channel wall can be reliably avoided, on the other hand, leads such roughness already leads to reduced acceleration of the fibers in this fiber guide channel section and thus to one Reduction of the transport speed of the individual fibers.
  • the input-side fiber guide channel section is part of a separate guide channel insert.
  • the guide channel insert can be fixed in a corresponding recess in the opening roller housing.
  • the guide channel insert can be coated in a dispersion bath in accordance with the desired roughness depth, hard material grains being embedded in the preferably nickel dispersion layer (claim 3).
  • hard material grains as set out in claim 4, can be, for example, diamond grains or, as described in claim 5, grains made of a technical ceramic material, for example silicon carbide.
  • the input side channel section part a fiber guide channel insert, which in the operating state in a Hole of the opening roller housing can be determined.
  • the one located inside the fiber channel insert Channel section can be by coating in a dispersion bath treated without problems and thus the channel wall easily with the desired surface roughness.
  • the output-side fiber guide channel section has one Roughness depth below 4 ⁇ m, preferably to 2 to 3 ⁇ m (Claim 7).
  • the in this channel section due to the constructive design of the channel section and the very smooth canal wall, relatively strong acceleration the transport air flow then leads to stretching of the individual fibers.
  • the transport speed of the Individual fibers remain significantly below that Transport speed in conventional fiber guide channels and sufficiently below the orbital velocity of the Fiber impact point of the fibers on the sliding surface of the Spinning rotor.
  • the speed difference given by the reduction in the transport speed of the individual fibers between the fibers and the point of impact results in all individual fibers being accelerated when they hit the sliding surface of the spinning rotor, and fibers which have not previously been stretched are also stretched.
  • This improvement in the stretch position of the individual fibers then has a positive effect on the spun thread through improved yarn values, in particular through a higher tensile strength.
  • the output side Fiber guide channel section as described in claim 9, Part of a replaceable duct plate adapter.
  • a such training has the advantage that the roughness of the output-side duct section without problems if necessary is variable.
  • the person concerned Channel plate adapter easily against a channel plate adapter the desired roughness depth can be replaced.
  • the open-end spinning device shown in FIG. 1 bears the overall reference number 1.
  • the spinning device has a rotor housing 2 in which the spinning cup of a spinning rotor 3 rotates at high speed.
  • the spinning rotor 3 is supported with its rotor shaft 4 in the bearing gusset of a support disk bearing 5 and is acted upon by a machine-long tangential belt 6, which is started by a pressure roller 7.
  • the rotor shaft 4 is axially fixed, for example, by means of a permanent magnetic axial bearing 18.
  • the rotor housing 2 which is open at the front, is during the spinning operation by a pivoted Cover element 8 with a (not shown in detail) Channel plate, in which a seal 9 is embedded, locked.
  • the rotor housing 2 is also a Suction line 10 connected to a vacuum source 11, the the necessary in the rotor housing 2 for the spinning process Negative pressure generated.
  • An interchangeable channel plate adapter 12 is arranged in the cover element 8 or in the channel plate, which has the thread take-off nozzle 13 and the mouth region of the fiber guide channel 14.
  • a thread take-off tube 15 connects to the thread take-off nozzle 13.
  • an opening roller housing 17 is fixed on the cover element 8, which is rotatably supported to a limited extent about a pivot axis 16.
  • the cover element 8 furthermore has bearing brackets 19, 20 on the back for mounting an opening roller 21 or a sliver feed cylinder 22.
  • the opening roller 21 is driven in the region of its whorl 23 by a circumferential, machine-long tangential belt 24, while the drive of the sliver feed cylinder 22 is preferably carried out via a worm gear arrangement (not shown) which is connected to a machine-long drive shaft 25.
  • FIG. 2 shows a front view of the cover element 8 of the open-end spinning device 1.
  • the area of the fiber guide channel 14 is shown in section.
  • the fiber guide channel 14 consists of an input-side fiber guide channel section 29 and an output-side fiber guide channel section 30.
  • the input-side fiber guide channel section 29 is part of a separate channel insert 36, which is embedded in a corresponding receptacle 37 of the opening roller housing 17.
  • the output-side fiber guide channel section 30 is part of a channel plate adapter 12, which is interchangeably fixed in a corresponding recess in a channel plate (not shown in more detail), which in turn is screwed to the cover element 8.
  • the wall of the inlet-side channel section 29 has a greater roughness depth R t than the wall of the outlet-side channel section 30.
  • the increased roughness depth R t of the inlet-side channel section 29 results from the incorporation of hard material grains 35 in a nickel dispersion layer, for example. Suitable hard material grains 35 are, for example, diamond grains, silicon carbide grains or the like.
  • the roughness depth R t of the fiber guide channel sections 29, 30 is preferably 4 to 6 ⁇ m (channel section 29) or preferably 2 to 3 ⁇ m (channel section 30), well below the diameter of the individual cotton fibers 32 to be transported in the fiber guide channel 14, the diameter of which is approximately 10 ⁇ m.
  • a sliver 31 stored in a sliver can (not shown) is introduced into a sliver opening device 26 via a sliver compactor 28. That is, the sliver 31 clamped between a feed trough 27 and a sliver feed cylinder 22 is replaced by the sliver which rotates slowly in the direction r Sliver feed cylinder 22 of an opening roller 21 rotating at a relatively high speed in the R direction. By means of the opening roller set, the sliver 31 is successively broken down into its individual fibers 32, which are then accelerated to the peripheral speed of the opening roller set.
  • the individual fibers 32 separate from the opening roller assembly under the influence of the centrifugal forces that occur and the negative pressure present in the input region of the fiber guiding channel 14 and enter the channel section 29 of the fiber guiding channel 14 at about the circumferential speed of the opening roller assembly. Due to the relatively large roughness depth (R t > 4 ⁇ m) of the channel wall in the channel section 29, the acceleration of the fibers, which inevitably takes place due to the nozzle-like configuration of the fiber guide channel and is also necessary for the stretching of the individual fibers, is limited. This means that the large roughness of the channel wall in the channel section 29 means that the airspeed of the individual fibers 32 in this channel section is significantly lower than the airspeed that the individual fibers would have in a channel section without this large surface roughness according to the invention.
  • a channel section 30 adjoins the channel section 29, preferably at an angle ⁇ , the wall of which has a significantly lower roughness depth (R t ⁇ 4 ⁇ m).
  • the individual fibers 32, the flight speed of which is somewhat reduced in the area of the angled transition of the two channel sections 29, 30, are then within the outlet-side channel section 30 due to the very smooth channel wall (R t 2 to 3 ⁇ m) and the conically narrowing channel cross section with the transport air flow accelerates and get a largely stretched orientation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
EP99107123A 1998-08-10 1999-04-13 Offenend-Spinnvorrichtung Revoked EP0979888B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19836066A DE19836066A1 (de) 1998-08-10 1998-08-10 Offenend-Spinnvorrichtung
DE19836066 1998-08-10

Publications (2)

Publication Number Publication Date
EP0979888A1 EP0979888A1 (de) 2000-02-16
EP0979888B1 true EP0979888B1 (de) 2003-03-19

Family

ID=7876996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99107123A Revoked EP0979888B1 (de) 1998-08-10 1999-04-13 Offenend-Spinnvorrichtung

Country Status (5)

Country Link
US (1) US6047538A (ja)
EP (1) EP0979888B1 (ja)
JP (1) JP2000064130A (ja)
CZ (1) CZ298763B6 (ja)
DE (2) DE19836066A1 (ja)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19713359B4 (de) * 1997-03-29 2005-12-08 Saurer Gmbh & Co. Kg Spinnrotor für eine Offenend-Spinnmaschine und Verfahren zu seiner Beschichtung
DE10060300A1 (de) * 1999-12-10 2001-06-21 Rieter Ingolstadt Spinnerei Verfahren und Vorrichtung zum Verstrecken von textilen Fasern
DE102004017700A1 (de) 2004-04-10 2005-10-27 Saurer Gmbh & Co. Kg Offenend-Rotorspinnvorrichtung
JP2009028862A (ja) * 2007-07-27 2009-02-12 Ihi Corp 非接触搬送装置
DE102008050071A1 (de) 2008-10-01 2010-04-08 Oerlikon Textile Gmbh & Co. Kg Offenend-Rotorspinnvorrichtung
DE102009012045A1 (de) 2009-03-06 2010-09-09 Oerlikon Textile Gmbh & Co. Kg Offenend-Rotorspinnvorrichtung
DE102010011234A1 (de) * 2010-03-12 2011-09-15 Oerlikon Textile Gmbh & Co. Kg Verfahren zum Herstellen eines Auflösewalzengehäuses einer Offenend-Spinnvorrichtung und Auflösewalzengehäuse
DE102010044181A1 (de) * 2010-11-19 2012-05-24 Maschinenfabrik Rieter Ag Faserkanaleinsatz
DE102013003284A1 (de) * 2013-02-26 2014-08-28 Saurer Germany Gmbh & Co. Kg Faserbandauflöseeinrichtung für eine Offenend-Spinnvorrichtung
DE102015115912A1 (de) * 2015-09-21 2017-03-23 Maschinenfabrik Rieter Ag Kanalplattenadapter und Offenendspinnvorrichtung mit einem Kanalplattenadapter

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3318924A1 (de) * 1983-05-25 1984-11-29 Fritz 7347 Bad Überkingen Stahlecker Vorrichtung zum oe-friktionsspinnen
DE3915813A1 (de) * 1989-05-13 1990-11-29 Schlafhorst & Co W Spinnverfahren und oe-spinneinrichtung
DE3923060A1 (de) * 1989-07-13 1991-01-24 Schubert & Salzer Maschinen Offenend-spinnvorrichtung
DE9218361U1 (de) 1992-11-13 1994-03-10 Rieter Ingolstadt Spinnerei Vorrichtung zum Zuführen von Fasern auf die rotierende Innenwand eines Offenend-Spinnrotors
DE4305626B4 (de) * 1993-02-24 2005-09-22 Spindelfabrik Süssen Schurr Stahlecker & Grill GmbH OE-Spinnrotor
DE4416977C2 (de) * 1994-05-13 1996-12-19 Rieter Ingolstadt Spinnerei Offenend-Spinnvorrichtung
CH691384A5 (de) * 1995-06-01 2001-07-13 Rieter Ag Maschf Textilmaschinenteil mit eingelagerten Festschmierstoffen.
DE19544617B4 (de) * 1995-11-30 2008-06-12 Maschinenfabrik Rieter Ag Adapter für Offenend-Spinnvorrichtungen
US5682137A (en) * 1996-02-17 1997-10-28 Li; Jia Vehicular acceleration and deceleration indicator
DE19632888A1 (de) * 1996-08-16 1998-02-19 Rieter Ingolstadt Spinnerei Offenend-Spinnvorrichtung und Verfahren zur Herstellung eines Transportkanals
DE19712881B4 (de) * 1997-03-27 2005-12-22 Saurer Gmbh & Co. Kg Offenend-Spinnvorrichtung

Also Published As

Publication number Publication date
US6047538A (en) 2000-04-11
CZ298763B6 (cs) 2008-01-23
JP2000064130A (ja) 2000-02-29
CZ275299A3 (cs) 2000-02-16
EP0979888A1 (de) 2000-02-16
DE19836066A1 (de) 2000-02-17
DE59904597D1 (de) 2003-04-24

Similar Documents

Publication Publication Date Title
DE3104444C2 (de) Garnanspinnverfahren an einer Offenendspinnvorrichtung und Vorrichtung zur Durchführung des Verfahrens
EP0979888B1 (de) Offenend-Spinnvorrichtung
EP2530192B1 (de) Offenend-Spinnvorrichtung
CH692744A5 (de) Fadenabzugdüse.
DE1510998B2 (de) Offenend-Spinnvorrichtung und Verfahren zum Zuführen von Fasermaterial in diese Offenend-Spinnvorrichtung
CH684197A5 (de) Spinnvorrichtung.
EP0175862B1 (de) Verfahren und Vorrichtung zur Herstellung eines Garnes
EP0110150B1 (de) Düsenspinn-Vorrichtung
DE2902404C2 (de) Vorrichtung zum Herstellen eines Umwindegarnes
DE2718146A1 (de) Offen-end-spinnvorrichtung
CH674746A5 (ja)
DE19624537A1 (de) Verfahren und Vorrichtung zum Anspinnen eines Fadenendes in einer Offenend-Spinnvorrichtung
EP1660708B1 (de) Kanalplatte für eine offenend-rotorspinnvorrichtung
DE1510730B2 (de) Offen-end-spinnvorrichtung
DE2658437C2 (de) Offenend-Spinnmaschine mit einer Vielzahl von Spinnaggregaten
DE4227884C2 (de) Verfahren und Vorrichtung zum pneumatischen Zuführen von Fasern zu der Fasersammelfläche eines Offenend-Spinnelementes
DE3634557A1 (de) Vorrichtung zum pneumatischen falschdrallspinnen
CH696321A5 (de) Garniturring für eine Auflösewalze einer Offenend-Spinnvorrichtung.
EP3144419B1 (de) Kanalplattenadapter und offenendspinnvorrichtung mit einem kanalplattenadapter
DE3341279C2 (de) Auflöseeinrichtung für eine OE-Rotor-Spinneinheit
EP1587974B1 (de) Vorrichtung zum herstellen eines gesponnenen fadens
DE2808589A1 (de) Verfahren und vorrichtung zum verspinnen von textilen fasern nach dem rotor-spinnverfahren
DE19528727C2 (de) Offen-End-Rotorspinnmaschine
EP0456865A1 (de) Vorrichtung zum Verspinnen von Stapelfasern
AT227581B (de) Einrichtung für die Herstellung von Garn aus Stapelfasern

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE IT LI

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 20000816

AKX Designation fees paid

Free format text: CH DE IT LI

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): CH DE IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59904597

Country of ref document: DE

Date of ref document: 20030424

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SAURER GMBH & CO. KG

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SPINDELFABRIK SUESSEN SCHURR, STAHLECKER & GRI

Effective date: 20031219

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLAY Examination report in opposition despatched + time limit

Free format text: ORIGINAL CODE: EPIDOSNORE2

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20050425

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060430

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

R26 Opposition filed (corrected)

Opponent name: SPINDELFABRIK SUESSEN GMBH

Effective date: 20031219

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OERLIKON TEXTILE GMBH & CO. KG

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: OERLIKON TEXTILE GMBH & CO. KG

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20090514

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20090421

Year of fee payment: 11

Ref country code: DE

Payment date: 20090423

Year of fee payment: 11