EP0763391B1 - Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten - Google Patents

Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten Download PDF

Info

Publication number
EP0763391B1
EP0763391B1 EP96113055A EP96113055A EP0763391B1 EP 0763391 B1 EP0763391 B1 EP 0763391B1 EP 96113055 A EP96113055 A EP 96113055A EP 96113055 A EP96113055 A EP 96113055A EP 0763391 B1 EP0763391 B1 EP 0763391B1
Authority
EP
European Patent Office
Prior art keywords
forces
rolling
rolls
roll
axial forces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96113055A
Other languages
English (en)
French (fr)
Other versions
EP0763391A1 (de
Inventor
Wolfgang Prof. Dr. Rohde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Demag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Demag AG filed Critical SMS Demag AG
Publication of EP0763391A1 publication Critical patent/EP0763391A1/de
Application granted granted Critical
Publication of EP0763391B1 publication Critical patent/EP0763391B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/62Roll-force control; Roll-gap control by control of a hydraulic adjusting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/10Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll-gap, e.g. pass indicators
    • B21B38/105Calibrating or presetting roll-gap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • B21B1/32Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/04Lateral deviation, meandering, camber of product

Definitions

  • the invention relates to a method for compensating forces or force components, resulting from horizontal movements of the rolls in roll stands for the hot and cold rolling of flat products, equipped with work rolls and with one or more backup rolls, with hydraulic adjustments and with Force measuring devices on the opposite side of the roll gap and with hydraulic devices for the horizontal displacement of the work rolls.
  • Figure 1 of the present application documents describes the basic problem of volatile and stray axial forces, for example on the upper one Back-up roller 1 of a four-high stand.
  • the horizontally acting forces T are line-volatile Vectors, that is, they can be shifted along their line of action become. It is therefore irrelevant on which side of the stand the roller is locked.
  • Such pairs of forces always arise from the axial force in the contact area to the neighboring roller.
  • the individual forces overlap and express themselves in different axial forces on all the rollers involved correspondingly difficult to overlook reaction forces in the roll stands.
  • reaction forces show in the roll stands extremely adverse effects.
  • the screwing direction of all the rollers involved also changes.
  • the rollers are running to the opposite side, which results in a reversal of the axial forces Has.
  • the reaction forces in the roll stands change accordingly with the result that the force measuring devices arranged in the stands Report changes that are not related to the actual rolling process stand.
  • the result is incorrect reactions of all control loops, which are carried out by the forces measured on the roll stands, such as the flatness control, the automatic calibration for parallel setting of the roll gap, the roll Alignment control to compensate for the effects of an off-center position of the Rolled product and other control loops, depending on the type of roll stand and the Rolled product.
  • the invention opens up the possibility of all in one roll stand occurring vagabond forces from horizontal movements of the Rolls to determine continuously and the resulting To compensate for force components in the measured rolling forces. Further Embodiments of the invention are the subject of claims 2 to 7.
  • Modern mill stands for cold and hot rolled flat products today almost exclusively with hydraulic adjustments 2 as Thickness control actuator equipped.
  • the pitch cylinders the hydraulic adjustment are above the upper one Back-up roll chocks 3 or below the lower back-up roll chocks 4.
  • Figure 2 shows an analysis of the forces in a roll stand. Recorded only the forces F from the rolling process and the axial forces T of the rollers. On the representation of balancing forces, Bending and weight forces have been omitted because of the compensation of these forces is known.
  • Figure 3 shows the composition of the equation set.
  • the derivation of a center deviation is of particular interest X for the position of the resulting rolling force in the roll gap (see Fig. 2).
  • This size can also be determined from the six measured values in the Derive rolling operation continuously.
  • the equation for the center deviation X is indicated in Fig. 3.
  • the size X can be used are used for automatic calibration, i.e. for the automatic Parallel positioning of the two work rolls by changing the rolls the stand is pre-tensioned with rolling rollers without rolling stock and the eccentricity X calculated from the six measured values becomes.
  • the Value X regulated to zero with the result of a flawless Parallel position of the upper and lower roller.
  • the center deviation X can be used to report such Events and used for a corresponding correction become.
  • the automatic calibration and monitoring of the rolling process can also take place in that instead of introducing a center deviation, the measured forces F 1 to F 4 are corrected (compensated) with the help of the calculable reaction forces from the axial forces.
  • the equations required for this for the sum of the reaction forces from all the rolls involved are indicated by R 1 to R 4 in FIG. 4.
  • the measured values F 1 to F 4 can be used in a manner known per se by forming the difference F 1 minus F 2 or F 3 minus F 4 for the roll calibration and for monitoring the rolling process.
  • Figure 4 shows the equation set for the reaction forces from the Axial forces and for the reaction forces from the eccentricity the rolling force.
  • FIG. 5 contains a calculation example with assumed roll stand data and rolling data and the data from them using the above Equations calculated roller axial forces and reaction forces.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Press Drives And Press Lines (AREA)
  • Electrically Operated Instructional Devices (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

Die Erfindung betrifft ein Verfahren zur Kompensation von Kräften bzw. Kraftanteilen, resultierend aus Horizontalbewegungen der Walzen in Walzgerüsten für das Warm- und Kaltwalzen von Flachprodukten, ausgerüstet mit Arbeitswalzen und mit einer oder mehreren Stützwalzen, mit hydraulischen Anstellungen und mit Kraftmesseinrichtungen auf der gegenüberliegenden Seite des Walzspaltes und mit hydraulischen Einrichtungen zur Horizontalverschiebung der Arbeitswalzen.
Bei der Walzung von Flachprodukten in Warm- und Kaltwalzanlagen besteht das Problem, daß alle beteiligten Walzen während des Walzprozesses in unterschiedlicher Richtung axial im Gerüst verlaufen und durch Andrücken an die jeweils vorhandenen Verriegelungen Axialkräfte erzeugen. Aus diesen Axialkräften entstehen mit der zugeordneten Reaktionskraft im Abstand von Walzmitte bis zur Berührung mit der Nachbarwalze freie Kräftepaare. Jedes dieser Kräftepaare bewirkt Reaktionskräfte in den Walzenlagern und damit in den beiden Ständerräumen des Gerüstes.
Es ist bereits Stand der Technik, im Gerüst entstehende vertikale Kräfte, beispielsweise Kräfte aus den Eigengewichten, der Walzenbalancierung und der Walzenbiegung rechnerisch oder meßtechnisch zu erfassen und bei der Messung der Kräfte in den beiden Walzenständern zu berücksichtigen. Solche Kompensationen werden jedoch für die Reaktionskräfte aus den beschriebenen Axialkräften der Walzen nicht durchgeführt.
In dem vorveröffentlichten Dokument GB 20 41 269 A wird ein Sechs-Walzengerüst beschrieben, bei welchem die Zwischenwalzen gegensinnig verschoben werden. Aus der Walzenverschiebung resultieren Kräfte und Momente, die auf das Walzgerüst einwirken und ausgeregelt werden müssen. Hierzu ist ein Regelkreis vorgesehen, bei welchem die Walzkräfte der unteren Stützwalze auf beiden Seiten gemessen werden und ein Mittelwert gebildet wird. Ferner werden die hydraulischen Kräfte der Verstellzylinder gemessen und gemittelt. Die gemittelten Kräfte werden gegebenenfalls unter Einbeziehung eines Sollwertes einem Regler zugeführt, der als Stellgröße die motorisch betätigte Anstellung der oberen Stützwalzen beeinflußt. Dabei kommt es nicht darauf an, ob die Anstellung der Stützwalzen elektromechanisch oder hydraulisch erfolgt. Eine Kompensation von linienflüchtigen und vagabundierenden Axialkräfte an den Walzen und deren Reaktionskräfte ist mit diesem vorbekannten Regelverfahren nicht beabsichtigt und nicht möglich.
Figur 1 der vorliegenden Anmeldungsunterlagen beschreibt das Grundproblem von linienflüchtigen und vagabundierenden Axialkräfte beispielhaft an der oberen Stützwalze 1 eines Quarto-Gerüstes. Die horizontal wirkenden Kräfte T sind linienflüchtige Vektoren, das heißt, sie können längs ihrer Wirkungslinie verschoben werden. Demzufolge ist es belanglos, auf welcher Seite des Gerüstes die Walze verriegelt ist. Grundsätzlich entstehen solche Kräftepaare immer durch die Axialkraft im Kontaktbereich zur Nachbarwalze. Die einzelnen Kräfte überlagern sich und äußern sich in unterschiedlichen Axialkräften an allen beteiligten Walzen mit entsprechend schwer zu übersehenden Reaktionskräften in den Walzenständern.
Insbesondere bei Reversiergerüsten zeigen die Reaktionskräfte in den Walzenständern außerordentlich nachteilige Wirkungen. Bei Umkehrung der Drehrichtung ändert sich auch die Schraubrichtung aller beteiligten Walzen. Die Walzen laufen zur jeweils gegenüberliegenden Seite, was eine Umkehr der Axialkräfte zur Folge hat. Die Reaktionskräfte in den Walzenständern ändern sich entsprechend, mit dem Ergebnis, daß die in den Ständern angeordneten Kraftmeßeinrichtungen Veränderungen melden, die mit dem eigentlichen Walzprozeß nicht in Verbindung stehen. Die Folge sind fehlerhafte Reaktionen aller Regelkreise, die von den in den Walzenständern gemessenen Kräften abhängen, wie die Planheitsregelung, die automatische Kalibrierung zur parallelen Einstellung des Walzspaltes, die Roll Alignment Control zur Kompensation der Wirkungen einer außermittigen Lage des Walzproduktes und weitere Regelkreise, je nach Art des Walzgerüstes und des Walzproduktes.
Es besteht die demzufolge die Aufgabe, die Reaktionskräfte in den Walzenständern ohne Einrichtung zusätzlicher Meßstellen im Walzgerüst mit ausreichender Sicherheit zu bestimmen.
Die Lösung der Aufgabe gelingt bei einem Verfahren zur Kompensation von Kräften bzw. Kraftanteilen, resultierend aus Horizontalbewegungen der Walzen in Walzgerüsten gemäß der eingangs genannten Gattung mit den Merkmalen des Anspruchs 1.
Die Erfindung eröffnet die Möglichkeit, alle in einem Walzgerüst auftretenden, vagabundierenden Kräfte aus Horizontalbewegungen der Walzen kontinuierlich zu bestimmen und die hieraus resultierenden Kraftanteile in den gemessenen Walzkräften zu kompensieren. Weitere Ausgestaltungen der Erfindung sind Gegenstand der Ansprüche 2 bis 7.
Die Erfindung wird anhand der Fig. 2 bis Fig. 5 näher beschrieben.
Moderne Walzgerüste für kalt- und warmgewalzte Flachprodukte werden heute nahezu ausschließlich mit hydraulischen Anstellungen 2 als Stellglied für die Dickenregelung ausgerüstet. Die Anstellzylinder der hydraulischen Anstellung befinden sich oberhalb der oberen Stützwalzeneinbaustücke 3 oder unterhalb der unteren Stützwalzeneinbaustücke 4. In einer bevorzugten Ausführungsform befinden sich zusätzlich auf der vom Walzspalt her gesehen gegenüberliegenden Seite des Gerüstes in den beiden Walzenständern Kraftmeßeinrichtungen 5, mit denen die im Walzprozeß auftretenden Kräfte in den beiden Walzenständern kontinuierlich gemessen werden.
Die beiden Hydraulikzylinder der hydraulischen Anstellung liefern über den Hydraulikdruck in bevorzugter Weise zusätzliche Meßwerte für die Kräfte in den beiden Walzenständern, so daß insgesamt ohne zusätzlichen Aufwand Meßwerte für die Kräfte in den beiden Walzenständern oberhalb der oberen Stützwalzeneinbaustücke und unterhalb der unteren Stützwalzeneinbaustücke zur Verfügung stehen.
Ein weiteres Merkmal moderner Walzgerüste für das Warm- und Kaltwalzen von Flachprodukten sind verschiebbare Arbeitswalzen 6, z.B. für die Beeinflussung des Walzspaltprofils oder zur Vergleichmäßigung des Walzenverschleißes. In einer bevorzugten Ausführungsform erfolgt das Verschieben der Arbeitswalzen 6 mit Hilfe von Hydraulikzylindern 7. Unabhängig davon, ob während einer Betriebsphase die beiden Arbeitswalzen verschoben werden oder sich in einer bestimmten Position befinden, entstehen in den Hydraulikzylindern 7 Drücke in Abhängigkeit von den von den Arbeitswalzen 6 ausgehenden Axialkräften. Die Axialkräfte der Arbeitswalzen können demzufolge in bevorzugter Weise ohne zusätzlichen Aufwand durch Druckmessung in den Verschiebezylindern bestimmt werden. Hiermit stehen insgesamt sechs Meßwerte für vertikale und horizontale Kräfte im Walzgerüst zur Verfügung.
Figur 2 zeigt eine Analyse der Kräfte in einem Walzgerüst. Aufgenommen wurden lediglich die Kräfte F aus dem Walzprozeß und die Axialkräfte T der Walzen. Auf die Darstellung von Balancierkräften, Biegekräften und Gewichtskräften wurde verzichtet, da die Kompensation dieser Kräfte bekannt ist.
Der Ansatz der Gleichgewichtsbedingungen für horizontale Kräfte T, vertikale Kräfte F und Momente M am oberen und unteren Walzensatz führt zu insgesamt sechs Gleichungen. Diese sechs nachfolgenden Gleichungen GL geben das Kräftegleichgewicht wie folgt wieder:
Gerüst oben
vertikale Kräfte F Fw - F1 - F2 = 0 GL (1)
horizontale Kräfte T Tw - T1 - T2 = 0 GL (2)
Momente M Fw·X - F1· a / 2 + F2· a / 2
- T2 (rA + rS) + Tw (2rA + rS) = 0
GL (3)
Gerüst unten
vertikale Kräfte F Fw - F3 - F4 = 0 GL (4)
horizontale Kräfte T Tw + T3 + T4 = 0 GL (5)
Momente M Fw·X - F3· a / 2 + F4· a / 2
- T3 (rA + rS)- Tw (2rA + rS) = 0
GL (6)
Aus diesen sechs Gleichungen lassen sich mit mathematischen Umformungen die Gleichungen für die von den Stützwalzen ausgehenden Kräfte T1 und T4 sowie die im Walzspalt auftretende Tangentialkraft Tw bestimmen. Damit sind alle im Gerüst auftretenden horizontal wirkenden Kräfte bekannt.
Figur 3 zeigt die Zusammenstellung des Gleichungssatzes.
Von besonderem Interesse ist die Ableitung einer Mittenabweichung X für die Lage der resultierenden Walzkraft im Walzspalt (vgl. Fig. 2). Diese Größe läßt sich ebenfalls aus den sechs Meßwerten im Walzbetrieb kontinuierlich ableiten. Die Gleichung für die Mittenabweichung X ist in Fig. 3 angegeben. Die Größe X kann herangezogen werden für die automatische Kalibrierung, d.h. für das automatische Parallelstellen der beiden Arbeitswalzen, indem nach einem Walzenwechsel das Gerüst ohne Walzgut mit drehenden Walzen vorgespannt und die aus den sechs Meßwerten errechnete Außermittigkeit X errechnet wird. Durch Schwenken mit der hydraulischen Anstellung wird der Wert X auf Null geregelt mit dem Ergebnis einer einwandfreien Parallellage von oberer und unterer Walze.
Eine weitere Verwendung der Mittenabweichung X ist die Überwachung des Walzprozesses, insbesondere bei Reversiergerüsten, bei denen ein Verlaufen des Bandes bzw. des Bleches aus der Gerüstmitte eintreten kann. Die Mittenabweichung X kann zur Meldung solcher Ereignisse und zu einer entsprechenden Korrektur herangezogen werden.
Selbstverständlich kann die automatische Kalibrierung und Überwachung des Walzprozesses auch dadurch erfolgen, daß anstelle der Einführung einer Mittenabweichung eine Korrektur (Kompensation) der gemessenen Kräfte F1 bis F4 mit Hilfe der errechenbaren Reaktionskräfte aus den Axialkräften erfolgt. Die hierzu erforderlichen Gleichungen für die Summe der Reaktionskräfte aus allen beteiligten Walzen sind mit R1 bis R4 in Figur 4 angegeben. Nach einer solchen Kompensation können die Meßwerte F1 bis F4 in an sich bekannter Weise durch Differenzbildung F1 minus F2 bzw. F3 minus F4 für die Walzenkalibrierung und für die Überwachung des Walzprozesses herangezogen werden.
In den Gleichungen zur Bestimmung der Walzen-Axialkräfte und der Außermittigkeit zeigt sich als besonders vorteilhaft, daß die Meßwerte für die Axialkräfte im oberen bzw. unteren Gerüstbereich immer als Differenzwerte in die Auswertung eingehen. Dies hat zur Folge, daß die in den Meßwerten enthaltenen Reibungskräfte, insbesondere bei den Meßwerten aus den Anstellzylindern nicht in die Auswertung eingehen, soweit die Reibungskräfte auf beiden Gerüstseiten gleich groß sind. Dies gilt für eine Aufnahme der Meßwerte während beidseitiger Zufahrbewegungen oder beidseitiger Auf fahrbewegungen der hydraulischen Anstellungen. Bei einer Schwenkbewegung würden sich die Reibungskräfte beider Gerüstseiten addieren. Die Meßwertaufnahme während einer Schwenkbewegung ist deshalb im betrieblichen Ablauf zu unterdrücken.
Als vorteilhaft erweist sich auch die Nutzung der gemessenen und errechneten Axialkräfte T1 bis T4 und Tw zur Überwachung des Erhaltungszustandes und der einwandfreien Walzenschliffe. Hoher Verschleißzustand und Fehler im Walzenschliff erhöhen die Verschränkung der Walzen zueinander und führen zu erhöhten Axialkräften. Die Anzeige dieser Kräfte ist demzufolge ein hervorragendes Mittel zur kontinuierlichen Überwachung des Walzwerks.
Figur 4 zeigt den Gleichungssatz für die Reaktionskräfte aus den Axialkräften und für die Reaktionskräfte aus der Außermittigkeit der Walzkraft.
Figur 5 enthält ein Rechenbeispiel mit angenommenen Walzgerüstdaten und Walzdaten und den hieraus mit Hilfe der oben angegebenen Gleichungen errechneten Walzen-Axialkräfte und Reaktionskräfte.

Claims (7)

  1. Verfahren zur Kompensation von Kräften bzw. Kraftanteilen (T), resultierend aus Horizontalbewegungen der Walzen in Walzgerüsten für das Warm- und Kaltwalzen von Flachprodukten, ausgerüstet mit Arbeitswalzen (6) und mit einer oder mehreren Stützwalzen (1), mit hydraulischen Anstellungen (2) und mit Kraftmeßeinrichtungen (5) auf der gegenüberliegenden Seite des Walzspaltes und mit hydraulischen Einrichtungen (7) zur Horizontalverschiebung der Arbeitswalzen (6),
    dadurch gekennzeichnet,
    daß die Drücke in den beiden Anstellzylindern (2) zur Bestimmung der Walzkräfte (F) auf einer Seite des Walzspaltes und die angezeigten Kräfte der Kraftmeßeinrichtungen (5) zur Bestimmung der Walzkräfte auf der gegenüberliegenden Seite des Walzspaltes herangezogen werden, und daß unter Einbeziehung der über die Drücke in den Verschiebezylindern (7) der Arbeitswalzen (6) bestimmbaren Arbeitswalzen-Axialkräfte (T) sämtliche Axialkräfte im Gerüst während des Walzbetriebes rechnerisch bestimmt werden und
    aus den gemessenen und errechneten Axialkräften (T) der Walzen Korrekturwerte für die Walzkraftanzeigen (F) in den beiden Walzenständern abgeleitet werden, um die Reaktionskräfte (R) der Axialkräfte (T) zu kompensieren, wobei
    die aus den Axialkräften (T) resultierenden Reaktionskräfte (R) in den beiden Walzenständern zugeordneten Dehnungen rechnerisch bestimmt und durch entsprechende Zustellung der hydraulischen Anstellungen (2) kompensiert werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß aus den vier gemessenen Walzkräften (F1 bis F4) und den zwei gemessenen Axialkräften (T2, T3) rechnerisch die aktuelle Außermittigkeit (x) der Walzkraft (Fw) bestimmt wird.
  3. Verfahren nach Anspruch 1 und 2,
    dadurch gekennzeichnet,
    daß die errechnete Außermittigkeit (x) der Walzkraft (Fw) bei der Kalibrierung des Walzgerüstes zum Parallelstellen der Walzen (1, 6) auf Null geregelt wird.
  4. Verfahren nach Anspruch 3,
    dadurch gekennzeichnet,
    daß bei Durchführung der automatischen Kalibrierung die sechs Meßwerte für Walzkräfte (F1 bis F4) und Axialkräfte (T2, T3) nur während einer auf beiden Gerüstseiten ausgeführten gleichgerichteten Verstellbewegung aufgenommen werden.
  5. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die gemessenen und errechneten Axialkräfte (T1 bis T4) und die Tangentialkraft (Tw) im Walzspalt zur Überwachung des Erhaltungszustandes kontinuierlich angezeigt werden.
  6. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß nach Kompensation der Walzkraftanzeigen (F1 bis F4) mit den aus den Axialkräften (T1 bis T4) errechneten Reaktionskräften (R) die verbleibende Differenz der Walzkraftanzeigen im oberen bzw. unteren Teil des Gerüstes zum Parallelstellen der Walzen auf Null geregelt wird.
  7. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß nach Kompensation der Walzkraftanzeigen (F1 bis F2) mit den aus den Axialkräften (T1 bis T4) errechneten Reaktionskräften (R) die verbleibende Differenz der Walzkraftanzeigen im oberen bzw. unteren Teil des Gerüstes zur kontinuierlichen Überwachung des Walzprozesses herangezogen wird.
EP96113055A 1995-08-18 1996-08-14 Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten Expired - Lifetime EP0763391B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19530424 1995-08-18
DE19530424A DE19530424A1 (de) 1995-08-18 1995-08-18 Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten

Publications (2)

Publication Number Publication Date
EP0763391A1 EP0763391A1 (de) 1997-03-19
EP0763391B1 true EP0763391B1 (de) 2000-07-26

Family

ID=7769808

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96113055A Expired - Lifetime EP0763391B1 (de) 1995-08-18 1996-08-14 Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten

Country Status (12)

Country Link
US (1) US5714692A (de)
EP (1) EP0763391B1 (de)
JP (1) JP4057666B2 (de)
KR (1) KR100424527B1 (de)
CN (1) CN1069235C (de)
AT (1) ATE194932T1 (de)
CA (1) CA2182832C (de)
DE (2) DE19530424A1 (de)
ES (1) ES2149408T3 (de)
MY (1) MY120506A (de)
RU (1) RU2194585C2 (de)
TW (1) TW315331B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009030792A1 (de) 2008-12-18 2010-06-24 Sms Siemag Ag Verfahren zum Kalibrieren zweier zusammenwirkender Arbeitswalzen in einem Walzgerüst

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19718529A1 (de) * 1997-05-02 1998-11-12 Schloemann Siemag Ag Verfahren zum Betreiben eines Walzwerks für das Warm- und Kaltwalzen von Flachprodukten
US5943906A (en) * 1997-09-12 1999-08-31 Valmet Automation Inc. Method for operating a traversing sensor apparatus
AU777487B2 (en) * 1998-02-27 2004-10-21 Nippon Steel & Sumitomo Metal Corporation Strip rolling method and strip rolling mill
JP3701981B2 (ja) * 1998-02-27 2005-10-05 新日本製鐵株式会社 板圧延方法および板圧延機
SE530055C2 (sv) * 2006-06-30 2008-02-19 Abb Ab Förfarande och anordning för styrning av valsgap vid valsning av ett band
CN101972779B (zh) * 2010-11-05 2012-06-06 南京钢铁股份有限公司 一种四辊可逆轧机零位标定和辊缝定位的方法
CN103203372B (zh) * 2012-01-11 2015-05-20 宝山钢铁股份有限公司 消除热连轧机静态偏差值的控制方法
DE102012107185A1 (de) 2012-08-06 2014-02-06 Witte Automotive Gmbh Riegelverschluss für Kraftfahrzeugtüren, -sitze oder -rückenlehnen mit Klapperschutz
CN104070072B (zh) * 2013-03-27 2016-02-24 宝山钢铁股份有限公司 一种零调工作辊开轧辊缝的调平方法
DE102015204275B3 (de) * 2015-03-10 2016-05-12 Siltronic Ag Verfahren zur Wiederaufnahme eines Drahttrennläppvorgangs mit strukturiertem Sägedraht nach Unterbrechung
CN105921525B (zh) * 2016-05-05 2017-09-01 广西柳州银海铝业股份有限公司 连轧机组的带材尾部纠偏方法
CN205659983U (zh) * 2016-06-15 2016-10-26 日照宝华新材料有限公司 一种esp生产线用长公里数轧制辊
TWI622435B (zh) * 2016-11-24 2018-05-01 財團法人金屬工業研究發展中心 金屬板材輥軋曲彎成形回彈補償機構
CN109604490A (zh) * 2017-08-11 2019-04-12 丽水市信裕机械制造有限公司 一种螺旋折流板的防折断旋轧装置
CN108284136B (zh) * 2018-01-19 2019-09-03 山东钢铁集团日照有限公司 一种提高精轧机辊缝标定精度的方法
JP6832309B2 (ja) * 2018-03-27 2021-02-24 スチールプランテック株式会社 圧延機及び圧延機の制御方法
US11819896B2 (en) * 2018-08-13 2023-11-21 Nippon Steel Corporation Method for identifying thrust counterforce working point positions and method for rolling rolled material
CN112453343B (zh) * 2020-11-30 2022-02-01 中冶赛迪技术研究中心有限公司 一种连铸扇形段辊缝在线补偿的方法
CN112808381B (zh) * 2021-01-04 2022-08-16 中冶长天国际工程有限责任公司 一种破碎机辊缝调节装置、破碎机及破碎机辊缝控制方法
CN113916279B (zh) * 2021-08-30 2023-04-21 北京科技大学 一种楔横轧成形轴向轧制力与轧件转速测量装置
CN114101340B (zh) * 2021-12-01 2022-07-29 燕山大学 一种轧辊横移位置误差的补偿方法

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2166153A (en) * 1935-08-03 1939-07-18 Hoe & Co R Matrix making machine with pressure indicator
US3383591A (en) * 1964-10-14 1968-05-14 United States Steel Corp Method and apparatus for indicating wear on rolls by combining signals proportional to rolling force and speed
US3918302A (en) * 1973-09-20 1975-11-11 British Steel Corp Rolling mill test equipment
US4033183A (en) * 1976-10-08 1977-07-05 Bethlehem Steel Corporation Horizontal- and vertical-roll force measuring system
JPS5580024A (en) * 1978-12-12 1980-06-16 Fuji Electric Co Ltd Device for detecting tension and compressive force between stands in continuous rolling mill
JPS5597806A (en) * 1979-01-17 1980-07-25 Hitachi Ltd Method and apparatus for correcting asymmetry of rolling mill
JPS6038208B2 (ja) * 1980-02-25 1985-08-30 新日本製鐵株式会社 スタンド間張力圧縮力の検出方法
US4485649A (en) * 1981-10-16 1984-12-04 Davy Mckee (Sheffield) Limited Rolling mill control system
JPS61182816A (ja) * 1985-02-07 1986-08-15 Ishikawajima Harima Heavy Ind Co Ltd 上下非対称圧延機のロ−ル平行度制御方法及びその装置
JPS61212416A (ja) * 1985-03-19 1986-09-20 Nisshin Steel Co Ltd 作業ロ−ルの摩耗プロフイル調整方法
JPS62137116A (ja) * 1985-12-10 1987-06-20 Toshiba Corp 多段圧延機の板厚制御装置
FR2611542B1 (fr) * 1987-02-25 1989-05-26 Siderurgie Fse Inst Rech Procede et dispositif pour la mesure de l'effort de serrage entre les cylindres d'une cage de laminage
US4898014A (en) * 1988-12-23 1990-02-06 United Engineering, Inc. Roll shifting system for rolling mills
US4974442A (en) * 1989-04-26 1990-12-04 Westinghouse Electric Corp. Method and apparatus for calibrating rolling mill on-line load measuring equipment
DE3942452A1 (de) * 1989-12-22 1991-06-27 Schloemann Siemag Ag Ermittlung der federkennlinie eines vor- und fertiggeruestes
JPH0832335B2 (ja) * 1990-10-03 1996-03-29 日立造船株式会社 圧延機における圧延ロールの支持構造
FR2672542B1 (fr) * 1991-02-11 1994-02-11 Komori Chambon Sa Dispositif de detection, dans une machine, de la position de contact de deux cylindres d'axes paralleles.
GB2253719A (en) * 1991-03-15 1992-09-16 China Steel Corp Ltd Compensating roll eccentricity of a rolling mill
JP2536378B2 (ja) * 1992-12-24 1996-09-18 日本電気株式会社 M4 c6 0 製造方法
JPH07144210A (ja) * 1993-11-25 1995-06-06 Ishikawajima Harima Heavy Ind Co Ltd ワークロールの板道軽減装置および板道軽減方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009030792A1 (de) 2008-12-18 2010-06-24 Sms Siemag Ag Verfahren zum Kalibrieren zweier zusammenwirkender Arbeitswalzen in einem Walzgerüst
WO2010069575A2 (de) 2008-12-18 2010-06-24 Sms Siemag Ag Verfahren zum kalibrieren zweier zusammenwirkender arbeitswalzen in einem walzgerüst
WO2010069575A3 (de) * 2008-12-18 2010-08-19 Sms Siemag Ag Verfahren zum kalibrieren zweier zusammenwirkender arbeitswalzen in einem walzgerüst
CN102256717A (zh) * 2008-12-18 2011-11-23 Sms西马格股份公司 用于校正轧机机架中两个共同作用的工作辊子的方法
RU2476280C1 (ru) * 2008-12-18 2013-02-27 Смс Зимаг Аг Способ калибровки двух взаимодействующих друг с другом рабочих валков в прокатной клети
US8939009B2 (en) 2008-12-18 2015-01-27 Sms Siemag Aktiengesellschaft Method for calibrating two interacting working rollers in a rolling stand

Also Published As

Publication number Publication date
JPH09103815A (ja) 1997-04-22
ES2149408T3 (es) 2000-11-01
DE59605639D1 (de) 2000-08-31
CN1069235C (zh) 2001-08-08
RU2194585C2 (ru) 2002-12-20
ATE194932T1 (de) 2000-08-15
CA2182832C (en) 2007-07-31
CA2182832A1 (en) 1997-02-19
CN1149512A (zh) 1997-05-14
EP0763391A1 (de) 1997-03-19
DE19530424A1 (de) 1997-02-20
US5714692A (en) 1998-02-03
KR100424527B1 (ko) 2004-05-24
KR970009913A (ko) 1997-03-27
TW315331B (de) 1997-09-11
JP4057666B2 (ja) 2008-03-05
MY120506A (en) 2005-11-30

Similar Documents

Publication Publication Date Title
EP0763391B1 (de) Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten
DE69209043T2 (de) Walzwerk, Walzverfahren und Walzwerksystem
EP1761345B1 (de) Vorrichtung zur beaufschlagung der führungsflächen von in den ständerfenstern von walzgerüsten gerührten lagereinbaustücken
DE69731008T2 (de) Walzverfahren für Bänder zur Reduzierung der Kantenschärfe
DE3212070C2 (de) Walzgerüst mit einer Vorrichtung zur Einhaltung der Ebenheit des gewalzten Guts
DE69227431T2 (de) Walzwerk und Walzverfahren
DE60122069T2 (de) Walzwerk mit Bandprofilerfassungseinrichtung und Bandprofilerfassungsverfahren
DE69404527T2 (de) Walzwerk und Verfahren
EP0035009B1 (de) Vorrichtung zum Abstützen einer Arbeitswalze einer Blechbiege- oder -richtmaschine
DE1809639A1 (de) Verfahren und Vorrichtung zur automatischen Steuerung eines Walzwerks
EP1819456B2 (de) Verfahren und walzstrasse zum verbessern des ausfädelns eines metallwalzbandes, dessen walzband-ende mit walzgeschwindigkeit ausläuft
DE1452009C3 (de) Walzgerüst
DE69511651T2 (de) Walzanlage
EP0875303B1 (de) Verfahren zum Betreiben eines Walzwerks für das Warm- und Kaltwalzen von Flachprodukten
DE4136013A1 (de) Verfahren und vorrichtung zum steuern eines walzwerks
DE3788793T2 (de) Mehrwalzen-kaltwalzwerk.
DE2253524A1 (de) Kombinierte dickenregelungs- und balligkeitsregelungsautomatik fuer ein walzwerk oder walzgeruest system und verfahren
DE3422762A1 (de) Verfahren zur reibungskompensation in einem walzwerk
DE102010049908B4 (de) Vielwalzen-Walzwerk vom Cluster-Typ
DE69224816T2 (de) Blechwalzmaschine
EP0134957B1 (de) Walzgerüst mit axial verschiebbaren Arbeitswalzen
DE1933841A1 (de) Verfahren und Vorrichtung zum Warm- oder Kaltwalzen von Band- oder Blechmaterial
AT399175B (de) Kalander zur oberflächenbearbeitung von materialbahnen
EP0698428A1 (de) Einrichtung zur Erfassung des Walzspaltes zwischen zwei Arbeitswalzen eines Walzgerüstes
DE3811847C2 (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FI FR GB IT NL SE

17Q First examination report despatched

Effective date: 19981026

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS DEMAG AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FI FR GB IT NL SE

REF Corresponds to:

Ref document number: 194932

Country of ref document: AT

Date of ref document: 20000815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59605639

Country of ref document: DE

Date of ref document: 20000831

ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001002

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2149408

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110825

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110811

Year of fee payment: 16

Ref country code: NL

Payment date: 20110825

Year of fee payment: 16

BERE Be: lapsed

Owner name: *SMS DEMAG A.G.

Effective date: 20120831

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120815

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605639

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AKTIENGESELLSCHAFT, 40237 DUESSELDORF, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150821

Year of fee payment: 20

Ref country code: GB

Payment date: 20150819

Year of fee payment: 20

Ref country code: FI

Payment date: 20150812

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150819

Year of fee payment: 20

Ref country code: FR

Payment date: 20150820

Year of fee payment: 20

Ref country code: AT

Payment date: 20150820

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150824

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59605639

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160813

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 194932

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160813