EP0763391A1 - Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten - Google Patents

Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten Download PDF

Info

Publication number
EP0763391A1
EP0763391A1 EP96113055A EP96113055A EP0763391A1 EP 0763391 A1 EP0763391 A1 EP 0763391A1 EP 96113055 A EP96113055 A EP 96113055A EP 96113055 A EP96113055 A EP 96113055A EP 0763391 A1 EP0763391 A1 EP 0763391A1
Authority
EP
European Patent Office
Prior art keywords
forces
rolling
rolls
axial forces
stand
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96113055A
Other languages
English (en)
French (fr)
Other versions
EP0763391B1 (de
Inventor
Wolfgang Prof. Dr. Rohde
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SMS Siemag AG
Original Assignee
SMS Schloemann Siemag AG
Schloemann Siemag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SMS Schloemann Siemag AG, Schloemann Siemag AG filed Critical SMS Schloemann Siemag AG
Publication of EP0763391A1 publication Critical patent/EP0763391A1/de
Application granted granted Critical
Publication of EP0763391B1 publication Critical patent/EP0763391B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/58Roll-force control; Roll-gap control
    • B21B37/62Roll-force control; Roll-gap control by control of a hydraulic adjusting device
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • B21B37/38Control of flatness or profile during rolling of strip, sheets or plates using roll bending
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/10Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll-gap, e.g. pass indicators
    • B21B38/105Calibrating or presetting roll-gap
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B1/30Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
    • B21B1/32Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2265/00Forming parameters
    • B21B2265/12Rolling load or rolling pressure; roll force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B2273/00Path parameters
    • B21B2273/04Lateral deviation, meandering, camber of product

Definitions

  • the invention relates to a method for compensating forces or force components, resulting from horizontal movements of the rolls in roll stands for the hot and cold rolling of flat products, equipped with work rolls and with one or more backup rolls, with hydraulic adjustments and with force measuring devices on the opposite side of the Roll gap and with hydraulic devices for horizontal displacement of the work rolls.
  • Figure 1 describes the basic problem by way of example on the upper support roller 1 of a four-high stand.
  • the horizontally acting forces T are line-volatile vectors, ie they can be shifted along their line of action. As a result, it is irrelevant on which side of the stand the roller is locked. In principle, such pairs of forces always arise from the axial force in the contact area with the neighboring roller. The individual forces overlap and are expressed in different axial forces on everyone involved Rolls with correspondingly difficult to overlook reaction forces in the roll stands.
  • reaction forces in the roll stands have extremely adverse effects.
  • the screwing direction of all the rollers involved also changes.
  • the rollers run to the opposite side, which results in a reversal of the axial forces.
  • the reaction forces in the roll stands change accordingly, with the result that the force measuring devices arranged in the stands report changes which are not related to the actual rolling process.
  • the result is incorrect reactions of all control loops, which depend on the forces measured in the roll stands, such as flatness control, automatic calibration for parallel adjustment of the roll gap, roll alignment control to compensate for the effects of an eccentric position of the rolled product and other control loops, depending on Type of mill stand and rolled product.
  • the object is achieved with a method for compensating forces or force components, resulting from horizontal movements of the rolls in roll stands according to the type mentioned at the beginning with the features of claim 1.
  • the invention opens up the possibility of continuously determining all the straying forces occurring in a roll stand from horizontal movements of the rolls and of compensating the force components resulting therefrom in the measured roll forces. Further embodiments of the invention are the subject of claims 2 to 7.
  • Modern roll stands for cold and hot rolled flat products are now almost exclusively equipped with hydraulic adjustment 2 as an actuator for the thickness control.
  • the adjusting cylinders of the hydraulic adjustment are located above the upper support roll chocks 3 or below the lower support roll chocks 4.
  • force measuring devices 5 are also located on the opposite side of the stand from the roll gap in the two roll stands, with which the forces occurring in the rolling process measured continuously in the two roll stands.
  • the two hydraulic cylinders of the hydraulic adjustment preferably supply additional measured values for the forces in the two roll stands via the hydraulic pressure, so that a total of measured values for the forces in the two roll stands above the upper support roll chocks and below the lower support roll chocks are available without additional effort.
  • Another feature of modern roll stands for the hot and cold rolling of flat products are displaceable work rolls 6, for example for influencing the roll gap profile or to even out the roll wear.
  • the work rolls 6 are shifted with the aid of hydraulic cylinders 7. Regardless of whether the two work rolls are shifted during an operating phase or in a particular one Position, 7 pressures arise in the hydraulic cylinders depending on the axial forces emanating from the work rolls 6. The axial forces of the work rolls can therefore be determined in a preferred manner without additional effort by measuring the pressure in the displacement cylinders. This provides a total of six measured values for vertical and horizontal forces in the roll stand.
  • Figure 2 shows an analysis of the forces in a roll stand. Only the forces F from the rolling process and the axial forces T of the rolls were recorded. The representation of balancing forces, bending forces and weight forces has been omitted because the compensation of these forces is known.
  • Figure 3 shows the composition of the equation set.
  • a center deviation X for the position of the resulting rolling force in the roll gap (cf. FIG. 2).
  • This quantity can also be derived continuously from the six measured values in the rolling operation.
  • the equation for the center deviation X is given in FIG. 3.
  • the size X can be used for automatic calibration, i.e. for the automatic parallel positioning of the two work rolls, by prestressing the stand without rolling stock with rotating rolls after a roll change and calculating the eccentricity X calculated from the six measured values.
  • the value X is regulated to zero, with the result that the upper and lower rollers are perfectly parallel.
  • a further use of the center deviation X is the monitoring of the rolling process, in particular in the case of reversing stands, in which the strip or the sheet can run from the center of the stand.
  • the center deviation X can be used to report such events and to make a corresponding correction.
  • the automatic calibration and monitoring of the rolling process can also take place in that instead of introducing a center deviation, the measured forces F 1 to F 4 are corrected (compensated) with the aid of the calculable reaction forces from the axial forces.
  • the required equations for the sum of the reaction forces all the rolls involved are indicated by R 1 to R 4 in FIG. 4.
  • the measured values F 1 to F 4 can be used in a manner known per se by forming the difference F 1 minus F 2 or F 3 minus F 4 for the roll calibration and for monitoring the rolling process.
  • the measured values for the axial forces in the upper or lower stand area are always included in the evaluation as difference values.
  • the frictional forces contained in the measured values are not included in the evaluation, provided that the frictional forces on both sides of the frame are the same.
  • FIG. 4 shows the set of equations for the reaction forces from the axial forces and for the reaction forces from the eccentricity of the rolling force.
  • FIG. 5 contains a calculation example with assumed roll stand data and roll data and the roll axial forces and reaction forces calculated therefrom with the aid of the equations given above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Press Drives And Press Lines (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)
  • Electrically Operated Instructional Devices (AREA)

Abstract

Ein Verfahren zur Kompensation von Kräften bzw. Kraftanteilen, resultierend aus Horizontalbewegungen der Walzen (6) in Walzgerüsten für das Warm- und Kaltwalzen von Flachprodukten, ausgerüstet mit Arbeitswalzen (6) und mit einer oder mehreren Stützwalzen (1), mit hydraulischen Anstellungen (2) und mit Kraftmeßeinrichtungen (5) auf der gegenüberliegenden Seite des Walzspaltes und mit hydraulischen Einrichtungen (7) zur Horizontalverschiebung der Arbeitswalzen (6) zeichnet sich dadurch aus, daß die Drücke in den beiden Anstellzylindern zur Bestimmung der Walzkräfte auf einer Seite des Walzspaltes und die angezeigten Kräfte der Kraftmeßeinrichtungen (5) zur Bestimmung der Walzkräfte auf der gegenüberliegenden Seite des Walzspaltes herangezogen werden, und daß unter Einbeziehung der über die Drücke in den Verschiebezylindern (7) der Arbeitswalzen (6) bestimmbaren Arbeitswalzen-Axialkräfte sämtliche Axialkräfte im Gerüst während des Walzbetriebes rechnerisch bestimmt werden. <IMAGE>

Description

  • Die Erfindung betrifft ein Verfahren zur Kompensation von Kräften bzw. Kraftanteilen, resultierend aus Horizontalbewegungen der Walzen in Walzgerüsten für das Warm- und Kaltwalzen von Flachprodukten, ausgerüstet mit Arbeitswalzen und mit einer oder mehreren Stützwalzen, mit hydraulischen Anstellungen und mit Kraftmeßeinrichtungen auf der gegenüberliegenden Seite des Walzspaltes und mit hydraulischen Einrichtungen zur Horizontalverschiebung der Arbeitswalzen.
  • Bei der Walzung von Flachprodukten in Warm- und Kaltwalzanlagen besteht das Problem, daß alle beteiligten Walzen während des Walzprozesses in unterschiedlicher Richtung axial im Gerüst verlaufen und durch Andrücken an die jeweils vorhandenen Verriegelungen Axialkräfte erzeugen. Aus diesen Axialkräften entstehen mit der zugeordneten Reaktionskraft im Abstand von Walzenmitte bis zur Berührung mit der Nachbarwalze freie Kräftepaare. Jedes dieser Kräftepaare bewirkt Reaktionskräfte in den Walzenlagern und damit in den beiden Ständerholmen des Gerüstes.
  • Figur 1 beschreibt das Grundproblem beispielhaft an der oberen Stützwalze 1 eines Quarto-Gerüstes. Die horizontal wirkenden Kräfte T sind linienflüchtige Vektoren, d.h., sie können längs ihrer Wirkungslinie verschoben werden. Demzufolge ist es belanglos, auf welcher Seite des Gerüstes die Walze verriegelt ist. Grundsätzlich entstehen solche Kräftepaare immer durch die Axialkraft im Kontaktbereich zur Nachbarwalze. Die einzelnen Kräfte überlagern sich und äußern sich in unterschiedlichen Axialkräften an allen beteiligten Walzen mit entsprechend schwer zu übersehenden Reaktionskräften in den Walzenständern.
  • Insbesondere bei Reversiergerüsten zeigen die Reaktionskräfte in den Walzenständern außerordentlich nachteilige Wirkungen. Bei Umkehrung der Drehrichtung ändert sich auch die Schraubrichtung aller beteiligten Walzen. Die Walzen laufen zur jeweils gegenüberliegenden Seite, was eine Umkehr der Axialkräfte zur Folge hat. Die Reaktionskräfte in den Walzenständern ändern sich entsprechend, mit dem Ergebnis, daß die in den Ständern angeordneten Kraftmeßeinrichtungen Veränderungen melden, die mit dem eigentlichen Walzprozeß nicht in Verbindung stehen. Die Folge sind fehlerhafte Reaktionen aller Regelkreise, die von den in den Walzenständern gemessenen Kräften abhängen, wie die Planheitsregelung, die automatische Kalibrierung zur parallelen Einstellung des Walzspaltes, die Roll Alignment Control zur Kompensation der Wirkungen einer außermittigen Lage des Walzproduktes und weitere Regelkreise, je nach Art des Walzgerüstes und des Walzproduktes.
  • Es ist bereits Stand der Technik, im Gerüst entstehende vertikale Kräfte, wie bspw. Kräfte aus den Eigengewichten, der Walzenbalancierung und der Walzenbiegung rechnerisch oder meßtechnisch zu erfassen und bei der Messung der Kräfte in den beiden Walzenständern zu berücksichtigen. Solche Kompensationen wurden jedoch für die Reaktionskräfte aus den beschriebenen Axialkräften der Walzen nicht durchgeführt.
  • Es besteht demzufolge die Aufgabe, die Reaktionskräfte in den Walzenständern ohne Einrichtung zusätzlicher Meßstellen im Walzgerüst mit ausreichender Sicherheit zu bestimmen.
  • Die Lösung der Aufgabe gelingt bei einem Verfahren zur Kompensation von Kräften bzw. Kraftanteilen, resultierend aus Horizontalbewegungen der Walzen in Walzgerüsten gemäß der eingangs genannten Gattung mit den Merkmalen des Anspruchs 1.
  • Die Erfindung eröffnet die Möglichkeit, alle in einem Walzgerüst auftretenden, vagabundierenden Kräfte aus Horizontalbewegungen der Walzen kontinuierlich zu bestimmen und die hieraus resultierenden Kraftanteile in den gemessenen Walzkräften zu kompensieren. Weitere Ausgestaltungen der Erfindung sind Gegenstand der Ansprüche 2 bis 7.
  • Die Erfindung wird anhand der Fig. 2 bis Fig. 5 näher beschrieben.
  • Moderne Walzgerüste für kalt- und warmgewalzte Flachprodukte werden heute nahezu ausschließlich mit hydraulischen Anstellungen 2 als Stellglied für die Dickenregelung ausgerüstet. Die Anstellzylinder der hydraulischen Anstellung befinden sich oberhalb der oberen Stützwalzeneinbaustücke 3 oder unterhalb der unteren Stützwalzeneinbaustücke 4. In einer bevorzugten Ausführungsform befinden sich zusätzlich auf der vom Walzspalt her gesehen gegenüberliegenden Seite des Gerüstes in den beiden Walzenständern Kraftmeßeinrichtungen 5, mit denen die im Walzprozeß auftretenden Kräfte in den beiden Walzenständern kontinuierlich gemessen werden.
  • Die beiden Hydraulikzylinder der hydraulischen Anstellung liefern über den Hydraulikdruck in bevorzugter Weise zusätzliche Meßwerte für die Kräfte in den beiden Walzenständern, so daß insgesamt ohne zusätzlichen Aufwand Meßwerte für die Kräfte in den beiden Walzenständern oberhalb der oberen Stützwalzeneinbaustücke und unterhalb der unteren Stützwalzeneinbaustücke zur Verfügung stehen.
  • Ein weiteres Merkmal moderner Walzgerüste für das Warm- und Kaltwalzen von Flachprodukten sind verschiebbare Arbeitswalzen 6, z.B. für die Beeinflussung des Walzspaltprofils oder zur Vergleichmäßigung des Walzenverschleißes. In einer bevorzugten Ausführungsform erfolgt das Verschieben der Arbeitswalzen 6 mit Hilfe von Hydraulikzylindern 7. Unabhängig davon, ob während einer Betriebsphase die beiden Arbeitswalzen verschoben werden oder sich in einer bestimmten Position befinden, entstehen in den Hydraulikzylindern 7 Drücke in Abhängigkeit von den von den Arbeitswalzen 6 ausgehenden Axialkräften. Die Axialkräfte der Arbeitswalzen können demzufolge in bevorzugter Weise ohne zusätzlichen Aufwand durch Druckmessung in den Verschiebezylindern bestimmt werden. Hiermit stehen insgesamt sechs Meßwerte für vertikale und horizontale Kräfte im Walzgerüst zur Verfügung.
  • Figur 2 zeigt eine Analyse der Kräfte in einem Walzgerüst. Aufgenommen wurden lediglich die Kräfte F aus dem Walzprozeß und die Axialkräfte T der Walzen. Auf die Darstellung von Balancierkräften, Biegekräften und Gewichtskräften wurde verzichtet, da die Kompensation dieser Kräfte bekannt ist.
  • Der Ansatz der Gleichgewichtsbedingungen für horizontale Kräfte T, vertikale Kräfte F und Momente M am oberen und unteren Walzensatz führt zu insgesamt sechs Gleichungen. Diese sechs nachfolgenden Gleichungen GL geben das Kräftegleichgewicht wie folgt wieder:
  • Gerüst oben:
  • (1) vertikale Kräfte F:   F w - F 1 - F 2 = 0 GL (2) horizontale Kräfte T:   T w - T 1 - T 2 = 0 GL (3) Momente M:   F w ·X - F 1 · a 2 + F 2 · a 2 - T 2 (r A + r S ) + T w (2r A + r S ) = 0 GL
    Figure imgb0001
  • Gerüst unten:
  • (4) vertikale Kräfte F:   F w - F 3 - F 4 = 0 GL (5) horizontale Kräfte T:   T w + T 3 + T 4 = 0 GL (6) Momente M:   F w ·X - F 3 · a 2 + F 4 · a 2 - T 3 (r A + r S ) - T w (2r A + r S ) = 0 GL
    Figure imgb0002
  • Aus diesen sechs Gleichungen lassen sich mit mathematischen Umformungen die Gleichungen für die von den Stützwalzen ausgehenden Kräfte T1 und T4 sowie die im Walzspalt auftretende Tangentialkraft Tw bestimmen. Damit sind alle im Gerüst auftretenden horizontal wirkenden Kräfte bekannt.
  • Figur 3 zeigt die Zusammenstellung des Gleichungssatzes.
  • Von besonderem Interesse ist die Ableitung einer Mittenabweichung X für die Lage der resultierenden Walzkraft im Walzspalt (vgl. Fig. 2). Diese Größe läßt sich ebenfalls aus den sechs Meßwerten im Walzbetrieb kontinuierlich ableiten. Die Gleichung für die Mittenabweichung X ist in Fig. 3 angegeben. Die Größe X kann herangezogen werden für die automatische Kalibrierung, d.h. für das automatische Parallelstellen der beiden Arbeitswalzen, indem nach einem Walzenwechsel das Gerüst ohne Walzgut mit drehenden Walzen vorgespannt und die aus den sechs Meßwerten errechnete Außermittigkeit X errechnet wird. Durch Schwenken mit der hydraulischen Anstellung wird der Wert X auf Null geregelt mit dem Ergebnis einer einwandfreien Parallellage von oberer und unterer Walze.
  • Eine weitere Verwendung der Mittenabweichung X ist die Überwachung des Walzprozesses, insbesondere bei Reversiergerüsten, bei denen ein Verlaufen des Bandes bzw. des Bleches aus der Gerüstmitte eintreten kann. Die Mittenabweichung X kann zur Meldung solcher Ereignisse und zu einer entsprechenden Korrektur herangezogen werden.
  • Selbstverständlich kann die automatische Kalibrierung und Überwachung des Walzprozesses auch dadurch erfolgen, daß anstelle der Einführung einer Mittenabweichung eine Korrektur (Kompensation) der gemessenen Kräfte F1 bis F4 mit Hilfe der errechenbaren Reaktionskräfte aus den Axialkräften erfolgt. Die hierzu erforderlichen Gleichungen für die Summe der Reaktionskräfte aus allen beteiligten Walzen sind mit R1 bis R4 in Figur 4 angegeben. Nach einer solchen Kompensation können die Meßwerte F1 bis F4 in an sich bekannter Weise durch Differenzbildung F1 minus F2 bzw. F3 minus F4 für die Walzenkalibrierung und für die Überwachung des Walzprozesses herangezogen werden.
  • In den Gleichungen zur Bestimmung der Walzen-Axialkräfte und der Außermittigkeit zeigt sich als besonders vorteilhaft, daß die Meßwerte für die Axialkräfte im oberen bzw. unteren Gerüstbereich immer als Differenzwerte in die Auswertung eingehen. Dies hat zur Folge, daß die in den Meßwerten enthaltenen Reibungskräfte, insbesondere bei den Meßwerten aus den Anstellzylindern nicht in die Auswertung eingehen, soweit die Reibungskräfte auf beiden Gerüstseiten gleich groß sind. Dies gilt für eine Aufnahme der Meßwerte während beidseitiger Zufahrbewegungen oder beidseitiger Auffahrbewegungen der hydraulischen Anstellungen. Bei einer Schwenkbewegung würden sich die Reibungskräfte beider Gerüstseiten addieren. Die Meßwertaufnahme während einer Schwenkbewegung ist deshalb im betrieblichen Ablauf zu unterdrücken.
  • Als vorteilhaft erweist sich auch die Nutzung der gemessenen und errechneten Axialkräfte T1 bis T4 und Tw zur Überwachung des Erhaltungszustandes und der einwandfreien Walzenschliffe. Hoher Verschleißzustand und Fehler im Walzenschliff erhöhen die Verschränkung der Walzen zueinander und führen zu erhöhten Axialkräften. Die Anzeige dieser Kräfte ist demzufolge ein hervorragendes Mittel zur kontinuierlichen Überwachung des Walzwerks.
  • Figur 4 zeigt den Gleichungssatz für die Reaktionskräfte aus den Axialkräften und für die Reaktionskräfte aus der Außermittigkeit der Walzkraft.
  • Figur 5 enthält ein Rechenbeispiel mit angenommenen Walzgerüstdaten und Walzdaten und den hieraus mit Hilfe der oben angegebenen Gleichungen errechneten Walzen-Axialkräfte und Reaktionskräfte.

Claims (9)

  1. Verfahren zur Kompensation von Kräften bzw. Kraftanteilen, resultierend aus Horizontalbewegungen der Walzen in Walzgerüsten für das Warm- und Kaltwalzen von Flachprodukten, ausgerüstet mit Arbeitswalzen und mit einer oder mehreren Stützwalzen, mit hydraulischen Anstellungen und mit Kraftmeßeinrichtungen auf der gegenüberliegenden Seite des Walzspaltes und mit hydraulischen Einrichtungen zur Horizontalverschiebung der Arbeitswalzen,
    dadurch gekennzeichnet,
    daß die Drücke in den beiden Anstellzylindern zur Bestimmung der Walzkräfte auf einer Seite des Walzspaltes und die angezeigten Kräfte der Kraftmeßeinrichtungen zur Bestimmung der Walzkräfte auf der gegenüberliegenden Seite des Walzspaltes herangezogen werden, und daß unter Einbeziehung der über die Drücke in den Verschiebezylindern der Arbeitswalzen bestimmbaren Arbeitswalzen-Axialkräfte sämtliche Axialkräfte im Gerüst während des Walzbetriebes rechnerisch bestimmt werden.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß aus den gemessenen und errechneten Axialkräften der Walzen Korrekturwerte für die Walzkraftanzeigen in den beiden Walzenständern abgeleitet werden, um die Reaktionskräfte der Axialkräfte zu kompensieren.
  3. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß aus den vier gemessenen Walzkräften und den zwei gemessenen Axialkräften rechnerisch die aktuelle Außermittigkeit der Walzkraft bestimmt wird.
  4. Verfahren nach Anspruch 1 und Anspruch 3,
    dadurch gekennzeichnet,
    daß die errechnete Außermittigkeit der Walzkraft bei der Kalibrierung des Walzgerüstes zum Parallelstellen der Walzen auf Null geregelt wird.
  5. Verfahren nach Anspruch 1 bis 4,
    dadurch gekennzeichnet,
    daß die aus den Axialkräften resultierenden Reaktionskräfte in den beiden Walzenständern zugeordneten Dehnungen rechnerisch bestimmt und durch entsprechende Zustellung der hydraulischen Anstellungen kompensiert werden.
  6. Verfahren nach Anspruch 4,
    dadurch gekennzeichnet,
    daß bei Durchführung der automatischen Kalibrierung die sechs Meßwerte für Walzkräfte und Axialkräfte nur während einer auf beiden Gerüstseiten ausgeführten gleichgerichteten Verstellbewegung aufgenommen werden.
  7. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die gemessenen und errechneten Axialkräfte T1 bis T4 und Tw zur Überwachung des Erhaltungszustandes kontinuierlich angezeigt werden.
  8. Verfahren nach Anspruch 1 und 2,
    dadurch gekennzeichnet,
    daß nach Kompensation der Walzkraftanzeigen mit den aus den Axialkräften errechneten Reaktionskräften die verbleibende Differenz der Walzkraftanzeigen im oberen bzw. unteren Teil des Gerüstes zum Parallelstellen der Walzen auf Null geregelt wird.
  9. Verfahren nach Anspruch 1 und 2,
    dadurch gekennzeichnet,
    daß nach Kompensation der Walzkraftanzeigen mit den aus den Axialkräften errechneten Reaktionskräften die verbleibende Differenz der Walzkraftanzeigen im oberen bzw. unteren Teil des Gerüstes zur kontinuierlichen Überwachung des Walzprozesses herangezogen wird.
EP96113055A 1995-08-18 1996-08-14 Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten Expired - Lifetime EP0763391B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19530424 1995-08-18
DE19530424A DE19530424A1 (de) 1995-08-18 1995-08-18 Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten

Publications (2)

Publication Number Publication Date
EP0763391A1 true EP0763391A1 (de) 1997-03-19
EP0763391B1 EP0763391B1 (de) 2000-07-26

Family

ID=7769808

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96113055A Expired - Lifetime EP0763391B1 (de) 1995-08-18 1996-08-14 Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten

Country Status (12)

Country Link
US (1) US5714692A (de)
EP (1) EP0763391B1 (de)
JP (1) JP4057666B2 (de)
KR (1) KR100424527B1 (de)
CN (1) CN1069235C (de)
AT (1) ATE194932T1 (de)
CA (1) CA2182832C (de)
DE (2) DE19530424A1 (de)
ES (1) ES2149408T3 (de)
MY (1) MY120506A (de)
RU (1) RU2194585C2 (de)
TW (1) TW315331B (de)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0875303A2 (de) * 1997-05-02 1998-11-04 Sms Schloemann-Siemag Aktiengesellschaft Verfahren zum Betreiben eines Walzwerks für das Warm- und Kaltwalzen von Flachprodukten
EP0985461A1 (de) * 1998-02-27 2000-03-15 Nippon Steel Corporation Flachwalzverfahren und blechwalzwerk
AU777487B2 (en) * 1998-02-27 2004-10-21 Nippon Steel & Sumitomo Metal Corporation Strip rolling method and strip rolling mill
CN101972779A (zh) * 2010-11-05 2011-02-16 南京钢铁股份有限公司 一种四辊可逆轧机零位标定和辊缝定位的方法
CN102256717B (zh) * 2008-12-18 2013-11-06 Sms西马格股份公司 用于校正轧机机架中两个共同作用的工作辊子的方法
CN108284136A (zh) * 2018-01-19 2018-07-17 山东钢铁集团日照有限公司 一种提高精轧机辊缝标定精度的方法
EP3838433A4 (de) * 2018-08-13 2022-04-13 Nippon Steel Corporation Verfahren zur identifizierung des angriffspunkts der schubreaktionskraft und walzverfahren für gewalztes material

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5943906A (en) * 1997-09-12 1999-08-31 Valmet Automation Inc. Method for operating a traversing sensor apparatus
SE530055C2 (sv) * 2006-06-30 2008-02-19 Abb Ab Förfarande och anordning för styrning av valsgap vid valsning av ett band
CN103203372B (zh) * 2012-01-11 2015-05-20 宝山钢铁股份有限公司 消除热连轧机静态偏差值的控制方法
DE102012107185A1 (de) 2012-08-06 2014-02-06 Witte Automotive Gmbh Riegelverschluss für Kraftfahrzeugtüren, -sitze oder -rückenlehnen mit Klapperschutz
CN104070072B (zh) * 2013-03-27 2016-02-24 宝山钢铁股份有限公司 一种零调工作辊开轧辊缝的调平方法
DE102015204275B3 (de) * 2015-03-10 2016-05-12 Siltronic Ag Verfahren zur Wiederaufnahme eines Drahttrennläppvorgangs mit strukturiertem Sägedraht nach Unterbrechung
CN105921525B (zh) * 2016-05-05 2017-09-01 广西柳州银海铝业股份有限公司 连轧机组的带材尾部纠偏方法
CN205659983U (zh) * 2016-06-15 2016-10-26 日照宝华新材料有限公司 一种esp生产线用长公里数轧制辊
TWI622435B (zh) * 2016-11-24 2018-05-01 財團法人金屬工業研究發展中心 金屬板材輥軋曲彎成形回彈補償機構
CN109604490A (zh) * 2017-08-11 2019-04-12 丽水市信裕机械制造有限公司 一种螺旋折流板的防折断旋轧装置
JP6832309B2 (ja) * 2018-03-27 2021-02-24 スチールプランテック株式会社 圧延機及び圧延機の制御方法
CN112453343B (zh) * 2020-11-30 2022-02-01 中冶赛迪技术研究中心有限公司 一种连铸扇形段辊缝在线补偿的方法
CN112808381B (zh) * 2021-01-04 2022-08-16 中冶长天国际工程有限责任公司 一种破碎机辊缝调节装置、破碎机及破碎机辊缝控制方法
CN113916279B (zh) * 2021-08-30 2023-04-21 北京科技大学 一种楔横轧成形轴向轧制力与轧件转速测量装置
CN114101340B (zh) * 2021-12-01 2022-07-29 燕山大学 一种轧辊横移位置误差的补偿方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2041269A (en) * 1979-01-17 1980-09-10 Hitachi Ltd Method and apparatus for correcting asymmetrical condition in rolling mill
US4485649A (en) * 1981-10-16 1984-12-04 Davy Mckee (Sheffield) Limited Rolling mill control system
JPS61182816A (ja) * 1985-02-07 1986-08-15 Ishikawajima Harima Heavy Ind Co Ltd 上下非対称圧延機のロ−ル平行度制御方法及びその装置
JPS62137116A (ja) * 1985-12-10 1987-06-20 Toshiba Corp 多段圧延機の板厚制御装置
US4898014A (en) * 1988-12-23 1990-02-06 United Engineering, Inc. Roll shifting system for rolling mills
JPH06199510A (ja) * 1992-12-24 1994-07-19 Nec Corp M4 c6 0 製造方法
JPH07144210A (ja) * 1993-11-25 1995-06-06 Ishikawajima Harima Heavy Ind Co Ltd ワークロールの板道軽減装置および板道軽減方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2166153A (en) * 1935-08-03 1939-07-18 Hoe & Co R Matrix making machine with pressure indicator
US3383591A (en) * 1964-10-14 1968-05-14 United States Steel Corp Method and apparatus for indicating wear on rolls by combining signals proportional to rolling force and speed
US3918302A (en) * 1973-09-20 1975-11-11 British Steel Corp Rolling mill test equipment
US4033183A (en) * 1976-10-08 1977-07-05 Bethlehem Steel Corporation Horizontal- and vertical-roll force measuring system
JPS5580024A (en) * 1978-12-12 1980-06-16 Fuji Electric Co Ltd Device for detecting tension and compressive force between stands in continuous rolling mill
JPS6038208B2 (ja) * 1980-02-25 1985-08-30 新日本製鐵株式会社 スタンド間張力圧縮力の検出方法
JPS61212416A (ja) * 1985-03-19 1986-09-20 Nisshin Steel Co Ltd 作業ロ−ルの摩耗プロフイル調整方法
FR2611542B1 (fr) * 1987-02-25 1989-05-26 Siderurgie Fse Inst Rech Procede et dispositif pour la mesure de l'effort de serrage entre les cylindres d'une cage de laminage
US4974442A (en) * 1989-04-26 1990-12-04 Westinghouse Electric Corp. Method and apparatus for calibrating rolling mill on-line load measuring equipment
DE3942452A1 (de) * 1989-12-22 1991-06-27 Schloemann Siemag Ag Ermittlung der federkennlinie eines vor- und fertiggeruestes
JPH0832335B2 (ja) * 1990-10-03 1996-03-29 日立造船株式会社 圧延機における圧延ロールの支持構造
FR2672542B1 (fr) * 1991-02-11 1994-02-11 Komori Chambon Sa Dispositif de detection, dans une machine, de la position de contact de deux cylindres d'axes paralleles.
GB2253719A (en) * 1991-03-15 1992-09-16 China Steel Corp Ltd Compensating roll eccentricity of a rolling mill

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2041269A (en) * 1979-01-17 1980-09-10 Hitachi Ltd Method and apparatus for correcting asymmetrical condition in rolling mill
US4485649A (en) * 1981-10-16 1984-12-04 Davy Mckee (Sheffield) Limited Rolling mill control system
JPS61182816A (ja) * 1985-02-07 1986-08-15 Ishikawajima Harima Heavy Ind Co Ltd 上下非対称圧延機のロ−ル平行度制御方法及びその装置
JPS62137116A (ja) * 1985-12-10 1987-06-20 Toshiba Corp 多段圧延機の板厚制御装置
US4898014A (en) * 1988-12-23 1990-02-06 United Engineering, Inc. Roll shifting system for rolling mills
JPH06199510A (ja) * 1992-12-24 1994-07-19 Nec Corp M4 c6 0 製造方法
JPH07144210A (ja) * 1993-11-25 1995-06-06 Ishikawajima Harima Heavy Ind Co Ltd ワークロールの板道軽減装置および板道軽減方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 011, no. 006 (M - 551) 8 January 1987 (1987-01-08) *
PATENT ABSTRACTS OF JAPAN vol. 011, no. 360 (M - 645) 25 November 1987 (1987-11-25) *
PATENT ABSTRACTS OF JAPAN vol. 018, no. 558 (C - 1264) 25 October 1994 (1994-10-25) *
PATENT ABSTRACTS OF JAPAN vol. 95, no. 006 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6142000A (en) * 1997-05-02 2000-11-07 Sms Schloemann-Siemag Aktiengesellschaft Method of operating a rolling mill for hot-rolling and cold-rolling of flat products
EP0875303A3 (de) * 1997-05-02 2000-01-12 Sms Schloemann-Siemag Aktiengesellschaft Verfahren zum Betreiben eines Walzwerks für das Warm- und Kaltwalzen von Flachprodukten
EP0875303A2 (de) * 1997-05-02 1998-11-04 Sms Schloemann-Siemag Aktiengesellschaft Verfahren zum Betreiben eines Walzwerks für das Warm- und Kaltwalzen von Flachprodukten
AU777487B2 (en) * 1998-02-27 2004-10-21 Nippon Steel & Sumitomo Metal Corporation Strip rolling method and strip rolling mill
EP0985461A4 (de) * 1998-02-27 2003-03-12 Nippon Steel Corp Flachwalzverfahren und blechwalzwerk
US6619087B2 (en) 1998-02-27 2003-09-16 Nippon Steel Corporation Strip rolling method and strip rolling mill
EP0985461A1 (de) * 1998-02-27 2000-03-15 Nippon Steel Corporation Flachwalzverfahren und blechwalzwerk
EP1757377A1 (de) * 1998-02-27 2007-02-28 Nippon Steel Corporation Kalibrierverfahren für Bandwalzwerk und entsprechende Vorrichtung
EP1757378A1 (de) * 1998-02-27 2007-02-28 Nippon Steel Corporation Kalibrierverfahren für Bandwalzwerk und entsprechende Vorrichtung
EP1757379A1 (de) 1998-02-27 2007-02-28 Nippon Steel Corporation Verfahren zum Walzen von Band und Bandwalzwerk
CN102256717B (zh) * 2008-12-18 2013-11-06 Sms西马格股份公司 用于校正轧机机架中两个共同作用的工作辊子的方法
CN101972779A (zh) * 2010-11-05 2011-02-16 南京钢铁股份有限公司 一种四辊可逆轧机零位标定和辊缝定位的方法
CN108284136A (zh) * 2018-01-19 2018-07-17 山东钢铁集团日照有限公司 一种提高精轧机辊缝标定精度的方法
EP3838433A4 (de) * 2018-08-13 2022-04-13 Nippon Steel Corporation Verfahren zur identifizierung des angriffspunkts der schubreaktionskraft und walzverfahren für gewalztes material

Also Published As

Publication number Publication date
JPH09103815A (ja) 1997-04-22
JP4057666B2 (ja) 2008-03-05
ES2149408T3 (es) 2000-11-01
ATE194932T1 (de) 2000-08-15
EP0763391B1 (de) 2000-07-26
CA2182832A1 (en) 1997-02-19
CA2182832C (en) 2007-07-31
DE19530424A1 (de) 1997-02-20
CN1149512A (zh) 1997-05-14
KR100424527B1 (ko) 2004-05-24
RU2194585C2 (ru) 2002-12-20
CN1069235C (zh) 2001-08-08
US5714692A (en) 1998-02-03
MY120506A (en) 2005-11-30
KR970009913A (ko) 1997-03-27
TW315331B (de) 1997-09-11
DE59605639D1 (de) 2000-08-31

Similar Documents

Publication Publication Date Title
EP0763391B1 (de) Verfahren zur Kompensation von aus Horizontalbewegungen der Walzen resultierenden Kräften an Walzgerüsten
DE3712043C2 (de) Walzgerüst mit axial verschiebbaren Walzen
EP1761345B1 (de) Vorrichtung zur beaufschlagung der führungsflächen von in den ständerfenstern von walzgerüsten gerührten lagereinbaustücken
DE69731008T2 (de) Walzverfahren für Bänder zur Reduzierung der Kantenschärfe
DE60122069T2 (de) Walzwerk mit Bandprofilerfassungseinrichtung und Bandprofilerfassungsverfahren
DE3115461C2 (de)
EP0399296B1 (de) Automatisches Einrichten eines Universalwalzgerüstes nach dessen Umbau auf neue Profilformate
DE1809639A1 (de) Verfahren und Vorrichtung zur automatischen Steuerung eines Walzwerks
DE2416867A1 (de) Verfahren zur kompensierung von walzenunrundheiten an walzwerken, sowie walzwerk zur ausfuehrung des verfahrens
DE4136013C2 (de) Verfahren und Vorrichtung zum Steuern eines Walzwerks
EP0035009A1 (de) Vorrichtung zum Abstützen einer Arbeitswalze einer Blechbiege- oder -richtmaschine
DE3430034A1 (de) Planheitsregelung an bandwalzgeruesten
DE3314466A1 (de) Verfahren und vorrichtung zum steuern einer zwischengeruestspannung in einem kontinuierlichen walzwerk
EP0875303B1 (de) Verfahren zum Betreiben eines Walzwerks für das Warm- und Kaltwalzen von Flachprodukten
EP1112129A1 (de) Kombiniertes regelungssystem zur erzeugung bestimmter produkteigenschaften beim walzen von stahlqualitäten im austenitischen, gemischt austenitisch-ferritischen und ferritischen bereich
DE3516779C2 (de)
DE1933841A1 (de) Verfahren und Vorrichtung zum Warm- oder Kaltwalzen von Band- oder Blechmaterial
EP0698428A1 (de) Einrichtung zur Erfassung des Walzspaltes zwischen zwei Arbeitswalzen eines Walzgerüstes
DD229945A1 (de) Anordnung zur automatisierten steuerung, bilanzierung und diagnose von band- bzw. folienwalzprozessen
DE3811847C2 (de)
DE3637043A1 (de) Verfahren zum vorausbestimmten einhalten enger dickentoleranzen beim walzen von walzgut in warmbandstrassen
AT390741B (de) Walzwerk, insbesondere kaltwalzwerk
DE19854045A1 (de) Walzgerüst mit Stütz- und Arbeitswalzen
DE3537153A1 (de) Verfahren zur steuerung der walzkraft-verteilung an mehrwalzen-walzgeruesten
DE10202526B4 (de) Einrichtung zur Messung des Walzspaltes zwischen Arbeitswalzen eines Kalt- oder Warmwalzgerüstes

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE ES FI FR GB IT NL SE

17Q First examination report despatched

Effective date: 19981026

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SMS DEMAG AG

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE ES FI FR GB IT NL SE

REF Corresponds to:

Ref document number: 194932

Country of ref document: AT

Date of ref document: 20000815

Kind code of ref document: T

REF Corresponds to:

Ref document number: 59605639

Country of ref document: DE

Date of ref document: 20000831

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001002

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2149408

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20110825

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20110811

Year of fee payment: 16

Ref country code: NL

Payment date: 20110825

Year of fee payment: 16

BERE Be: lapsed

Owner name: *SMS DEMAG A.G.

Effective date: 20120831

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20131021

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120815

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59605639

Country of ref document: DE

Owner name: SMS GROUP GMBH, DE

Free format text: FORMER OWNER: SMS SIEMAG AKTIENGESELLSCHAFT, 40237 DUESSELDORF, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150821

Year of fee payment: 20

Ref country code: GB

Payment date: 20150819

Year of fee payment: 20

Ref country code: FI

Payment date: 20150812

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20150819

Year of fee payment: 20

Ref country code: FR

Payment date: 20150820

Year of fee payment: 20

Ref country code: AT

Payment date: 20150820

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150824

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59605639

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20160813

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 194932

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160814

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20160813