EP0763391B1 - Method of compensating forces resulting from horizontal movements of the rolls in a rolling stand - Google Patents
Method of compensating forces resulting from horizontal movements of the rolls in a rolling stand Download PDFInfo
- Publication number
- EP0763391B1 EP0763391B1 EP96113055A EP96113055A EP0763391B1 EP 0763391 B1 EP0763391 B1 EP 0763391B1 EP 96113055 A EP96113055 A EP 96113055A EP 96113055 A EP96113055 A EP 96113055A EP 0763391 B1 EP0763391 B1 EP 0763391B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- forces
- rolling
- rolls
- roll
- axial forces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 13
- 238000006073 displacement reaction Methods 0.000 claims abstract description 5
- 238000006243 chemical reaction Methods 0.000 claims description 18
- 238000012544 monitoring process Methods 0.000 claims description 6
- 238000005097 cold rolling Methods 0.000 claims description 4
- 238000005098 hot rolling Methods 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 238000012937 correction Methods 0.000 claims description 2
- 238000012423 maintenance Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 abstract description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000002411 adverse Effects 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000009530 blood pressure measurement Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013000 roll bending Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/58—Roll-force control; Roll-gap control
- B21B37/62—Roll-force control; Roll-gap control by control of a hydraulic adjusting device
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B37/00—Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
- B21B37/28—Control of flatness or profile during rolling of strip, sheets or plates
- B21B37/38—Control of flatness or profile during rolling of strip, sheets or plates using roll bending
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B38/00—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
- B21B38/10—Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring roll-gap, e.g. pass indicators
- B21B38/105—Calibrating or presetting roll-gap
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/30—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process
- B21B1/32—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a non-continuous process in reversing single stand mills, e.g. with intermediate storage reels for accumulating work
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2265/00—Forming parameters
- B21B2265/12—Rolling load or rolling pressure; roll force
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B2273/00—Path parameters
- B21B2273/04—Lateral deviation, meandering, camber of product
Definitions
- the invention relates to a method for compensating forces or force components, resulting from horizontal movements of the rolls in roll stands for the hot and cold rolling of flat products, equipped with work rolls and with one or more backup rolls, with hydraulic adjustments and with Force measuring devices on the opposite side of the roll gap and with hydraulic devices for the horizontal displacement of the work rolls.
- Figure 1 of the present application documents describes the basic problem of volatile and stray axial forces, for example on the upper one Back-up roller 1 of a four-high stand.
- the horizontally acting forces T are line-volatile Vectors, that is, they can be shifted along their line of action become. It is therefore irrelevant on which side of the stand the roller is locked.
- Such pairs of forces always arise from the axial force in the contact area to the neighboring roller.
- the individual forces overlap and express themselves in different axial forces on all the rollers involved correspondingly difficult to overlook reaction forces in the roll stands.
- reaction forces show in the roll stands extremely adverse effects.
- the screwing direction of all the rollers involved also changes.
- the rollers are running to the opposite side, which results in a reversal of the axial forces Has.
- the reaction forces in the roll stands change accordingly with the result that the force measuring devices arranged in the stands Report changes that are not related to the actual rolling process stand.
- the result is incorrect reactions of all control loops, which are carried out by the forces measured on the roll stands, such as the flatness control, the automatic calibration for parallel setting of the roll gap, the roll Alignment control to compensate for the effects of an off-center position of the Rolled product and other control loops, depending on the type of roll stand and the Rolled product.
- the invention opens up the possibility of all in one roll stand occurring vagabond forces from horizontal movements of the Rolls to determine continuously and the resulting To compensate for force components in the measured rolling forces. Further Embodiments of the invention are the subject of claims 2 to 7.
- Modern mill stands for cold and hot rolled flat products today almost exclusively with hydraulic adjustments 2 as Thickness control actuator equipped.
- the pitch cylinders the hydraulic adjustment are above the upper one Back-up roll chocks 3 or below the lower back-up roll chocks 4.
- Figure 2 shows an analysis of the forces in a roll stand. Recorded only the forces F from the rolling process and the axial forces T of the rollers. On the representation of balancing forces, Bending and weight forces have been omitted because of the compensation of these forces is known.
- Figure 3 shows the composition of the equation set.
- the derivation of a center deviation is of particular interest X for the position of the resulting rolling force in the roll gap (see Fig. 2).
- This size can also be determined from the six measured values in the Derive rolling operation continuously.
- the equation for the center deviation X is indicated in Fig. 3.
- the size X can be used are used for automatic calibration, i.e. for the automatic Parallel positioning of the two work rolls by changing the rolls the stand is pre-tensioned with rolling rollers without rolling stock and the eccentricity X calculated from the six measured values becomes.
- the Value X regulated to zero with the result of a flawless Parallel position of the upper and lower roller.
- the center deviation X can be used to report such Events and used for a corresponding correction become.
- the automatic calibration and monitoring of the rolling process can also take place in that instead of introducing a center deviation, the measured forces F 1 to F 4 are corrected (compensated) with the help of the calculable reaction forces from the axial forces.
- the equations required for this for the sum of the reaction forces from all the rolls involved are indicated by R 1 to R 4 in FIG. 4.
- the measured values F 1 to F 4 can be used in a manner known per se by forming the difference F 1 minus F 2 or F 3 minus F 4 for the roll calibration and for monitoring the rolling process.
- Figure 4 shows the equation set for the reaction forces from the Axial forces and for the reaction forces from the eccentricity the rolling force.
- FIG. 5 contains a calculation example with assumed roll stand data and rolling data and the data from them using the above Equations calculated roller axial forces and reaction forces.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Control Of Metal Rolling (AREA)
- Electrically Operated Instructional Devices (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Press Drives And Press Lines (AREA)
Abstract
Description
Die Erfindung betrifft ein Verfahren zur Kompensation von Kräften bzw. Kraftanteilen, resultierend aus Horizontalbewegungen der Walzen in Walzgerüsten für das Warm- und Kaltwalzen von Flachprodukten, ausgerüstet mit Arbeitswalzen und mit einer oder mehreren Stützwalzen, mit hydraulischen Anstellungen und mit Kraftmesseinrichtungen auf der gegenüberliegenden Seite des Walzspaltes und mit hydraulischen Einrichtungen zur Horizontalverschiebung der Arbeitswalzen.The invention relates to a method for compensating forces or force components, resulting from horizontal movements of the rolls in roll stands for the hot and cold rolling of flat products, equipped with work rolls and with one or more backup rolls, with hydraulic adjustments and with Force measuring devices on the opposite side of the roll gap and with hydraulic devices for the horizontal displacement of the work rolls.
Bei der Walzung von Flachprodukten in Warm- und Kaltwalzanlagen besteht das Problem, daß alle beteiligten Walzen während des Walzprozesses in unterschiedlicher Richtung axial im Gerüst verlaufen und durch Andrücken an die jeweils vorhandenen Verriegelungen Axialkräfte erzeugen. Aus diesen Axialkräften entstehen mit der zugeordneten Reaktionskraft im Abstand von Walzmitte bis zur Berührung mit der Nachbarwalze freie Kräftepaare. Jedes dieser Kräftepaare bewirkt Reaktionskräfte in den Walzenlagern und damit in den beiden Ständerräumen des Gerüstes.This applies to the rolling of flat products in hot and cold rolling plants Problem that all the rolls involved in the rolling process in different Axial direction in the scaffold and by pressing on the existing one Interlocks generate axial forces. These axial forces result with the assigned reaction force at a distance from the center of the roll to the point of contact free pairs of forces with the neighboring roller. Each of these pairs of forces causes reaction forces in the roller bearings and thus in the two stand spaces of the stand.
Es ist bereits Stand der Technik, im Gerüst entstehende vertikale Kräfte, beispielsweise Kräfte aus den Eigengewichten, der Walzenbalancierung und der Walzenbiegung rechnerisch oder meßtechnisch zu erfassen und bei der Messung der Kräfte in den beiden Walzenständern zu berücksichtigen. Solche Kompensationen werden jedoch für die Reaktionskräfte aus den beschriebenen Axialkräften der Walzen nicht durchgeführt.It is already state of the art, for example, vertical forces arising in the framework Forces from the dead weights, the roller balancing and the Roll bending to be calculated or measured and during measurement of the forces in the two roll stands. Such compensations are however for the reaction forces from the described axial forces the rollers are not performed.
In dem vorveröffentlichten Dokument GB 20 41 269 A wird ein Sechs-Walzengerüst
beschrieben, bei welchem die Zwischenwalzen gegensinnig verschoben
werden. Aus der Walzenverschiebung resultieren Kräfte und Momente,
die auf das Walzgerüst einwirken und ausgeregelt werden müssen. Hierzu ist ein
Regelkreis vorgesehen, bei welchem die Walzkräfte der unteren Stützwalze auf
beiden Seiten gemessen werden und ein Mittelwert gebildet wird. Ferner werden
die hydraulischen Kräfte der Verstellzylinder gemessen und gemittelt. Die gemittelten
Kräfte werden gegebenenfalls unter Einbeziehung eines Sollwertes einem
Regler zugeführt, der als Stellgröße die motorisch betätigte Anstellung der oberen
Stützwalzen beeinflußt. Dabei kommt es nicht darauf an, ob die Anstellung der
Stützwalzen elektromechanisch oder hydraulisch erfolgt. Eine Kompensation von
linienflüchtigen und vagabundierenden Axialkräfte an den Walzen und deren Reaktionskräfte
ist mit diesem vorbekannten Regelverfahren nicht beabsichtigt und
nicht möglich.In the previously published
Figur 1 der vorliegenden Anmeldungsunterlagen beschreibt das Grundproblem
von linienflüchtigen und vagabundierenden Axialkräfte beispielhaft an der oberen
Stützwalze 1 eines Quarto-Gerüstes. Die horizontal wirkenden Kräfte T sind linienflüchtige
Vektoren, das heißt, sie können längs ihrer Wirkungslinie verschoben
werden. Demzufolge ist es belanglos, auf welcher Seite des Gerüstes die Walze
verriegelt ist. Grundsätzlich entstehen solche Kräftepaare immer durch die Axialkraft
im Kontaktbereich zur Nachbarwalze. Die einzelnen Kräfte überlagern sich
und äußern sich in unterschiedlichen Axialkräften an allen beteiligten Walzen mit
entsprechend schwer zu übersehenden Reaktionskräften in den Walzenständern. Figure 1 of the present application documents describes the basic problem
of volatile and stray axial forces, for example on the upper one
Back-
Insbesondere bei Reversiergerüsten zeigen die Reaktionskräfte in den Walzenständern außerordentlich nachteilige Wirkungen. Bei Umkehrung der Drehrichtung ändert sich auch die Schraubrichtung aller beteiligten Walzen. Die Walzen laufen zur jeweils gegenüberliegenden Seite, was eine Umkehr der Axialkräfte zur Folge hat. Die Reaktionskräfte in den Walzenständern ändern sich entsprechend, mit dem Ergebnis, daß die in den Ständern angeordneten Kraftmeßeinrichtungen Veränderungen melden, die mit dem eigentlichen Walzprozeß nicht in Verbindung stehen. Die Folge sind fehlerhafte Reaktionen aller Regelkreise, die von den in den Walzenständern gemessenen Kräften abhängen, wie die Planheitsregelung, die automatische Kalibrierung zur parallelen Einstellung des Walzspaltes, die Roll Alignment Control zur Kompensation der Wirkungen einer außermittigen Lage des Walzproduktes und weitere Regelkreise, je nach Art des Walzgerüstes und des Walzproduktes.In the case of reversing stands in particular, the reaction forces show in the roll stands extremely adverse effects. When the direction of rotation is reversed the screwing direction of all the rollers involved also changes. The rollers are running to the opposite side, which results in a reversal of the axial forces Has. The reaction forces in the roll stands change accordingly with the result that the force measuring devices arranged in the stands Report changes that are not related to the actual rolling process stand. The result is incorrect reactions of all control loops, which are carried out by the forces measured on the roll stands, such as the flatness control, the automatic calibration for parallel setting of the roll gap, the roll Alignment control to compensate for the effects of an off-center position of the Rolled product and other control loops, depending on the type of roll stand and the Rolled product.
Es besteht die demzufolge die Aufgabe, die Reaktionskräfte in den Walzenständern ohne Einrichtung zusätzlicher Meßstellen im Walzgerüst mit ausreichender Sicherheit zu bestimmen.It is therefore the task of the reaction forces in the roll stands with no additional measuring points in the roll stand Determine security.
Die Lösung der Aufgabe gelingt bei einem Verfahren zur Kompensation von Kräften
bzw. Kraftanteilen, resultierend aus Horizontalbewegungen der Walzen in
Walzgerüsten gemäß der eingangs genannten Gattung mit den Merkmalen des
Anspruchs 1. The problem is solved with a method for compensating forces
or force components, resulting from horizontal movements of the rollers in
Roll stands according to the type mentioned at the beginning with the features of
Die Erfindung eröffnet die Möglichkeit, alle in einem Walzgerüst
auftretenden, vagabundierenden Kräfte aus Horizontalbewegungen der
Walzen kontinuierlich zu bestimmen und die hieraus resultierenden
Kraftanteile in den gemessenen Walzkräften zu kompensieren. Weitere
Ausgestaltungen der Erfindung sind Gegenstand der Ansprüche 2 bis
7.The invention opens up the possibility of all in one roll stand
occurring vagabond forces from horizontal movements of the
Rolls to determine continuously and the resulting
To compensate for force components in the measured rolling forces. Further
Embodiments of the invention are the subject of
Die Erfindung wird anhand der Fig. 2 bis Fig. 5 näher beschrieben.The invention is described in more detail with reference to FIGS. 2 to 5.
Moderne Walzgerüste für kalt- und warmgewalzte Flachprodukte werden
heute nahezu ausschließlich mit hydraulischen Anstellungen 2 als
Stellglied für die Dickenregelung ausgerüstet. Die Anstellzylinder
der hydraulischen Anstellung befinden sich oberhalb der oberen
Stützwalzeneinbaustücke 3 oder unterhalb der unteren Stützwalzeneinbaustücke
4. In einer bevorzugten Ausführungsform befinden sich
zusätzlich auf der vom Walzspalt her gesehen gegenüberliegenden
Seite des Gerüstes in den beiden Walzenständern Kraftmeßeinrichtungen
5, mit denen die im Walzprozeß auftretenden Kräfte in den beiden
Walzenständern kontinuierlich gemessen werden.Modern mill stands for cold and hot rolled flat products
today almost exclusively with
Die beiden Hydraulikzylinder der hydraulischen Anstellung liefern über den Hydraulikdruck in bevorzugter Weise zusätzliche Meßwerte für die Kräfte in den beiden Walzenständern, so daß insgesamt ohne zusätzlichen Aufwand Meßwerte für die Kräfte in den beiden Walzenständern oberhalb der oberen Stützwalzeneinbaustücke und unterhalb der unteren Stützwalzeneinbaustücke zur Verfügung stehen.Deliver the two hydraulic cylinders of the hydraulic adjustment Additional measured values in a preferred manner via the hydraulic pressure for the forces in the two roll stands, so that without additional effort Measured values for the forces in the two roll stands above the upper backup roll chocks and below of the lower backup roll chocks are available.
Ein weiteres Merkmal moderner Walzgerüste für das Warm- und Kaltwalzen
von Flachprodukten sind verschiebbare Arbeitswalzen 6, z.B. für
die Beeinflussung des Walzspaltprofils oder zur Vergleichmäßigung
des Walzenverschleißes. In einer bevorzugten Ausführungsform erfolgt
das Verschieben der Arbeitswalzen 6 mit Hilfe von Hydraulikzylindern
7. Unabhängig davon, ob während einer Betriebsphase die beiden
Arbeitswalzen verschoben werden oder sich in einer bestimmten
Position befinden, entstehen in den Hydraulikzylindern 7 Drücke in
Abhängigkeit von den von den Arbeitswalzen 6 ausgehenden Axialkräften.
Die Axialkräfte der Arbeitswalzen können demzufolge in
bevorzugter Weise ohne zusätzlichen Aufwand durch Druckmessung in
den Verschiebezylindern bestimmt werden. Hiermit stehen insgesamt
sechs Meßwerte für vertikale und horizontale Kräfte im Walzgerüst
zur Verfügung.Another feature of modern roll stands for hot and cold rolling
of flat products are
Figur 2 zeigt eine Analyse der Kräfte in einem Walzgerüst. Aufgenommen wurden lediglich die Kräfte F aus dem Walzprozeß und die Axialkräfte T der Walzen. Auf die Darstellung von Balancierkräften, Biegekräften und Gewichtskräften wurde verzichtet, da die Kompensation dieser Kräfte bekannt ist.Figure 2 shows an analysis of the forces in a roll stand. Recorded only the forces F from the rolling process and the axial forces T of the rollers. On the representation of balancing forces, Bending and weight forces have been omitted because of the compensation of these forces is known.
Der Ansatz der Gleichgewichtsbedingungen für horizontale Kräfte T,
vertikale Kräfte F und Momente M am oberen und unteren Walzensatz
führt zu insgesamt sechs Gleichungen. Diese sechs nachfolgenden
Gleichungen GL geben das Kräftegleichgewicht wie folgt wieder:
- T2 (rA + rS) + Tw (2rA + rS) = 0
- T3 (rA + rS)- Tw (2rA + rS) = 0
- T 2 (r A + r S ) + T w (2r A + r S ) = 0
- T 3 (r A + r S ) - T w (2r A + r S ) = 0
Aus diesen sechs Gleichungen lassen sich mit mathematischen Umformungen die Gleichungen für die von den Stützwalzen ausgehenden Kräfte T1 und T4 sowie die im Walzspalt auftretende Tangentialkraft Tw bestimmen. Damit sind alle im Gerüst auftretenden horizontal wirkenden Kräfte bekannt.From these six equations, the equations for the forces T 1 and T 4 originating from the support rolls and the tangential force T w occurring in the roll gap can be determined with mathematical transformations. This means that all horizontally acting forces occurring in the scaffolding are known.
Figur 3 zeigt die Zusammenstellung des Gleichungssatzes.Figure 3 shows the composition of the equation set.
Von besonderem Interesse ist die Ableitung einer Mittenabweichung X für die Lage der resultierenden Walzkraft im Walzspalt (vgl. Fig. 2). Diese Größe läßt sich ebenfalls aus den sechs Meßwerten im Walzbetrieb kontinuierlich ableiten. Die Gleichung für die Mittenabweichung X ist in Fig. 3 angegeben. Die Größe X kann herangezogen werden für die automatische Kalibrierung, d.h. für das automatische Parallelstellen der beiden Arbeitswalzen, indem nach einem Walzenwechsel das Gerüst ohne Walzgut mit drehenden Walzen vorgespannt und die aus den sechs Meßwerten errechnete Außermittigkeit X errechnet wird. Durch Schwenken mit der hydraulischen Anstellung wird der Wert X auf Null geregelt mit dem Ergebnis einer einwandfreien Parallellage von oberer und unterer Walze.The derivation of a center deviation is of particular interest X for the position of the resulting rolling force in the roll gap (see Fig. 2). This size can also be determined from the six measured values in the Derive rolling operation continuously. The equation for the center deviation X is indicated in Fig. 3. The size X can be used are used for automatic calibration, i.e. for the automatic Parallel positioning of the two work rolls by changing the rolls the stand is pre-tensioned with rolling rollers without rolling stock and the eccentricity X calculated from the six measured values becomes. By swiveling with the hydraulic adjustment the Value X regulated to zero with the result of a flawless Parallel position of the upper and lower roller.
Eine weitere Verwendung der Mittenabweichung X ist die Überwachung des Walzprozesses, insbesondere bei Reversiergerüsten, bei denen ein Verlaufen des Bandes bzw. des Bleches aus der Gerüstmitte eintreten kann. Die Mittenabweichung X kann zur Meldung solcher Ereignisse und zu einer entsprechenden Korrektur herangezogen werden.Monitoring is another use of the center deviation X. of the rolling process, particularly in the case of reversing stands, in which the strip or sheet runs from the center of the scaffold can occur. The center deviation X can be used to report such Events and used for a corresponding correction become.
Selbstverständlich kann die automatische Kalibrierung und Überwachung des Walzprozesses auch dadurch erfolgen, daß anstelle der Einführung einer Mittenabweichung eine Korrektur (Kompensation) der gemessenen Kräfte F1 bis F4 mit Hilfe der errechenbaren Reaktionskräfte aus den Axialkräften erfolgt. Die hierzu erforderlichen Gleichungen für die Summe der Reaktionskräfte aus allen beteiligten Walzen sind mit R1 bis R4 in Figur 4 angegeben. Nach einer solchen Kompensation können die Meßwerte F1 bis F4 in an sich bekannter Weise durch Differenzbildung F1 minus F2 bzw. F3 minus F4 für die Walzenkalibrierung und für die Überwachung des Walzprozesses herangezogen werden.Of course, the automatic calibration and monitoring of the rolling process can also take place in that instead of introducing a center deviation, the measured forces F 1 to F 4 are corrected (compensated) with the help of the calculable reaction forces from the axial forces. The equations required for this for the sum of the reaction forces from all the rolls involved are indicated by R 1 to R 4 in FIG. 4. After such compensation, the measured values F 1 to F 4 can be used in a manner known per se by forming the difference F 1 minus F 2 or F 3 minus F 4 for the roll calibration and for monitoring the rolling process.
In den Gleichungen zur Bestimmung der Walzen-Axialkräfte und der Außermittigkeit zeigt sich als besonders vorteilhaft, daß die Meßwerte für die Axialkräfte im oberen bzw. unteren Gerüstbereich immer als Differenzwerte in die Auswertung eingehen. Dies hat zur Folge, daß die in den Meßwerten enthaltenen Reibungskräfte, insbesondere bei den Meßwerten aus den Anstellzylindern nicht in die Auswertung eingehen, soweit die Reibungskräfte auf beiden Gerüstseiten gleich groß sind. Dies gilt für eine Aufnahme der Meßwerte während beidseitiger Zufahrbewegungen oder beidseitiger Auf fahrbewegungen der hydraulischen Anstellungen. Bei einer Schwenkbewegung würden sich die Reibungskräfte beider Gerüstseiten addieren. Die Meßwertaufnahme während einer Schwenkbewegung ist deshalb im betrieblichen Ablauf zu unterdrücken.In the equations for determining the roller axial forces and the Eccentricity proves to be particularly advantageous in that the Measured values for the axial forces in the upper and lower frame area always be included in the evaluation as difference values. This has to Consequence that the frictional forces contained in the measured values, in particular with the measured values from the pitch cylinders not in the Receive evaluation as far as the frictional forces on both sides of the scaffold are the same size. This applies to a recording of the measured values during double-sided access movements or double-sided opening movements of hydraulic adjustments. With a swivel movement the frictional forces on both sides of the scaffold would add up. The Measurement recording during a swivel movement is therefore in operation Suppress process.
Als vorteilhaft erweist sich auch die Nutzung der gemessenen und errechneten Axialkräfte T1 bis T4 und Tw zur Überwachung des Erhaltungszustandes und der einwandfreien Walzenschliffe. Hoher Verschleißzustand und Fehler im Walzenschliff erhöhen die Verschränkung der Walzen zueinander und führen zu erhöhten Axialkräften. Die Anzeige dieser Kräfte ist demzufolge ein hervorragendes Mittel zur kontinuierlichen Überwachung des Walzwerks.It has also proven to be advantageous to use the measured and calculated axial forces T 1 to T 4 and T w to monitor the state of maintenance and the perfect roller grinding. A high degree of wear and defects in the roller grinding increase the entanglement of the rollers with each other and lead to increased axial forces. The display of these forces is therefore an excellent means of continuously monitoring the rolling mill.
Figur 4 zeigt den Gleichungssatz für die Reaktionskräfte aus den Axialkräften und für die Reaktionskräfte aus der Außermittigkeit der Walzkraft.Figure 4 shows the equation set for the reaction forces from the Axial forces and for the reaction forces from the eccentricity the rolling force.
Figur 5 enthält ein Rechenbeispiel mit angenommenen Walzgerüstdaten und Walzdaten und den hieraus mit Hilfe der oben angegebenen Gleichungen errechneten Walzen-Axialkräfte und Reaktionskräfte.FIG. 5 contains a calculation example with assumed roll stand data and rolling data and the data from them using the above Equations calculated roller axial forces and reaction forces.
Claims (7)
- Method for compensation for forces or force components (T) resulting from horizontal movements of the rolls in roll stands for the hot and cold rolling of flat products, equipped with working rolls (6) and with one or more backing rolls (1), with hydraulic adjusting devices (2) and with force measuring devices (5) on the oppositely disposed side of the roll gap and with hydraulic devices (7) for horizontal displacement of the working rolls (6), characterised in that the pressures in the two adjusting cylinders (2) are utilised for determination of the rolling forces (F) on one side of the roll gap and the indicated forces of the force measuring devices (5) are utilised for determination of the roll forces on the opposite side of the roll gap, and that with inclusion of the working roll axial forces (T) determinable by way of the pressures in the displacing cylinders (7) of the working rolls (6) all axial forces in the stand during the rolling operation are determined by computer and correction values for the rolling force indications (F) in the two roll stands are derived from the measured and computed axial forces (T) of the rolls in order to compensate for the reaction forces (R) of the axial forces (T), wherein the elongations associated with the reaction forces (R), which result from the axial forces (T), in the two roll stands are determined by computer and compensated for by corresponding setting of the hydraulic adjusting devices (2).
- Method according to claim 1, characterised in that the actual eccentricity (x) of the rolling force (Fw) is determined from the four measured rolling forces (F1 to F4) and the two measured axial forces (T2, T3).
- Method according to claim 1 and claim 2, characterised in that the calculated eccentricity (x) of the rolling force (Fw) is regulated to zero during the calibration of the roll stand for the parallel setting of the rolls (1, 6).
- Method according to claim 3, characterised in that in the performance of the automatic calibration the six measurement values for rolling forces (F1 to F4) and axial forces (T2, T3) are picked up only during an identically oriented adjusting movement carried out to both sides of the stand.
- Method according to claim 1, characterised in that the measured and calculated axial forces (T1 to T4) and the tangential force (Tw) in the roll gap are continuously indicated for monitoring of the maintenance state.
- Method according to claim 1, characterised in that after compensation of the rolling force indications (F1 to F4) by the reaction forces (R) computed from the axial forces (T1 to T4) the remaining difference of the rolling force indications in the upper and lower part of the stand is regulated to zero for the parallel setting of the rolls.
- Method according to claim 1, characterised in that after compensation of the rolling force indications (F1 to F4) by the reaction forces (R) computed from the axial forces (T1 to T4) the remaining difference of the rolling force indications in the upper and lower part of the stand is drawn upon for continuous monitoring of the rolling process.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19530424 | 1995-08-18 | ||
DE19530424A DE19530424A1 (en) | 1995-08-18 | 1995-08-18 | Method for compensating forces on roll stands resulting from horizontal movements of the rolls |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0763391A1 EP0763391A1 (en) | 1997-03-19 |
EP0763391B1 true EP0763391B1 (en) | 2000-07-26 |
Family
ID=7769808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96113055A Expired - Lifetime EP0763391B1 (en) | 1995-08-18 | 1996-08-14 | Method of compensating forces resulting from horizontal movements of the rolls in a rolling stand |
Country Status (12)
Country | Link |
---|---|
US (1) | US5714692A (en) |
EP (1) | EP0763391B1 (en) |
JP (1) | JP4057666B2 (en) |
KR (1) | KR100424527B1 (en) |
CN (1) | CN1069235C (en) |
AT (1) | ATE194932T1 (en) |
CA (1) | CA2182832C (en) |
DE (2) | DE19530424A1 (en) |
ES (1) | ES2149408T3 (en) |
MY (1) | MY120506A (en) |
RU (1) | RU2194585C2 (en) |
TW (1) | TW315331B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009030792A1 (en) | 2008-12-18 | 2010-06-24 | Sms Siemag Ag | Method for calibrating two cooperating work rolls in a rolling stand |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19718529A1 (en) * | 1997-05-02 | 1998-11-12 | Schloemann Siemag Ag | Method for operating a rolling mill for hot and cold rolling flat products |
US5943906A (en) * | 1997-09-12 | 1999-08-31 | Valmet Automation Inc. | Method for operating a traversing sensor apparatus |
AU777487B2 (en) * | 1998-02-27 | 2004-10-21 | Nippon Steel & Sumitomo Metal Corporation | Strip rolling method and strip rolling mill |
EP1757378B1 (en) | 1998-02-27 | 2011-09-07 | Nippon Steel Corporation | Strip rolling mill calibration method and device for the same |
SE530055C2 (en) * | 2006-06-30 | 2008-02-19 | Abb Ab | Method and apparatus for controlling roll gap when rolling a belt |
CN101972779B (en) * | 2010-11-05 | 2012-06-06 | 南京钢铁股份有限公司 | Zero position calibrating and roll gap positioning method for four-roller reversible mill |
CN103203372B (en) * | 2012-01-11 | 2015-05-20 | 宝山钢铁股份有限公司 | Control method for eliminating static deviation value of hot continuous rolling mill |
DE102012107185A1 (en) | 2012-08-06 | 2014-02-06 | Witte Automotive Gmbh | Bolt lock for vehicle doors, seats or backrests with rattle guard |
CN104070072B (en) * | 2013-03-27 | 2016-02-24 | 宝山钢铁股份有限公司 | A kind of leveling method of acyclic homologically trioial working roll open rolling roll gap |
DE102015204275B3 (en) * | 2015-03-10 | 2016-05-12 | Siltronic Ag | Method for resuming a wire-cutting operation with structured saw wire after interruption |
CN105921525B (en) * | 2016-05-05 | 2017-09-01 | 广西柳州银海铝业股份有限公司 | The band afterbody method for correcting error of Continuous mill train |
CN205659983U (en) * | 2016-06-15 | 2016-10-26 | 日照宝华新材料有限公司 | ESP production line is with long kilometer number rolling rollers |
TWI622435B (en) * | 2016-11-24 | 2018-05-01 | 財團法人金屬工業研究發展中心 | Springback compensation mechanism for metal sheet roll bending |
CN109604490A (en) * | 2017-08-11 | 2019-04-12 | 丽水市信裕机械制造有限公司 | A kind of anti-fracture of helical baffles revolves rolling device |
CN108284136B (en) * | 2018-01-19 | 2019-09-03 | 山东钢铁集团日照有限公司 | A method of improving finishing mill roll gap stated accuracy |
JP6832309B2 (en) * | 2018-03-27 | 2021-02-24 | スチールプランテック株式会社 | Rolling machine and control method of rolling machine |
WO2020036123A1 (en) * | 2018-08-13 | 2020-02-20 | 日本製鉄株式会社 | Method for identifying thrust reaction force acting point, and rolling method for rolled material |
CN112453343B (en) * | 2020-11-30 | 2022-02-01 | 中冶赛迪技术研究中心有限公司 | Online compensation method for roll gap of continuous casting sector section |
CN112808381B (en) * | 2021-01-04 | 2022-08-16 | 中冶长天国际工程有限责任公司 | Crusher roll gap adjusting device, crusher and crusher roll gap control method |
CN113916279B (en) * | 2021-08-30 | 2023-04-21 | 北京科技大学 | Axial rolling force and rolling piece rotating speed measuring device for cross wedge rolling forming |
CN114101340B (en) * | 2021-12-01 | 2022-07-29 | 燕山大学 | Method for compensating transverse moving position error of roller |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2166153A (en) * | 1935-08-03 | 1939-07-18 | Hoe & Co R | Matrix making machine with pressure indicator |
US3383591A (en) * | 1964-10-14 | 1968-05-14 | United States Steel Corp | Method and apparatus for indicating wear on rolls by combining signals proportional to rolling force and speed |
US3918302A (en) * | 1973-09-20 | 1975-11-11 | British Steel Corp | Rolling mill test equipment |
US4033183A (en) * | 1976-10-08 | 1977-07-05 | Bethlehem Steel Corporation | Horizontal- and vertical-roll force measuring system |
JPS5580024A (en) * | 1978-12-12 | 1980-06-16 | Fuji Electric Co Ltd | Device for detecting tension and compressive force between stands in continuous rolling mill |
JPS5597806A (en) * | 1979-01-17 | 1980-07-25 | Hitachi Ltd | Method and apparatus for correcting asymmetry of rolling mill |
JPS6038208B2 (en) * | 1980-02-25 | 1985-08-30 | 新日本製鐵株式会社 | How to detect tension and compression force between stands |
US4485649A (en) * | 1981-10-16 | 1984-12-04 | Davy Mckee (Sheffield) Limited | Rolling mill control system |
JPS61182816A (en) * | 1985-02-07 | 1986-08-15 | Ishikawajima Harima Heavy Ind Co Ltd | Roller parallelism controlling method of rolling mill having asymmetrical upper and lower rollers and its apparatus |
JPS61212416A (en) * | 1985-03-19 | 1986-09-20 | Nisshin Steel Co Ltd | Method for adjusting wear-profile of work roll |
JPS62137116A (en) * | 1985-12-10 | 1987-06-20 | Toshiba Corp | Plate thickness control device for multistage rolling mill |
FR2611542B1 (en) * | 1987-02-25 | 1989-05-26 | Siderurgie Fse Inst Rech | METHOD AND DEVICE FOR MEASURING THE TIGHTENING EFFORT BETWEEN THE CYLINDERS OF A ROLLING CAGE |
US4898014A (en) * | 1988-12-23 | 1990-02-06 | United Engineering, Inc. | Roll shifting system for rolling mills |
US4974442A (en) * | 1989-04-26 | 1990-12-04 | Westinghouse Electric Corp. | Method and apparatus for calibrating rolling mill on-line load measuring equipment |
DE3942452A1 (en) * | 1989-12-22 | 1991-06-27 | Schloemann Siemag Ag | DETERMINATION OF THE SPRING CHARACTERISTIC OF A PRE-AND FINISHED FRAME |
JPH0832335B2 (en) * | 1990-10-03 | 1996-03-29 | 日立造船株式会社 | Supporting structure of rolling roll in rolling mill |
FR2672542B1 (en) * | 1991-02-11 | 1994-02-11 | Komori Chambon Sa | DEVICE FOR DETECTING, IN A MACHINE, THE CONTACT POSITION OF TWO PARALLEL AXIS CYLINDERS. |
GB2253719A (en) * | 1991-03-15 | 1992-09-16 | China Steel Corp Ltd | Compensating roll eccentricity of a rolling mill |
JP2536378B2 (en) * | 1992-12-24 | 1996-09-18 | 日本電気株式会社 | M4 C6 0 manufacturing method |
JPH07144210A (en) * | 1993-11-25 | 1995-06-06 | Ishikawajima Harima Heavy Ind Co Ltd | Device and method for reducing deformation on work roll |
-
1995
- 1995-08-18 DE DE19530424A patent/DE19530424A1/en not_active Withdrawn
-
1996
- 1996-07-11 TW TW085108394A patent/TW315331B/zh not_active IP Right Cessation
- 1996-08-07 CA CA002182832A patent/CA2182832C/en not_active Expired - Fee Related
- 1996-08-13 MY MYPI96003319A patent/MY120506A/en unknown
- 1996-08-14 JP JP21479696A patent/JP4057666B2/en not_active Expired - Lifetime
- 1996-08-14 AT AT96113055T patent/ATE194932T1/en active
- 1996-08-14 EP EP96113055A patent/EP0763391B1/en not_active Expired - Lifetime
- 1996-08-14 DE DE59605639T patent/DE59605639D1/en not_active Expired - Lifetime
- 1996-08-14 ES ES96113055T patent/ES2149408T3/en not_active Expired - Lifetime
- 1996-08-16 RU RU96116139/02A patent/RU2194585C2/en active
- 1996-08-16 US US08/699,100 patent/US5714692A/en not_active Expired - Lifetime
- 1996-08-17 CN CN96113266A patent/CN1069235C/en not_active Expired - Lifetime
- 1996-08-19 KR KR1019960034160A patent/KR100424527B1/en not_active IP Right Cessation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102009030792A1 (en) | 2008-12-18 | 2010-06-24 | Sms Siemag Ag | Method for calibrating two cooperating work rolls in a rolling stand |
WO2010069575A2 (en) | 2008-12-18 | 2010-06-24 | Sms Siemag Ag | Method for calibrating two interacting working rollers in a rolling stand |
WO2010069575A3 (en) * | 2008-12-18 | 2010-08-19 | Sms Siemag Ag | Method for calibrating two interacting working rollers in a rolling stand |
CN102256717A (en) * | 2008-12-18 | 2011-11-23 | Sms西马格股份公司 | Method for calibrating two interacting working rollers in a rolling stand |
RU2476280C1 (en) * | 2008-12-18 | 2013-02-27 | Смс Зимаг Аг | Method of calibrating two interacting rolls at rolling mill |
US8939009B2 (en) | 2008-12-18 | 2015-01-27 | Sms Siemag Aktiengesellschaft | Method for calibrating two interacting working rollers in a rolling stand |
Also Published As
Publication number | Publication date |
---|---|
US5714692A (en) | 1998-02-03 |
MY120506A (en) | 2005-11-30 |
DE59605639D1 (en) | 2000-08-31 |
DE19530424A1 (en) | 1997-02-20 |
CN1149512A (en) | 1997-05-14 |
CA2182832A1 (en) | 1997-02-19 |
JP4057666B2 (en) | 2008-03-05 |
ATE194932T1 (en) | 2000-08-15 |
CA2182832C (en) | 2007-07-31 |
KR100424527B1 (en) | 2004-05-24 |
RU2194585C2 (en) | 2002-12-20 |
CN1069235C (en) | 2001-08-08 |
EP0763391A1 (en) | 1997-03-19 |
KR970009913A (en) | 1997-03-27 |
TW315331B (en) | 1997-09-11 |
ES2149408T3 (en) | 2000-11-01 |
JPH09103815A (en) | 1997-04-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0763391B1 (en) | Method of compensating forces resulting from horizontal movements of the rolls in a rolling stand | |
DE69209043T2 (en) | Rolling mill, rolling process and rolling mill system | |
DE69731008T2 (en) | Rolling process for tapes to reduce edge sharpness | |
EP1761345B1 (en) | Device for impinging the guide surfaces of bearing inserts guided in stand windows of roll stands | |
DE3212070C2 (en) | Roll stand with a device for maintaining the flatness of the rolled material | |
DE69227431T2 (en) | Rolling mill and rolling process | |
DE60122069T2 (en) | Rolling mill with strip profile detection device and strip profile detection method | |
DE69404527T2 (en) | Rolling mill and process | |
EP0035009B1 (en) | Device for supporting the working roll of a sheet bending or levelling machine | |
DE1809639A1 (en) | Method and device for the automatic control of a rolling mill | |
EP1819456B2 (en) | Method and mill train for improving the slipping out of a metal rolled strip whose rolled strip end runs out at a rolling speed | |
DE1452009C3 (en) | Roll stand | |
DE69511651T2 (en) | Rolling mill | |
EP0875303B1 (en) | Method for operating a rolling mill for warm and cold rolling flat products | |
DE4136013A1 (en) | METHOD AND DEVICE FOR CONTROLLING A ROLLING MILL | |
DE3788793T2 (en) | MULTI-ROLLING COLD ROLLING MILL. | |
DE2253524A1 (en) | COMBINED THICKNESS CONTROL AND CURVING AUTOMATIC CONTROL FOR A ROLLING MILL OR ROLLING STAND SYSTEM AND PROCESS | |
DE102010049908B4 (en) | Cluster-type multi-roll mill | |
DE69224816T2 (en) | SHEET ROLLING MACHINE | |
EP0134957B1 (en) | Roll stand with axially adjustable processing rolls | |
DE1933841A1 (en) | Method and device for hot or cold rolling of strip or sheet material | |
AT399175B (en) | CALENDAR FOR SURFACE PROCESSING OF MATERIALS | |
EP0698428A1 (en) | Device for detecting the roll gap between two working rolls of a rolling stand | |
DE3811847C2 (en) | ||
AT390741B (en) | ROLLING MILL, IN PARTICULAR COLD ROLLING MILL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960829 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE DE ES FI FR GB IT NL SE |
|
17Q | First examination report despatched |
Effective date: 19981026 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SMS DEMAG AG |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE DE ES FI FR GB IT NL SE |
|
REF | Corresponds to: |
Ref document number: 194932 Country of ref document: AT Date of ref document: 20000815 Kind code of ref document: T |
|
REF | Corresponds to: |
Ref document number: 59605639 Country of ref document: DE Date of ref document: 20000831 |
|
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20001002 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2149408 Country of ref document: ES Kind code of ref document: T3 |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20110825 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20110811 Year of fee payment: 16 Ref country code: NL Payment date: 20110825 Year of fee payment: 16 |
|
BERE | Be: lapsed |
Owner name: *SMS DEMAG A.G. Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20130301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130301 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120831 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20131021 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20120815 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 59605639 Country of ref document: DE Owner name: SMS GROUP GMBH, DE Free format text: FORMER OWNER: SMS SIEMAG AKTIENGESELLSCHAFT, 40237 DUESSELDORF, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20150821 Year of fee payment: 20 Ref country code: GB Payment date: 20150819 Year of fee payment: 20 Ref country code: FI Payment date: 20150812 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20150819 Year of fee payment: 20 Ref country code: FR Payment date: 20150820 Year of fee payment: 20 Ref country code: AT Payment date: 20150820 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20150824 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59605639 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20160813 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK07 Ref document number: 194932 Country of ref document: AT Kind code of ref document: T Effective date: 20160814 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20160813 |