EP0732413B1 - Procédé de fabrication d'une tôle d'acier électrique à grains orientés notamment pour transformateurs - Google Patents

Procédé de fabrication d'une tôle d'acier électrique à grains orientés notamment pour transformateurs Download PDF

Info

Publication number
EP0732413B1
EP0732413B1 EP96400486A EP96400486A EP0732413B1 EP 0732413 B1 EP0732413 B1 EP 0732413B1 EP 96400486 A EP96400486 A EP 96400486A EP 96400486 A EP96400486 A EP 96400486A EP 0732413 B1 EP0732413 B1 EP 0732413B1
Authority
EP
European Patent Office
Prior art keywords
nitrogen
less
steel
sheet
process according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96400486A
Other languages
German (de)
English (en)
Other versions
EP0732413A1 (fr
Inventor
Jean-Claude Bavay
Luc Poissonnet
Jacques Castel
Freddy Messeant
Nadine Blanchot
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
UGO
Original Assignee
UGO
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by UGO filed Critical UGO
Publication of EP0732413A1 publication Critical patent/EP0732413A1/fr
Application granted granted Critical
Publication of EP0732413B1 publication Critical patent/EP0732413B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1255Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1272Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1227Warm rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • C21D8/1266Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest between cold rolling steps
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1277Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a particular surface treatment
    • C21D8/1283Application of a separating or insulating coating

Definitions

  • the texture of a grain oriented electrical steel sheet is a so-called Goss texture symbolized by MILLER indices, ⁇ 110 ⁇ ⁇ 001>, that the axis ⁇ 001>, which is an axis of easy magnetization, is substantially parallel to the rolling direction and the plane ⁇ 110 ⁇ is a plane substantially parallel to the surface of the sheet.
  • This texture gives grain oriented electrical steel sheet with good properties magnetic in the rolling direction which is substantially the direction of easy magnetization.
  • B800 induction measurements acquired under a magnetic field of 800 A / m and energy losses W (1.7 / 50) of the sheet steel for a working induction of 1.7 Tesla (T) at a frequency of 50 Hertz are used in practice to assess the magnetic quality samples taken parallel to the direction of rolling of the sheet.
  • the steel of conventional sheets contains, before hot rolling, manganese, sulfur and copper.
  • High permeability sheet steel contains, before hot rolling, aluminum, manganese, copper, sulfur and nitrogen.
  • a method of producing a sheet of grain steel is known. oriented, having substantially the texture ⁇ 110 ⁇ ⁇ 001>, with high permeability in which the steel contains aluminum, manganese, copper, sulfur and nitrogen.
  • Aluminum combines with nitrogen to form aluminum nitride AIN, and manganese and copper combine with the sulfur to form manganese sulfide MnS and copper sulfide CuS.
  • the precipitates of aluminum nitride, manganese sulfide and copper sulfide inhibit normal growth of primary grains during static texturing annealing while allowing development of secondary recrystallization grains having the texture of Goss desired.
  • the heating of the steel slab before hot rolling is operated at a temperature above 1300 ° C, around 1350 to 1400 ° C to completely re-dissolve the AIN, MnS and CuS precipitates alone or in combination.
  • Their size in the state rough casting generally greater than 1 micrometer, is too coarse to allow the development of secondary recrystallization.
  • the compounds AIN, MnS and CuS reprecipitate alone or in combination in the state fine particles, with an average size of less than 150 nanometers (nm) at hot rolling and annealing before cold rolling one operation.
  • nitriding is used which has as its object the formation of fine precipitates of silicon nitride and aluminum (Si, Al) N before the start of secondary recrystallization.
  • Nitriding is carried out either by an additional heat treatment in a gaseous atmosphere containing ammonia NH 3 , or by addition of a compound containing nitrogen, such as manganese nitrides MnN, ferro-manganese FeMnN, chromium CrN, with an annealing separator mainly consisting of MgO magnesia.
  • the slabs generally contain aluminum, and optionally titanium Ti, chromium Cr, boron B, elements known for their ability to form nitrides TiN, CrN, BN. Since this process aims at precipitating fine particles (Si, Al) N at the stage of secondary recrystallization annealing, the previous presence of fine precipitates MnS and AIN is not necessary. Consequently, the re-solution of the coarse particles MnS and AIN is incomplete during the reheating of the slabs, preceding the hot rolling. In addition, an incomplete re-solution of the aluminum is essential for the precipitation of the silicon nitride.
  • Figure 1 is a curve showing the loss of mass as a function the slab reheating temperature and illustrating the formation of fusible oxides above 1300 ° C.
  • Figure 2 shows, after hot rolling, the existing relationship between the average diameter of the precipitates and the sulfur percentage of steel.
  • Figure 3 presents after decarburization, the precipitate densities depending on the stop temperature of the recrystallization annealing secondary.
  • the present invention relates to the use of a steel of composition following determined weight: carbon of between 0.02 and 0.09%, silicon between 2.5 and 4%, copper between 0.06 and 0.50% and a selection, manganese between 0.027 and 0.17%, sulfur between 0.007 and 0.020%, aluminum between 0.010 and 0.030%, nitrogen between 0.004 and 0.012%, the rest being iron and impurities, composition submitted, after preparation by casting continues from the slab or strip to a full reheating to a temperature equal to or less than 1300 ° C.
  • the manganese, sulfur, aluminum and nitrogen are chosen in very narrow ranges, which allows the almost total solution and sufficient quantity of AIN, MnS and CuS precipitates taken alone or in combination, during reheating of the slabs, before hot rolling, to an equal temperature or lower than 1300 ° C which prevents the surface formation of oxides fuses.
  • the precipitates containing sulfur and or most of the nitrogen is put back into solution when the slabs as a result of the adaptation of the chemical composition to the lower reheating temperature.
  • the main inhibitor is nitride of aluminum which precipitates little during hot rolling and essentially during the annealing of the hot-rolled sheet in the form fine particles with an average diameter of less than 100 nanometers.
  • the manganese sulfide is a complementary inhibitor. Copper has in particular a refining effect of the size of these AIN and MnS precipitates with which it can be associated. CuS precipitates that trap part of the sulfur of the steel at the hot rolling stage contributes to the reduction of the mean diameter of the precipitates as shown in Figure 2.
  • the oriented grain steel according to the invention having undergone the stages of manufacturing described above, contains from 0.02 to 0.09% carbon, 2.5 to 4% silicon, 0.027 to 0.17% manganese, 0.007 to 0.020% sulfur, 0.010 to 0.030% aluminum, 0.004 to 0.012 % nitrogen, 0.06% to 0.50% copper, and optionally up to 0.15% tin, the rest being iron and impurities.
  • the product resulting from the multiplication of the sulfur content by the manganese content is less than or equal to 160.10 -5 : (% S) x (% Mn) ⁇ 160.10 -5
  • the product resulting from the multiplication of the nitrogen content by the aluminum content is less than 240.10 -6 : (% N) x (% Al) ⁇ 240.10 -6
  • the percentage of nitrogen precipitated after hot rolling, in the form of fine particles with an average diameter of less than 100 nanometers, is less than 40%.
  • the percentage of nitrogen precipitated, after hot rolling and annealing, in the form of fine particles with an average diameter of less than 100 nanometers, is greater than 60%.
  • the magnesia used as a separator during the annealing of secondary recrystallization and of purification at high temperature may contain, alone or as a mixture, sulfur or one or more sulfur or nitrogen compounds chosen from magnesium sulfate and / or manganese sulfate and / or sodium thiosulfate, and / or urea, one or more sulfur and nitrogen compounds chosen from, amidosulfuric acid, (sulphamic acid) and / or ammonium sulfate and / or ammonium thiosulfate, antimony chloride, boron or a compound of boron and titanium dioxide.
  • Figure 2 shows, after hot rolling, the relationship between the average diameter of the precipitates and the percentage of sulfur in the steel, in the case of an almost total solution of all the precipitates when reheating the slab.
  • the sulfur content according to the present invention is limited to 0.020%.
  • the fine precipitates MnS playing an active role of secondary inhibitor during secondary recrystallization annealing the sulfur content must be at less than 0.007% to obtain a sufficient amount of these rushed.
  • the manganese content according to the present invention must be higher at 0.027% to obtain precipitation of a sufficient amount of ends MnS precipitates exerting an inhibitory effect and having an availability in free manganese in the case of sulfur supply via the additive channel to the magnesia for strengthening the inhibitory power of MnS precipitates. It is limited to 0.17% to avoid the presence of precipitation coarse MnS in slabs and incomplete solution during reheating between 1200 and 1300 ° C before hot rolling.
  • compliance with the condition [% S] x [% Mn] ⁇ 160.10 -5 promotes the presence of fine MnS precipitates in the slabs and their redissolution between 1200 ° C and 1300 ° C before hot rolling .
  • the nitrogen content must be greater than 0.004% in order to obtain sufficient precipitation of fine precipitates AIN, main inhibitor, during the annealing of the hot-rolled sheet.
  • the nitrogen content is limited to 0.012% to avoid the formation of blistering on the surface of the steel.
  • the condition (% N) x (% Al) ⁇ 240.10 -6 allows almost complete dissolution of the AIN precipitates when reheating the slabs between 1200 ° C and 1300 ° C before hot rolling.
  • the aluminum content must be equal to or greater than 0.010% on the one hand, so that the amount of AIN precipitates formed during the annealing of the hot-rolled sheet is sufficient, AIN being the main inhibitor and on the other hand, to have an availability in free aluminum, in the case of nitrogen supply via the additive channel to the magnesia for strengthening the inhibitory power of AIN precipitates.
  • Aluminum content is less than 0.030% to avoid precipitation coarse AIN particles during the final stage of hot rolling.
  • steel can contain up to 0.15% tin which exerts a beneficial effect on inhibition.
  • the density of inhibitory precipitates containing either sulfur and manganese or nitrogen and aluminum may be insufficient to obtain recrystallization complete secondary and homogeneous magnetic quality.
  • it is, of preferably, added to magnesia one or more compounds containing sulfur and or nitrogen or antimony which allow the formation of a complement of inhibitors, either based on sulfur and manganese, or based nitrogen and aluminum, either antimony-based during the rise temperature preceding the start of secondary recrystallization.
  • the present invention is illustrated from the observations and following examples, table 1 giving the chemical composition of tested steels.
  • Steels 2 to 5 and 7 are steels according to the present invention.
  • Steels 1, 6, 8 and 9 are reference steels.
  • Content phosphorus, residual element, according to the present invention, is less than 0.015%.
  • Steel No. 1 is a reference steel containing 0.021% sulfur and 0.030% aluminum (Steel No. 1, Table 1), a slab of which has been reheated to 1400 ° C before hot rolling, so as to dissolve the majority of AIN, MnS, CuS precipitates of coarse size.
  • the cold rolling was carried out according to the invention, in a single operation after annealing of the hot rolled sheet at 1120 ° C.
  • the annealing separator consisted of magnesia containing 0.080% boron and 1.2% of the titanium element in the form of titanium dioxide TiO 2 .
  • magnesium sulfate, manganese, sodium thiosulfate helps strengthen inhibition by precipitates containing manganese and sulfur at during secondary recrystallization annealing.
  • magnesia of a nitrogenous compound allows to introduce nitrogen into the steel which reinforces the inhibition by the precipitates containing nitrogen and aluminum.
  • magnesia of a sulfur and nitrogen compound (ammonium thiosulfate, amidosulfuric acid which contains both 33% sulfur and 14% nitrogen) allows sulfur to be introduced into the steel and nitrogen to reinforce the inhibition by the precipitates containing, on the one hand, manganese and sulfur and, on the other hand, nitrogen and aluminum.
  • the beneficial effect of nitrogen associated with sulfur is illustrated by the fact that the percentage of sulfur used in example 5 is lower than that used in example 4.
  • ammonium sulfate to magnesia also allows a simultaneous supply of sulfur and nitrogen.
  • antimony chloride to magnesia allows the introduction into the steel of the antimony element, which by segregating at the grain boundaries, acts as an inhibitor.
  • a water-soluble sulfur compound is preferred to the possible addition of insoluble elemental sulfur since the dispersion in milk of magnesia is more homogeneous.
  • the addition, to magnesia, of compounds containing sulfur, nitrogen and antimony promotes the obtaining of a homogeneous magnetic quality over the length of the strip of coiled sheet.
  • Table 2 shows that according to the invention, the percentage of nitrogen precipitated in the hot rolled sheet is less than 40%.
  • Lowering winding temperature significantly reduces the percentage of precipitated nitrogen, up to less than 5% in the case of steel n ° 3 reheated to 1280 ° C, hot rolled and coiled to 530 ° C. At this winding temperature, the percentage of precipitated nitrogen remains very low when the slab reheating temperature drops from 1280 ° C to 1240 ° C, usual temperature for reheating carbon steels.
  • the amount of nitrogen combined with aluminum was determined from dosing of precipitated aluminum.
  • Table 3 shows that according to the invention, the percentage of nitrogen precipitate is greater than 60% after annealing the hot-rolled sheet to 950 ° C.
  • Table 4 shows that, according to the invention, the average diameter precipitates containing nitrogen and aluminum, obtained by annealing 160 seconds from hot rolled sheet steel n ° 2, wound at 530 ° C, is less than 50 nanometers in a wide temperature range of annealed.
  • Nitrogen and aluminum precipitates can therefore play an active role as an inhibitor.
  • Table 5 gives the average diameter and density of the precipitates after heating the steel slab n ° 2 to 0.15% copper to 1280 ° C, hot rolling 2.3 mm thick and coiling at 640 ° C.
  • Figure 3 shows the evolution of the density of the CuS precipitates and MnCuS after decarburization and during recrystallization annealing secondary of steel n ° 6 which does not contain aluminum, composition chosen to facilitate counting of precipitates by microscopy electronic transmission.
  • This steel whose slabs were reheated to 1400 ° C, underwent two cold rolling operations with intermediate annealing at 950 ° C, the reduction rate of the second rolling at cold being 60%.
  • the fine CuS precipitates dissolve gradually before secondary recrystallization which occurs around 950 ° C, the release of sulfur accompanied by a fine precipitation of MnS particles.
  • the particles identified under the electron microscope are MnCuS because copper precipitates on the MnS particles during cooling. According to this invention, fine CuS particles do not play a decisive inhibitory role for the development of secondary recrystallization.
  • the percentage of CuS precipitates in diameter mean less than 100 nm is less than 3% of the total population, after annealing of hot rolled sheet.
  • MnS precipitates formed after decarburization and before secondary recrystallization which reinforce inhibition by precipitates containing nitrogen and aluminum.
  • the copper content must be greater than 0.06% to obtain fine precipitation at the hot rolled stages and hot rolled and annealed.
  • the increase in the copper content favors refinement of precipitation.
  • the copper content is limited to 0.50% to avoid the problems of pickling the sheet obtained.
  • the level of losses decreases and that the level of B800 increases as a function of the reduction in the mass oxygen content of the surface oxide film formed during the decarburization operation.
  • the lowering of the oxygen content of the surface oxide film mainly consisting of silica and containing less than 20% of iron oxide, below 800.10 -4 % (approximately 1.8 g of oxygen per m 2 ) allows an improvement in magnetic properties, all the more marked as this reduction is high.
  • the method of the present invention described for slabs of continuous casting with thickness between 150 and 300 mm can be applied to thinner slabs, thickness between 15 and 100 mm approx.
  • the method of the present invention can also be applied to thin strips obtained by casting liquid steel between two rollers, thicker than 2 mm, the strips being heated between 1200 ° C and 1300 ° C, before undergoing hot rolling.
  • the number of passes of preliminary hot rolling and finishing hot rolling is a function of the thickness of the product cast in continuous and the thickness referred to in the hot rolled state. If the thickness of the continuously cast product is sufficiently low, hot rolling preliminary can be deleted.
  • the total duration of the heating cycle for the continuously cast product is a function of its thickness. The smaller this thickness, the faster the reheating temperature is reached at heart.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electromagnetism (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Description

La présente invention concerne un procédé de fabrication d'une tôle d'acier électrique à grains orientés pour la réalisation notamment de circuits magnétiques de transformateurs comprenant, successivement:
  • une coulée d'un acier en continu sous forme de brame ou de bande d'acier contenant notamment dans sa composition moins de 0,1 % de carbone, de 2,5 à 4 % de silicium et au moins les éléments aluminium, azote, manganèse, soufre, cuivre, destinés à former des composés inhibiteurs de croissance normale,
  • un réchauffage de la brame ou de la bande,
  • un laminage à chaud de la brame ou de la bande pour l'obtention d'une tôle d'épaisseur comprise entre 1 et 5 mm,
  • un bobinage à chaud de la tôle laminée à chaud,
  • un recuit de la tôle laminée à chaud,
  • un laminage à froid à une épaisseur finale inférieure à 0,5 mm,
  • un recuit de recristallisation primaire et de décarburation en atmosphère humide,
  • une application, sur au moins une face de la tôle décarburée, de magnésie MgO,
  • un recuit final de recristallisation secondaire et d'épuration,
  • une application d'un revêtement isolant et un recuit final de cuisson du revêtement,
La texture d'une tôle d'acier électrique à grains orientés est une texture dite de Goss symbolisée par les indices de MILLER, {110}<001>, selon laquelle l'axe <001>, qui est un axe de facile aimantation, est sensiblement parallèle à la direction de laminage et le plan {110} est un plan sensiblement parallèle à la surface de la tôle. Cette texture confère à la tôle d'acier électrique à grains orientés de bonnes propriétés magnétiques dans la direction de laminage qui est sensiblement la direction de facile aimantation. Les mesures de l'induction B800 acquise sous un champ magnétique de 800 A/m et des pertes d'énergie W(1,7/50) de la tôle d'acier pour une induction de travail de 1,7 Tesla (T) à une fréquence de 50 Hertz sont utilisées en pratique pour évaluer la qualité magnétique d'échantillons prélevés parallèlement à la direction de laminage de la tôle.
Deux types de tôles d'acier à grains orientés sont commercialisés.
  • Les tôles dites classiques sont caractérisées par une induction B800 inférieure à 1,86 Tesla ; elles sont obtenues par un procédé qui comprend notamment deux opérations de laminage à froid séparées par un recuit intermédiaire, le taux de réduction du second laminage étant généralement inférieur à 70 %.
  • Les tôles dites à haute perméabilité sont caractérisées par une induction B800 supérieure à 1,88 Tesla ; elles sont obtenues par un procédé qui comprend notamment une seule opération de laminage à froid ou deux opérations de laminage à froid avec recuit intermédiaire, le taux de réduction du laminage à froid en une opération ou du deuxième laminage à froid étant généralement supérieur à 80 %.
L'acier des tôles classiques contient, avant laminage à chaud, du manganèse, du soufre et du cuivre. L'acier des tôles à haute perméabilité contient, avant laminage à chaud, de l'aluminium, du manganèse, du cuivre, du soufre et de l'azote.
Il est connu un procédé de production d'une tôle d'acier à grains orientés, ayant sensiblement la texture {110}<001>, à haute perméabilité dans lequel l'acier contient de l'aluminium, du manganèse, du cuivre, du soufre et de l'azote. L'aluminium se combine avec l'azote pour former du nitrure d'aluminium AIN, et le manganèse et le cuivre se combinent avec le soufre pour former du sulfure de manganèse MnS et du sulfure de cuivre CuS. Les précipités de nitrure d'aluminium, de sulfure de manganèse et de sulfure de cuivre inhibent la croissance normale des grains primaires pendant le recuit statique de texturation tout en permettant le développement des grains de recristallisation secondaire ayant la texture de Goss désirée.
De manière connue, le réchauffage de la brame d'acier avant laminage à chaud est opéré à une température supérieure à 1300°C, de l'ordre de 1350 à 1400°C pour remettre complètement en solution les précipités AIN, MnS et CuS seuls ou en combinaison. Leur taille à l'état brut de coulée, en général supérieure à 1 micromètre, est trop grossière pour permettre le développement de la recristallisation secondaire. Les composés AIN, MnS et CuS reprécipitent seuls ou en combinaison à l'état de fines particules, de taille moyenne inférieure à 150 nanomètres (nm) au cours du laminage à chaud et du recuit avant laminage à froid effectué en une seule opération.
Le réchauffage de la brame ou de la bande d'acier à grains orientés à une température supérieure à 1300°C présente pour principal inconvénient la formation d'oxydes liquides qui nécessite l'arrêt périodique du four spécialement adapté à cette production en vue de son décrassage.
Pour obtenir une qualité magnétique équivalente à celle des produits issus du réchauffage des brames dans le domaine de températures 1350-1400°C, plusieurs procédés métallurgiques mettant en oeuvre un réchauffage des brames à température inférieure à 1300°C ont été proposés :
Par exemple, il est fait appel, après laminage à froid et décarburation, à une nitruration qui a pour objet la formation de fins précipités de nitrure de silicium et d'aluminium (Si, Al) N avant le début de la recristallisation secondaire. La nitruration est réalisée soit par un traitement thermique supplémentaire dans une atmosphère gazeuse contenant de l'ammoniac NH3, soit par addition d'un composé contenant de l'azote, tels que les nitrures de manganèse MnN, de ferro-manganèse FeMnN, de chrome CrN, au séparateur de recuit constitué principalement de magnésie MgO. Les brames contiennent, en général, de l'aluminium, et éventuellement du titane Ti, du chrome Cr, du bore B, éléments connus pour leur aptitude à former les nitrures TiN, CrN, BN. Ce procédé visant la précipitation de fines particules (Si, Al) N au stade du recuit de recristallisation secondaire, la présence antérieure de fins précipités MnS et AIN n'est pas nécessaire. En conséquence, la remise en solution des particules grossières MnS et AIN est incomplète lors du réchauffage des brames, précédant le laminage à chaud. De plus, une remise en solution incomplète de l'aluminium est indispensable à la précipitation du nitrure de silicium.
Les brevets allemand DE 43 111 51 et européen EP 0 619 376 décrivent un procédé qui comprend :
  • Un réchauffage des brames à une température qui est inférieure à la température de solubilité du sulfure de manganèse et qui est supérieure à la température de solubilité du sulfure de cuivre.
Dans ces conditions, les précipités de sulfure de cuivre sont dissous. Par contre, les précipités de sulfure de manganèse ne sont pas remis en solution et, se trouvant sous forme de particules grossières, ne jouent plus le rôle d'inhibiteur.
  • Par suite de la précipitation, au cours du laminage à chaud, de plus de 60 % de l'azote sous forme de particules grossières AIN, les précipités de nitrure d'aluminium ne jouent pas non plus le rôle d'inhibiteur.
Dans le procédé décrit dans ces documents, de fines particules de sulfure de cuivre CuS, qui précipitent au cours du recuit de la tôle laminée à chaud constituent l'inhibiteur essentiel.
La présente invention a pour objet un procédé de fabrication de tôle électrique à grains orientés pour la réalisation notamment de circuits magnétiques de transformateurs comprenant successivement:
  • une coulée d'un acier en continu sous forme de brame ou de bande d'acier contenant notamment dans sa composition pondérale moins de 0,1 % de carbone, de 2,5 à 4 % de silicium et au moins les éléments aluminium, azote, manganèse, soufre, cuivre, destinés à former des précipités inhibiteurs de croissance normale, procédé dans lequel l'acier de composition pondérale suivante:
  • de 0,02 à 0,09 % de carbone,
  • de 2,5 à 4 % de silicium
  • de 0,027 à 0,17 % de manganèse
  • de 0,007 à 0,020 % de soufre
  • de 0,010 à 0,030 % d'aluminium
  • de 0,004 à 0,012 % d'azote
  • de 0,06 à 0,50 % de cuivre
de manière facultative, jusqu'à 0,15% d'étain,
le reste étant le fer et les impuretés parmi lesquelles moins de 0,015% de phosphore, est soumis successivement après l'élaboration de la brame ou de la bande par coulée continue à,
  • un réchauffage à une température supérieure à 1200°C et inférieure ou égale à 1300°C, afin que les précipités AIN, MnS, et CuS pris seul ou en combinaison puissent être remis en solution en quantité suffisante,
  • un laminage à chaud de la brame ou de la bande pour l'obtention d'une tôle d'épaisseur comprise entre 1 et 5 mm pendant lequel les précipités CuS piègent une partie du soufre de l'acier,
  • un bobinage à chaud de la tôle laminée à chaud entre 500°C et 700°C,
  • un recuit de la tôle laminée à chaud,
  • un laminage à froid à une épaisseur finale inférieure à 0,5 mm,
  • un recuit de recristallisation primaire et de décarburation en atmosphère humide,
  • une application, sur au moins une face de la tôle décarburée, d'un séparateur à base de magnésie MgO,
  • un recuit final de recristallisation secondaire et d'épuration, avant lequel, lors de la montée à température de ce recuit final de recristallisation secondaire, les fins précipités CuS se dissolvent progressivement, la libération du soufre s'accompagnant d'une fine précipitation de particules MnS,
  • une application d'un revêtement isolant et le recuit final de cuisson du revêtement.
Les autres caractéristiques de l'invention sont:
  • on décarbure la bande de façon à ce que la teneur en oxygène du film d'oxyde formé soit inférieure à 800 10-4 %,
  • le produit résultant de la multiplication de la teneur en soufre par la teneur en manganèse est inférieur à 160.10-5,
  • le produit résultant de la multiplication de la teneur en azote par la teneur en aluminium est inférieur à 240.10-6,
  • l'acier est laminé à chaud de façon à faire précipiter l'azote sous forme de fines particules contenant notamment de l'azote et de l'aluminium de diamètre moyen inférieur à 100 nanomètres, le pourcentage d'azote précipité étant inférieur à 40 %,
  • l'acier laminé à chaud est recuit de façon à faire précipiter l'azote sous forme de fines particules contenant notamment de l'azote et de l'aluminium de diamètre moyen inférieur à 100 nanomètres, le pourcentage d'azote précipité étant supérieur à 60 %,
  • l'acier est laminé à chaud de façon à faire précipiter le soufre sous forme de particules dont le diamètre moyen est inférieur à 100 nanomètres,
  • après recuit de la tôle laminée à chaud à une température comprise entre 850°C et 1150°C pendant 1 à 10 minutes et refroidissement, à une vitesse supérieure à 10°C par seconde à partir de 800°C, le laminage à froid à une épaisseur finale inférieure à 0,5 mm est effectué, en une seule opération comprenant plusieurs passes de laminage, avec un taux de réduction global supérieur à 70 %, la température de la tôle étant comprise entre 100°C et 300°C pendant au moins une passe de laminage,
  • le laminage à froid, à une épaisseur finale inférieure à 0,5 mm, est effectué en deux opérations avec un recuit intermédiaire, à une température comprise entre 850°C et 1150°C pendant 1 à 10 minutes, suivi d'un refroidissement, à une vitesse supérieure à 10°C par seconde à partir de 800°C, le taux de réduction du second laminage à froid étant supérieur à 40 %, la température de la tôle étant comprise entre 100°C et 300°C pendant au moins une passe de laminage à froid lorsque le taux de réduction du second laminage à froid est supérieur à 70 %,
  • préalablement au laminage à froid en deux opérations, la tôle est soumise à un recuit à une température comprise entre 850°C et 1150°C pendant 1 à 10 minutes, notamment si l'épaisseur finale de la tôle est inférieure à 0,27 mm,
  • la magnésie contient, en plus des additions facultatives de dioxyde de titane, de bore ou d'un composé boré, au moins un composé soufré et/ou un composé soufré et azoté et/ou un composé de l'antimoine pris seuls ou en combinaison.
  • la magnésie contient, en plus des additions facultatives de dioxyde de titane, de bore ou d'un composé contenant du bore, du soufre ou un ou plusieurs composés soufrés ou azotés choisis parmi le sulfate de magnésium, le sulfate de manganèse, l'urée, le thiosulfate de sodium.
  • la magnésie contient, en plus des additions facultatives de dioxyde de titane, de bore ou d'un composé boré, au moins un composé soufré et azoté choisi parmi le sulfate d'ammonium, l'acide amidosulfurique (sulphamic acid), le thiosulfate d'ammonium.
  • la magnésie contient, en plus des additions facultatives de dioxyde de titane, de bore ou d'un composé boré, du chlorure d'antimoine,
La description qui suit et les figures annexées, le tout donné à titre d'exemple non limitatif, fera bien comprendre l'invention.
La figure 1 est une courbe montrant la perte de masse en fonction de la température de réchauffage de la brame et illustrant la formation d'oxydes fusibles au-dessus de 1300°C..
La figure 2 présente, après laminage à chaud, la relation existant entre le diamètre moyen des précipités et le pourcentage en soufre de l'acier.
La figure 3 présente après décarburation, les densités de précipités en fonction de la température d'arrêt du recuit de recristallisation secondaire.
La présente invention concerne l'utilisation d'un acier de composition pondérale déterminée suivante: carbone compris entre 0,02 et 0,09 %, silicium compris entre 2,5 et 4 %, cuivre compris entre 0,06 et 0,50% et une sélection, du manganèse compris entre 0,027 et 0,17%, du soufre compris entre 0,007 et 0,020%, de l'aluminium compris entre 0,010 et 0,030%, de l'azote compris entre 0,004 et 0,012%, le reste étant du fer et des impuretés, composition soumise, après I' élaboration par coulée continue de la brame ou de la bande à un réchauffage à coeur à une température égale ou inférieure à 1300°C. En effet, selon la présente invention, il n' y a plus formation d' oxydes superficiels fusibles en-dessous de cette température comme le montre la figure 1 pour un cycle total de réchauffage des brames de 4 h 30, le temps de maintien à la température visée de réchauffage étant d'une heure. La température de réchauffage de la brame est supérieure à 1200°C selon l'invention afin que les précipités AIN, MnS et CuS pris seuls ou en combinaison puissent être remis en solution en quantité suffisante lors du réchauffage de la brame afin de permettre le recristallisation secondaire et l'obtention d'une bonne qualité magnétique.
Selon la présente invention, les teneurs en manganèse, soufre, aluminium et azote sont choisies dans des fourchettes très étroites, ce qui permet la remise en solution quasi-totale et en quantité suffisante des précipités AIN, MnS et CuS pris seuls ou en combinaison, lors du réchauffage des brames, avant laminage à chaud, à une température égale ou inférieure à 1300°C qui évite la formation superficielle d'oxydes fusibles.
Selon la présente invention, les précipités contenant du soufre et ou de l'azote sont en majeure partie remis en solution lors du réchauffage des brames par suite de l'adaptation de la composition chimique à la température plus faible de réchauffage. L'inhibiteur principal est le nitrure d'aluminium qui précipite peu au cours du laminage à chaud et essentiellement au cours du recuit de la tôle laminée à chaud sous forme de fines particules de diamètre moyen inférieur à 100 nanomètres. Le sulfure de manganèse est un inhibiteur complémentaire. Le cuivre a notamment un effet d'affinement de la taille de ces précipités AIN et MnS auxquels il peut être associé. Les précipités CuS qui piègent une partie du soufre de l'acier au stade du laminage à chaud contribue à la diminution du diamètre moyen des précipités comme le montre la figure 2. Ces précipités CuS, en faible quantité, après recuit de la tôle laminée à chaud, par rapport à celle des précipités AIN, sont remis en solution au cours de la montée en température lors du recuit de recristallisation secondaire. Ils ne participent donc pas de manière significative à l'inhibition. L'addition d'un ou de plusieurs composés soufrés et/ou azotés à la magnésie dont est enduite la tôle après décarburation renforce l'inhibition par AIN et MnS.
Les tôles d'acier à grains orientés selon l'invention sont fabriquées à partir des étapes successives suivantes :
  • coulée continue de l'acier sous forme de brames d'épaisseur comprise entre 150 et 300 mm,
  • réchauffage des brames à coeur à une température comprise entre 1200 °C et 1300°C,
  • laminage à chaud à une épaisseur comprise entre 1 et 5 mm,
  • bobinage entre 500°C et 700°C de la tôle laminée à chaud,
  • recuit de la tôle laminée à chaud à une température comprise entre 850°C et 1150°C pendant 1à 10 minutes suivi d'un refroidissement, à une vitesse supérieure à 10°C par seconde à partir de 800°C,
  • laminage à froid à une épaisseur finale inférieure à 0,5 mm en une opération comprenant plusieurs passes avec un taux de réduction global supérieur à 70 %, la température de la tôle étant comprise entre 100°C et 300°C pendant au moins une passe de laminage à froid,
  • ou laminage à froid à une épaisseur finale inférieure à 0,5 mm en deux opérations avec un recuit intermédiaire, effectué à une température comprise entre 850°C et 1150°C pendant 1 à 10 minutes suivi d'un refroidissement, à une vitesse supérieure à 10°C par seconde à partir de 800°C, le taux de réduction du second laminage à froid étant supérieur à 40 %, la température de la tôle étant comprise entre 100°C et 300°C pendant au moins une passe lorsque le taux de réduction global de ce second laminage à froid est supérieur à 70 %,
Dans le cas de deux opérations de laminage à froid avec recuit intermédiaire, un recuit facultatif de courte durée, de 1 à 10 minutes, entre 850°C et 1150°C avant le premier laminage à froid est susceptible de stabiliser la recristallisation secondaire notamment si l'épaisseur finale de la tôle est inférieure à 0,27 mm; la vitesse de refroidissement peut être plus lente.
  • recuit de recristallisation primaire et de décarburation en atmosphère humide contenant de l'hydrogène et de l'azote à l'épaisseur finale,
  • application sur au moins une face de la tôle d'un agent anti-collage constitué principalement de magnésie,
  • recuit final de recristallisation secondaire et d'épuration du métal,
  • application d'un revêtement isolant et recuit final de cuisson du revêtement.
L'acier à grains orientés selon l'invention, ayant subi les étapes de fabrication précédemment décrites, contient de 0,02 à 0,09 % de carbone, de 2,5 à 4 % de silicium, de 0,027 à 0,17 % de manganèse, de 0,007 à 0,020 % de soufre, de 0,010 à 0,030 % d'aluminium, de 0,004 à 0,012 % d'azote, de 0,06 % à 0,50 % de cuivre, et de manière facultative jusqu'à 0,15 % d'étain, le reste étant du fer et les impuretés.
Le produit résultant de la multiplication de la teneur en soufre par la teneur en manganèse est inférieur ou égal à 160.10-5: (% S) x (% Mn) < 160.10-5 Le produit résultant de la multiplication de la teneur en azote par la teneur en aluminium est inférieur à 240.10-6: (% N) x (% Al) < 240.10-6 Le pourcentage d'azote précipité après laminage à chaud, sous forme de fines particules de diamètre moyen inférieur à 100 nanomètres, est inférieur à 40 %.
Le pourcentage d'azote précipité, après laminage à chaud et recuit, sous forme de fines particules de diamètre moyen inférieur à 100 nanomètres, est supérieur à 60 %.
La magnésie utilisée comme séparateur lors du recuit de recristallisation secondaire et de purification à haute température peut contenir, seul ou en mélange, du soufre ou un ou plusieurs composés soufrés ou azotés choisis parmi le sulfate de magnésium et/ou le sulfate de manganèse et/ou le thiosulfate de sodium, et/ou l'urée, un ou plusieurs composés soufrés et azotés choisis parmi, l'acide amidosulfurique, (sulphamic acid) et/ou le sulfate d'ammonium et/ou le thiosulfate d'ammonium, le chlorure d'antimoine, du bore ou un composé du bore et du dioxyde de titane.
La figure 2 présente, après laminage à chaud, la relation existant entre le diamètre moyen des précipités et le pourcentage en soufre de l'acier, dans le cas d'une remise en solution quasi-totale de l'ensemble des précipités lors du réchauffage de la brame. Afin d'obtenir une fine précipitation après laminage à chaud, la teneur en soufre selon la présente invention est limitée à 0,020 %.
Les fins précipités MnS jouant un rôle actif d'inhibiteur secondaire lors du recuit de recristallisation secondaire, la teneur en soufre doit être au moins égale à 0,007 % pour obtenir une quantité suffisante de ces précipités.
La teneur en manganèse selon la présente invention doit être supérieure à 0,027 % pour obtenir la précipitation d'une quantité suffisante de fins précipités MnS exerçant un effet inhibiteur et avoir une disponibilité en manganèse libre dans le cas d'apport de soufre par le canal d'additif à la magnésie en vue du renforcement du pouvoir inhibiteur des précipités MnS. Elle est limitée à 0,17 % pour éviter la présence d'une précipitation grossière de MnS dans les brames et une remise en solution incomplète lors du réchauffage entre 1200 et 1300°C avant laminage à chaud.
Selon la présente invention, le respect de la condition [% S] x [% Mn] < 160.10-5 favorise la présence de fins précipités MnS dans les brames et leur remise en solution entre 1200°C et 1300°C avant laminage à chaud. Dans le procédé selon la présente invention, la teneur en azote doit être supérieure à 0,004 % afin d'obtenir une précipitation suffisante de fins précipités AIN, inhibiteur principal, au cours du recuit de la tôle laminée à chaud. La teneur en azote est limitée à 0,012 % pour éviter la formation de soufflures (blistering) à la surface de l'acier. La condition (% N) x (% Al) < 240.10-6 permet d'obtenir la mise en solution quasi complète des précipités AIN lors du réchauffage des brames entre 1200°C et 1300°C avant laminage à chaud.
Selon la présente invention, la teneur en aluminium doit être égale ou supérieure à 0,010 % d'une part, pour que la quantité des précipités AIN formés au cours du recuit de la tôle laminée à chaud soit suffisante, AIN étant l'inhibiteur principal et d'autre part, pour avoir une disponibilité en aluminium libre, dans le cas d'apport d'azote par le canal d'additif à la magnésie en vue du renforcement du pouvoir inhibiteur des précipités AIN. La teneur en aluminium est inférieure à 0,030 % pour éviter la précipitation de particules grossières AIN pendant la phase finale du laminage à chaud.
Outre les éléments mentionnés ci-dessus, l'acier peut contenir jusqu'à 0,15 % d'étain qui exerce un effet bénéfique sur l'inhibition.
Dans le procédé selon la présente invention qui utilise des teneurs en soufre et en aluminium plus faibles que dans le procédé de réchauffage des brames à plus haute température, la densité des précipités inhibiteurs contenant, soit du soufre et du manganèse, soit de l'azote et de l'aluminium, peut s'avérer insuffisante pour obtenir une recristallisation secondaire complète et une homogénéité de la qualité magnétique. Afin d'accroítre la stabilité de la recristallisation secondaire et éviter ainsi une dispersion des valeurs des caractéristiques magnétiques, il est, de préférence, ajouté à la magnésie un ou plusieurs composés contenant du soufre et ou de l'azote ou de l'antimoine qui permettent la formation d'un complément d'inhibiteurs, soit à base de soufre et manganèse, soit à base d'azote et d'aluminium, soit à base d'antimoine pendant la montée en température précédant le début de la recristallisation secondaire.
La présente invention est illustrée à partir des observations et des exemples suivants, le tableau 1 donnant la composition chimique des aciers testés. Les aciers n° 2 à 5 et 7 sont des aciers selon la présente invention. Les aciers 1, 6, 8 et 9 sont des aciers de référence. La teneur en phosphore, élément résiduel, selon la présente invention, est inférieure à 0,015 %.
L'acier n° 1 est un acier de référence contenant 0,021 % de soufre et 0,030 % d'aluminium (Acier n° 1, Tableau 1) dont une brame a été réchauffée à 1400°C avant laminage à chaud, de façon à dissoudre la majorité des précipités AIN, MnS, CuS de taille grossière. Le laminage à froid a été réalisé selon l'invention, en une seule opération après recuit de la tôle laminée à chaud à 1120°C. Les propriétés magnétiques obtenues à l'épaisseur finale de 0,285 mm sont :
W(1,7 / 50) = 1,03 Watt/kg ; B800 = 1,91 T
Dans les mêmes conditions, mais avec une température de réchauffage de la brame d'acier N° 1 de 1280°C, les propriétés magnétiques obtenues à l'épaisseur de 0,285 mm sont médiocres parce que le produit du pourcentage de soufre par le pourcentage de manganèse est supérieur à 160.10-5:
W(1,7 / 50) = 1,65 Watt/kg ; B800 = 1,72 T
Dans le cadre des exemples présentés ci-dessous décrivant la présente invention, les tôles d'acier ont été fabriquées de la manière suivante :
  • coulée continue de brames d'acier d'épaisseur 210 mm,
  • réchauffage de brame à coeur à une température comprise entre 1200°C et 1300°C, avec une montée en température en 3 heures 30 minutes et un maintien à la température visée de 1 heure,
  • laminage à chaud préliminaire jusqu'à l'épaisseur de 45 mm en 5 passes,
  • laminage à chaud de finition en 7 passes jusqu'à l'épaisseur de 2,3 mm, la température de début du laminage à chaud de finition étant comprise entre 1070°C et 1000°C, la température finale de laminage à chaud étant comprise entre 965°C et 915°C,
  • bobinage de la tôle laminée à chaud à la température de 530 °C ou 640°C,
  • recuit de la tôle laminée à chaud avec une montée en température d'environ 60 secondes, maintien à 950°C pendant 160 secondes, refroidissement de la tôle laminée à chaud avec un temps de passage entre 700°C et 300°C inférieur à 15 secondes,
  • laminage à froid jusqu'à l'épaisseur finale en six passes correspondant à des taux de réduction à froid successifs d'environ 30 %, la température de laminage atteignant la température de 230°C à la troisième passe, (pour les exemples 2 à 9)
  • recristallisation et décarburation en atmosphère N2/H2 humide entre 800°C et 850°C, la durée du traitement thermique étant inférieure à 500 secondes,
  • enduction de la tôle avec un lait de magnésie et séchage,
Le lait de magnésie est constitué de 150 g de MgO par litre d'eau. A ce lait on ajoute les additifs.
Le pourcentage en un élément d'additif à la magnésie ( Ti, B ,S ,Sb ,N ) est le quotient de la masse de l'élément par la masse de magnésie sèche multiplié par 100.
  • recuit lent de recristallisation secondaire avec une montée en température de 15°C/h sous atmosphère 25 % N2-75 % H2 entre 650°C et 1200°C et épuration du métal à 1200°C sous hydrogène,
  • application d'un revêtement isolant et cuisson du revêtement.
Le revêtement est composé de silice, d'un phosphate d'aluminium et d'acide chromique Exemple 1
Après réchauffage de la brame à 1280°C, laminage à chaud et bobinage de la tôle à 530°C, l'acier n° 2 a été laminé à froid jusqu'à l'épaisseur intermédiaire de 0,74 mm, a subi un recuit de 90 secondes à 1050°C suivi d'un refroidissement, très rapide à partir de 800°C avec un temps de passage entre 700°C et 300°C inférieur à 15 secondes, et a été ensuite laminé jusqu'à l'épaisseur finale de 0,285 mm qui correspond à un taux de deuxième réduction à froid de 61 %. Après poursuite du traitement comme indiqué précédemment, les caractéristiques magnétiques obtenues sont les suivantes :
Pertes (1,7 / 50)
= 1,27 W/kg
B 800
= 1,85 T
Exemple 2
Après réchauffage de la brame à 1280°C, laminage à chaud et bobinage à 530°C, recuit de la tôle laminée à chaud à 950°C pendant 160 secondes, refroidissement, très rapide à partir de 800°C, laminage à froid jusqu'à l'épaisseur finale de 0,285 mm, ce qui correspond à un taux de réduction à froid de 87 %, et poursuite du traitement comme indiqué précédemment, les caractéristiques magnétiques obtenues pour l'acier n° 3 sont les suivantes :
Pertes (1,7 / 50)
= 1,03 W/kg
B 800
= 1,93 T
D'après ces deux exemples, il apparaít que le taux de réduction du laminage à froid final doit être supérieur à 70 % pour obtenir les meilleures propriétés magnétiques.
Dans les exemples 1 et 2, le séparateur de recuit était constitué de magnésie contenant 0,080 % de bore et 1,2% de l'élément titane à l'état de dioxyde de titane TiO2.
Exemple 3
Dans les conditions de l'exemple 2, 10 % de soufre à l'état de sulfate d'ammonium sont ajoutés à la magnésie. Les caractéristiques magnétiques suivantes sont obtenues pour l'acier n° 2 :
Figure 00130001
Exemple 4
Dans les conditions de l'exemple 2, 3 % en masse de soufre à l'état de sulfate de magnésium sont ajoutés à la magnésie. Les caractéristiques magnétiques obtenues pour l'acier n° 2 sont les suivantes :
Pertes (1,7 / 50)
= 1,02 W/kg
B 800
= 1,94 T
Exemple 5
Dans les conditions de l'exemple 2, 1 % de soufre à l'état d'acide amidosulfurique est ajouté à la magnésie. Les caractéristiques magnétiques obtenues pour l'acier n° 2 sont les suivantes :
Pertes (1,7 / 50)
= 1,01 W/kg
B 800
= 1,94 T
Exemple 6
Dans les conditions de l'exemple 2, 0,026% de l'élément antimoine à l'état de chlorure d'antimoine est ajouté à la magnésie. Les caractéristiques magnétiques obtenues pour l'acier n° 2 sont les suivantes:
Pertes (1,7 / 50)
= 1,03 W/kg
B 800
= 1,92 T
Exemple 7
Dans les conditions de l'exemple 2 avec une température de recuit de la bande laminée à chaud de 1050°C, 0,93% d'azote à l'état d'urée est ajouté à la magnésie. Les caractéristiques obtenues pour l'acier n° 7 sont les suivantes:
Pertes (1,7 / 50) =
1,06 W/kg
B 800 =
1,91 T
Exemple 8
Dans les conditions de l'exemple 2, mais avec une température de recuit de la bande laminée à chaud de 1080°C et une magnésie contenant 3,6% de l'élément titane à l'état de dioxyde de titane, 0,10% de bore et exempte d'additifs soufrés et ou azotés et de chlorure d'antimoine, les caractéristiques obtenues pour l'acier n°8 sont les suivantes:
Pertes (1,7 / 50)
= 0,98 W/kg
B 800
= 1,93 T
Exemple 9
Dans les conditions de l'exemple 2, mais avec une température de réchauffage de la brame de 1240°C, une température de recuit de la bande laminée à chaud égale à 1050°C, et une magnésie contenant 1,5% de soufre à l'état d'acide amidosulfurique, les caractéristiques magnétiques obtenues pour l'acier n°9 ont été les suivantes:
Pertes (1,7 / 50)
= 1,03 W/kg
B 800
= 1,92 T
L'addition de soufre ou d'un composé soufré (sulfate de magnésium, manganèse, thiosulfate de sodium) à la magnésie permet de renforcer l'inhibition par les précipités contenant du manganèse et du soufre au cours du recuit de recristallisation secondaire.
L'addition à la magnésie d'un composé azoté (urée) permet d'introduire dans l'acier de l'azote qui renforce l'inhibition par les précipités contenant de l'azote et de l'aluminium.
L'addition à la magnésie d'un composé soufré et azoté (thiosulfate d'ammonium, acide amidosulfurique qui contient à la fois 33 % de soufre et 14 % d'azote) permet d'introduire dans l'acier à la fois du soufre et de l'azote pour renforcer l'inhibition par les précipités contenant, d'une part, du manganèse et du soufre et, d'autre part, de l'azote et de l'aluminium. Le soufre et l'azote diffusant dans l'acier, il en résulte une précipitation complémentaire de très fines particules inhibitrices avant le début de la recristallisation secondaire.
L'effet bénéfique de l'azote associé au soufre est illustré par le fait que le pourcentage en soufre utilisé dans l'exemple 5 est inférieur à celui utilisé dans l'exemple 4.
L'addition à la magnésie de sulfate d'ammonium permet également un apport simultané de soufre et d'azote. L'addition à la magnésie de chlorure d'antimoine permet l'introduction dans l'acier de l'élément antimoine, qui en ségrégeant aux joints des grains, joue le rôle d'inhibiteur. L'addition d'un composé soufré soluble dans l'eau est préférée à l'addition possible de soufre élémentaire insoluble car la dispersion dans le lait de magnésie est plus homogène. L'addition, à la magnésie, de composés contenant du soufre, de l'azote et de l'antimoine favorise l'obtention d'une qualité magnétique homogène sur la longueur de la bande de tôle bobinée.
Le tableau n° 2 montre que selon l'invention, le pourcentage d'azote précipité dans la tôle laminée à chaud est inférieur à 40 %. L'abaissement de la température de bobinage permet de réduire sensiblement le pourcentage d'azote précipité, jusqu'à moins de 5 % dans le cas de l'acier n° 3 réchauffé à 1280°C, laminé à chaud et bobiné à 530°C. A cette température de bobinage, le pourcentage d'azote précipité reste très faible lorsque la température de réchauffage de brame diminue de 1280°C à 1240°C, température habituelle de réchauffage des aciers au carbone.
D'une manière générale, l'abaissement de la température de bobinage à moins de 600°C permet d'éviter la précipitation de particules grossières n'exerçant pas d'effet inhibiteur.
La quantité d'azote combinée à l'aluminium a été déterminée à partir du dosage de l'aluminium précipité. Par réchauffage des brames entre 1200°C et 1300°C selon la présente invention, il est possible d'obtenir, grâce au contrôle strict des teneurs en Mn, S, Al et N, un faible pourcentage d'azote précipité à l'état laminé à chaud, ce que ne permet pas les teneurs plus élevées caractérisant le procédé connu de réchauffage des brames à température supérieure à 1350°C.
Le tableau n° 3 montre que selon l'invention, le pourcentage d'azote précipité est supérieur à 60 % après recuit de la tôle laminée à chaud à 950°C.
Le tableau n° 4 montre que, selon l'invention, le diamètre moyen des précipités contenant de l'azote et de l'aluminium, obtenus par recuit de 160 secondes de la tôle laminée à chaud d'acier n° 2, bobinée à 530°C, est inférieur à 50 nanomètres dans un large domaine de température de recuit.
Les précipités contenant de l'azote et de l'aluminium pourront donc jouer un rôle actif d'inhibiteur.
L'effet du cuivre a été analysé dans le cadre de la présente invention.
Le tableau n° 5 donne le diamètre moyen et la densité des précipités après réchauffage à 1280°C de la brame d'acier n° 2 à 0,15 % de cuivre, laminage à chaud à l'épaisseur 2,3 mm et bobinage à 640°C.
A titre de comparaison, les caractéristiques des précipités de la tôle laminée à chaud à l'épaisseur 2,3 mm et bobinée à 640°C de l'acier de référence n° 1 à 0,09 % de cuivre sont présentées. Il apparaít, d'après le tableau n° 5, que l'augmentation de la teneur en cuivre se traduit par une augmentation de la densité des précipités CuS et AINCuS et une diminution de leur diamètre moyen. Les combinaisons de composés précipités sont désignées par la nature des éléments constitutifs sans tenir compte des proportions.
Dans la tôle d'acier n° 2 à l'état brut de laminage à chaud, les particules CuS et AINCuS de petit diamètre sont majoritaires, celles contenant du manganèse sont minoritaires. L'addition de cuivre et le piégeage du soufre par le cuivre permettent d'éviter, au cours du laminage à chaud, la formation de particules grossières contenant du manganèse, de diamètre trop important pour jouer un rôle d'inhibiteur. L'examen du tableau n° 4 montre une diminution du nombre des particules contenant du cuivre lorsque la température de recuit de la tôle laminée à chaud augmente, mettant en évidence la dissolution partielle des particules contenant Al, N, Cu, S.
La figure 3 indique l'évolution de la densité des précipités CuS et MnCuS après décarburation et au cours du recuit de recristallisation secondaire de l'acier n° 6 qui ne contient pas d'aluminium, composition choisie afin de faciliter le comptage des précipités par microscopie électronique en transmission. Cet acier, dont les brames ont été réchauffées à 1400°C, a subi deux opérations de laminage à froid avec recuit intermédiaire à 950°C, le taux de réduction du second laminage à froid étant de 60 %.
Les fins précipités CuS se dissolvent progressivement avant la recristallisation secondaire qui intervient vers 950°C, la libération de soufre s'accompagnant d'une fine précipitation de particules MnS. Les particules identifiées au microscope électronique sont des MnCuS car le cuivre précipite sur les particules MnS lors du refroidissement. D'après la présente invention, les fines particules CuS ne jouent pas un rôle inhibiteur décisif pour le développement de la recristallisation secondaire.
Dans l'acier n°2, le pourcentage des précipités CuS de diamètre moyen inférieur à 100 nm est inférieur à 3 % de la population totale, après recuit de la tôle laminée à chaud. Ce sont des précipités MnS formés après décarburation et avant recristallisation secondaire qui renforcent l'inhibition par les précipités contenant de l'azote et de l'aluminium.
Selon la présente invention, la teneur en cuivre doit être supérieure à 0,06 % pour obtenir une précipitation fine aux stades laminé à chaud et laminé à chaud et recuit. L'augmentation de la teneur en cuivre favorise l'affinement de la précipitation. La teneur en cuivre est limitée à 0,50 % pour éviter les problèmes de décapage de la tôle obtenue.
Comme il a été démontré, il est possible de fabriquer, par réchauffage des brames à température supérieure à 1200°C et égale ou inférieure à 1300°C, des tôles d' acier électrique à grains orientés qui présentent, soit les propriétés magnétiques des tôles classiques (B 800 < 1,86 T) grâce à un laminage à froid en deux opérations séparées par un recuit intermédiaire et un taux de réduction au second laminage à froid compris entre 40 et 70 %, soit les propriétés magnétiques des tôles à haute perméabilité (B 800 > 1,88 T) grâce à une seule opération de laminage à froid précédé d'un recuit ou à un laminage à froid en deux opérations séparées par un recuit intermédiaire, le taux de réduction de l'opération finale de laminage à froid étant supérieur à 70 %. L'abaissement de la température de réchauffage par rapport au procédé connu permet d' éviter la formation d'oxydes liquides encrassant le four.
Dans le cas d'un laminage à froid final, avec un taux de réduction supérieur à 70%, on peut obtenir soit les propriétés magnétiques des tôles classiques ( B800 < 1,86 T ), soit les propriétés magnétiques des tôles à haute perméabilité. ( B800 > 1,88 T )
On a remarqué, que le niveau des pertes diminue et que le niveau du B800 augmente en fonction de la réduction de la teneur massique en oxygène du film d'oxyde superficiel formé pendant l'opération de décarburation. L'abaissement de la teneur en oxygène du film d'oxyde superficiel, principalement constitué de silice et contenant moins de 20% d'oxyde de fer, en dessous de 800.10-4% ( environ 1,8 g d oxygène par m2) permet une amélioration des propriétés magnétiques, d'autant plus marquée que cet abaissement est élevé.
Le procédé de la présente invention décrit pour des brames de coulée continue d'épaisseur comprise entre 150 et 300 mm peut être appliqué aux brames plus minces, d'épaisseur comprise entre 15 et 100 mm environ.
Le procédé de la présente invention peut être aussi appliqué à des bandes minces obtenues par coulée d'acier liquide entre deux rouleaux, d'épaisseur supérieure à 2 mm, les bandes étant réchauffées entre 1200°C et 1300°C, avant de subir le laminage à chaud.
Le nombre de passes du laminage à chaud préliminaire et du laminage à chaud de finition est fonction de l'épaisseur du produit coulé en continu et de l'épaisseur visée à l'état laminé à chaud. Si l'épaisseur du produit coulé en continu est suffisamment faible, le laminage à chaud préliminaire peut être supprimé.
La durée totale du cycle de réchauffage du produit coulé en continu est fonction de son épaisseur. Plus cette épaisseur est faible, plus la température de réchauffage est rapidement atteinte à coeur.
Analyse chimique (pourcentage massique) des brames
Repère Acier Si C Mn S Al N Cu Sn
1 3,16 0,060 0,081 0,021 0,030 0,0074 0,09 < 0,015
2 3,15 0,044 0,080 0,011 0,025 0,0086 0,151 < 0,015
3 3,18 0,057 0,081 0,015 0,021 0,0072 0,154 < 0,015
4 3,16 0,059 0,079 0,014 0,026 0,0073 0,150 < 0,015
5 3,15 0,058 0,079 0,012 0,021 0,0093 0,151 < 0,015
6 3,21 0,042 0,058 0,020 0,001 0,0042 0,205 < 0,015
7 3,12 0,058 0,080 0,015 0,024 0,0074 0,149 < 0,015
8 3,26 0,054 0,079 0,015 0,019 0,0066 0,010 0,069
9 3,12 0,056 0,078 0,011 0,019 0,0068 0,014 < 0,015
Pourcentage d'azote précipité après laminage à chaud
Repère Acier Température de réchauffage des brames (°C) Température de bobinage (°C) % N précipité
1 1400 640 40
2 1280 530 21
3 1280 640 24
530 3
4 1280 640 37
530 12
5 1245 640 34
8 1240 530 12
1280 530 7
9 1240 530 9
1280 530 3
Pourcentage d'azote précipité après recuit de la tôle laminée à chaud.
Repère Acier Température de réchauffage des brames (°C) Température de bobinage (°C) % N précipité
2 1280 530 75
3 1280 640 74
530 75
4 1280 640 77
530 82
Figure 00190001
Figure 00190002

Claims (14)

  1. Procédé de fabrication d'une tôle d'acier électrique à grains orientés pour la réalisation notamment de circuits magnétiques de transformateurs comprenant successivement:
    une coulée d'un acier en continu sous forme de brame ou de bande d'acier contenant notamment dans sa composition pondérale moins de 0,1 % de carbone, de 2,5 à 4 % de silicium et au moins les éléments aluminium, azote, manganèse, soufre, cuivre, destinés à former des précipités inhibiteurs de croissance normale,
    procédé dans lequel l'acier, de composition pondérale suivante:
    de 0,02 à 0,09 % de carbone,
    de 2,5 à 4 % de silicium
    de 0,027 à 0,17 % de manganèse
    de 0,007 à 0,020 % de soufre
    de 0,010 à 0,030 % d'aluminium
    de 0,004 à 0,012 % d'azote
    de 0,06 à 0,50 % de cuivre
    de manière facultative, jusqu'à 0,15% d'étain,
    le reste étant le fer et les impuretés parmi lesquelles moins de 0,015% de phosphore, est soumis successivement après l'élaboration de la brame ou de la bande par coulée continue à,
    un réchauffage à une température supérieure à 1200°C et inférieure ou égale à 1300°C, afin que les précipités AIN, MnS, et CuS pris seul ou en combinaison puissent être remis en solution en quantité suffisante,
    un laminage à chaud de la brame ou de la bande pour l'obtention d'une tôle d'épaisseur comprise entre 1 et 5 mm pendant lequel les précipités CuS piègent une partie du soufre de l'acier,
    un bobinage à chaud de la tôle laminée à chaud entre 500°C et 700°C,
    un recuit de la tôle laminée à chaud,
    un laminage à froid à une épaisseur finale inférieure à 0,5 mm,
    un recuit de recristallisation primaire et de décarburation en atmosphère humide,
    une application, sur au moins une face de la tôle décarburée, d'un séparateur à base de magnésie MgO,
    un recuit final de recristallisation secondaire et d'épuration, avant lequel, lors de la montée à température de ce recuit final de recristallisation secondaire, les fins précipités CuS se dissolvent progressivement, la libération du soufre s'accompagnant d'une fine précipitation de particules MnS.
    une application d'un revêtement isolant et le recuit final de cuisson du revêtement.
  2. Procédé selon la revendication 1 caractérisé en ce qu'on décarbure la bande de façon à ce que la teneur en oxygène du film d'oxyde formé soit inférieure à 800.10-4 %.
  3. Procédé selon la revendication 1 caractérisé en ce que le produit résultant de la multiplication de la teneur en soufre par la teneur en manganèse est inférieur à 160.10-5.
  4. Procédé selon la revendication 1 caractérisé en ce que le produit résultant de la multiplication de la teneur en azote par la teneur en aluminium est inférieur à 240.10-6.
  5. Procédé selon les revendications 1 à 4 caractérisé en ce que l'acier est laminé à chaud de façon à faire précipiter l'azote sous forme de fines particules contenant notamment de l'azote et de l'aluminium de diamètre moyen inférieur à 100 nanomètres, le pourcentage d'azote précipité étant inférieur à 40 %.
  6. Procédé selon les revendications 1 à 5 caractérisé en ce que l'acier laminé à chaud est recuit de façon à faire précipiter l'azote sous forme de fines particules contenant notamment de l'azote et de l'aluminium de diamètre moyen inférieur à 100 nanomètres, le pourcentage d'azote précipité étant supérieur à 60 %
  7. Procédé selon les revendications 1 à 6 caractérisé en ce que l'acier est laminé à chaud de façon à faire précipiter le soufre sous forme de particules dont le diamètre moyen est inférieur à 100 nanomètres.
  8. Procédé selon les revendications 1 à 7 caractérisé en ce qu'après recuit de la tôle laminée à chaud à une température comprise entre 850°C et 1150°C pendant 1 à 10 minutes et refroidissement, à une vitesse supérieure à 10°C par seconde à partir de 800°C, le laminage à froid à une épaisseur finale inférieure à 0,5 mm est effectué, en une seule opération comprenant plusieurs passes, avec un taux de réduction global supérieur à 70 %, la température de la tôle étant comprise entre 100 et 300°C pendant au moins une passe du laminage à froid.
  9. Procédé selon les revendications 1 à 7 caractérisé en ce que laminage à froid, à une épaisseur finale inférieure à 0,5 mm, est effectué en deux opérations avec un recuit intermédiaire, à une température comprise entre 850°C et 1150°C pendant 1 à 10 minutes, suivi d'un refroidissement, à une vitesse supérieure à 10°C par seconde à partir de 800°C, le taux de réduction du second laminage à froid étant supérieur à 40 %, la température de la tôle étant comprise entre 100°C et 300°C pendant au moins une passe de laminage à froid lorsque le taux de réduction du second laminage à froid est supérieur à 70 %.
  10. Procédé selon la revendication 9 caractérisé en ce que préalablement au laminage à froid en deux opérations, la tôle est soumise à un recuit à une température comprise entre 850°C et 1150°C pendant 1 à 10 minutes, notamment si l'épaisseur de la tôle est inférieure à 0,27 mm.
  11. Procédé selon les revendications 1 à 10 caractérisé en ce que la magnésie contient, en plus des additions facultatives de dioxyde de titane, de bore ou d'un composé boré, au moins un composé soufré ou azoté, un composé soufré et azoté, un composé de l'antimoine, pris seuls ou en combinaison.
  12. Procédé selon les revendications 1 à 10 caractérisé en ce que la magnésie contient, en plus des additions facultatives de dioxyde de titane, de bore ou d'un composé contenant du bore, du soufre ou un ou plusieurs composés soufrés choisis parmi le sulfate de magnésium, le sulfate de manganèse, le thiosulfate de sodium.
  13. Procédé selon les revendications 1 à 10 caractérisé en ce que la magnésie contient, en plus des additions facultatives de dioxyde de titane, de bore ou d'un composé boré, au moins un composé soufré et ou azoté choisi parmi le sulfate d'ammonium, le thiosulfate d'ammonium, l'acide amidosulfurique, l'urée.
  14. Procédé selon les revendications 1 à 10 caractérisé en ce que la magnésie contient, en plus des additions facultatives de dioxyde de titane, de bore et ou d'un composé boré, du chlorure d'antimoine.
EP96400486A 1995-03-14 1996-03-08 Procédé de fabrication d'une tôle d'acier électrique à grains orientés notamment pour transformateurs Expired - Lifetime EP0732413B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9502916 1995-03-14
FR9502916A FR2731713B1 (fr) 1995-03-14 1995-03-14 Procede de fabrication d'une tole d'acier electrique a grains orientes pour la realisation notamment de circuits magnetiques de transformateurs

Publications (2)

Publication Number Publication Date
EP0732413A1 EP0732413A1 (fr) 1996-09-18
EP0732413B1 true EP0732413B1 (fr) 2001-09-26

Family

ID=9476993

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96400486A Expired - Lifetime EP0732413B1 (fr) 1995-03-14 1996-03-08 Procédé de fabrication d'une tôle d'acier électrique à grains orientés notamment pour transformateurs

Country Status (13)

Country Link
EP (1) EP0732413B1 (fr)
JP (1) JPH10500454A (fr)
KR (1) KR970702932A (fr)
CN (1) CN1148411A (fr)
AT (1) ATE206171T1 (fr)
BR (1) BR9605937A (fr)
CZ (1) CZ284873B6 (fr)
DE (1) DE69615429T2 (fr)
ES (1) ES2161988T3 (fr)
FR (1) FR2731713B1 (fr)
PL (1) PL317155A1 (fr)
PT (1) PT732413E (fr)
WO (1) WO1996028576A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628137C1 (de) * 1996-07-12 1997-04-10 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientiertem Elektroblech
DE19628136C1 (de) * 1996-07-12 1997-04-24 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientiertem Elektroblech
IT1290171B1 (it) * 1996-12-24 1998-10-19 Acciai Speciali Terni Spa Procedimento per il trattamento di acciaio al silicio, a grano orientato.
IT1290977B1 (it) * 1997-03-14 1998-12-14 Acciai Speciali Terni Spa Procedimento per il controllo dell'inibizione nella produzione di lamierino magnetico a grano orientato
IT1290978B1 (it) * 1997-03-14 1998-12-14 Acciai Speciali Terni Spa Procedimento per il controllo dell'inibizione nella produzione di lamierino magnetico a grano orientato
FR2761081B1 (fr) * 1997-03-21 1999-04-30 Usinor Procede de fabrication d'une tole d'acier electrique a grains orientes pour la fabrication notamment de circuits magnetiques de transformateurs
AU2698897A (en) * 1997-04-16 1998-11-11 Acciai Speciali Terni S.P.A. New process for the production of grain oriented electrical steel from thin slabs
WO1998048062A1 (fr) * 1997-04-24 1998-10-29 Acciai Speciali Terni S.P.A. Nouveau procede de production d'acier electrique extremement permeable a partir de plaquettes
DE19816158A1 (de) * 1998-04-09 1999-10-14 G K Steel Trading Gmbh Verfahren zur Herstellung von korn-orientierten anisotropen, elektrotechnischen Stahlblechen
CA2287658C (fr) * 1998-10-27 2009-01-13 Kawasaki Steel Corporation Feuille d'acier electromagnetique et procede de production de ce produit
EP1162280B1 (fr) * 2000-06-05 2013-08-07 Nippon Steel & Sumitomo Metal Corporation Procédé de fabrication d'une tôle d'acier électrique à grains orientés presentant d'excellentes caracteristiques magnétiques
IT1316029B1 (it) * 2000-12-18 2003-03-26 Acciai Speciali Terni Spa Processo per la produzione di acciaio magnetico a grano orientato.
CN100389222C (zh) * 2005-12-13 2008-05-21 武汉钢铁(集团)公司 提高含铜取向硅钢电磁性能和底层质量的生产方法
CN101545072B (zh) * 2008-03-25 2012-07-04 宝山钢铁股份有限公司 一种高电磁性能取向硅钢的生产方法
CN101643881B (zh) * 2008-08-08 2011-05-11 宝山钢铁股份有限公司 一种含铜取向硅钢的生产方法
IT1396714B1 (it) * 2008-11-18 2012-12-14 Ct Sviluppo Materiali Spa Procedimento per la produzione di lamierino magnetico a grano orientato a partire da bramma sottile.
JP5353234B2 (ja) * 2008-12-26 2013-11-27 Jfeスチール株式会社 方向性電磁鋼板の製造方法
JP5434438B2 (ja) * 2009-09-30 2014-03-05 Jfeスチール株式会社 一方向性電磁鋼板の製造方法
EP2580359B1 (fr) * 2010-06-10 2017-08-09 Tata Steel IJmuiden BV Procédé de production d'acier austénitique
CN102071303B (zh) * 2011-01-30 2012-11-21 中冶南方(武汉)威仕工业炉有限公司 带钢在硅钢连续退火干燥炉的穿带方法
CN103667602B (zh) * 2013-11-26 2015-04-08 山西太钢不锈钢股份有限公司 一种晶粒取向电工钢rh精炼钢水增氮方法
CZ305521B6 (cs) * 2014-05-12 2015-11-11 Arcelormittal Ostrava A.S. Pás z orientované transformátorové oceli a způsob jeho výroby
CN106048411A (zh) * 2016-06-27 2016-10-26 马鞍山钢铁股份有限公司 一种变压器用冷轧取向电工钢及其生产方法
CN111020140A (zh) * 2019-12-17 2020-04-17 无锡晶龙华特电工有限公司 一种磁性优良取向硅钢氧化镁退火隔离剂及其涂覆工艺
JP7463976B2 (ja) * 2020-02-28 2024-04-09 Jfeスチール株式会社 方向性電磁鋼板の製造方法
CN112522609B (zh) * 2020-11-18 2021-12-14 武汉钢铁有限公司 一种含复合抑制剂的高磁感取向硅钢及生产方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3671337A (en) * 1969-02-21 1972-06-20 Nippon Steel Corp Process for producing grain oriented electromagnetic steel sheets having excellent magnetic characteristics
US3855018A (en) * 1972-09-28 1974-12-17 Allegheny Ludlum Ind Inc Method for producing grain oriented silicon steel comprising copper
AR208355A1 (es) * 1975-02-13 1976-12-20 Allegheny Ludlum Ind Inc Procedimiento para producir acero electromagnetico al silico
GB2130241B (en) * 1982-09-24 1986-01-15 Nippon Steel Corp Method for producing a grain-oriented electrical steel sheet having a high magnetic flux density
JPS60197819A (ja) * 1984-03-22 1985-10-07 Nippon Steel Corp 薄手高磁束密度方向性電磁鋼板の製造方法
KR930004849B1 (ko) * 1991-07-12 1993-06-09 포항종합제철 주식회사 자기특성이 우수한 방향성 전기강판 및 그 제조방법
DE4311151C1 (de) * 1993-04-05 1994-07-28 Thyssen Stahl Ag Verfahren zur Herstellung von kornorientierten Elektroblechen mit verbesserten Ummagnetisierungsverlusten

Also Published As

Publication number Publication date
PL317155A1 (en) 1997-03-17
FR2731713A1 (fr) 1996-09-20
BR9605937A (pt) 1997-08-12
PT732413E (pt) 2002-03-28
JPH10500454A (ja) 1998-01-13
CZ284873B6 (cs) 1999-03-17
ES2161988T3 (es) 2001-12-16
CZ368496A3 (en) 1997-04-16
CN1148411A (zh) 1997-04-23
DE69615429T2 (de) 2002-06-20
FR2731713B1 (fr) 1997-04-11
WO1996028576A1 (fr) 1996-09-19
ATE206171T1 (de) 2001-10-15
EP0732413A1 (fr) 1996-09-18
DE69615429D1 (de) 2001-10-31
KR970702932A (ko) 1997-06-10

Similar Documents

Publication Publication Date Title
EP0732413B1 (fr) Procédé de fabrication d&#39;une tôle d&#39;acier électrique à grains orientés notamment pour transformateurs
JP5188658B2 (ja) ヒステリシス損が少なく、高い極性を有する方向性けい素鋼板の製造方法
JP5954347B2 (ja) 方向性電磁鋼板およびその製造方法
CN107614725B (zh) 取向性电磁钢板及其制造方法
JP4784347B2 (ja) 方向性電磁鋼板の製造方法
EP0912768B1 (fr) Procede de fabrication d&#39;une tole d&#39;acier electrique a grains orientes pour la fabrication notamment de circuits magnetiques de transformateurs
FR2557890A1 (fr) Procede pour produire un ruban d&#39;acier electrique a grains orientes ayant des proprietes magnetiques et des proprietes de pellicule de verre ameliorees
US9536657B2 (en) Grain oriented electrical steel sheet and method for manufacturing the same
RU2758440C1 (ru) Лист из электротехнической стали с ориентированной зеренной структурой
JP2541383B2 (ja) 軟磁気特性に優れた高珪素鋼板
JP2002363713A (ja) 鉄損および磁束密度が極めて優れたセミプロセス無方向性電磁鋼板およびその製造方法
JP7393692B2 (ja) 無方向性電磁鋼板用の熱延鋼板、無方向性電磁鋼板、およびその製造方法
US5913987A (en) Finish treatment method and silicon steel sheet manufactured by direct casting method
JP4239456B2 (ja) 方向性電磁鋼板の製造方法
EP4174194A1 (fr) Procédé de production d&#39;une tôle d&#39;acier électrique à grains orientés
US20230257841A1 (en) Method for producing electrical steel sheet
KR940006492B1 (ko) 저철손을 가지고 있는 방향성 전자강판의 제조방법
KR102513027B1 (ko) 방향성 전기강판 및 그의 제조방법
JP2002356752A (ja) 鉄損および磁束密度が極めて優れた無方向性電磁鋼板およびその製造方法
RU2811896C1 (ru) Способ производства листа электротехнической стали
JP6988845B2 (ja) 方向性電磁鋼板の製造方法
WO2024162441A1 (fr) Procédé de fabrication de tôle d&#39;acier électromagnétique à grains orientés
CN114364821B (zh) 方向性电磁钢板及其制造方法
CN112771183B (zh) 方向性电磁钢板、方向性电磁钢板的制造方法及方向性电磁钢板的制造中利用的退火分离剂
WO2008078947A1 (fr) Procédé de fabrication de tôles d&#39;acier magnétiques à grains orientés

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

17P Request for examination filed

Effective date: 19961004

17Q First examination report despatched

Effective date: 19990427

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: UGO

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010926

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010926

REF Corresponds to:

Ref document number: 206171

Country of ref document: AT

Date of ref document: 20011015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69615429

Country of ref document: DE

Date of ref document: 20011031

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: FRENCH

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2161988

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011226

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20011228

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011213

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20011212

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20080215

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PT

Payment date: 20080225

Year of fee payment: 13

Ref country code: LU

Payment date: 20080313

Year of fee payment: 13

Ref country code: IE

Payment date: 20080225

Year of fee payment: 13

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20090908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090908

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090309

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20100323

Year of fee payment: 15

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110325

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110310

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20110330

Year of fee payment: 16

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20120423

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110309

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120402

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69615429

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120308

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20140224

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140317

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20140327

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150308

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150308

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331