EP0633581B1 - Matériaux R-Fe-B pour aimants permanents et leurs procédé de fabrication - Google Patents

Matériaux R-Fe-B pour aimants permanents et leurs procédé de fabrication Download PDF

Info

Publication number
EP0633581B1
EP0633581B1 EP93308184A EP93308184A EP0633581B1 EP 0633581 B1 EP0633581 B1 EP 0633581B1 EP 93308184 A EP93308184 A EP 93308184A EP 93308184 A EP93308184 A EP 93308184A EP 0633581 B1 EP0633581 B1 EP 0633581B1
Authority
EP
European Patent Office
Prior art keywords
atomic
permanent magnet
accordance
producing
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93308184A
Other languages
German (de)
English (en)
Other versions
EP0633581A1 (fr
Inventor
Yuji Kaneko
Naoyuki Ishigaki
Koki Tokuhara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neomax Co Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP19288693A external-priority patent/JP3415208B2/ja
Priority claimed from JP5207192A external-priority patent/JPH0745412A/ja
Priority claimed from JP20719093A external-priority patent/JP3151087B2/ja
Priority claimed from JP20719193A external-priority patent/JP3151088B2/ja
Priority claimed from JP21217193A external-priority patent/JP3299000B2/ja
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Publication of EP0633581A1 publication Critical patent/EP0633581A1/fr
Application granted granted Critical
Publication of EP0633581B1 publication Critical patent/EP0633581B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0573Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes obtained by reduction or by hydrogen decrepitation or embrittlement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • B22F3/04Compacting only by applying fluid pressure, e.g. by cold isostatic pressing [CIP]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • H01F1/053Alloys characterised by their composition containing rare earth metals
    • H01F1/055Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
    • H01F1/057Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B
    • H01F1/0571Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes
    • H01F1/0575Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together
    • H01F1/0577Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5 and IIIa elements, e.g. Nd2Fe14B in the form of particles, e.g. rapid quenched powders or ribbon flakes pressed, sintered or bonded together sintered
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • B22F2202/05Use of magnetic field
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • B22F2998/10Processes characterised by the sequence of their steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to permanent magnet materials composed mainly of R (where R represents at least one rare earth element), Fe and B, and a process of producing the same, particularly, it relates to R-Fe-B permanent magnet materials and to processes of producing the same.
  • R represents at least one rare earth element
  • Fe and B a rare earth element
  • Such materials are typically powdered and then molded into shape and sintered to form magnets.
  • an R-Fe-B permanent magnet (Japanese Patent Application Laid Open No. Sho 59-46008), is typically used as a high performance permanent magnet.
  • a high magnetic characteristic is obtained by a magnet material structure having a main phase of ternary tetragonal compounds and an R-rich phase, and such magnets are used in a broad field from general domestic electric appliance to peripheral equipment of large-sized computers.
  • R-Fe-B permanent magnets having various structures have been proposed so as to exhibit various magnetic characteristics depending on their proposed uses.
  • the residual magnetic flux density (Br) of an Fe-B sintered magnet can be expressed as the following Equation (1).
  • Equation (1) Br ⁇ (Is• ⁇ )•f• ⁇ / ⁇ 0 •(1- ⁇ ) ⁇ 2/3
  • the volume fraction of the R 2 Fe 14 B matrix phase may be increased, (2) the density of the magnet may be raised to the theoretical maximum density, and further, 3) the degree of orientation of the main phase crystal grains in a easily magnetizing axial direction may be enhanced.
  • the item 3 it is usual in a process of producing an R-Fe-B permanent magnet, to adopt a process of press molding in the magnetic field in order to make the direction of the easy magnetization axes of the main phase crystal grains uniform.
  • the residual magnetic flux density (Br) value and the value of the squareness of the demagnetization curve ⁇ (Br2/4(BH)max ⁇ change depending on the direction of magnetic field application and the pressing direction, and are influenced by the applied magnetic field intensity.
  • a cast piece having a specific thickness is formed from an R-Fe-B molten alloy by the double roll casting method, and according to a common powder metallurgical process, the cast piece is ground coarsely by means of a stamp mill, a jaw crusher or the like, and then comminuted into powders having a mean grain size of 3 to 5 ⁇ m by a mechanical pulverizing process in a disk mill a ball mill, grinder, a jet mill or the like, and thereafter pressed in a magnetic field, sintered, and annealed.
  • the pulverizing efficiency at the time of pulverization can not be improved significantly.
  • magnetic characteristics can not be greatly improved at the time of pulverization, because not only grain boundary pulverization but also intergranular pulverization occurs, and since the R-rich phase is not in a RH 2 phase stable against oxidation, or since the R-rich phase is fine and has a large surface area, it is poor in oxidation resistance, with the result that oxidation proceeds during the process and high magnetic characteristics can not be obtained.
  • Enhancement of the residual magnetic flux density (Br) of an R-Fe-B sintered magnet can be achieved by increasing a content of the R 2 Fe 14 B phase of the main phase which is the ferro-magnetic phase. That is, it is important to make the magnet composition close to the stoichiometric composition of R 2 Fe 14 B.
  • the alloy ingot prepared by melting the alloy having the aforementioned composition and casting in the mold, as the starting material, particularly as ⁇ -Fe crystallized in the alloy ingot and the R-rich phase is locally present throughout, the alloy is difficult to pulverize and has discrepancies in composition.
  • the B-rich phase and the R-rich phase are indispensable phases for producing a dense R-Fe-B sintered magnet.
  • an R-Fe-B permanent magnet material as defined in Claim 1 hereof.
  • an R-rich phase which is finely dispersed produces hydrides to cause volume expansion and eventual spontaneous decay of the alloy, thereafter the main phase crystal grains constituting the alloy can be comminuted and the powder having a uniform grain distribution can be produced.
  • the R-rich phase is finely dispersed and the R 2 Fe 14 B phase is also comminuted, thus when the alloy powder which is dehydrogenated and stabilized is comminuted production efficiency is greatly improved, and by orientation using a pulsed magnetic field and pressing, the R-Fe-B permanent magnet of excellent magnetic properties can be obtained.
  • the present invention also provide various processes for the production of such a magnet material. These processes are defined in Claims 9, 11 and 18 hereof.
  • an alloy of the desired final composition is directly strip cast and further processed by hydrogenation, dehydrogenation, comminution, magnetic orientation, molding, sintering and annealing.
  • a main phase base alloy and an adjusting alloy are produced separately, and then after hydrogenation, dehydrogenation and comminution the resulting powders are blended together prior to magnetic orientation, molding, sintering and annealing.
  • an adjusting alloy powder containing a Nd 2 Fe 17 phase obtained by the strip casting process with the R-Fe-B alloy powder containing the R 2 Fe 14 B phase as the main phase also obtained by the strip casting process, due to the reaction between the Nd 2 Fe 17 phase in the adjusting alloy powder and the B-rich and Nd-rich phase in the main phase of R-Fe-B alloy powder, the B-rich phase and Nd-rich phase which are deleterious for permanent magnetic characteristics can be adjusted and decreased, the resulting magnet performance can be improved, and further, oxygen content in the alloy powder can be reduced, and an alloy powder having a composition responsive to various magnetic characteristics is provided easily.
  • an adjusting alloy powder containing an R-Co intermetallic compound phase obtained by the strip casting process with an R-Fe-B alloy powder containing the R 2 Fe 14 B phase as the main phase obtained by the strip casting process, even when the liquid-phase sintering can not be effected only by the main phase of R-Fe-B alloy powder due to the shortage of R-rich and B-rich phases, the R-Co intermetallic compound phase of the adjusting alloy powder is melted to supply a liquid phase for high densification thus the resulting magnet performance can be improved, and further, oxygen content in the alloy powder can be decreased and an alloy powder having a composition responsive to various magnetic characteristics is again provided easily.
  • Fig. 1 is an explanatory view of a press machine, in which a pulse magnetic field and a static magnetic field can be applied together.
  • Fig. 2 is a graph showing the relationship between time and magnetic field intensity of a pulse magnetic field.
  • the R-rich phase is finely dispersed and the R 2 Fe 14 B phase is also fine. Furthermore, in a process of making the alloy ingot by using a usual mold, when the alloy composition is brought close to the stoichiometric composition of the R 2 Fe 14 B phase, crystallization of ⁇ -Fe primary crystals is unavoidable, causing a large deterioration of the pulverizing efficiency in the following process. And hence, though means for providing heat treatment and eliminating ⁇ -Fe is taken to homogenize the alloy ingot, since the main phase crystal grains become coarse and segregation of the R-rich phase proceeds, iHc of the sintered magnet is only improved with difficulty.
  • a molten alloy consisting of 12 atomic % to 16 atomic % R (where, R represents at least one rare earth element), 4 atomic % to 8 atomic % B, 5000 ppm or less O 2 , Fe (of which a part is optionally replaced by one or both of Co and Ni) and unavoidable impurities, into a cast piece whose main phase is an R 2 Fe 14 B phase, the cast piece is contained in a pressure vessel which can take in and discharge air, the air in the pressure vessel is replaced by hydrogen for hydrogenation of the cast piece.
  • the cast material is then dehydrogenated, and is thereafter comminuted into a fine powder of 1 ⁇ m to 10 ⁇ m mean particle size under an inert gas, the fine powder is packed into a mold and oriented by applying the pulse magnetic field of 10 kOe (796 kA/m) or more instantaneously, then molded, sintered and annealed, thereby to obtain a permanent magnet material which has magnetic properties such that when the maximum energy product value is expressed in kJ/m 3 and the coercive force iHc is measured in kA/m, the total value [(BH)max ⁇ 7.96]+ [iHc ⁇ 79.6] is 59 or more, and such that when the residual magnetic flux density (Br) is measured in tenths of one Tesla (kiloGauss), the squareness of the demagnetization curve ⁇ (Br 2 ⁇ 1.99)/(BH)max ⁇ is 1.01 to 1.045
  • an R 2 Fe 17 phase in an R-Fe alloy such as a Nd-Fe alloy is an intermetallic compound having an easily magnetizing direction in a C phase when its Curie point is in the vicinity of room temperature, and conventionally, in an R-Fe-B sintered permanent magnet, when the amount of B is less than 6 atomic %, for example, an R 2 Fe 17 phase is produced in the magnet and this weakens its coercivity.
  • an adjusting alloy powder containing the Nd 2 Fe 17 phase and the R-Fe-B alloy powder containing the R 2 Fe 14 B phase as the main phase react as follows during the sintering, and act to increase the R 2 Fe 14 B phase as the main phase. 13/17 Nd 2 Fe 17 + 1/4 Nd 1.1 Fe 4 B 4 + 133/680 Nd ⁇ Nd 2 Fe 14 B
  • the Nd 2 Fe 14 B phase is newly produced by a reaction between the Nd 2 Fe 17 phase in the adjusting alloy powder and the B-rich phase and Nd-rich phase in the main phase R-Fe-B alloy powder, in a permanent magnet obtained by using only the alloy powder containing the R 2 Fe 14 B phase as the main phase of the conventional process, the amount of the B-rich phase and Nd-rich phase (which is one of the factors deleterious for magnetic characteristics) can be reduced at the time of the sintering reaction.
  • R-Fe-B permanent magnet material powders may be obtained by mixing a necessary amount of main phase alloy powder containing the R 2 Fe 14 B phase as its main phase and an adjusting alloy powder containing the R 2 Fe 17 phase also obtained by rapid cooling and solidifying of a molten alloy formed by the strip casting process.
  • reasons for producing the main phase alloy powder and adjusting alloy powder from the alloy obtained by the strip casting process in the present invention are that, by strip casting, a main phase alloy powder can be obtained from an alloy cast piece, in which the R 2 Fe 14 B main phase is fine and the B-rich phase and Nd-rich phases are sufficiently dispersed, and in which crystallization of Fe primary crystals is suppressed, and furthermore, an adjusting alloy powder in which the R 2 Fe 17 phase is dispersed uniformly can be obtained from a strip cast alloy piece.
  • the R 2 Fe 14 B phase is fine and the B-rich phase and R-rich phase are uniformly dispersed in the main phase material powders, pulverizing is improved considerably, and a powder having a uniform particle distribution can be obtained. Furthermore, when producing the magnet, since the crystal structure is fine, a high coercive force is obtained.
  • an advantage of producing the adjusting alloy powder containing the R 2 Fe 17 phase by the strip casting process is that, since the R 2 Fe 17 phase can be made fine and dispersed sufficiently at the time of mixing with the main phase alloy powder, the reaction takes place uniformly.
  • the alloy ingot In the usual alloy melting process using a mold, since ⁇ -Fe and the other R-Fe (Co) compound phase are crystallized on the resulting alloy ingot, in order to obtain stable material alloy powders, the alloy ingot must be heated and homogenized, causing the production cost ofthe alloy powder to increase and the R 2 Fe 17 phase to grow.
  • the adjusting alloy powder by a direct reducing and diffusing process, such problems are encountered that, unreacted Fe grains remain or individual grain compositions differ from each other, and it is very difficult to homogenize the mixture of alloy powders.
  • an alloy powder made close to the stoichiometric composition of the R 2 Fe 14 B phase can be liquid-phase sintered.
  • the magnet composition can be made close to the stoichiometric composition of the R 2 Fe 14 B phase.
  • the Nd-rich phase serving as a supply source of the liquid phase produces Nd-oxides during the process by unavoidable material oxidation, so that the amount of liquid phase necessary for sintering can not be secured.
  • a high sufficiently densification can not be achieved, so that the composition must be set in advance with some tolerance margins. Any such deviations from the optimum composition can be reduced or even eliminated by the present invention.
  • the R 2 Fe 14 B phase in the main phase material powders is fine and the B-rich phase and Nd-rich phase are dispersed uniformly, the comminution is considerably improved at the time of producing the magnet, and a powder having a uniform grain distribution can be produced. Furthermore, since the crystal structure is fine, a high coercivity can be obtained when producing the magnet. Particularly, even when the alloy powder composition is made close to the stoichiometric composition of the R 2 Fe 14 B phase, crystallization of the ⁇ -Fe primary crystal is eliminated and a uniform structure is obtained.
  • advantages of producing the adjusting alloy powder containing the R-Co intermetallic compound phase by the strip casting process are that, such problems as follow can be solved.
  • the Co(Fe) phase and the other R-Co(Fe) compound phase are crystallized in the resulting alloy ingot, and the phases are locally present throughout, therefore, in order to obtain stable material alloy powders, the alloy ingot must be heated and homogenized, causing increase in the production cost of the alloy powder.
  • un-reacted Co and Fe grains remain or individual grain compositions differ from each other, thus it is very difficult to homogenize that whole alloy powder.
  • Magnetic characteristics of the R-Fe-B permanent magnet according to the present invention are achieved as follows: when the maximum energy product value (BH)max is expressed in kJ/m 3 , and the coercive force iHc is expressed in kA/m, the total value ( BH ) max 7.96 + iHc 79.6 ⁇ 59 ; and also, when the residual magnetic flux density (Br) is expressed in tenths of one Tesla, (kiloGauss) the squareness of the demagnetization curve ⁇ (Br 2 ⁇ 1.99)/(BH)max ⁇ has a value of between 1.01 and 1.045.
  • a + B is 59 or more, in which A is a maximum energy product value (BH) max expressed in MGOe and B is a coercive force iHc expressed in kOe, and that the squareness of demagnetization curve ⁇ (Br 2 /4A ⁇ value is 1.01 to 1.045 (Br being expressed in tenths of one Tesla [kG]), and A again being a maximum energy product value (BH) max expressed in MGOe.
  • BH maximum energy product value
  • composition and production conditions suitably, the necessary magnetic characteristics are obtained.
  • a cast piece of the magnet materials having a structure in which the main R 2 Fe 14 B phase and the R-rich phase are finely separated is produced by strip casting a molten alloy having a specific composition by a single roll process or a double roll process.
  • the resulting cast piece is a sheet whose thickness is 0.03 mm to 10 mm.
  • the single roll process and the double roll process may both be used depending on the desired thickness of the cast piece, the double roll process is preferably adopted when the plate thickness is thick, and the single roll process is preferably used when the plate thickness is thin.
  • a sectional structure of the R-Fe-B alloy having a given composition obtained by the strip casting process is such that, the main phase R 2 Fe 14 B crystal size is finer than about one tenth or more as compared with that of a conventional ingot obtained by casting in a mold.
  • crystal sizes are 0.1 ⁇ m to 50 ⁇ m in a short axial direction and 5 ⁇ m to 200 ⁇ m in a long axial direction, and the R-rich phase is finely dispersed surrounding the main phase crystal grain, and even in local regions, the size is below 20 ⁇ m.
  • Crystal grains of the main phase alloy powder and the adjusting alloy powder obtained by the strip casting process have the same properties.
  • Rare earth elements which may constitute R contained in the permanent magnet alloy ingot of the present invention may contain yttrium (Y), and are the rare earth elements including light rare earths and heavy rare earths.
  • the light rare earths are sufficient, and particularly, Nd and Pr are preferable. Though, usually, one kind of R is sufficient, in practice, mixtures (such as mischmetal, didymium, etc.) of two or more rare earth elements will often be used for the reason of availability, and Sm, Y, La, Ce, Gd etc. can be used as a mixture with other R, particularly, Nd, Pr and the like.
  • the R is not necessarily made up of pure rare earth element(s), and those containing unavoidable impurities in production may be used according to what is commercially available.
  • R is an indispensable element of the alloy for producing the R-Fe-B permanent magnet, in that sufficiently high magnetic characteristics cannot be obtained below 12 atomic %, particularly, a high coercive force can not be obtained, and when exceeding 16 atomic %, the residual magnetic flux density (Br) is lowered and a permanent magnet having the best characteristics can not be obtained. And hence, R is within the range of 12 atomic % to 16 atomic %, the optimum range being 12.5 atomic % to 14 atomic %.
  • B is an indispensable element of the alloy for producing the R-Fe-B permanent magnet, whereby the high coercive force (iHc) cannot be obtained below 4 atomic %, and when exceeding 8 atomic %, the residual magnetic flux density (Br) is lowered, so that the best permanent magnet cannot be obtained. And hence, the B is 4 atomic % to 8 atomic %, the optimum range being 5.8 atomic % to 7 atomic %.
  • the reason for restricting O 2 below 5000 ppm is that, when exceeding 5000 ppm, the R-rich phase is oxidized and insufficient liquid phase is produced at sintering, resulting in lowered density, so that a high magnetic flux density cannot be obtained and weathering resistance is also reduced.
  • An optimum range of O 2 is between 200 to 3000 ppm.
  • the starting material powders in the present invention as well as powders of the magnet material composition, it is also possible to blending an R-Fe-B alloy powder containing an R 2 Fe 14 B main phase in which the amount of R, to be described later, is 11 atomic % to 20 atomic %, and an R-Fe-B alloy powder containing the R 2 Fe 17 phase, in which the amount of R is below 20 atomic % in order to adjust the total amounts of R, B and Fe to the required magnet composition,.
  • the magnet composition can be adjusted by blending the main phase R-Fe-B alloy powder, in which the amount of B is 4 atomic % to 12 atomic % or more, and an adjusting R-Fe-B alloy powder containing the R 2 Fe 17 phase, in which the amount ofB is below 6 atomic %, or an adjusting R-Fe alloy powder containing the R 2 Fe 17 phase, in which B is not contained.
  • the magnet composition can be adjusted by blending an adjusting R-Co (can be substituted by Fe) alloy powder containing an R-Co intermetallic compound (Nd 3 -Co, Nd-Co 2 and the like).
  • Al ⁇ 9.5 atomic % or less Ti ⁇ 4.5 atomic % or less, V ⁇ 9.5 atomic % or less, Cr ⁇ 8.5 atomic % or less, Mn ⁇ 8.0 atomic % or less, Bi ⁇ 5 atomic % or less, Nb ⁇ 12.5 atomic % or less, Ta ⁇ 10.5 atomic % or less, Mo ⁇ 9.5 atomic % or less, W ⁇ 9.5 atomic % or less, Sb ⁇ 2.5 atomic % or less, Ge ⁇ 7 atomic % or less, Sn ⁇ 3.5 atomic % or less, Zr ⁇ 5.5 atomic % or less and Hf ⁇ 5.5 atomic % or less, to the alloy powder containing the R, B, Fe alloys or the R-Fe-B alloy containing Co or the blended R 2 Fe 14 B phase as the main phase, or to the adjusting alloy powder containing the R 2 Fe 17 phase and the adjusting alloy powder containing the R-Co intermetallic compound phase, a high coercivity of the permanent magnet alloy is promoted.
  • R-B-Fe permanent magnet of the present invention it is necessary that the R 2 Fe 14 B phase of the main phase of a crystal phase presents above 90%, preferably, above 94%.
  • R-Fe-B sintered magnets, which are produced in large numbers at present, has the R 2 Fe 14 B phase of up to 90%.
  • the high magnetic characteristics of the present invention in which the value [(BH)max ⁇ 7.96]+[iHc ⁇ 79.6] is above 59, can not be obtained below 90%.
  • a degree of orientation of the magnet of the present invention is calculated from the aforementioned equation 1, it is necessary that the degree of orientation of the magnet is above 85% to hold the value [(BH)max ⁇ 7.96]+[iHc ⁇ 79.6] above 59.
  • the degree of orientation is below 85%, the squareness of demagnetization curve is poor and the high residual magnetic flux density (Br) is lowered, resulting in a low (BH) max value.
  • the degree of orientation is preferably above 92%.
  • the squareness of the demagnetization curve ⁇ (Br 2 ⁇ 1.99)/(BH)max ⁇ theoretically shows a value of 1.00, since the above-mentioned degree of orientation is inevitably disturbed in the practical permanent magnet material, it has been limited to 1.05 even after many improvement in the past: in the permanent magnet materials of the present invention obtained by the aforementioned specific process, the value of the squareness of demagnetization curve is 1.01 to 1.045.
  • R is preferably 11 atomic % to 20 atomic %, more preferably, 13 atomic % to 16 atomic %.
  • a high coercive force (iHc) can not be obtained when B is below 4 atomic %, and since the residual magnetic flux density (Br) is lowered when exceeding 12 atomic %, the best permanent magnet can not be obtained, so B is preferably 4 atomic % to 12 atomic %, more preferably, 6 atomic % to 10 atomic %.
  • Fe is preferably within the range of 65 atomic % to 82 atomic %.
  • Fe is preferably below 65 atomic %, the rare earth element(s) and B become relatively abundant, and the R-rich phase and the B-rich phase increase; when exceeding 82 atomic %, the rare earth elements and B decrease relatively, and the residual Fe increases, resulting in a non-uniform alloy powder.
  • Fe is preferably 74 atomic % to 81 atomic %.
  • Co is preferably below 10 atomic % and Ni is preferably below 3 atomic %.
  • Fe is preferably in the range of 55 atomic % to 72 atomic %.
  • the R-rich phase increases in production of the alloy powder and causes oxidation when R exceeds 20 atomic %, thus R is preferably 5 to 15 atomic %.
  • B is below 6 atomic %, since only the R 2 Fe 14 B phase is present and the amount of B in the main phase alloy powder can be adjusted, B is preferably below 6 atomic %.
  • the balance of the main phase powder is composed of Fe and unavoidable impurities, Fe is preferably 85 atomic % to 95 atomic %.
  • R is preferably 11 atomic % to 15 atomic %, more preferably, 12 atomic % to 14 atomic %.
  • B is preferably 4 atomic % to 12 atomic %, more preferably, 6 atomic % to 10 atomic %.
  • Fe is preferably 73 atomic % to 85 atomic %.
  • Fe is below 73 atomic %, the rare earth elements and B become abundant relatively and the R-rich phase and the B-rich phase increase, when exceeding 85 atomic %, the rare earth elements and B decrease relatively and the residual Fe increases, results in the non-uniform alloy powder, thus Fe is, more preferably, 76 atomic % to 82 atomic %.
  • Co is preferably below 10 atomic % and Ni below 3 atomic %.
  • Fe is preferably 63 atomic % to 82 atomic %.
  • the R-rich phase increases and tends to cause oxidation in production of the alloy powder when R exceeds 45 atomic %: R is preferably 10 to 20 atomic %.
  • Co is preferably 55 atomic % to 95 atomic %.
  • Fe and Ni may be substituted for Co in the adjusting alloy powder. Since the oxidation resistance of the adjusting alloy powder is reduced when the amount of Fe is increased, and the coercive force of the magnet is lowered when the amount ofNi is increased, Fe is preferably below 50 atomic % and Ni below 10 atomic %. When replacing a part of Co with Fe or Ni, Co is preferably 5 atomic % to 45 atomic %.
  • the magnet composition alloy powder, the main phase alloy powder containing the R 2 Fe 14 B phase as the main phase, and the adjusting alloy powder containing the R 2 Fe 17 phase or the R-Co intermetallic compound phase are produced by, for example, a known strip casting process by a single roll process or a double roll process.
  • Hydrogenation processing is that, for example, a cast piece cut into a predetermined size and having the thickness of 0.03 mm to 10 mm is inserted into a material case, which is covered and charged into a pressure vessel which can be closed tightly, after closing the pressure vessel tightly, the pressure therein is reduced sufficiently, whereafter H 2 gas at 200 Torr (26.6 kPa) to 50 kg/cm 2 (4.9 MPa) pressure is introduced so that hydrogen is occluded by the cast piece.
  • the hydrogenation reaction is an exothermic reaction
  • the H 2 gas having a predetermined pressure is supplied for a fixed time, while providing a piping around the pressure vessel for supplying cooling water to suppress the temperature rise in the pressure vessel, so that the H 2 gas is absorbed and the cast piece decays spontaneously and is pulverized.
  • the pulverized alloy is then cooled and dehydrogenated in vacuum.
  • the processed alloy powder grains Since fine cracks are produced in the processed alloy powder grains, it can be comminuted by a ball mill, a jet mill and the like, and the alloy powder having the necessary grain size of 1 ⁇ m to 80 ⁇ m can be obtained.
  • air in the processing pressure vessel may be replaced by inert gas beforehand, and with the inert gas being later replaced by the H 2 gas.
  • the pulverization is reduced when the hydrogen pressure is below 200 Torr (26.6 kPa), and though it may be preferable from a viewpoint of hydrogenation and pulverization to exceed 50 kg/cm 2 (4.9 MPa), it is not so from the viewpoint of the apparatus and safety, so that the H 2 gas pressure is preferably 200 Torr to 50 kg/cm 2 .
  • the H 2 gas pressure is preferably 2 kg/cm 2 to 10 kg/cm 2 .
  • the pulverization time due to the Hydrogenation varies depending on the closed pressure vessel size, the size of the cut piece and the H 2 gas pressure, it takes more than 5 minutes.
  • the alloy powder pulverized by hydrogenation is subjected to a primary dehydrogenation in vacuum after cooling. Then, when the pulverized alloy is heated at 100°C to 750°C in vacuum or in argon gas, and subjected to a secondary dehydrogenation for 0.5 hours or longer, the H 2 gas in the pulverized alloy can be completely removed, and oxidation of the powder or a molded body due to prolonged storage is prevented, so that deterioration of the magnetic characteristics of the resulting permanent magnet can be prevented.
  • the above-mentioned primary dehydrogenation in vacuum may be omitted, and the decayed powder may be directly dehydrogenated in vacuum or in an argon gas atmosphere at 100°C or higher.
  • the resulting decayed powder may be, subsequently, subjected to dehydrogenation in the pressure vessel atmosphere at 100°C or higher.
  • the decayed powder may be taken out from the pressure vessel for pulverization, whereafter dehydrogenation processing including heating to 100°C or higher in the pressure vessel may be effected again.
  • the preferable dehydrogenation temperature is 200°C to 600°C.
  • the processing time varies depending on the processing amount, it usually takes 0.5 hours or longer.
  • Comminution is suitably effected by a jet mill under an inert gas (e.g. N 2 , Ar). It goes without saying that a ball mill or a grinder may be used for comminuting the powder using an organic solvent (e.g. benzene, toluene and the like).
  • an inert gas e.g. N 2 , Ar
  • a ball mill or a grinder may be used for comminuting the powder using an organic solvent (e.g. benzene, toluene and the like).
  • Mean grain sizes ofthe powder at comminution is preferably 1 ⁇ m to 10 ⁇ m.
  • the comminuted powder becomes very active and susceptible to oxidation, with the possibility of spontaneous ignition.
  • the mean grain size of the fine powder is, more preferably, 2 to 4 ⁇ m.
  • the mold may be made of, besides non-magnetic metals and oxides, organic compounds such as plastics, rubber and the like.
  • the charging density of the powder is from a bulk density (charging density 1.4 g/cm 3 ) in a quiescent state of the powder, up to the solidifying bulk density (charging density 3.0 g/cm 3 ) after tapping.
  • the charging density is restricted to 1.4 to 3.0 g/cm 3 .
  • a pulse magnetic field by an air-core coil and a capacitor power source is applied for orientation of the powder.
  • the pulse magnetic field may be applied repeatedly, while compressing the powder by upper and lower punches.
  • the pulse magnetic field duration is preferably 1 ⁇ sec to 10 sec, more preferably 5 ⁇ sec to 100 msec, and an applying frequency of the magnetic field is preferably 1 to 10 times, more preferably, 1 to 5 times.
  • the oriented powder may be solidified by a hydrostatic press.
  • hydrostatic pressing can be effected as it is.
  • Pressure by the hydrostatic pressing process is preferably 0.5 ton/cm 2 to 5 ton/cm 2 (49 to 490 MPa), more preferably, 1 ton/cm 2 to 3 ton/cm 2 (98 to 294 MPa).
  • Pressure by the magnetic field pressing process is likewise preferably 0.5 ton/cm 2 to 5 ton/cm 2 (49 to 490 MPa), more preferably, 1 ton/cm 2 to 3 ton/cm 2 (98 to 294 MPa).
  • a sheet cast piece having a thickness of about 1 mm is prepared from a molten alloy having compositions of Nd 13.0 - B 6.0- Fe 81 obtained by melting in a high frequency melting furnace, by using a double-roll type strip caster including two copper rolls of 200 mm diameter. Crystal grain sizes of the cast piece are 0.5 ⁇ m to 15 ⁇ m in a short axial direction and 5 ⁇ m to 80 ⁇ m in a long axial direction. An R-rich phase which is finely separated into about 3 ⁇ m is present surrounding a main phase. The oxygen content is 300 ppm.
  • the cast piece of 1000 g cut into a 50 mm square or smaller is placed in a closed pressure vessel which can take in and discharge air, and N 2 gas is introduced into the pressure vessel for 30 minutes. After flushing out the air, H 2 gas at 3 kg/cm 2 (about 300 kPa) pressure is fed into the pressure vessel for 2 hours to cause the cast piece to decay spontaneously by hydrogenation. The decayed cast is retained in vacuum at 500°C for 5 hours for dehydrogenation, and thereafter it is cooled to room temperature and ground into 100 mesh.
  • the molded body taken out from the mold is sintered at 1090°C for 3 hours to obtain a permanent magnet after one hour annealing at 600°C. Magnetic characteristics and density, crystal grain size, degree of orientation, the squareness of demagnetization curve main phase amount and oxygen content are shown in Table 1.
  • a molten alloy having the same composition as that of Embodiment 1 is strip cast to obtain a sheet cast piece having the sheet thickness of about 0.5 ⁇ m
  • Crystal grain sizes in the cast piece are 0.3 ⁇ m to 12 ⁇ m in a short axial direction and 5 ⁇ m to 70 ⁇ m in a long axial direction, and an R-rich phase finely separated into about 3 ⁇ m is present surrounding the main phase.
  • the cast piece is comminuted by a jet mill under the same condition as Embodiment 1 to obtain an alloy powder of about 3.4 ⁇ m mean grain size.
  • the powder is molded in a magnetic field of about 12 kOe (955 kA/m), after, first, having been oriented in a pulse magnetic field of about 30 kOe (2387 kA/m), by a press machine, in which, as shown in Fig.
  • An alloy ofNd 13.5 - Dy 0.5 - B 6.5 - Co 1.0 - Fe 78.5 is formed and strip cast as in Embodiment 1 to obtain a sheet cast piece.
  • the cast piece of 100 g cut into a 50 mm square or smaller is decayed spontaneously by hydrogenation as in Embodiment 1, and dehydrogenated in vacuum for 6 hours. Then, after coarse grinding, it is comminuted in a jet mill to obtain powder of 3.5 ⁇ m mean grain size.
  • the resulting powder is oriented in a pulse magnetic field as in Embodiment 1, and a molded body obtained by hydrostatic pressing is sintered similarly. Magnetic characteristics and density, crystal grain size, degree of orientation, the squareness of demagnetization curve, main phase amount and O 2 content are shown in Table 1.
  • the powder obtained at the same condition as the Embodiment 1 is pressed and molded in the magnetic field of about 12 kOe (955 kA/m) by the usual magnetic field press machine in dried state, then sintered and annealed at the same condition as in Embodiment 1.
  • oxidation occurred during the pressing thus densification to a sufficient sinter density was impossible, and the magnetic characteristics could not be measured and only the density and O 2 content are measured (Table 1).
  • Coarse powder obtained under the same conditions as Embodiment 1 is comminuted in a ball mill, using toluene as a solvent, to obtain the fine powder of 3.5 ⁇ m mean grain size, which is pressed and molded in the magnetic field of about 12 kOe (955 kA/m) by the usual magnetic field press machine in a wet state, then sintered and annealed under the same conditions as Embodiment 1.
  • a molten alloy having the composition of Nd 14- B 6.0-Fe 80 obtained by melting in a high-frequency melting furnace is cast in an iron mold.
  • crystallization of a-Fe primary crystals is seen, so it was heated at 1050°C for 10 hours in a homogenizing process.
  • Crystal grain sizes of the resulting ingot are 30 to 150 ⁇ m in a short axial direction and 100 ⁇ m to several mm in a long axial direction, and an R-rich phase is segregated with grain sizes of about 150 ⁇ m locally.
  • the coarse powder is obtained by the hydrogenation and dehydrogenation processes of Embodiment 1. Furthermore, the coarse powder is comminuted by a jet mill under the same conditions as Embodiment 1, and the resulting alloy powder of about 3.7 ⁇ m mean grain size is pressed and molded in the magnet field of about 12 kOe (955 kA/m) for sintering and heat treatment at the same conditions as the Embodiment 1. Magnetic characteristics and density, crystal grain size, degree orientation, the squareness of demagnetization curve, main phase amount and O 2 content of the resulting permanent magnet are shown in Table 1.
  • the alloy powder is pressed in the magnetic field of about 12 kOe (955 kA/m), sintered and annealed to obtain the permanent magnet. Magnetic characteristics and density, crystal grain size, degree of orientation, the squareness of demagnetization curve, main phase amount and O 2 content of the resulting permanent magnet are shown in Table 1.
  • An alloy having the composition ofNd 13.5- Dy 0.5- B 6.5 - Co 1.0 - Fe 78.5 is cast by the same method as the Comparative Example 3. Since ⁇ -Fe primary crystals are present in the resulting alloy ingot, it is subjected to heat treatment at 1050°C for 6 hours. After coarsely grinding the alloy ingot, it is subjected to hydrogenation as in Embodiment 1, and then dehydrogenated in vacuum. The coarse powder is ground coarsely and comminuted in a jet mill to obtain a powder of 3.7 ⁇ m mean grain size.
  • the powder is pressed in the magnetic field of about 12 kOe (955 kA/m), then sintered and heated under the same condition as the Embodiment 1. Magnetic characteristics and density, crystal grain size, degree of orientation, the squareness of demagnetization curve, main phase amount and O 2 content of the resulting permanent magnet are shown in Table 1.
  • the fine powder is pressed in the magnetic field of about 12 kOe (955 kA/m), then sintered and annealed at the same condition as the Embodiment 1. Magnetic characteristics and density, crystal grain size, degree of orientation the squareness of the demagnetization curve, main phase amount and O 2 content of the resulting permanent magnet are shown in Table 1.
  • These materials are melted in an Ar atmosphere so as to obtain an alloy having a predetermined composition, then cast by a strip casting process using copper rolls to obtain a cast piece having a plate thickness of about 2 mm.
  • the cast piece is coarsely ground by a hydrogenation processing, and comminuted by a jaw crusher, a disk mill or the like to obtain 800 g of powder of about 10 ⁇ m mean grain size.
  • the resulting powder consisting of 14.9 atomic % Nd, 0.1 atomic % Pr, 0.3 atomic % Dy, 8.0 atomic % B and Fe, is observed by an x-ray diffraction EPMA, as a result, it is confirmed that O 2 content is about 800 ppm.
  • the R 2 Fe 14 B main phase is about 5 ⁇ m in a short axial direction and 20 to 80 ⁇ m in a long axial direction, and the R-rich phase is finely dispersed surrounding the main phase.
  • 30% adjusting alloy powder is blended with the main phase alloy powder.
  • the material powders are fed into a grinder such as a jet mill or the like to pulverize into about 3 'Lm, the resulting fine powder is filled into a rubber mold, and is subjected to hydrostatic pressing at 2.5 T/cm 2 (245MPa)by a hydrostatic press machine, after applying a pulse magnetic field of 60 kOe(4775 kA/m) instantaneously for orientation, thereby to obtain a molded body of 8 mm ⁇ 15 mm ⁇ 10 mm,
  • the molded body is sintered at 1100°C in an Ar atmosphere for 3 hours, and annealed at 550°C for one hour. Magnetic characteristics ofthe resulting magnet are shown in table 2.
  • the R 2 Fe 14 B main phase is about 50 ⁇ m in a short axial direction and about 500 ⁇ m in a long axial direction, the R-rich phase having grain sizes of 50 ⁇ m is locally present throughout. Also, ⁇ -Fe of 5 to 10 ⁇ m is seen in the main phase.
  • the molded body is sintered in an Ar atmosphere at 1100°C for 3 hours, and annealed at 550°C for one hour. Magnetic characteristics of the resulting magnet are also shown in Table 2.
  • the main phase alloy powder of Comparative Example 1 is used, and as materials for the adjusting alloy powder,
  • Component analysis made by the same method as Embodiment 4 shows 10.8 atomic % Nd, 0.1 atomic % Pr, 0.4 atomic % Dy, 2.4 atomic % B and Fe (balance).
  • the resulting powder shows 13.8 atomic % Nd, 0.1 atomic % Pr, 0.3 atomic % Dy, 6.3 atomic % B and Fe Balance).
  • the oxygen content is about 800 ppm.
  • the crystal size ofthe R 2 Fe 14 B main phase is about 6 ⁇ m in a short axial direction and 20 to 80 ⁇ m in a long axial direction, and the R-rich phase is present as a fine phase surrounding the main phase.
  • main phase alloy powder of 10 ⁇ m mean grain size having a composition different from the Embodiment 4 is obtained by the process of that Embodiment.
  • the resulting powder consists of 14 atomic % Nd, 0.1 atomic % Pr, 0.5 atomic % Dy, 8 atomic % B and Fe.
  • the oxygen content is about 80 ppm.
  • the R 2 Fe 14 B main phase has a grain size of about 0.5 to 15 ⁇ m in a short axial direction and 5 to 90 ⁇ m in a long axial direction, and the R-rich phase is dispersed finely to surround the main phase.
  • the adjusting alloy powder containing an R 2 Fe 17 phase 125 g of Nd metal of 99% purity, 5 g of Dy metal of 99% purity and 275 g of an electrolytic iron of 99% purity are used, and a cast piece having a plate thickness of about 2 mm is obtained by the same strip casting process as the main phase alloy.
  • powder is prepared by the same process as the main phase alloy.
  • the composition of the resulting powder is 11.0 atomic % Nd, 0.05 atomic % Pr, 0.4 atomic % Dy and Fe.
  • EPMA observation on the cast piece structure shows it to consist of an R 2 Fe 17 phase, partly R 2 Fe 14 B, and an R-rich phase: ⁇ -Fe is not seen.
  • the oxygen content at 10 ⁇ m mean grain size is 700 ppm.
  • 25 % adjusting alloy powder is blended with the main phase alloy powder.
  • the material powders are charged into a grinder such as a jet mill to comminute it into about 3 ⁇ m, then packed into a rubber mold, and the resulting fine powder is subjected to hydrostatic pressing at 2.5 T/cm 2 (245 MPa) pressure by an isostatic press machine to obtain a molded body of 8 mm x 15 mm x 10 mm, after applying a pulse magnet field of 60 kOe (4775 kA/m) instantaneously for orientation.
  • the molded body is sintered in an Ar atmosphere at 1100°C for 3 hours, and annealed at 550°C for one hour. Magnetic characteristics of the resulting magnet are shown in Table 3.
  • the main phase alloy powder an alloy having the same composition as the Embodiment 5 is cast in an iron mold to obtain powder of about 10 ⁇ m mean grain size by the same method as Embodiment 4.
  • Composition is 14 atomic % Nd, 0.1 atomic % Pr, 0.5 atomic % Dy, 8 atomic % B and Fe (balance), the oxygen content is about 900 ppm.
  • the crystal grain size is about 50 ⁇ m in a short axial direction and about 500 ⁇ m in a long axial direction, and an R-rich phase (50 ⁇ m) is locally present throughout. Also, 5 to 10 ⁇ m crystals of ⁇ -Fe are present in the main phase.
  • the adjusting alloy powder containing the R 2 Fe 17 phase is produced by the same direct reducing and diffusing process as Comparative Example 7, by using 280 g of Nd 2 O 3 (purity 98%), 12 g of Dy 2 O 3 (purity 99%) and 750 g of iron powder (purity 99%).
  • Components are 11.0 atomic % Nd, 0.05 atomic % Pr, 0.9 atomic % Dy and Fe.
  • the oxygen content is 1500 ppm.
  • 25% adjusting alloy powder is blended with the main phase alloy powder, and charged into a jet mill or the like to comminute it to about 3 ⁇ m
  • the resulting fine powder is oriented in the magnet field of about 10 kOe (796 kA/m), and molded at about 1.5 T/cm 2 (about 150 MPa) pressure at right angles to the magnetic field to obtain a molded body of 8 mm ⁇ 15 mm ⁇ 10 mm.
  • the molded body is sintered in an Ar atmosphere at 1100°C for 3 hours, and annealed at 550°C for one hour. Magnetic characteristics ofthe resulting magnet are also shown in Table 3.
  • an adjusting alloy powder is prepared by melting 350 g of a Nd metal, 10 g of a Dy metal and 750 g of an electrolytic iron of 99% purity in the Ar atmosphere, and cast in the iron mold.
  • a large amount of ⁇ -Fe is crystallized, homogenizing is effected at 1000°C for 12 hours.
  • it consists of 11.0 atomic % Nd, 0.05 atomic % Pr, 0.4 atomic % Dy and Fe (balance).
  • a Nd metal As starting materials, 300 g of a Nd metal, 13 g of a Dy metal, 50 g of a Fe-B alloy containing 20% B and 645 g of an electrolytic iron of 99% purity are used, and melted in an Ar atmosphere so as to obtain an alloy having a predetermined composition, then, by the strip casting process using copper rolls, a cast piece having a plate thickness of about 2 mm is obtained. Furthermore, the cast piece is pulverized by hydrogenation, and jaw crusher, disk mill and the like to obtain 800 g of powder of about 10 ⁇ m mean grain size.
  • the resulting powder consists of 13.3 atomic % Nd, 0.1 atomic % Pr, 0.5 atomic % Dy, 6 atomic % B and Fe (balance).
  • the oxygen content is about 800 ppm.
  • the R 2 Fe 14 B main phase crystal size is about 0.3 to 15 ⁇ m in a short axial direction and about 5 to 90 ⁇ m in a long axial direction, and an R-rich phase is present as a fine phase surrounding the main phase.
  • the resulting powder consists of 11 atomic % Nd, 0.1 atomic % Pr, 1.0 atomic % Dy, 8 atomic % B and Fe (balance), as is observed by x-ray diffraction EPMA, and it is confirmed that it mostly consists of a R 2 Fe 14 B phase.
  • the oxygen content is about 800 ppm.
  • the R 2 Fe 14 B main phase crystal size is about 0.5 to 1.5 ⁇ m in a short axial direction and 5 to 90 ⁇ m in a long axial direction, and the R-rich phase is finely dispersed surrounding the main phase.
  • the cast piece structure consists of the R 3 Co phase and partly the R 2 Co 17 phase, and the R 3 Co phase is finely dispersed.
  • the oxygen content in the powder which has a 10 ⁇ m mean grain size, is 700 ppm.
  • 20% adjusting alloy powder is blended with the main phase alloy powder.
  • the material powders are charged into a grinder such as a jet mill or the like to comminute them into about 3 ⁇ m grain sizes, and the resulting powder is filled into a rubber mold and is subjected to hydrostatic pressing at 2.5 T/cm 2 (245 MPa) by a hydrostatic press machine, after applying a pulse magnetic field of 60 kOe (4775 kA/m) instantaneously for orientation, thereby to obtain a molded body of 8 mm ⁇ 15mm ⁇ 10 mm.
  • the molded body is sintered at 1100°C in an Ar atmosphere for 3 hours, and annealed at 550°C for one hour. Magnetic characteristics of the resulting magnet are shown in Table 4.
  • Magnetic characteristics of the magnet obtained by blending 10 % adjusting alloy powder with the main phase alloy powder prepared in the Embodiment 1, and magnetizing by the same process as the Embodiment 6 are shown in Table 4.
  • the R 2 Fe 14 B main phase crystal size is about 50 ⁇ m in a short axial direction and about 500 ⁇ m in a long axial direction, the R-rich phase (50 ⁇ m) is locally present throughout. Some ⁇ -Fe of 5 to 10 ⁇ m grain size is present in the main phase.
  • 20 % adjusting alloy powder is blended with the main phase alloy powder, and charged into a grinder such as a jet mill or the like to pulverize into about 3 ⁇ m.
  • the resulting fine powder is oriented in the magnetic field of about 10 kOe (796 kA/m), and molded at about 1.5 T/cm 2 (about 150 MPa) pressure to obtain a molded body of 8 mm ⁇ 15 mm ⁇ 10 mm.
  • the molded body is sintered in an Ar atmosphere at 1100°C for 3 hours, and annealed at 550°C for one hour. Magnetic characteristics of the resulting magnet are also shown in Table 4.
  • the adjusting alloy powder is prepared by melting.
  • the resulting powder consists of 13.5 atomic % Nd, 0.1 atomic % Pr, 1.0 atomic % Dy, 6.7 atomic % B, 11.3 atomic % Co and Fe.
  • the oxygen content is about 800 ppm.
  • the crystal size of the R 2 (Fe, Co 14 )B phase is about 0.3 to 1.5 ⁇ m in a short axial direction and about 5 to 90 ⁇ m in a long axial direction, the R-rich phase and the R-Co phase being present finely surrounding the main phase.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Claims (45)

  1. Un matériau pour aimants permanents de type R-Fe-B caractérisé en ce qu'il présente une composition sensiblement homogène constituée de
    R
    12 à 16 % atomiques, R représentant au moins un élément des terres rares,
    B
    4 à 8 % atomiques,
    O2
    5000 ppm ou moins,
       et contient facultativement un ou plusieurs additifs choisis parmi :
    0 à 9,5 % atomiques d'Al, 0 à 4,5 % atomiques de Ti, 0 à 9,5 % atomiques de V, 0 à 8,5 % atomiques de Cr, 0 à 8,0 % atomiques de Mn, 0 à 5 % atomiques de Bi, 0 à 12,5 % atomiques de Nb, 0 à 10,5 % atomiques de Ta, 0 à 9,5 % atomiques de Mo, 0 à 9,5 % atomiques de W, 0 à 2,5 % atomiques de Sb, 0 à 7 % atomiques de Ge, 0 à 3,5 % atomiques de Sn, 0 à 5,5 % atomiques de Zr et 0 à 5,5 % atomiques de Hf,
    le complément étant formé de Fe dont une partie est facultativement remplacée par du cobalt et/ou par du nickel, et des impuretés inévitables,
       et qui renferme 90 % ou plus d'une phase principale de R2Fe14B dont une partie du fer est facultativement remplacée par du cobalt et/ou du nickel, et qui présente une grosseur de grain de 10 µm ou moins, une masse volumique apparente de 7,45 g/cm3 ou plus, un degré d'orientation de 85 % ou plus, et qui a des propriétés magnétiques telles que, lorsque la valeur du produit d'énergie maximum (BH)max est exprimée en kJ/m3 et le champ coercitif iHc en kA/m, on ait (BH)max/7,96+iHc/79,6 ≥ 59, et que, lorsque la densité de flux magnétique résiduelle Br est exprimée en dixièmes de tesla (10-1T = 1 kG), la rectangularité de la courbe de désaimantation, Br2x1,99/(BH)max, soit comprise entre 1,01 et 1,045.
  2. Un matériau pour aimants permanents de type R-Fe-B selon la revendication 1, contenant :
    R
    12,5 à 14 % atomiques, R représentant au moins un élément des terres rares,
    B
    5,8 à 7 % atomiques,
    O2
    200 à 3000 ppm.
  3. Un matériau pour aimants permanents de type R-Fe-B selon la revendication 1 ou la revendication 2, dans lequel moins de 50 % du fer sont remplacés par du cobalt et/ou du nickel.
  4. Un matériau pour aimants permanents de type R-Fe-B selon la revendication 1 ou la revendication 2, dans lequel la phase principale de R2Fe14B dont une partie du fer est facultativement remplacée par du cobalt et/ou du nickel constitue 94 % ou plus du matériau.
  5. Un matériau pour aimants permanents de type R-Fe-B selon la revendication 1 ou la revendication 2, dans lequel la fréquence maximum des grosseurs de grain cristallin est celle des grosseurs comprises entre 5 et 6 µm.
  6. Un matériau pour aimants permanents de type R-Fe-B selon la revendication 1 ou la revendication 2, dans lequel le degré d'orientation est de 92 % ou plus.
  7. Un matériau pour aimants permanents de type R-Fe-B selon la revendication 1 ou la revendication 2, dans lequel la valeur de (BH)max est supérieure à 50 MG.Oe (398 kJ/m3) et la valeur de iHc est de 9 kOe (716 kA/m) ou plus.
  8. Un matériau pour aimants permanents de type R-Fe-B selon la revendication 1 ou la revendication 2, dans lequel la valeur de (BH)max, est supérieure à 45 MG.Oe (358 kJ/m3) et la valeur de iHc est de 14 kOe (1114 kA/m) ou plus.
  9. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B caractérisé par les opérations consistant: à couler en bande un alliage fondu composé de
    R
    12 à 16 % atomiques, R représentant au moins un élément des terres rares,
    B
    4 à 8 % atomiques,
    O2
    5000 ppm ou moins,
       et qui contient facultativement un ou plusieurs éléments choisis parmi :
    0 à 9,5 % atomiques d'Al, 0 à 4,5 % atomiques de Ti, 0 à 9,5 % atomiques de V, 0 à 8,5 % atomiques de Cr, 0 à 8,0 % atomiques de Mn, 0 à 5 % atomiques de Bi, 0 à 12,5 % atomiques de Nb, 0 à 10,5 % atomiques de Ta, 0 à 9,5 % atomiques de Mo, 0 à 9,5 % atomiques de W, 0 à 2,5 % atomiques de Sb, 0 à 7 % atomiques de Ge, 0 à 3,5 % atomiques de Sn, 0 à 5,5 % atomiques de Zr et 0 à 5,5 % atomiques de Hf,
    le complément étant formé de Fe dont une partie est facultativement remplacée par du cobalt et/ou par du nickel, et des impuretés inévitables, pour former une bande coulée renfermant 90 % ou plus d'une phase principale de R2Fe14B dont une partie du fer est facultativement remplacée par du cobalt et/ou du nickel, à placer la bande coulée dans une enceinte tenant la pression, à en évacuer l'air et à y substituer de l'hydrogène pour provoquer une décomposition de la bande coulée par hydrogénation,
    à déshydrogéner la bande coulée,
    à broyer la bande coulée sous un gaz inerte en une poudre ayant une grosseur de grain moyenne comprise entre 1 et 10 µm,
    à comprimer la poudre dans un moule et à orienter la poudre comprimée par application momentanée d'un champ magnétique pulsé ayant une intensité d'au moins 10 kOe (796 kA/m),
    puis à mouler, fritter et recuire le matériau, pour former ainsi un matériau pour aimants permanents qui a des propriétés magnétiques telles que, lorsque la valeur du produit d'énergie maximum (BH)max est exprimée en kJ/m3 et que le champ coercitif iHc est exprimé en kA/m, on ait (BH)max/7,96+iHc/79,6 ≥ 59,
    et que, lorsque la densité de flux magnétique résiduelle (Br) est exprimée en dixièmes de tesla (10-1T = 1kG), la rectangularité de la courbe de désaimantation, {Br2x1,99/(BH)max}, soit comprise entre 1,01 et 1,045.
  10. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon la revendication 9, dans lequel l'alliage fondu contient :
    R
    12,5 à 14 % atomiques, R représentant au moins un élément des terres rares,
    B
    5,8 à 7 % atomiques,
    O2
    200 à 3000 ppm.
  11. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B, caractérisé par les opérations consistant à couler en bande un alliage de phase principale fondu et à couler en bande un alliage d'ajustement, à placer la bande coulée de chaque alliage dans une enceinte tenant la pression, à en évacuer l'air et à y substituer de l'hydrogène pour provoquer une décomposition par hydrogénation de chaque bande d'alliage coulé,
    à déshydrogéner les alliages coulés
    à broyer les alliages coulés sous un gaz inerte en des poudres ayant chacune une grosseur de grain moyenne comprise entre 1 et 10 µm,
    à mélanger les poudres pour former un mélange renfermant 90 % ou plus de R2Fe14B dont une partie du fer est facultativement remplacée par du cobalt et/ou du nickel, et à comprimer le mélange de poudres dans un moule et à orienter la poudre comprimée par application momentanée d'un champ magnétique pulsé ayant une intensité d'au moins 10 kOe (796 kA/m),
    puis à mouler, à fritter et à recuire le matériau, pour former ainsi un matériau pour aimants permanents qui a des propriétés magnétiques telles que, lorsque la valeur du produit d'énergie maximum (BH)max est exprimée en kJ/m3 et que le champ coercitif iHc est exprimé en kA/m, on ait (BH)max/7,96+iHc/79,6 ≥ 59,
    et que, lorsque la densité de flux magnétique résiduelle (Br) est exprimée en dixièmes de tesla (10-1T = 1 kG), la rectangularité de la courbe de désaimantation, {Br2x1,99/(BH)max} {(Br2/4)/(BH)max}, soit comprise entre 1,01 et 1,045, ledit alliage de phase principale contenant :
    R
    11 à 20 % atomiques, R représentant au moins un élément des terres rares,
    B
    4 à 12 % atomiques,
    et ledit alliage d'ajustement contenant :
       R 20 % atomiques ou moins, R représentant ici encore au moins un élément des terres rares,
    et les compléments à 100 % dudit alliage de phase principale et dudit alliage d'ajustement étant dosés en sorte que ledit mélange de poudres renferme facultativement un ou plusieurs des composants suivants :
    0 à 9,5 % atomiques d'Al, 0 à 4,5 % atomiques de Ti, 0 à 9,5 % atomiques de V, 0 à 8,5 % atomiques de Cr, 0 à 8,0 % atomiques de Mn, 0 à 5 % atomiques de Bi, 0 à 12,5 % atomiques de Nb, 0 à 10,5 % atomiques de Ta, 0 à 9,5 % atomiques de Mo, 0 à 9,5 % atomiques de W, 0 à 2,5 % atomiques de Sb, 0 à 7 % atomiques de Ge, 0 à 3,5 % atomiques de Sn, 0 à 5,5 % atomiques de Zr et 0 à 5,5 % atomiques de Hf,
    et que le complément à 100 % dudit mélange de poudres soit formé de Fe dont une partie est facultativement remplacée par du cobalt et/ou par du nickel, et des impuretés inévitables.
  12. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon la revendication 11, dans lequel l'alliage fondu de phase principale renferme 13 à 16 % atomiques de R et 6 à 10 % atomiques de B.
  13. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon la revendication 11, dans lequel ledit alliage d'ajustement renferme 20 % atomiques ou moins de R et 6 % atomiques ou moins de B.
  14. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon la revendication 13, dans lequel ledit alliage d'ajustement renferme 5 à 15 % atomiques de R.
  15. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon la revendication 11 et la revendication 13, dans lequel ledit alliage de phase principale renferme 13 à 16 % atomiques de R et 6 à 10 % atomiques de B.
  16. Un procédé selon la revendication 11 pour la production d'un matériau pour aimants permanents de type R-Fe-B selon la revendication 1, dans lequel le fer de l'alliage de phase principale est partiellement remplacé par 10 % atomiques ou moins de cobalt et/ou 3 % atomiques ou moins de nickel.
  17. Un procédé selon la revendication 11 pour la production d'un matériau pour aimants permanents de type R-Fe-B selon la revendication 1, dans lequel la poudre d'alliage d'ajustement contient 5 à 15 % atomiques de R.
  18. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B, caractérisé par les opérations consistant à couler en bande un alliage de phase principale fondu et à couler en bande un alliage d'ajustement, à placer la bande coulée de chaque alliage dans une enceinte tenant la pression, à en évacuer l'air et à y substituer de l'hydrogène pour provoquer une décomposition par hydrogénation de chaque bande d'alliage coulé,
    à déshydrogéner les alliages coulés,
    à broyer les alliages coulés sous un gaz inerte en des poudres ayant chacune une grosseur de grain moyenne comprise entre 1 et 10 µm,
    à mélanger les poudres pour former un mélange renfermant 90 % ou plus de R2Fe14B dont une partie du fer est facultativement remplacée par du cobalt et/ou du nickel, et à comprimer le mélange de poudres dans un moule et à orienter la poudre comprimée par application momentanée d'un champ magnétique pulsé ayant une intensité d'au moins 10 kOe (796 kA/m),
    puis à mouler, fritter et recuire le matériau, pour former ainsi un matériau pour aimants permanents qui a des propriétés magnétiques telles que, lorsque la valeur du produit d'énergie maximum (BH)max est exprimée en kJ/m3 et que le champ coercitif iHc est exprimé en kA/m, on ait (BH)max/7,96+iHc/79,6 ≥ 59,
    et que, lorsque la densité de flux magnétique résiduelle (Br) est exprimée en dixièmes de tesla (10-1T = 1kG), la rectangularité de la courbe de désaimantation, Br2x1,99/(BH)max, soit comprise entre 1,01 et 1,045, ledit alliage de phase principale contenant :
    R
    11 à 15 % atomiques, R représentant au moins un élément des terres rares,
    B
    4 à 12 % atomiques,
    le complément étant formé de fer dont une partie est facultativement remplacée par du cobalt et/ou par du nickel, d'un additif facultatif et des impuretés inévitables, de sorte que ledit alliage de phase principale renferme une phase de R2Fe14B en tant que phase principale,
    et ledit alliage d'ajustement contenant :
       R 45 % atomiques ou moins, R représentant ici encore au moins un élément des terres rares,
    le complément étant formé de cobalt dont une partie est facultativement remplacée par du fer et/ou du nickel, d'un additif facultatif et des impuretés inévitables, de sorte que ledit alliage d'ajustement renferme une phase de composé intermétallique R-Co,
    et l'additif facultatif susceptible d'être ajouté à l'un et/ou l'autre desdits alliages de phase principale et d'ajustement étant de nature et d'abondance telles que ledit mélange de poudres contienne l'un ou plusieurs des composants suivants : 0 à 9,5 % atomiques d'Al, 0 à 4,5 % atomiques de Ti, 0 à 9,5 % atomiques de V, 0 à 8,5 % atomiques de Cr, 0 à 8,0 % atomiques de Mn, 0 à 5 % atomiques de Bi, 0 à 12,5 % atomiques de Nb, 0 à 10,5 % atomiques de Ta, 0 à 9,5 % atomiques de Mo, 0 à 9,5 % atomiques de W, 0 à 2,5 % atomiques de Sb, 0 à 7 % atomiques de Ge, 0 à 3,5 % atomiques de Sn, 0 à 5,5 % atomiques de Zr et 0 à 5,5 % atomiques de Hf.
  19. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon la revendication 18, dans lequel ledit alliage de phase principale contient :
    R
    12 à 14 % atomiques, R représentant au moins un élément des terres rares,
    B
    6 à 10 % atomiques.
  20. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon la revendication 18, dans lequel du fer de l'alliage de phase principale contenant une phase de R2Fe14B en tant que phase principale est remplacé par 10 % atomiques ou moins de cobalt et/ou 3 % atomiques ou moins de nickel.
  21. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon la revendication 18, dans lequel l'alliage d'ajustement contient R en une proportion de 10 à 20 % atomiques.
  22. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon la revendication 18, dans lequel une partie du cobalt de l'alliage d'ajustement est remplacée par 50 % atomiques ou moins de fer et/ou 10% atomiques ou moins de nickel.
  23. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 11, 13 et 18, dans lequel la quantité de poudre d'alliage d'ajustement utilisée est inférieure à 60 % du poids de la poudre d'alliage de phase principale.
  24. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon la revendication 23, dans lequel la quantité de poudre d'alliage d'ajustement utilisée est comprise entre 0,1 et 40 % du poids de la poudre d'alliage de phase principale.
  25. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 24, dans lequel ledit processus de coulage en bande est un processus à cylindre unique ou un processus à double cylindre.
  26. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 25, dans lequel l'épaisseur de la ou des bandes coulées est comprise entre 0,03 et 10 mm.
  27. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 26, dans lequel la bande coulée présente une grosseur de grains cristallins comprise entre 0,1 et 50 µm dans une direction de petit axe et entre 5 et 200 µm dans une direction de grand axe, et renferme une phase riche en R finement divisée de granulométrie inférieure à 5 µm.
  28. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 27, dans lequel l'hydrogénation a lieu sous une pression gazeuse d'hydrogène de 200 torr (26,6 kPa) à 50 kg/cm2 (4,9 MPa).
  29. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon la revendications 28, dans lequel la pression gazeuse d'hydrogène pendant l'hydrogénation est de 2 kg/cm2 (0,2 MPa) à 10 kg/cm2 (1 MPa).
  30. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 29, dans lequel la déshydrogénation de la poudre d'alliage décomposée est opérée à une température comprise entre 100 et 750°C pendant 0,5 heure ou plus.
  31. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon la revendication 30, dans lequel une déshydrogénation se déroule à une température comprise entre 200 et 600°C.
  32. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 31, dans lequel la grosseur de grain moyenne de la poudre broyée est comprise entre 2 et 4 µm.
  33. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 32, dans lequel le moule est formé d'un ou plusieurs métaux, oxydes ou composés organiques non magnétiques tels que des matières plastiques et du caoutchouc.
  34. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 33, dans lequel la masse volumique à l'état comprimé de la poudre comprimée dans le moule est de 1,4 à 3,0 g/cm3.
  35. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 34, dans lequel la poudre est orientée par application d'un champ magnétique pulsé au moyen d'une bobine sans fer et d'une source d'énergie à condensateur.
  36. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 35, dans lequel l'intensité du champ magnétique pulsé est de 10 kOe (796 kA/m) ou plus.
  37. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon la revendication 36, dans lequel l'intensité du champ magnétique pulsé est comprise ente 30 et 80 kOe (2387 et 6366 kA/m).
  38. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 37, dans lequel une impulsion de champ magnétique unique dure entre 1 microseconde et 10 secondes.
  39. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon la revendications 38, dans lequel une impulsion de champ magnétique unique dure entre 5 µs et 100 ms.
  40. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 39, dans lequel une impulsion de champ magnétique est appliquée 1 à 10 fois.
  41. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon la revendications 40, dans lequel une impulsion de champ magnétique est appliquée 1 à 5 fois.
  42. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 41, dans lequel le moulage opéré après orientation est effectué par un processus de compression hydrostatique.
  43. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 9 à 41, dans lequel le moulage opéré après orientation est effectué par un processus de compression par champ magnétique.
  44. Un procédé de production d'un matériau pour aimants permanents de type R-Fe-B selon l'une quelconque des revendications 42 et 43, dans lequel la pression exercée lors de la compression est comprise entre 0,5 t/cm2 (49 MPa) et 5 t/cm2 (490 MPa).
  45. Un procédé de production de matériaux pour aimants permanents de type R-Fe-B selon la revendication 44, dans lequel la pression exercée lors de la compression est comprise entre 1 t/cm2 (98 MPa) et 3 t/cm2 (294 MPa).
EP93308184A 1993-07-06 1993-10-14 Matériaux R-Fe-B pour aimants permanents et leurs procédé de fabrication Expired - Lifetime EP0633581B1 (fr)

Applications Claiming Priority (10)

Application Number Priority Date Filing Date Title
JP192886/93 1993-07-06
JP19288693A JP3415208B2 (ja) 1993-07-06 1993-07-06 R−Fe−B系永久磁石材料の製造方法
JP207190/93 1993-07-28
JP5207192A JPH0745412A (ja) 1993-07-28 1993-07-28 R−Fe−B系永久磁石材料
JP20719093A JP3151087B2 (ja) 1993-07-28 1993-07-28 R−Fe−B系永久磁石用原料粉末の製造方法及び原料粉末調整用合金粉末
JP20719193A JP3151088B2 (ja) 1993-07-28 1993-07-28 R−Fe−B系永久磁石用原料粉末の製造方法及び原料粉末調整用合金粉末
JP207192/93 1993-07-28
JP207191/93 1993-07-28
JP212171/93 1993-08-03
JP21217193A JP3299000B2 (ja) 1993-08-03 1993-08-03 R−Fe−B系永久磁石用原料粉末の製造方法及び原料粉末調整用合金粉末

Publications (2)

Publication Number Publication Date
EP0633581A1 EP0633581A1 (fr) 1995-01-11
EP0633581B1 true EP0633581B1 (fr) 1998-04-22

Family

ID=27529067

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93308184A Expired - Lifetime EP0633581B1 (fr) 1993-07-06 1993-10-14 Matériaux R-Fe-B pour aimants permanents et leurs procédé de fabrication

Country Status (7)

Country Link
EP (1) EP0633581B1 (fr)
KR (1) KR0131060B1 (fr)
CN (1) CN1076115C (fr)
AT (1) ATE165477T1 (fr)
DE (1) DE69318147T2 (fr)
RU (1) RU2113742C1 (fr)
TW (1) TW272293B (fr)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5666635A (en) * 1994-10-07 1997-09-09 Sumitomo Special Metals Co., Ltd. Fabrication methods for R-Fe-B permanent magnets
US5858123A (en) * 1995-07-12 1999-01-12 Hitachi Metals, Ltd. Rare earth permanent magnet and method for producing the same
US6319335B1 (en) 1999-02-15 2001-11-20 Shin-Etsu Chemical Co., Ltd. Quenched thin ribbon of rare earth/iron/boron-based magnet alloy
EP1059645B1 (fr) 1999-06-08 2006-06-14 Shin-Etsu Chemical Co., Ltd. Ruban mince d'un alliage de terre rare pour aimant permanent
US6527874B2 (en) 2000-07-10 2003-03-04 Sumitomo Special Metals Co., Ltd. Rare earth magnet and method for making same
KR100446193B1 (ko) * 2002-05-29 2004-08-30 주식회사 태평양금속 도전체 박막을 구비한 영구 자석 제조 방법 및 장치
US7618497B2 (en) * 2003-06-30 2009-11-17 Tdk Corporation R-T-B based rare earth permanent magnet and method for production thereof
JP4179973B2 (ja) 2003-11-18 2008-11-12 Tdk株式会社 焼結磁石の製造方法
US7955443B2 (en) * 2006-04-14 2011-06-07 Shin-Etsu Chemical Co., Ltd. Method for preparing rare earth permanent magnet material
JP4656323B2 (ja) 2006-04-14 2011-03-23 信越化学工業株式会社 希土類永久磁石材料の製造方法
CN100394518C (zh) * 2006-08-04 2008-06-11 北京工业大学 一种制备高矫顽力烧结稀土-铁-硼永磁材料的方法
RU2453942C2 (ru) * 2006-09-14 2012-06-20 Улвак, Инк. Постоянный магнит и способ его изготовления
JPWO2008062757A1 (ja) 2006-11-21 2010-03-04 株式会社アルバック 配向体、成形体及び焼結体の製造方法並びに永久磁石の製造方法
RU2458423C2 (ru) * 2006-12-21 2012-08-10 Улвак, Инк. Постоянный магнит и способ его изготовления
CN101393791B (zh) * 2007-09-21 2012-10-03 有研稀土新材料股份有限公司 一种各向异性粘结磁粉及其制备方法
CN101872668B (zh) * 2009-04-23 2014-06-25 北京中科三环高技术股份有限公司 具有优良磁化特性的烧结钕铁硼稀土永磁体及其制造方法
CN102087917B (zh) * 2009-12-02 2014-06-25 北京中科三环高技术股份有限公司 一种辐射取向磁环或多极磁环的制备方法及其压制设备
JP5572673B2 (ja) 2011-07-08 2014-08-13 昭和電工株式会社 R−t−b系希土類焼結磁石用合金、r−t−b系希土類焼結磁石用合金の製造方法、r−t−b系希土類焼結磁石用合金材料、r−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石の製造方法およびモーター
EP2745298B1 (fr) 2011-08-17 2019-12-11 Regents of the University of Minnesota Technique et système de formation d'un aimant permanent à base de nitrure de fer
EP2693451A4 (fr) 2011-12-27 2014-07-30 Intermetallics Co Ltd Aimant au néodyme fritté
EP2800108B1 (fr) 2011-12-27 2018-04-11 Intermetallics Co., Ltd. Aimant au néodyme fritté
JP6119548B2 (ja) * 2012-10-17 2017-04-26 信越化学工業株式会社 希土類焼結磁石の製造方法
CN103887028B (zh) 2012-12-24 2017-07-28 北京中科三环高技术股份有限公司 一种烧结钕铁硼磁体及其制造方法
JP6238444B2 (ja) 2013-01-07 2017-11-29 昭和電工株式会社 R−t−b系希土類焼結磁石、r−t−b系希土類焼結磁石用合金およびその製造方法
JP6082128B2 (ja) 2013-02-07 2017-02-15 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ 窒化鉄永久磁石及び窒化鉄永久磁石を形成するための技術
WO2014210027A1 (fr) 2013-06-27 2014-12-31 Regents Of The University Of Minnesota Matériaux au nitrure de fer et aimants les comprenant
KR20160133564A (ko) 2014-03-28 2016-11-22 리전츠 오브 더 유니버시티 오브 미네소타 코팅된 나노입자들을 포함하는 질화철 자성 재료
US9994949B2 (en) 2014-06-30 2018-06-12 Regents Of The University Of Minnesota Applied magnetic field synthesis and processing of iron nitride magnetic materials
US10358716B2 (en) 2014-08-08 2019-07-23 Regents Of The University Of Minnesota Forming iron nitride hard magnetic materials using chemical vapor deposition or liquid phase epitaxy
US10002694B2 (en) 2014-08-08 2018-06-19 Regents Of The University Of Minnesota Inductor including alpha″-Fe16Z2 or alpha″-Fe16(NxZ1-x)2, where Z includes at least one of C, B, or O
US10573439B2 (en) 2014-08-08 2020-02-25 Regents Of The University Of Minnesota Multilayer iron nitride hard magnetic materials
US10072356B2 (en) 2014-08-08 2018-09-11 Regents Of The University Of Minnesota Magnetic material including α″-Fe16(NxZ1-x)2 or a mixture of α″-Fe16Z2 and α″-Fe16N2, where Z includes at least one of C, B, or O
DE102016205243A1 (de) 2016-03-30 2017-10-05 Thyssenkrupp Ag Vorrichtung und Verfahren zur Aufbereitung eines Probematerials
CN108481877B (zh) * 2018-03-10 2020-06-23 葛理想 电磁屏蔽用磁材的碎化处理工艺
CN115747611B (zh) * 2022-10-13 2023-10-20 包头金山磁材有限公司 一种辅合金铸片和高剩磁高矫顽力钕铁硼永磁体及制备方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA1316375C (fr) * 1982-08-21 1993-04-20 Masato Sagawa Materiaux magnetiques et aimants permanents
JPS62291901A (ja) * 1986-06-12 1987-12-18 Toshiba Corp 永久磁石
CN1051864C (zh) * 1986-08-04 2000-04-26 住友特殊金属株式会社 具有优异耐蚀性的稀土永磁体
GB2201426B (en) * 1987-02-27 1990-05-30 Philips Electronic Associated Improved method for the manufacture of rare earth transition metal alloy magnets
EP0304054B1 (fr) * 1987-08-19 1994-06-08 Mitsubishi Materials Corporation Poudre magnétique terre rare-fer-bore et son procédé de fabrication
JPH01119001A (ja) * 1987-10-30 1989-05-11 Kubota Ltd 希土類含有永久磁石粉末の製造方法
JPH0529117A (ja) * 1990-10-22 1993-02-05 Kawasaki Steel Corp 希土類−遷移金属系異方性磁粉の製造方法
DE69202515T2 (de) * 1991-06-04 1995-09-21 Shinetsu Chemical Co Verfahren zur Herstellung von zweiphasigen Dauermagneten auf der Basis von Seltenen Erden.
JP2782024B2 (ja) * 1992-01-29 1998-07-30 住友特殊金属株式会社 R−Fe−B系永久磁石用原料粉末の製造方法

Also Published As

Publication number Publication date
EP0633581A1 (fr) 1995-01-11
DE69318147T2 (de) 1998-11-12
CN1114779A (zh) 1996-01-10
CN1076115C (zh) 2001-12-12
ATE165477T1 (de) 1998-05-15
TW272293B (fr) 1996-03-11
RU2113742C1 (ru) 1998-06-20
KR0131060B1 (en) 1998-04-24
DE69318147D1 (de) 1998-05-28
KR950004295A (ko) 1995-02-17

Similar Documents

Publication Publication Date Title
EP0633581B1 (fr) Matériaux R-Fe-B pour aimants permanents et leurs procédé de fabrication
US5788782A (en) R-FE-B permanent magnet materials and process of producing the same
EP0304054B1 (fr) Poudre magnétique terre rare-fer-bore et son procédé de fabrication
US5997804A (en) Rare earth permanent magnet and method for producing the same
EP0706190B1 (fr) Méthode de fabrication d'aimants permanents R-Fe-B
US6506265B2 (en) R-Fe-B base permanent magnet materials
EP0553527B1 (fr) Matériau en poudre pour des aimants permanents à base de terre rare-fer-bore
JP3777199B2 (ja) 高性能R−Fe−B系永久磁石材料の製造方法
JP3148581B2 (ja) 耐食性のすぐれたR−Fe−B−C系永久磁石材料の製造方法
JP3415208B2 (ja) R−Fe−B系永久磁石材料の製造方法
JP3157661B2 (ja) R−Fe−B系永久磁石材料の製造方法
JP3611870B2 (ja) R−Fe−B系永久磁石材料の製造方法
JP3474684B2 (ja) 耐食性のすぐれた高性能R−Fe−B−C系磁石材料
JP3101798B2 (ja) 異方性焼結磁石の製造方法
JP3383448B2 (ja) R−Fe−B系永久磁石材料の製造方法
JP3157660B2 (ja) R−Fe−B系永久磁石材料の製造方法
JPH0745412A (ja) R−Fe−B系永久磁石材料
JP2745042B2 (ja) 希土類−鉄−ボロン系合金薄板、合金粉末及び永久磁石の製造方法
JPH0920953A (ja) 耐食性のすぐれたR−Fe−B−C系永久磁石材料の製造方法
JP2789269B2 (ja) R−Fe−B系永久磁石用原料粉末
JP2004244702A (ja) 希土類永久磁石の製造方法
JP3148573B2 (ja) 耐食性のすぐれたR−Fe−B−C系永久磁石材料の製造方法
JP3299000B2 (ja) R−Fe−B系永久磁石用原料粉末の製造方法及び原料粉末調整用合金粉末
JP3300570B2 (ja) 耐食性のすぐれたR−Fe−B−C系永久磁石材料の製造方法
JPH06283318A (ja) 希土類永久磁石の製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR GB IT NL

17P Request for examination filed

Effective date: 19950629

17Q First examination report despatched

Effective date: 19961023

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR GB IT NL

REF Corresponds to:

Ref document number: 165477

Country of ref document: AT

Date of ref document: 19980515

Kind code of ref document: T

REF Corresponds to:

Ref document number: 69318147

Country of ref document: DE

Date of ref document: 19980528

ITF It: translation for a ep patent filed

Owner name: BARZANO'E ZANARDO S.P.A.

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091014

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: IT

Effective date: 20110616

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121026

Year of fee payment: 20

Ref country code: FR

Payment date: 20121126

Year of fee payment: 20

Ref country code: BE

Payment date: 20121025

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20121024

Year of fee payment: 20

Ref country code: GB

Payment date: 20121030

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20121030

Year of fee payment: 20

Ref country code: NL

Payment date: 20121019

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69318147

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: V4

Effective date: 20131014

BE20 Be: patent expired

Owner name: *SUMITOMO SPECIAL METALS CY LTD

Effective date: 20131014

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20131013

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 165477

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131014

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20131013

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20131015