EP0607829A1 - Verfahren zur Verhinderung des Reissens von Bambusrohren (mechanisch) - Google Patents

Verfahren zur Verhinderung des Reissens von Bambusrohren (mechanisch) Download PDF

Info

Publication number
EP0607829A1
EP0607829A1 EP94100231A EP94100231A EP0607829A1 EP 0607829 A1 EP0607829 A1 EP 0607829A1 EP 94100231 A EP94100231 A EP 94100231A EP 94100231 A EP94100231 A EP 94100231A EP 0607829 A1 EP0607829 A1 EP 0607829A1
Authority
EP
European Patent Office
Prior art keywords
bamboo
drying
tube
strip
tubes
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94100231A
Other languages
English (en)
French (fr)
Other versions
EP0607829B1 (de
Inventor
Alexander Schmidmeier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0607829A1 publication Critical patent/EP0607829A1/de
Application granted granted Critical
Publication of EP0607829B1 publication Critical patent/EP0607829B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B27WORKING OR PRESERVING WOOD OR SIMILAR MATERIAL; NAILING OR STAPLING MACHINES IN GENERAL
    • B27JMECHANICAL WORKING OF CANE, CORK, OR SIMILAR MATERIALS
    • B27J1/00Mechanical working of cane or the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T156/00Adhesive bonding and miscellaneous chemical manufacture
    • Y10T156/10Methods of surface bonding and/or assembly therefor
    • Y10T156/1052Methods of surface bonding and/or assembly therefor with cutting, punching, tearing or severing
    • Y10T156/1062Prior to assembly
    • Y10T156/1067Continuous longitudinal slitting
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/13Hollow or container type article [e.g., tube, vase, etc.]
    • Y10T428/1348Cellular material derived from plant or animal source [e.g., wood, cotton, wool, leather, etc.]

Definitions

  • the invention relates to a method for treating bamboo tubes in order to prevent the bamboo tubes from cracking.
  • bamboo Because of its high elasticity and stability, especially in Asia, bamboo is used in a wide variety of ways as a structural element, from the construction of church tower-high scaffolding to the use as material for seating furniture and tableware.
  • the bamboo cane Since the bamboo cane has a closed, round cross-section and is divided in the longitudinal direction at irregular intervals from bulkhead-like transverse walls, the methods of crack prevention known from the treatment of solid wood processed into boards (layer-by-layer gluing of the solid wood levels in an angular fiber direction to one another) cannot be used Crack prevention can be used.
  • bamboo is not a type of wood, but a giant grass and apart from that, there are almost opposite physical behaviors: While wood has the leading cells for liquid transport, especially in the outside areas directly under the bark, and therefore a tree trunk has the highest moisture content in the outside area and the lowest in the core area, the opposite is true with bamboo: In the outer third of the pipe are the supporting cells, which give the bamboo its firmness, while on the inside there are the lead cells and storage cells for the water to be absorbed with the building materials it contains. As a result, the two materials behave absolutely unequal, especially since the physical behavior of the bamboo is completely different due to the hollow construction with the transverse walls in the axial direction.
  • the moisture content of bamboo canes is not only fundamentally higher than with wood, but also fluctuates much more depending on the location, the current climate and, viewed in the cross-sectional direction of the bamboo cane and in the axial longitudinal direction, the size.
  • the described methods use a reduction in the mechanical stresses that occur.
  • these tensions are caused by the closed, round cross-sectional contour of the bamboo percentage uniform shrinkage of the bamboo in the outer layer tensile stresses must occur compared to the inner layer.
  • This is reinforced by the internal structure of the bamboo, which has more supporting cells in the outer third and more tubular water transport cells and storage cells in the inner third.
  • a further difficulty in influencing the tensions in the bamboo are the internal transverse walls which are present at irregular intervals and which are also expressed in a reinforced bead running around the outside of the bamboo.
  • the thickness of the wall compared to the diameter of the tube, the taper of the tube, as well as the internal structure of the bamboo and its initial moisture content is also different in almost every individual case, the types of influence must also be individually variable.
  • One method of avoiding cracks is to open the closed cross-section by at least one longitudinal cut along a surface line of the bamboo cane, thereby creating an artificial crack, so to speak.
  • this will not change evenly in all cases during the drying process, i.e. open, remain the same or even close.
  • a strip e.g. an adapted bamboo strip or a strip of similar looking material can be inserted and glued or instead or mechanically fastened by clips, bamboo dowels or the like.
  • gluing with the additional insertion of approximately 3 mm thick bamboo dowels in the longitudinal direction has proven to be useful alternately diagonally through the adhesive surfaces of the bamboo strip on both sides.
  • Another way to reduce the tendency to crack in bamboo canes is to leave the lower 50 to 200 cm of the grown bamboo cane on the one hand and only harvest the upper area of the cane, as the initial moisture content of the bamboo cane decreases sharply with increasing height.
  • the cut pipe After the harvest, the cut pipe is stored upright, ideally directly in the bamboo grove, and the remaining branches are left in the process, which leads to a kind of pre-drying through the release of moisture through the leaves and evaporation over the cut surfaces, supported by the decrease in moisture in the bamboo tube by gravity.
  • the active drying of the bamboo is carried out in several stages:
  • the bamboo is preferably dried outdoors from the initial moisture content (50 to 100%) down to the so-called fiber saturation limit. In the case of bamboo, this is between 14 and 21% by weight of water in contrast to wood, in which this value is 23 to 35%. bamboo also begins to shrink in this first drying phase In contrast to wood, which only begins to shrink after the fiber saturation value is undershot. Unless otherwise stated, all percentages are percentages by weight.
  • This first phase is carried out by standing upright in partial shade outdoors for 2 to 10 weeks, in particular 3 to 4 weeks.
  • the moisture content is reduced to a value of about 17% within a range of 13% to 25%. This value corresponds to the moisture equilibrium as it arises in the tropics due to the ambient humidity if the storage is long enough.
  • the introduction of a longitudinal gap described above is carried out by cutting, sawing or milling, with a width of about 4 mm, about on the 4th day of this 1st drying stage, and if a chemical immersion bath treatment is carried out at the beginning of the 1st drying stage, 4 days after removal from the immersion bath.
  • the change in the gap width must be checked at least every 4 days, better daily as the gap usually narrows.
  • the gap closes due to the shrinking of the bamboo, especially in the inner area and thus with a reduction in diameter it has to be widened again by mechanical processing in order to avoid mechanically occurring stresses when the cut surfaces rest against one another. If after two reworking the gap is still reduced to 0 mm width, the bamboo tube is no longer suitable for further processing.
  • the bamboo In the second stage, ideally starting from the fiber saturation level of moisture, drying is carried out to 8% to 10% final moisture.
  • the bamboo preferably releases the water bound in the outer areas, which is why these outer layers want to contract, but this is not possible due to the different behavior of the inner tube areas.
  • the tube diameter is bent up, similarly to a bimetal, so that the circumference increases and a longitudinal gap is formed or enlarged at one point on the tube circumference.
  • the air temperature is between 30 ° and 60 ° C and the relative humidity is 75% to 33%, with the initial moisture of the bamboo not being allowed to exceed 24% in this second phase.
  • drying is regularly checked with a moisture meter during chamber drying, which happens every 2 hours during the second drying phase and every 2 days outdoors in the previous first phase.
  • the outside of the bamboo tube, especially in the knot area, is preferably sprayed with water regularly during the 1st phase, in order to prevent cracking, especially there.
  • the width of the longitudinal gap is measured regularly, preferably approximately every 4 hours, manually or by means of strain gauges or its change is monitored, in order not to cause drying that is too rapid despite the predetermined values for the individual phases, which inevitably increases Cracks form.
  • conditioning to the climatic conditions of the exporting country is carried out, i.e. acclimatization at about 40 to 50 ° Air humidity and 20 to 25 ° C temperature for European countries.
  • the dwell time in the climatic room is 2 to 4 days, whereby the diameter of the bamboo tube is reduced by 5 to 12% compared to the last phase in the drying chamber, due to the higher relative humidity in the climatic room compared to the last phase in the drying chamber.
  • This is used in a targeted manner since it has been found that this underdrying in the drying chamber increases the later crack resistance of the processed bamboo cane, since they later have a lower tendency to swell. This could be related to the permanent collapse of individual capillaries.
  • the bamboo strips inserted in the longitudinal gap are sealed, dowelled and glued.
  • the bamboo canes are often worked for this purpose during the day, while they are stored again in the climate room for air conditioning at least 15 hours at night.
  • the bamboo tubes with this seam side can be arranged in the mostly invisible area, while with bamboo tubes dried without additional treatment, the crack formation at any point and therefore usually also in the visible area can occur.
  • bamboo strips of a pre-made width and orientation of the adhesive surfaces are usually used, to which the gap of the bamboo tube has previously been cut by a corresponding milling process is adjusted, whereby he gets the right width and slope of his adhesive surfaces.
  • the adhesive surfaces of both the bamboo strip and the longitudinal gap taper conically from the inside to the outside, so that the longitudinal gap is wider on the inside than the outside and, in addition, after the bamboo strip is inserted, the adhesive joint on the inside is wider than the outside.
  • the adhesive surface of the bamboo strip as well as the bamboo tube can advantageously be angled into one another, i.e. concave for the bamboo tube and convex for the bamboo strip, or vice versa, so that the interlocking of these profiles of the adhesive surfaces results in a positive fit which pre-fixes the bamboo strip until the adhesive sets.
  • the bamboo strip will usually have its outer beads, which are caused by the transverse wall attachment, at different distances than the bamboo tube, not a single, continuous bamboo strip is used in the case of several transverse wall beads of the bamboo tube, but rather parts in the longitudinal direction, each of which has only one transverse wall Bead included, which is placed at the same level with the transverse wall bead of the bamboo tube, so that the subsequent part of the bamboo strip is cut to length accordingly.
  • both the entire joint or only the remaining joint between the inserted strip and the original bamboo tube can be filled with an elastic filler such as polyurethane or silicone, the filler or at least its surface should be color-matched.
  • an elastic filler such as polyurethane or silicone
  • the inside of the pipe with a light filler such as a closed-cell foam, which increases the specific weight only slightly, but due to the full-surface adhesion between the foam filling and the inside of the pipe, the pipe can contract and stretch when processed is made very difficult.
  • a light filler such as a closed-cell foam
  • the first and last transverse walls which were not removed by completely destroying them but sawing out, are preferably used again and serve as boundary walls for filling the foam.
  • Another possibility is to cut the bamboo tube not only on one surface line before drying, but on several surface lines, that is, to split it into two or more segments of the cross-section. When divided into two segments, the resulting half-shells usually bend into shapes that correspond to about half an ellipse.
  • These half-ellipses can either be glued to one another by interposed bamboo strips and thereby approximately complemented to a circular profile in cross-section, preferably only one bamboo strip being interposed, while the two half-shells of the bamboo tube are glued directly to one another at the opposite joint.
  • the shrinkage of the bamboo cane during drying can be influenced and minimized by further measures.
  • the outer skin of the bamboo tube can be peeled off before drying, and therefore usually before it is cut open, since its shrinkage behavior is very different from the other components of the bamboo tube, and after their removal, the differences in the shrinkage behavior inside the bamboo cross section are very great are lower.
  • the bamboo cane is ground on the outside after being added and glued in order to equalize the different surface structure and surface color between the bamboo strip and the bamboo cane.
  • polyethylene glycol with molecular weights of 600, 1000 or 1500 as well as urea or sorbitol come into consideration, which are each used in aqueous solution.
  • Another possibility is to replace the water inside the water cells with chemicals that are themselves highly hygroscopic, and thus to keep the water that is naturally present in the bamboo or brought in by the air humidity instead of letting it evaporate during drying.
  • Borax, soda, boric acid and their mixtures are each considered as an aqueous solution.
  • the bamboo should in any case against insect infestation with a 1 to 2% solution of boric acid in water are pretreated, this solution preferably being brought to a pH of about 8 by further addition of soda, which additionally reduces the risk of mold growth.
  • Another way of reducing or even avoiding the uneven shrinkage of the bamboo tube is to influence the drying process itself. This reduces the gap formation in the cut bamboo tubes described above, and in extreme cases can function so precisely that it is no longer necessary to cut the bamboo cane along the outer surface.
  • the drying process should preferably already be influenced by the fact that only bamboo tubes that are at least five years old and that have grown on relatively poor soils and were harvested as far as possible during the drying season are used. With these bamboo tubes, the cell wall portion is already higher compared to the stored water portion and thus the shrinkage difference between the inside cells with large inner free spaces and the outside cell structures with little storage possibilities is less big.
  • the cutting of the bamboo tubes is nevertheless used, it is advisable to dry the bamboo tubes from the originally approx. 50 to 100% moisture content to approx. 17% moisture content, the degree of fiber saturation, by slow air drying, without direct sunlight not only is the cutting process itself easier to accomplish, but above all a part of the shrinkage has already taken place within the bamboo tube and through which later, while drying to the intended 8 to 10% residual moisture, an expansion of the gap produced will occur, but with a relatively uniform shape along the length of the gap, so that a strong deformation of the gap, which is disadvantageous for the subsequent clean sealing, is avoided.
  • the deliberately different drying of the bamboo tube in its interior is advantageous compared to the outer surface. After drilling through and removing the transverse walls, the interior can be specifically dried more than the outer surface by passing dry warm air through, with the tube cross section closed, which can reduce or even compensate for the otherwise different rate of shrinkage between interior and exterior areas.
  • the drying process can be carried out in the optimal case so that at the end of the drying process the gap has closed completely or at least to the extent that the insertion of a bamboo strip is no longer necessary, but the gap is already glued together. This significantly reduces the amount of work.
  • another type of mechanical stress relief can be used, for example, the introduction of a large number of holes along a surface line of the bamboo cane, which are closed again by appropriate plugs made of bamboo wood after the drying process has ended.
  • Fig. 1 shows a bamboo tube 1 in cross section, in which the transverse wall 5 is largely removed and the bamboo tube 1 was cut along a surface line, whereby a longitudinal gap 2 was created.
  • the side walls of the longitudinal gap 2 are parallel to one another and run essentially radially.
  • FIG. 2 shows the bamboo tube according to FIG. 1 after the drying process, as a result of which the bamboo tube 1 has contracted somewhat along its circumference and as a result the longitudinal gap 2 has become significantly wider.
  • the outer diameter of the bamboo tube 1 may even become somewhat larger compared to the state before drying.
  • the side walls 14 of the longitudinal gap 2 are still essentially radial to the longitudinal axis 15 of the bamboo tube.
  • the outer skin 13 of the bamboo tube was peeled in order on the one hand to achieve a more uniform appearance and on the other hand to reduce the otherwise significant difference in shrinkage between the natural outer skin 13 and the inner skin 12 of the bamboo tube .
  • FIG. 3 shows a detailed illustration of the bamboo strip 3 inserted into the enlarged longitudinal gap 2.
  • the longitudinal gap 2 was not only widened, but also the orientation of its side walls 14 by milling, through which the widening is generally carried out, are also chosen differently in their angular position.
  • the side wall 14 of the bamboo tube 1 is - as can be seen in the left figure of FIG. 3 - no longer radially, but from the inside to the outside the longitudinal gap 2 tapering obliquely.
  • the opposite adhesive surface 4 of the bamboo tube 1 is also arranged obliquely in this direction, but with a lower inclination, so that an adhesive joint 6 is formed, which is wider inside than outside and thereby practically invisible on the outside.
  • the adhesive surface 4 of the bamboo strip 3 and also the adhesive surface 4 'of the bamboo tube 1 are each adapted to each other, angled, the adhesive surface 4' of the bamboo tube 1 is concave and an indentation in cross-section indentation in the side wall 14 of the bamboo tube 1.
  • a correspondingly convex counter-contour of the bamboo strip 3 engages in this angled groove and is held there in a form-fitting manner by the tension of the bamboo tube 1 until the adhesive sets.
  • Fig. 3 can be seen on both sides dowels 16, which - offset in the longitudinal direction of the bamboo strip 3 - alternately are introduced.
  • the dowels 16 run from the surface of the bamboo tube at a distance of about 5 to 15 mm next to the side walls 14 obliquely inwards across the adhesive joint 6 and reach the inside of the bamboo strip 3 approximately in the middle.
  • the dowels are made of bamboo wood and have a diameter of about 3 to 5 mm.
  • Fig. 4 shows a finished bamboo tube 1 with a bamboo strip 3 consisting of several parts 7, inserted in the longitudinal gap 2, the adhesive joints are visible in the drawing, but are practically invisible in practice after sanding the surface.
  • Fig. 5 shows the solution described, to provide a bamboo tube 1 along one of its surface lines with a plurality of bores 9, which can also compensate for stresses during drying and are closed after completion of the drying by appropriate plugs 10 made of bamboo, in which of course the same grain direction is observed as with the surrounding bamboo material.
  • the space between the holes should be about twice as large as the diameter of the holes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Forests & Forestry (AREA)
  • Chemical And Physical Treatments For Wood And The Like (AREA)
  • Insulating Bodies (AREA)

Abstract

Die Erfindung betrifft ein Verfahren zur mechanischen Behandlung von Bambusrohren, um die Rißbildung der Bambusrohre zu verhindern. Dafür ist es notwendig, ein Verfahren zu schaffen, bei dem Bambusrohre, die auch zwei und mehr Querwände aufweisen, so behandelt werden können, daß eine Rißbildung des Bambusrohres nach dessen Verarbeitung vermieden wird. Daher wird vorgeschlagen, daß das Bambusrohr vor Beginn der Trocknung in Längsrichtung über die gesamte Länge in Längsrichtung aufgeschnitten wird, auf die gewünschte Restfeuchte heruntergetrocknet und nach dem Trocknen der entstandene Längsspalt über die gesamte Länge verschlossen wird. <IMAGE>

Description

  • Die Erfindung betrifft ein Verfahren zur Behandlung von Bambusrohren um die Rißbildung der Bambusrohre zu verhindern.
  • Bambus wird aufgrund seiner hohen Elastizität und Stabilität, vor allem in Asien, in vielfältigster Weise als konstruktives Element eingesetzt, vom Erstellen kirchturmhoher Baugerüste bis zur Verwendung als Material für Sitzmöbel und Geschirr.
  • Auch in Europa wird Bambus, vor allem für die Herstellung von Sitzmöbeln, Bettgestellen und ähnlichem eingesetzt.
  • Dabei besteht grundsätzlich das Problem, daß der Feuchtegehalt, wie ihn das Bambusrohr während des Wachstums besitzt, nämlich etwa 55 - 110 Gewichts%, nach dem Abschneiden des Rohres und der Beendigung der kapillaren Wasserzuführung aus dem Wurzelwerk auf die Luftfeuchtigkeit der Umgebung absinkt. Während im asiatischen Raum aufgrund der meist sehr hohen Luftfeuchtigkeit dieser Unterschied nur vereinzelt zur Rißbildung des Bambusrohres führt, reißen solche Rohre beim Transport nach Europa oder Nordamerika und vor allem beim Einsatz in zentralbeheizten oder klimatisierten Räumen fast regelmäßig, aufgrund der dann bestehenden sehr hohen Feuchtedifferenz.
  • Zwar wird durch Rißbildung auch die Stabilität des Bambusrohres beeinträchtigt, jedoch ist dies nicht der ausschlaggebende Nachteil, sondern die verschlechterte optische Wirkung, wenn das Bambusrohr als Konstruktionsmaterial für relativ hochwertige Möbel verwendet wurde.
  • Da das Bambusrohr einen geschlossenen, runden Querschnitt besitzt, und in Längsrichtung in unregelmäßigen Abständen von schottartigen Querwänden abgeteilt wird, können die aus der Behandlung von zu Brettern verarbeitetem Massivholz bekannten Methoden der Rißvermeidung (schichtweises Verleimen der Massivholz-Ebenen in winkliger Faserrichtung zueinander) nicht zur Rißvermeidung eingesetzt werden. Denn einerseits ist Bambus rein biologisch gesehen nicht eine Holzart, sondern ein Riesengras und auch davon abgesehen bestehen fast gegenläufige Verhaltensweisen in physikalischer Hinsicht:
    Während Holz die Leitzellen zum Flüssigkeitstransport, vor allem in den Außenbereichen direkt unter der Rinde, hat und daher ein Baumstamm im Außenbereich den höchsten und im Kernbereich den niedrigsten Feuchtegehalt aufweist, ist es bei Bambus genau umgekehrt:
    Im äußeren Drittel des Rohres befinden sich die Stützzellen, die dem Bambus seine Festigkeit geben, während nach innen die Leitzellen und Speicherzellen für das aufzunehmende Wasser mit den enthaltenen Aufbaustoffen folgen. Demzufolge verhalten sich die beiden Stoffe absolut ungleich, zumal noch hinzukommt, daß das physikalische Verhalten des Bambus aufgrund der Hohlkonstruktion mit den in axialer Richtung vorhandenen Querwänden nochmals völlig anders ist.
  • Zusätzlich ist der Feuchtegehalt von Bambusrohren beim Schnitt nicht nur grundsätzlich höher als bei Holz, sondern schwankt auch sehr viel stärker in Abhängigkeit vom Standort, momentanem Klima und, betrachtet in Querschnittsrichtung des Bambusrohres als auch in axialer Längsrichtung, von der Größe.
  • Es ist daher eine Aufgabe gemäß der Erfindung, ein Verfahren zu schaffen, mit dem Bambusrohre, die auch zwei und mehr Querwände aufweisen, so behandelt werden können, daß eine Rißbildung des Bambusrohres nach dessen Verarbeitung vermieden wird. Diese Aufgabe wird durch die kennzeichnenden Ansprüche 1 und 17 gelöst.
  • Vorteilhafte Ausführungsformen ergeben sich aus den Unteransprüchen.
  • Die beschriebenen Verfahren bedienen sich einer Herabsetzung der auftretenden mechanischen Spannungen.
  • Diese Spannungen sind einerseits durch die geschlossene, runde Querschnittskontur des Bambus bedingt, wodurch selbst bei prozentual gleichmäßigem Schwund des Bambus in der äußeren Schicht Zugspannungen gegenüber der inneren Schicht auftreten müssen. Dies wird noch verstärkt durch die innere Struktur des Bambus, die im äußeren Drittel mehr Stützzellen und im inneren Drittel mehr röhrenartige WasserTransportzellen sowie Speicherzellen aufweist.
  • Eine weitere Schwierigkeit der Beeinflussung der Spannungen im Bambus sind die in unregelmäßigen Abständen vorhandenen inneren Querwände, die sich auch in einem auf der Außenseite des Bambus umlaufenden, verstärkten Wulst äußern.
  • Da weiterhin wachstumsbedingt auch die Dicke der Wandung gegenüber dem Durchmesser des Rohres, die Konizität des Rohres,sowie die innere Struktur des Bambus und dessen Ausgangsfeuchtigkeit in beinahe jedem Einzelfall anders ist, müssen auch die Arten der Beeinflussung individuell variabel sein.
  • Eine Methode der Rißvermeidung besteht darin, durch wenigstens einen Längsschnitt entlang einer Mantellinie des Bambusrohres den geschlossenen Querschnitt zu öffnen und dadurch sozusagen einen künstlichen Riß zu schaffen. Dieser wird sich - trotz des vorher erfolgten Durchbohrens oder gar vollständigen Entfernens der inneren Querwände - dennoch nicht in allen Fällen während des Trocknungsvorganges gleichmäßig verändern, also öffnen, gleichbleiben oder gar verschließen. In der Mehrzahl der Fälle wird jedoch eine Öffnung dieses Längsspaltes zu verzeichnen sein, so daß nach Ende des Trocknungsvorganges in diesen Längsspalt ein Streifen, z.B. ein angepaßter Bambusstreifen oder ein Streifen aus ähnlich aussehendem Material eingesetzt und verklebt bzw. statt dessen oder zusätzlich mechanisch befestigt werden kann durch Klammern, Bambusdübel oder ähnlichem. Bewährt hat sich hier vor allem das Einkleben mit zusätzlichem Einbringen von etwa 3 mm dicken Bambusdübeln in Längsrichtung jeweils abwechselnd schräg durch die beiderseitigen Klebeflächen des Bambusstreifens hindurch.
  • Diese mechanische Behandlung muß jedoch durch spezielle, abgestufte Trocknungsvorgänge unterstützt werden, um ein auch in europäischen Klimaverhältnissen nicht reißendes Bambusprodukt zu erhalten:
  • Vorbehandlung:
  • Eine weitere Möglichkeit, die Rißneigung bei Bambusrohren zu mindern, besteht darin, einerseits die unteren 50 bis 200 cm des gewachsenen Bambusrohres stehen zu lassen und nur den oberen Bereich des Rohres zu ernten, da mit zunehmender Höhe der Ausgangs-Feuchtegehalt des Bambusrohres stark abnimmt.
  • Durch das einige Wochen vor dem Ernten erfolgende, weitestgehende Entfernen der Äste und Zweige des Bambus wird zusätzlich der Wassertransport durch das Bambusrohr verringert und damit der Ausgangs-Feuchtegehalt bei der Ernte.
  • Vortrocknung:
  • Unterstützend wird das geschnittene Rohr nach dem Ernten noch aufrecht stehend gelagert, am besten direkt im Bambushain, und dabei werden die noch vorhandenen Äste belassen, wodurch eine Art Vortrocknung durch Feuchtigkeitsabgabe über die Blätter und Verdunsten über die Schnittflächen stattfindet, unterstützt durch das Absinken der Feuchtigkeit im Bambusrohr durch die Schwerkraft.
  • Aktive Trocknung:
  • Die aktive Trocknung des Bambus wird in mehreren Stufen vollzogen:
  • 1. Stufe:
  • In der ersten Stufe wird der Bambus vorzugsweise im Freien vom Ausgangs-Feuchtigkeitsgehalt (50 bis 100%) bis auf die sogenannte Fasersättigungsgrenze heruntergetrocknet. Diese liegt bei Bambus zwischen 14 und 21 Gew.% Wasser im Gegensatz zu Holz, bei dem dieser Wert 23 bis 35% beträgt. Auch beginnt Bambus bereits in dieser ersten Trocknungsphase zu schrumpfen im Gegensatz zu Holz, welches erst nach Unterschreiten des Fasersättigungswertes zu schrumpfen beginnt. Sofern nichts anderes angegeben, verstehen sich alle Prozentangaben als Gewichtsprozente.
  • Diese erste Phase wird durch aufrecht stehende Lagerung im Halbschatten im Freien für 2 bis 10 Wochen, insbesondere von 3 bis 4 Wochen, durchgeführt. Dabei verringert sich der Feuchtegehalt auf einen Wert von etwa 17% innerhalb einer Bandbreite von 13% bis 25%. Dieser Wert entspricht dem Feuchtegleichgewicht, wie es sich bei ausreichend langer Lagerung aufgrund der Umgebungsluftfeuchtigkeit in den Tropen einstellt.
  • Dabei schrumpft der Bambus im Durchmesser um 4 bis 14%, so daß es vorteilhaft ist, bereits vor dieser ersten Trocknungsphase die Querwände zu entfernen. Dies kann durch Stoßen oder einen im Durchmesser verstellbaren Bohrkopf geschehen.
  • Dies ist notwendig, da in dieser ersten Trocknungsphase vor allem das freie Wasser aus den vermehrt am Innenumfang liegenden Wasserleitungen abgegeben wird und bei entfernten Querwänden besser nach außen austreten kann.
  • Falls es in dieser ersten Stufe zu Rissen kommt, entstehen diese hauptsächlich von innen her, da durch Verdunsten des freien Wassers in den Kappilaren der innenwand-nahen Bereiche des Rohres die stärkste Schrumpfung und Spannungsbildung auftritt. Mit den oben genannten Maßnahmen sind in dieser Trocknungsphase Rißbildungen jedoch weitgehend vermeidbar.
  • Deshalb wird die eingangs beschriebene Einbringung eines Längsspaltes durch Aufschneiden, Aufsägen oder Auffräsen, mit einer Breite von etwa 4 mm, etwa am 4.Tag dieser 1.Trocknungsstufe durchgeführt, und falls zu Beginn der 1.Trocknungsstufe eine chemische Tauchbad-Behandlung durchgeführt wird, 4 Tage nach Entnehmen aus dem Tauchbad.
  • Während dieser 1.Trocknungsstufe muß die Veränderung der Spaltbreite spätestens alle 4 Tage, besser täglich, kontrolliert werden, da sich der Spalt in der Regel verengt. Bevor sich der Spalt durch Schrumpfung des Bambus vor allem im inneren Bereich und damit unter Durchmesserreduzierung schließt, muß er erneut durch mechanische Bearbeitung erweitert werden, um mechanisch auftretende Spannungen bei Anlage der Schnittflächen aneinander zu vermeiden. Sollte der Spalt nach zweimaligem Nachbearbeiten sich immernoch auf 0 mm Breite verkleinern, ist das Bambusrohr für die weitere Verarbeitung nicht mehr geeignet.
  • 2. Stufe (Trocknungskammmer/Klimaraum):
  • In der zweiten Stufe wird, im Idealfall genau ausgehend vom Fasersättigungsgehalt an Feuchtigkeit, auf 8% bis 10% Endfeuchtigkeit herabgetrocknet. In dieser zweiten Trocknungsphase gibt der Bambus vorzugsweise das in den Außenbereichen gebundene Wasser ab, weswegen sich diese äußeren Schichten zusammenziehen wollen, was jedoch aufgrund der sich anders verhaltenden inneren Rohrbereiche nicht möglich ist. Dadurch wird - ähnlich wie bei einem Bimetall - der Rohrdurchmesser aufgebogen, so daß sich der Umfang vergrößert und an einer Stelle des Rohrumfanges ein Längsspalt entsteht bzw. vergrößert.
  • 2.a, Trocknungskammer
  • Während der Kammertrocknung beträgt die Lufttemperatur zwischen 30° und 60° C und die relative Luftfeuchte 75% bis 33%, wobei die Ausgangsfeuchtigkeit des Bambus in dieser zweiten Phase nicht mehr als 24% betragen darf.
  • Weiterhin wird während der Kammertrocknung regelmäßig mit einem Feuchtemeßgerät die Trocknung überprüft, was während der zweiten Trocknungsphase alle 2 Stunden, bei der vorherigen ersten Phase im Freien alle 2 Tage geschieht.
  • Die Trocknung in der Trocknungskammer wird mit kühler Luft und hoher Luftfeuchtigkeit begonnen, wobei im Verlauf des Trocknungsvorganges die Temperatur erhöht und die Luftfeuchtigkeit im Trocknungsofen erniedrigt wird. Vorzugsweise wird in mehreren Kammerphasen getrocknet. Typisch für 3m lange Bambusrohre mit der üblichen 5-jährigen Wuchsdauer, entnommen aus dem mittleren Stammbereich und mit chemischer Vorbehandlung sind folgende Werte:
    • 1. Stufe = 30° Celsius/ 75% relative Luftfeuchtigkeit
    • 2. Stufe = 38° Celsius/ 60% relative Luftfeuchtigkeit
    • 3. Stufe = 49° Celsius/ 45% relative Luftfeuchtigkeit
    • 4. Stufe = 60° Celsius/ 35% relative Luftfeuchtigkeit.
  • Dabei wird vorzugsweise während der 1. Phase die Außenseite, vor allem im Knotenbereich, des Bambusrohres regelmäßig mit Wasser bespritzt, um speziell dort Rißbildung zu verhindern. Die Gesamtzeit der Kammertrocknung (z.B. der oben dargestellten 1.- 4. Phase) beträgt dabei 3-7 Tage, wobei sich die Gesamtzeit sowie die Einzelzeiten der einzelnen Phasen je nach Wandstärke des zu trocknenden Rohres etwa wie folgt unterscheiden:
    Wandstärke 1.Phase(x) 2.Phase(x) 3.Phase(x) 4.Phase(x)
    10 mm 20 22 24 22
    12 mm 20 22 33 27
    14 mm 20 22 43 31
    16 mm 22 26 49 35
    18 mm 22 26 55 42
    20 mm 22 26 62 50
    (x) = Verweildauer in Stunden
  • Während des Verbleibs in der Trocknungskammer wird die Breite des Längsspaltes regelmäßig, vorzugsweise etwa alle 4 Stunden, manuell oder mittels Dehnungsmeßstreifen gemessen bzw. in ihrer Veränderung überwacht, um trotz der vorgegebenen Werte für die einzelnen Phasen keine zu schnelle Trocknung zu bewirken, die unweigerlich zu Rißbildungen führt.
  • Klimaraum:
  • Nach etwa 3- bis 7-tätiger Verweildauer in der Trocknungskammer wird eine Konditionierung an die Klimaverhältnisse des Exportlandes durchgeführt, also eine Akklimatisierung bei etwa 40 bis 50° Luftfeuchtigkeit und 20 bis 25°C Temperatur für europäische Länder.
  • Die Verweildauer in dem Klimaraum beträgt 2 bis 4 Tage, wobei gegenüber der letzten Phase in der Trocknungskammer wiederum eine Durchmesserverringerung des Bambusrohres um 5 bis 12% stattfindet, aufgrund der höheren relativen Luftfeuchtigkeit im Klimaraum gegenüber der letzten Phase in der Trocknungskammer. Dies wird gezielt eingesetzt, da sich herausgestellt hat, daß dieses Untertrocknen in der Trocknungskammer die spätere Rißfestigkeit des verarbeiteten Bambusrohres erhöht, da sie später eine niedrigere Schwellneigung aufweisen. Dies könnte mit dem nachhaltigen Kollabieren einzelner Kappilare zusammenhängen.
  • Während des Aufenthaltes im Klimaraum wird auch das Verschließen, Verdübeln und Verkleben der in den Längsspalt eingesetzten Bambusstreifen vorgenommen. Dabei wird häufig tagsüber an den Bambusrohren zu diesem Zweck gearbeitet, während sie in der Nacht, jeweils für mindestens 15 Stunden, wieder im Klimaraum zur Klimatisierung gelagert werden.
  • Bei einem anschließenden Überschleifen der Außenfläche des Bambusrohres ist die Klebefuge des Bambusstreifens so gut wie unsichtbar, und lediglich die Bambusdübel sind aufgrund ihrer anderen Struktur bei genauem Hinsehen zu erkennen.
  • Da bei konstruktiver Verwendung der Bambusrohre jedoch meist eine Seite des Bambusrohres schlecht sichtbar oder völlig unsichtbar ist, können die Bambusrohre mit dieser Nahtseite im meist unsichtbaren Bereich angeordnet werden, während bei ohne Zusatzbehandlung getrockneten Bambusrohren die Rißbildung an jeder beliebigen Stelle und daher auch meist auch im sichtbaren Bereich auftreten kann.
  • Um das Einsetzen des verschließenden Bambusstreifens zu erleichtern, werden meist Bambusstreifen einer vorgefertigten Breite und Ausrichtung der Klebeflächen benützt, an die der Spalt des Bambusrohres vorher durch entsprechenden Fräsvorgang angepaßt wird, wodurch er die richtige Breite und Schräge seiner Klebeflächen erhält.
  • Vorzugsweise sind die Klebeflächen sowohl des Bambusstreifens als auch des Längsspaltes konisch schräg von innen nach außen aufeinander zulaufend, so daß der Längsspalt innen breiter als außen ist und zusätzlich nach Einsetzen des Bambusstreifens die Klebefuge innen breiter als außen ist.
  • Ebenso ist jedoch auch das Ausfräsen des Längsspaltes auf eine besdtimmte Breite und zu zwei parallelen Seitenflächen möglich, und das Benutzen ebensolcher, vorgefertigter Bambusstreifen.
  • Diese Arbeitsweise ist zeitsparender, als bei jedem Bambusrohr individuell die Form und Abmessung des durch die Trocknung gebildeten, erweiterten Längsspaltes zu ermitteln und auf einen Bambusstreifen exakt zu übertragen.
  • Um das Einsetzen des Bambusstreifens weiter zu erleichtern, kann vorteilhafterweise die Klebefläche des Bambusstreifens als auch des Bambusrohres jeweils ineinandergreifend abgewinkelt ausgebildet werden, also beim Bambusrohr konkav und beim Bambusstreifen konvex oder umgekehrt, so daß allein durch das Ineinandergreifen dieser Profile der Klebeflächen ein formschlüssiger Halt entsteht, der den Bambusstreifen bis zum Abbinden des Klebers vorfixiert.
  • Da der Bambusstreifen in der Regel seine äußeren, durch den Querwandansatz bedingten Wulste in anderen Abständen aufweisen wird als das Bambusrohr, wird bei mehreren Querwand-Wulsten des Bambusrohres nicht ein einziger, durchgehender Bambusstreifen verwendet, sondern in Längsrichtung Teile, die jeweils nur einen Querwand-Wulst enthalten, der auf gleicher Höhe mit dem Querwand-Wulst des Bambusrohres gesetzt wird, so daß das anschließende Teil des Bambusstreifens hierzu passend abgelängt wird.
  • Anstatt den eingesetzten Streifen auf beiden Seiten mit den angrenzenden Wänden des Bambusrohres zu verbinden, kann dies auch nur auf einer Seite geschehen, um eine kleine, fast unsichtbare Fuge zurückzulassen, so daß das Bambusrohr ohne Auftreten von Spannungen auch später noch etwas arbeiten kann. Dabei müssen die Rohre später konstruktiv so eingesetzt sein, daß die belassene Fuge an einer unsichtbaren Stelle sitzt.
  • Ebenso können sowohl die ganze Fuge oder auch nur die Restfuge zwischen eingesetztem Streifen und dem ursprünglichen Bambusrohr mit einer elastischen Füllmasse wie Polyurethan oder Silikon verfüllt werden, wobei der Füllstoff oder zumindest dessen Oberfläche farblich angepaßt sein sollten.
  • Ebenso ist auch das Ausschäumen des Rohrinneren mit einem leichten Füllstoff wie etwa einem geschlossen-zelligen Schaumstoff möglich, wodurch das spezifische Gewicht nur geringfügig erhöht wird, aber aufgrund der ganzflächigen Haftung zwischen der Schaumfüllung und der Rohrinnenseite ein Zusammenziehen und auch Dehnen des Rohres im verarbeiteten Zustand stark erschwert wird. Zum Ausschäumen werden vorzugsweise die ersten und letzten Querwände, die nicht durch vollständiges Zerstören sondern Heraussägen entfernt wurden, wieder fest eingesetzt und dienen als Begrenzungswände für die Füllung des Schaumstoffes.
  • Eine andere Möglichkeit besteht darin, das Bambusrohr vor dem Trocknen nicht nur an einer Mantellinie aufzuschneiden, sondern an mehreren Mantellinien, also eine Aufteilung in zwei oder mehr Segmente des Querschnittes vorzunehmen. Bei Aufteilung in zwei Segmente biegen sich die dadurch entstehenden Halbschalen in der Regel zu Formen auf, die etwa einer halben Ellipse entsprechen.
  • Diese Halbellipsen können entweder wiederum durch zwischengesetzte Bambusstreifen miteinander verklebt und dadurch in etwa zu einem Kreisprofil im Querschnitt ergänzt werden, wobei vorzugsweise nur ein Bambusstreifen zwischengesetzt wird, während an der gegenüberliegenden Fuge die beiden Halbschalen des Bambusrohres direkt aneinander verklebt werden.
  • Eine andere Möglichkeit besteht darin, bei nur begrenztem Aufbiegen der Halbschalen diese Halbschalen direkt miteinander zu verkleben, wobei vorher die Klebeflächen durch Fräsen oder Schleifen eine möglichst genau radiale Ausrichtung zur Mitte des Halbschalen-Profiles erhalten sollten. Dadurch ergibt sich eine gleichmäßig schmale, fast unsichtbare Klebefuge über die gesamte Tiefe der Rohrwandungs-Dicke, wobei das entstehende Rohr eine ovale Außenkontur besitzt. Durch Überschleifen, Schälen oder Hobeln des verklebten Rohrumfanges an diesen Bereichen mit dem größten Durchmesser, also im Bereich der Klebefugen, ist es teilweise möglich, einen annähernd runden Rohraußendurchmesser zu erreichen, ohne die Rohrwandungsdicke in diesem Bereich so weit zu verringern, daß die gewünschte Mindeststabilität des Rohres nicht unterschritten wird.
  • Zusätzlich kann der Schwund des Bambusrohres beim Trocknen durch weitere Maßnahmen beeinflußt und minimiert werden.
  • Dabei kann beispielsweise vor dem Trocknen und damit meist bereits vor dem Aufschneiden die Außenhaut des Bambusrohres abgeschält werden, da speziell deren Schwundverhalten sehr unterschiedlich zu den restlichen Bestandteilen des Bambusrohres ist, und nach deren Entfernen die Unterschiede des Schwundverhaltens im Inneren des Bambus-Querschnittes sehr viel geringer sind.
  • Weiterhin wird aus meist optischen Gründen das Bambusrohr nach dem Ergänzen und Verkleben außen geschliffen, um die unterschiedliche Oberflächenstruktur und Oberflächenfarbe zwischen Bambusstreifen und Bambusrohr zu egalisieren.
  • Weiterhin ist eine chemische Vorbehandlung des Bambusrohres, und dabei vorzugsweise vor dem Trocknungsvorgang, empfehlenswert, wobei hier verschiedene Zielrichtungen zu unterscheiden sind:
    Einerseits kann versucht werden, das im Rohzustand des Bambus in den Zellen vorhandene Wasser teilweise oder ganz durch schwerflüchtige Chemikalien zu ersetzen, so daß beim anschließenden Trocknungsvorgang ein Großteil dieser Chemikalien in den Zellen des Bambusrohres verbleibt und damit der mechanische Schwund sehr viel geringer wird.
  • Hierfür kommen Polyethylenglykol mit Molekulargewichten von 600, 1000 oder 1.500 sowie Harnstoff oder Sorbitol in Betracht, die jeweils in wässriger Lösung eingesetzt werden.
  • Eine andere Möglichkeit besteht darin, das Wasser im Inneren der Wasser-Zellen durch Chemikalien zu ersetzen, die selbst stark hygroskopisch sind, und damit das im Bambus natürlich vorhandene oder durch die Luftfeuchtigkeit eingebrachte Wasser zu halten anstatt es bei der Trocknung verdunsten zu lassen. Hierfür kommen Borax, Soda, Borsäure sowie deren Mischungen jeweils als wässrige Lösung in Betacht.
  • Unabhängig davon, ob der Bambus mit derartigen schwer verdunstenten Chemikalien oder hygroskopischen Chemikalien getränkt wird, was meist in Tauchbädern und nach Entfernen der Querwände und nach dem Aufschneiden geschieht, sollte der Bambus jedenfalls gegen Insektenbefall mit einer 1 bis 2%igen Lösung von Borsäure in Wasser vorbehandelt werden, wobei vorzugsweise diese Lösung durch weitere Zugabe von Soda auf einen PH-Wert von etwa 8 gebracht wird, wodurch zusätzlich das Risiko des Schimmelbefalls verringert wird. Diese Stoffe können im Falle des Einsatzes schwer flüchtiger bzw. hygroskopischer Chemikalien diesen bereits zugemischt werden, so daß nur ein einziges Tauchbad notwendig wird, welchem der Bambus meist über mehrere, beispielsweise fünf, Tage verbleibt, und dabei vorzugsweise bei einer Badtemperatur von etwa 45° C und Umgebungsdruck, da dies bei geringstem Aufwand dennoch ein ausreichendes Ergebnis erbringt. Die Erhöhung des Druckes im Tauchbad reduziert die Verweilzeit.
  • Eine weitere Möglichkeit, den ungleichmäßigen Schwund des Bambusrohres zu verringern oder gar zu vermeiden, stellt die Beeinflussung des Trocknungsvorganges selbst dar. Dies verringert die Spaltbildung bei den oben beschriebenen, aufgeschnittenen Bambusrohren, und kann im Extremfall so exakt funktionieren, daß überhaupt kein Aufschneiden des Bambusrohres entlang der Mantelfläche mehr notwendig ist.
  • Notwendig ist dagegen immer das Durchbohren oder besser vollständige Entfernen der inneren Querwände des Bambus.
  • Der Trocknungsvorgang sollte vorzugsweise bereits dadurch beeinflußt werden, daß nur wenigstens fünf Jahre alte Bambusrohre, die auf relativ kargen Böden gewachsen sind und möglichst in der Trockenzeit geerntet wurden, Verwendung finden. Bei diesen Bambusrohren ist bereits der Zellwandanteil gegenüber dem gespeicherten Wasseranteil höher und damit der Schwundunterschied zwischen den innen liegenden Zellen mit großen inneren Freiräumen und den außen liegenden Zellstrukturen mit geringen Einlagerungsmöglichkeiten weniger groß.
  • Wird dennoch das Aufschneiden der Bambusrohre eingesetzt, so empfiehlt es sich, vor dem Aufschneiden die Bambusrohre durch langsame Lufttrocknung, ohne direkte Sonnen-Einstrahlung, von den ursprünglich etwa 50 bis 100% Feuchtegehalt auf etwa 17% Feuchtegehalt, den Fasersättigungsgrad, herunterzutrocknen, da hierdurch nicht nur der Schnittvorgang selbst leichter zu bewerkstelligen ist, sondern vor allem bereits ein Teil des Schwundes innerhalb des Bambusrohres stattgefunden hat und durch den später, beim Weitertrocknen auf die beabsichtigten 8 bis 10 % Restfeuchte, zwar eine Erweiterung des erzeugten Spaltes auftreten wird, aber mit einer relativ gleichmäßigen Form entlang der Länge des Spaltes, so daß eine starke Deformierung des Spaltes, die für das anschließende saubere Verschließen nachteilig ist, vermieden wird.
    Weiterhin ist die gezielt unterschiedliche Trocknung des Bambusrohres in dessen Innerem gegenüber der Außenfläche vorteilhaft. Nach dem Durchbohren und Entfernen der Querwände kann bei geschlossenem Rohrquerschnitt der Innenraum durch hindurchgeleitete trockene Warmluft gezielt stärker getrocknet werden als die Außenfläche, wodurch die ansonsten vorhandene unterschiedliche Schwundgeschwindigkeit zwischen Innenbereichen und Außenbereichen verringert oder gar ganz kompensiert werden kann.
  • Da diese Unterschiede bei jedem Rohr individuell anders sind, kann eine exakte Steuerung dieser Innentrocknung optimal nur mit zusätzlicher Sensorik betrieben werden, indem beispielsweise auf der Innenwandung des Rohres sowie auf der Außenwandung jeweils Sensoren zur permanenten Spannungsmessung und/oder Feuchtemessung während des Trocknungsvorganges vorhanden sind und dadurch gezielt den Temperatur- sowie Feuchtigkeitsunterschied der Luft außerhalb des Bambusrohres gegenüber der Luft innerhalb des Bambusrohres, sowie eventuell dessen Strömungs-Geschwindigkeit in Abhängigkeit der Meßergebnisse steuern.
  • Möglich wäre dabei auch der kombinierte Einsatz dieser Innentrocknung mit dem Aufschneiden des Bambusrohres entlang einer Mantelfläche, indem dieser Spalt für den Innentrocknungs-Vorgang durch einen außen oder innen am Spalt anliegenden Gummiwulst etc. verschlossen wird, und die für die Innentrocknung maßgeblichen, oben genannten Faktoren nicht aufgrund von Spannungsmessung im Bambusrohr gesteuert werden, sondern aufgrund der meßbaren Veränderung der Spaltbreite.
  • Dadurch kann im optimalen Fall der Trocknungsvorgang so durchlaufen werden, daß sich am Ende des Trocknungsvorganges der Spalt vollständig oder zumindest soweit geschlossen hat, daß das Einsetzen eines Bambusstreifens nicht mehr notwendig ist, sondern das Verkleben des Spaltes bereits ausreicht. Dasdurch wird der Arbeitsaufwand deutlich verringert.
  • Grundsätzlich kann dabei anstelle des Aufschneidens des Bambusrohres auch eine andere Art der mechanischen Spannungsentlastung eingesetzt werden, beispielsweise das Einbringen einer Vielzahl von Bohrungen entlang einer Mantellinie des Bambusrohres, die nach Beenden des Trocknungsvorganges durch entsprechende Stöpsel aus Bambusholz wieder verschlossen werden.
  • Da bei dem Herstellen und Einsetzen solcher Stöpsel die Problematik der Außenwandkrümmung sowie der auftretenden Querwand-Außenwülste nicht auftritt, kann dieser Verschlußvorgang schneller vollzogen werden als das Einsetzen eines vielteiligen Bambusstreifens.
    eine Ausführungsform gemäß der Erfindung ist anhand der Figuren beispielhaft näher erläutert. Es zeigen:
  • Fig. 1
    einen aufgeschnittenen Bambusquerschnitt vor der Trocknung,
    Fig. 2
    einen Bambusquerschnitt nach der Trocknung,
    Fig. 3
    eine Detaildarstellung des entstandenen Spaltes mit eingesetztem Bambusstreifen,
    Fig. 4
    eine Längsdarstellung eines fertig bearbeiteten Bambusrohres und
    Fig. 5
    eine Längsdarstellung eines mit Bohrungen bearbeiteten Bambusrohres.
  • Fig. 1 zeigt ein Bambusrohr 1 im Querschnitt, bei dem die Querwand 5 weitestgehend entfernt ist und das Bambusrohr 1 entlang einer Mantellinie aufgeschnitten wurde, wodurch ein Längsspalt 2 entstand.
  • Dabei sind aufgrund des Schneidevorganges, der mit einer Kreissäge oder ähnlichem vollzogen wurde, die Seitenwände des Längsspaltes 2 parallel zueinander und im wesentlichen radial verlaufend.
  • Fig. 2 zeigt das Bambusrohr gemäß Fig. 1 nach dem Trocknungsvorgang, wodurch sich das Bambusrohr 1 längs seines Umfanges etwas zusammengezogen hat und dadurch der Längsspalt 2 deutlich breiter wurde. Dabei kann u.U. der Außendurchmesser des Bambusrohres 1 gegenüber dem Zustand vor der Trocknung sogar etwas größer werden.
  • Die Seitenwände 14 des Längsspaltes 2 stehen dabei nach wie vor im wesentlichen radial zur Längsachse 15 des Bambusrohres.
  • Wie der gleichmäßig kreisförmige Außenumfang der Rohre, zumindest vor der Trocknung gemäß Fig. 1 zeigt, wurde die Außenhaut 13 des Bambusrohres geschält um einerseits ein gleichmäßigeres Aussehen zu erzielen und andererseits den sonst vorhandenen starken Schrumpfungsunterschied zwischen natürlicher Außenhaut 13 und Innenhaut 12 des Bambusrohres zu verringern.
  • Fig. 3 zeigt in einer Detaildarstellung den in den vergrößerten Längsspalt 2 eingesetzten Bambusstreifen 3.
  • Dabei ist zu erkennen, daß der Längsspalt 2 nicht nur verbreitert wurde, sondern auch die Ausrichtung dessen Seitenwände 14 durch das Fräsen, durch welches in der Regel die Verbreiterung vorgenommen wird, auch in ihrer Winkelstellung anders gewählt sind. Die Seitenwand 14 des Bambusrohres 1 ist - wie in der linken Bildhäfte der Fig. 3 zu erkennen - nicht mehr radial verlaufend, sondern von innen nach außen den Längsspalt 2 verjüngend schräg angeordnet. Die gegenüberliegende Klebefläche 4 des Bambusrohres 1 ist ebenfalls noch in dieser Richtung schräg angeordnet, jedoch mit einer geringeren Neigung, so daß eine Klebefuge 6 entsteht, die innen breiter als außen ist und dadurch außen praktisch unsichtbar wird.
  • In der rechten Bildhälfte der Fig. 3 ist die Klebefläche 4 des Bambusstreifens 3 und auch die Klebefläche 4' des Bambusrohres 1 jeweils aneinander angepaßt winklig ausgebildet, wobei die Klebefläche 4' des Bambusrohres 1 konkav geformt ist und eine im Querschnitt winklige Einbuchtung in der Seitenwand 14 des Bambusrohres 1 darstellt. In diese gewinkelte Nut greift eine entsprechend konvexe Gegenkontur des Bambusstreifens 3 ein und wird dort formschlüssig durch die Spannung des Bambusrohres 1 gehalten, bis der Kleber abbindet.
  • In Fig. 3 sind ferner auf beiden Seiten Dübel 16 zu erkennen, die - in Längsrichtung des Bambusstreifens 3 versetzt - abwechselnd eingebracht sind. Die Dübel 16 verlaufen dabei von der Oberfläche des Bambusrohres in einem Abstand von etwa 5 bis 15 mm neben den Seitenwänden 14 schräg nach innen quer über die Klebefuge 6 hinweg und erreichen die Innenseite des Bambusstreifens 3 etwa in dessen Mitte.
  • Die Dübel bestehen selbst aus Bambusholz und haben einen Durchmesser von etwa 3 bis 5 mm.
  • In den Fig. 4 und 5 ist eine perspektivische Ansicht jeweils eines ganzen Bambusrohres mit mehreren Querwandansätzen 8 dargestellt.
  • Fig. 4 zeigt ein fertiges Bambusrohr 1 mit einem aus mehreren Teilen 7 bestehenden, in den Längsspalt 2 eingesetzten Bambusstreifen 3, wobei die Klebefugen zwar in der zeichnerischen Darstellung sichtbar sind, jedoch in der Praxis nach Verschleifen der Oberfläche so gut wie unsichtbar sind.
  • Fig. 5 zeigt die beschriebene Lösung, ein Bambusrohr 1 entlang einer seiner Mantellinien mit einer Vielzahl von Bohrungen 9 auszustatten, die ebenfalls Spannungen bei der Trocknung kompensieren können und nach Abschluß der Trocknung durch entsprechende aus Bambus bestehende Stöpsel 10 verschlossen werden, bei denen natürlich auf gleiche Faserrichtung wie beim umgebenden Bambusmaterial geachtet wird. Der Zwischenraum zwischen den Bohrungen sollte dabei etwan doppelt so groß sein wie der Durchmesser der Bohrungen.
  • Was die Anordnung und Gestaltung der Seitenwände der Bohrungen 9 betrifft, gilt das für den Bambusstreifen 3 Gesagte analog, wobei jedoch auf eine zusätzliche mechanische Fixierung mit Dübeln, Klammern, Nägeln oder Schrauben verzichtet werden kann.

Claims (16)

  1. Verfahren zur Rißverhinderung bei zu trocknenden Bambusrohren
    dadurch gekennzeichnet, daß
    - das Bambusrohr (1) in Längsrichtung über die gesamte Länge in Längsrichtung aufgeschnitten wird,
    - das Bambusrohr (1) auf die gewünschte Restfeuchte heruntergetrocknet wird und
    - nach dem Trocknen der entstandene Längsspalt (2) durch Verkleben über die gesamte Länge mittels Einsetzen eines passenden, mehrteiligen Materialstreifens (3) verschlossen wird.
  2. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    der Materialstreifen eingepaßt, jedoch nur einseitig an einer Schnittfläche des Bambusrrohres (3) befestigt wird.
  3. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    der Längsspalt (2) nach dem Trocknen und vor dem Einsetzen des Bambusstreifens (3) zur Dimensionierung und Formgebung ausgefräst wird.
  4. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    der Bambusstreifen (3) zusätzlich zur Verklebung mechanisch mit dem Bambusrohr (1) mittels Klammern, Schrauben, oder Dübeln quer zur Klebefläche (4) verbunden wird.
  5. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die Querwände (5) vor dem Trocknen weitestgehend entfernt werden.
  6. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die Klebeflächen des Bambusstreifens (3) und des Bambusrohres (1) so abgeschrägt sind, daß jeweils leicht keilförmige, nach innen geöffnete Klebefugen (6) entstehen.
  7. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    das Bambusrohr (1) vor dem Trocknen chemisch vorbehandelt wird.
  8. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    der Bambusstreifen (3) in Längsrichtung aus mehreren Teilen (7) besteht und jedes Teil (7) des Bambusstreifens (3) höchstens einen Querwand-Ansatz (8) aufweist.
  9. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    das Bambusrohr ein Wachstumsalter von wenigstens vier Jahren hat.
  10. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    das Bambusrohr (1) nach dem Öffnen der Querwände (5) und vor dem Aufschneiden mit einer 1 bis 2%igen wässrigen Lösung von Borsäure, die durch weitere Zugabe von Soda auf einen PH-Wert von 8 gebracht wird, vorbehandelt wird.
  11. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die Bambusrohre (1) mit einer Längsnut auf der Rohrinnenseite als Sollbruchstelle ausgestattet werden.
  12. Verfahren nach Anspruch 11,
    dadurch gekennzeichnet, daß
    die Längsnut auf der Rohrinnenseite angebracht wird.
  13. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    die Bambusrohre im Inneren mit einem sich verfestigenden Schaum mit möglichst geringem Gewicht gefüllt werden.
  14. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    - in einer ersten Trocknungsstufe die Bambusrohre senkrecht stehend im Freien mehrere Wochen bis zur Fasersättigungsgrenze heruntergetrocknet werden,
    - in einer zweiten Trocknungsstufe die Bambusrohre
    - zunächst in einer Trocknungskammer über mehrere Tage bei bis auf 60° Celsius zunehmender Temperatur und bis auf 35% relative Luftfeuchtigkeit abnehmender Luftfeuchtigkeit unter den Feuchtigkeitswert heruntergetrocknet werden, der am späteren Aufstellungsort sich als Gleichgewicht im Bambusrohr einstellen würde,
    - anschließend mehrere Tage eine Klimatisierung bei der Temperatur und der Luftfeuchtigkeit des Aufstellungsortes durchgeführt wird.
  15. Verfahren nach Anspruch 14,
    dadurch gekennzeichnet, daß
    die Fertigbearbeitung der Bambusrohre durch Verschließen der Längsschlitze und Verarbeitung der Bambusrohre zum Endprodukt während der Klimatisierungsphase geschieht und in der Klimatisierungsphase die Bambusrohre wenigstens 12 Stunden pro Tag klimatisiert werden.
  16. Verfahren nach einem der vorhergehenden Ansprüche,
    dadurch gekennzeichnet, daß
    während der Trocknung im Trocknungsofen der Längsschlitz hinsichtlich seiner Breitenveränderung überwacht wird, und bei Verengung gegen Null ein mechanisches Verbreitern durch Schneiden, Sägen oder Fräsen erfolgt, und bei zweimaliger, nachträglicher Erweiterung um jeweils 4 mm das Bambusrohr aus dem Verarbeitungsprozess ausgeschieden wird.
EP94100231A 1993-01-12 1994-01-10 Verfahren zur Verhinderung des Reissens von Bambusrohren (mechanisch) Expired - Lifetime EP0607829B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4300557 1993-01-12
DE4300557A DE4300557C2 (de) 1993-01-12 1993-01-12 Verfahren zur Herstellung rißfreier, getrockneter Bambusrohre

Publications (2)

Publication Number Publication Date
EP0607829A1 true EP0607829A1 (de) 1994-07-27
EP0607829B1 EP0607829B1 (de) 1996-12-11

Family

ID=6478015

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94100231A Expired - Lifetime EP0607829B1 (de) 1993-01-12 1994-01-10 Verfahren zur Verhinderung des Reissens von Bambusrohren (mechanisch)

Country Status (10)

Country Link
US (1) US5433805A (de)
EP (1) EP0607829B1 (de)
JP (1) JP2634023B2 (de)
CN (1) CN1056553C (de)
AU (1) AU665476B2 (de)
CA (1) CA2112963C (de)
DE (2) DE4300557C2 (de)
ES (1) ES2097554T3 (de)
MY (1) MY110386A (de)
PH (1) PH30171A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19906851B4 (de) * 1999-01-20 2005-01-20 Chen, Feng-Yuan, Hsin-Tien Verfahren zur Herstellung von Holzlamellen für Jalousien

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3595609B2 (ja) * 1995-07-10 2004-12-02 株式会社エーアンドエーマテリアル 補強用竹繊維及びその製造方法並びに該補強用竹繊維を使用した無機質成形体及びその製造方法
JP2738520B2 (ja) * 1995-07-10 1998-04-08 株式会社三葉 竹集成床材とそれを用いた床構造
US6391435B1 (en) 1996-07-10 2002-05-21 A & A Material Corporation Reinforcing bamboo fiber, manufacturing method thereof, inorganic molded body using reinforcing bamboo fiber, and manufacturing method thereof
DE59807570D1 (de) * 1998-12-08 2003-04-24 Alexander Schmidmeier Lösbare Bambusrohrverbindung
US6957479B2 (en) * 2000-10-23 2005-10-25 Londono Jorge Bernardo Method for preparing a terminal assembly for bamboo
US6546980B2 (en) * 2001-06-26 2003-04-15 Feng-Yuan Chen Method of fabricating bamboo slats for bamboo blinds
DE102004033833B4 (de) * 2004-07-13 2006-06-29 Alexander Schmidmeier Bambusrohrabschnitt mit künstlichem Knoten sowie Verfahren zu seiner Herstellung
CN100371150C (zh) * 2005-06-13 2008-02-27 浙江林学院 竹材整圆整直方法
US7785681B2 (en) * 2005-06-24 2010-08-31 Dick Liao Elongate laminated wooden handles and method of manufacturing same
DE102006040755B4 (de) 2006-08-31 2010-09-02 Alexander Schmidmeier Verfahren zur Spannungsbeseitigung bei getrockneten Bambusrohren und umfänglich geschlossenes Bambusrohr
US20080313958A1 (en) * 2007-06-25 2008-12-25 Pachanoor Devanand S Method for drying cane
CN101927516B (zh) * 2010-03-26 2013-11-27 国家林业局北京林业机械研究所 一种整竹防裂加工方法
FR2967088B1 (fr) * 2010-11-04 2013-06-21 Lineazen Procede de fabrication de systemes constructifs integres multifonction et systemes constructifs associes a partir de bandes de bambou, procede de fabrication de bandes de bambou.
CN103659978A (zh) * 2012-09-07 2014-03-26 安吉洁家竹木制品有限公司 一种防止竹材开裂、虫蛀的处理方法
RU2566058C1 (ru) * 2014-07-28 2015-10-20 Александр Витольдович Малицкий Способ обработки бамбука и изделие из бамбука, полученное этим способом
CN107398974B (zh) * 2016-12-21 2019-06-04 东阳市荣轩工艺品有限公司 一种木材处理方法及加工方法
CN107160506B (zh) * 2017-06-23 2022-12-09 南京林业大学 一种整竹无裂纹展开装置
CN115042282B (zh) * 2022-07-01 2023-01-31 江西庄驰家居科技有限公司 一种竹子内外节去除一体机及硬化刀头

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193148A (ja) * 1982-05-07 1983-11-10 伊藤 昌昇 竹材、グリセリン、又はエチレン、グルコ−ル、金属、又は合成樹脂、又は其の他材料から成る複合材料

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1552954A (en) * 1922-09-30 1925-09-08 Byrd C Rockwell Method of inlaying wood
US1688569A (en) * 1927-06-06 1928-10-23 Wensel Theodor Built-up shaft or rod and the like and method of producing same
CA991973A (en) * 1973-03-27 1976-06-29 Sumitomo Bakelite Company Method for bonding wet woods
US4184404A (en) * 1976-12-29 1980-01-22 Michiaki Tomioka Neck for a stringed instrument
DE3131820A1 (de) * 1981-08-12 1983-02-24 Resopal-Werk H. Römmler GmbH, 6800 Mannheim Verfahren zur herstellung einer verbundplatte
US4443990A (en) * 1982-03-11 1984-04-24 Johnson Wilfred B Method of producing crack free logs
JPS617923A (ja) * 1984-06-22 1986-01-14 Fujitsu Ltd 端末システムにおけるプリント方式
DE3705826C1 (en) * 1987-02-24 1988-05-26 Ludwig Reim Fishing rod comprising bamboo-cane splinters
US4938820A (en) * 1987-06-11 1990-07-03 Raychem Corporation Joining of sheets
CN1034885A (zh) * 1988-01-30 1989-08-23 抚顺市林业科学研究所 落叶松成材纯碱、尿素液水热处理改性工艺及装置
JP2717713B2 (ja) * 1989-10-16 1998-02-25 宮城県 木材等の改質処理法
JPH03221405A (ja) * 1990-01-29 1991-09-30 Natl House Ind Co Ltd 木材の補修方法
JPH03239501A (ja) * 1990-02-15 1991-10-25 Yoshihisa Koyama 多角形中空シャフト並びにその製造方法並びに複層シャフト部材の製造方法並びに多角形シャフト並びにシャフトの握部並びに円形シャフト並びに中空シャフト用節部材及びシャフトの継手
DE4026348A1 (de) * 1990-03-17 1991-09-19 Linck Masch Gatterlinck Verfahren zum herstellen von mehrschicht-laminaterzeugnissen aus holz und anlage zur durchfuehrung des verfahrens
JP2516467B2 (ja) * 1990-10-12 1996-07-24 石井 拓司 木材乾燥装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58193148A (ja) * 1982-05-07 1983-11-10 伊藤 昌昇 竹材、グリセリン、又はエチレン、グルコ−ル、金属、又は合成樹脂、又は其の他材料から成る複合材料

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DATABASE WPI Week 8351, Derwent World Patents Index; AN 83-847238 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19906851B4 (de) * 1999-01-20 2005-01-20 Chen, Feng-Yuan, Hsin-Tien Verfahren zur Herstellung von Holzlamellen für Jalousien

Also Published As

Publication number Publication date
ES2097554T3 (es) 1997-04-01
AU5315394A (en) 1994-07-21
DE4300557A1 (de) 1994-07-14
MY110386A (en) 1998-04-30
DE59401215D1 (de) 1997-01-23
DE4300557C2 (de) 1995-11-30
US5433805A (en) 1995-07-18
JPH0740309A (ja) 1995-02-10
EP0607829B1 (de) 1996-12-11
CN1097673A (zh) 1995-01-25
CA2112963A1 (en) 1994-07-13
AU665476B2 (en) 1996-01-04
CA2112963C (en) 1998-06-09
CN1056553C (zh) 2000-09-20
PH30171A (en) 1997-01-21
JP2634023B2 (ja) 1997-07-23

Similar Documents

Publication Publication Date Title
EP0607829B1 (de) Verfahren zur Verhinderung des Reissens von Bambusrohren (mechanisch)
EP0875654A1 (de) Verfahren zur Herstellung von abgebogenen Hohlprofil-Leisten
EP1452659A2 (de) Gegenstände, insbesondere Möbel aus schichtverleimtem Bambus
DE2009933A1 (en) Extruded hollow plastic profiles with reinforcing inner struts
DE4300555C2 (de) Verfahren zur Herstellung von getrockneten, rißfreien Bambusrohren mit geschlossenem Querschnitt
EP0549526A1 (de) Federlamelle aus Massivholz
EP1894691B1 (de) Risskaschierung bei Bambusrohren
DE1554345B2 (de) Verfahren zur herstellung von querstossverbindungen zwischen zwei aus dem vollen stamm von rohrgewaechsen bestehenden bauteilen fuer moebel od. dgl
DE2941012C2 (de) Profilleiste zur Herstellung von Fensterrahmen
WO2013037355A1 (de) Kantel sowie bauelement, fenster und/oder tür sowie herstellungsverfahren für eine kantel
DE3229826A1 (de) Behandlungsverfahren fuer frisch gefaelltes naturholz zur qualitaetsverbesserung bzw. beschleunigten alterung und verwendung desselben
DE19540766C1 (de) Nut- und Federbrett
DE3006303C2 (de) Wand- oder Deckenbauelement, Verfahren zu seiner Herstellung und daraus hergestelltes Bauteil
DE10025679A1 (de) Verbissschutz
EP1616682B1 (de) Bambusrohrabschnitt mit künstlichem Knoten sowie Verfahren zu seiner Herstellung
DE2263029A1 (de) Verfahren zum trocknen und veredeln von nutzholz
DE3705826C1 (en) Fishing rod comprising bamboo-cane splinters
DE609674C (de) Verfahren und Vorrichtung zum Herstellen von Rahmen fuer Tennisschlaeger aus Furnieren durch Biegen und Pressen um eine Form
DE817188C (de) Holzstab, insbesondere fuer Selbstroller und Rollos
DE102011085264A1 (de) Gerüstbauteil, insbesondere für ein Gerüst, und Verfahren zur Herstellung eines solchen Gerüstbauteils
DE102022116559A1 (de) Schutzelement
DE4405735A1 (de) Aus einzelnen Holzstämmen errichtete Wand eines Baumstammhauses sowie Verfahren zur Herstellung eines für den Bau der Wand verwendbaren Holzstammes
DE202021101044U1 (de) Schutzelement
DE3326804A1 (de) Hohlblockstein
DE2510054A1 (de) Doppelrahmen-sortiment und verfahren zur herstellung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19950126

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19960313

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE ES FR GB IT LI NL

REF Corresponds to:

Ref document number: 59401215

Country of ref document: DE

Date of ref document: 19970123

ITF It: translation for a ep patent filed

Owner name: KARAGHIOSOFF GIORGIO

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970125

ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: NOVAPAT INTERNATIONAL S.A.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2097554

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20030120

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030127

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20030128

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20031217

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040120

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20040129

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040131

BERE Be: lapsed

Owner name: *SCHMIDMEIER ALEXANDER

Effective date: 20040131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040801

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20040801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20050110

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20050110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20060131

Year of fee payment: 13

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20050111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070801