EP0599283B1 - Hochloch-Leichtziegel - Google Patents

Hochloch-Leichtziegel Download PDF

Info

Publication number
EP0599283B1
EP0599283B1 EP93118896A EP93118896A EP0599283B1 EP 0599283 B1 EP0599283 B1 EP 0599283B1 EP 93118896 A EP93118896 A EP 93118896A EP 93118896 A EP93118896 A EP 93118896A EP 0599283 B1 EP0599283 B1 EP 0599283B1
Authority
EP
European Patent Office
Prior art keywords
holes
hole
brick
webs
another
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP93118896A
Other languages
English (en)
French (fr)
Other versions
EP0599283A3 (en
EP0599283A2 (de
Inventor
Raimund Rimmele
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE19924239616 external-priority patent/DE4239616A1/de
Priority claimed from DE19934305747 external-priority patent/DE4305747C2/de
Application filed by Individual filed Critical Individual
Publication of EP0599283A2 publication Critical patent/EP0599283A2/de
Publication of EP0599283A3 publication Critical patent/EP0599283A3/de
Application granted granted Critical
Publication of EP0599283B1 publication Critical patent/EP0599283B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2/14Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element
    • E04B2/16Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element using elements having specially-designed means for stabilising the position
    • E04B2/18Walls having cavities in, but not between, the elements, i.e. each cavity being enclosed by at least four sides forming part of one single element using elements having specially-designed means for stabilising the position by interlocking of projections or inserts with indentations, e.g. of tongues, grooves, dovetails
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0208Non-undercut connections, e.g. tongue and groove connections of trapezoidal shape
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/02Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls built-up from layers of building elements
    • E04B2002/0202Details of connections
    • E04B2002/0204Non-undercut connections, e.g. tongue and groove connections
    • E04B2002/0213Non-undercut connections, e.g. tongue and groove connections of round shape

Definitions

  • the invention relates to a perforated light brick according to the Preamble of claims 1 and 3.
  • Such bricks become Execution of brick masonry mainly in residential construction used, conventionally bricked or as a facing brick walled up with thin-bed mortar.
  • the holes form above and below open continuous vertical channels.
  • the invention has for its object a lightweight brick to propose one with sufficient static strength significantly better thermal insulation behavior than known ones
  • Light brick has, in particular, a coefficient of thermal conductivity ⁇ ⁇ 0.15 [W / m ⁇ K] and at the same time has a good airborne sound absorption capacity (Sound rigidity) with no tendency to Sound line has.
  • Hole cross sections are in the form of regular hexagons particularly suitable. This is given in the honeycomb Structure can be used in the new dimensioning for bricks extreme use of thin bars.
  • the compressive strength of a brick with filigree hexagon honeycomb perforation is the same Brick bulk density at least 25% higher than that of known ones Bricks with the usual hole patterns.
  • the honeycomb pattern itself can be with respect to the longitudinal direction of the brick be arbitrarily oriented.
  • the pattern is preferred however lay so that the heat path in the transverse direction of the brick becomes as long as possible and that is the case when webs are vertical run to the visible surfaces of the brick or two opposite corners of the hexagons to the visible surfaces are facing.
  • the heat path extension is then around 16% compared to the arrangement with the visible surfaces parallel webs.
  • the body density can be reduced by porosity (Fig. 10).
  • porosity Fig. 10
  • low thermal conductivity values are achieved even with weak porosity
  • filigree structures allow relatively high porosity without significantly reducing the compressive strength.
  • the porosity should not be so extreme that it reduces the compressive strength too much.
  • the use of a fibrous porosity agent is provided.
  • the use of paper fibers is particularly advantageous.
  • good ductility of the moist clay strand is important, which can be achieved by enriching the brick clay with a proportion of about 5 to 25% fat clay.
  • Fat clay is a high quality clay with a high Al 2 O 3 content. In this way, in addition to the structurally favorable perforation pattern, the strength of the brick is positively influenced despite the large number of perforations.
  • the butt joint area is in known brick shapes because of the large material accumulations at this point always technically problematic. This is especially true for heat-optimized slot-hole bricks because of a thick Brick outer layer the structurally weak inner area must be balanced. In contrast, the proposed filigree small hole structure so stable, and in Cross direction not weakened that the butt side with a relatively thin outer layer can be provided.
  • each butt joint at least one tongue and one groove arranged to match be.
  • one of the two abutting surfaces of a brick a spring protruding beyond the projections is provided, which is provided in one of the anyway Wells of the adjacent tile fits.
  • one spring per brick is preferable because of the Brick then, after extrusion, on the if desired other impact surface can be stored. To light the feather to be able to insert into the corresponding specialization suggested this recess a little wider than the rest To make recesses and the laterally adjacent holes accordingly easy to deform.
  • the brick inhibits the longitudinal sound conduction and is therefore particularly suitable for external walls.
  • values of less than 0.4 kg / dm 3 are within the possible range.
  • the brick is therefore extremely light and little clay material and, accordingly, little energy, in particular when firing, is required for its production. The low weight is advantageous when processing and transporting. Lower energy tonnage saves more energy.
  • the previously unattainable low wall weight enables the use of the bricks, for example, for partitions on unsupported ceilings, where bricks could not previously be used.
  • the bricks When used as a load-bearing inner wall, in addition to preventing longitudinal sound conduction, sound insulation in the passage direction that is significantly better than known bricks due to the low natural vibration with the same mass must also be noted.
  • the proposed bricks can be separated better in the transverse direction, which leads to lower losses due to brick smashing in practical construction work.
  • FIG. 1 are two bricks 1 and 2 with their butt sides to each other. There is a special groove 3 on brick 1 and one Spring 4 shown on brick 2.
  • the brick 2 is a partial enlargement of the brick shown completely in Fig. 2.
  • the spring 4 is only once on an abutment surface of the brick available.
  • One side wall (visible side) of the brick is 5 designated. This also indicates the longitudinal direction of the bricks.
  • the bricks have a hexagonal honeycomb pattern, whereby the hexagons are arranged so that two each other opposite corners to the side walls 5 show and a Part of the webs 6 is perpendicular to the side walls.
  • the thickness of the webs in this is preferred Embodiment slightly more than 2 mm.
  • the hole percentage at this honeycomb pattern is 66.5%.
  • On the side walls 5 are the hexagon holes slightly blunted.
  • the walls 7 of the bricks on the butt sides follow the Outer wall sections of those hexagon holes that the last, transverse row of holes in each tile form. This creates projections 8 and depressions 9.
  • the thickness of the walls 7 changes between about 3 and 5.5 mm is therefore less than three times the web thickness.
  • the Spring 4 protrudes over the projections 8. You see from that Area of this single tongue 4 and the associated groove 3 once off, so are the impact walls 7 of the two bricks designed mirror-symmetrical to each other.
  • the one another corresponding projections 8 lie against each other.
  • the one another corresponding recesses 9 form both bricks with each other a hexagonal cavity 10.
  • the abutting sides of the two bricks experience irregularities only in the area of tongue and groove, which is close to a Side wall 5 are arranged.
  • the groove 3 is somewhat stronger expanded than the other depressions 9.
  • the spring 4 contains a cavity 11 in the form of a partial cut hexagons.
  • the cavities 10 and 11 act from a certain distance looks about like the other hexagon holes, so that the Joint area continues the honeycomb structure and thereby has an almost undiminished thermal insulation effect.
  • the brick shown completely in Fig. 2 has 21 rows of holes.
  • the hole row spacing a is approximately 14 mm.
  • the only wedge-shaped spring 4 fits an identical neighboring tile in one of the three arranged near the side walls 5 Grooves 3, 12, 13.
  • the brick shown is 248 mm long and 300 mm wide (Thickness of the brick wall).
  • the clear width of the honeycomb (perpendicular to the webs) is 14 mm.
  • the thickness of the Side walls 5 is 7 mm and the thickness of the walls 7 in Direction of impact measured 5.5 mm.
  • the two faces are in the formed essentially mirror-symmetrical to each other.
  • you can also use this hole pattern Brick for thicker or thinner walls according to the national standards are designed, which is why correspondingly more or less longitudinal rows of holes are to be provided.
  • the brick density class 0.5 kg / dm 3 is achieved with this brick.
  • the unit weight is reduced from 13.5 kg to 9 kg.
  • the same static pressure resistance is nevertheless achieved.
  • the airborne sound absorption capacity in all spatial directions is superior to that of all previously known perforations.
  • the bricks with a round hole pattern according to FIG. 3 show that same principle of the training of the face as well Projections 8 'and depressions 9' are formed as they are in the case of a cut from the Hole pattern result.
  • the protrusions have flat sections, the depressions are circular.
  • the hole shape of the example according to FIG. 4 is an in Brick corner shortened corner. Are here too Projections 8 ", depressions 9" and a spring 4 " distinguish, which are similar in shape to the holes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Building Environments (AREA)
  • Finishing Walls (AREA)
  • Road Paving Structures (AREA)
  • Bathtubs, Showers, And Their Attachments (AREA)
  • Devices Affording Protection Of Roads Or Walls For Sound Insulation (AREA)
  • Nonwoven Fabrics (AREA)
  • External Artificial Organs (AREA)
  • Percussion Or Vibration Massage (AREA)
  • Radiation-Therapy Devices (AREA)
  • Baking, Grill, Roasting (AREA)

Description

Die Erfindung betrifft einen Hochloch-Leichtziegel nach dem Oberbegriff der Ansprüche 1 bzw. 3. Solche Ziegel werden zur Ausführung von Ziegelmauerwerk vorwiegend im Wohnungsbau verwendet, und zwar herkömmlich vermauert oder als Planziegel mit Dünnbettmörtel vermauert. Die Löcher bilden oben und unten offene durchgehende vertikale Kanäle.
Ziegel dieser Gattung sind aus der GB-A-434 127 bekannt, die im Jahre 1934 angemeldet worden ist. Neu war damals, Lochziegel durch Extrudieren des Tons herzustellen. Es sind Lochmuster mit quadratischen, dreieckigen, sechseckigen und anderen Lochformen angegeben, wobei die Abstände der Lochreihen 14,5 bis 19,5 mm betragen und die jeweiligen Stege überall die gleiche Dicke haben. Allerdings können diese bekannten Ziegel im Sinne der heutigen Fachsprache nicht als Leichtziegel bezeichnet werden, denn eine Porosierung des Tons war damals noch nicht bekannt. Insofern ist es für den Fachmann nicht überraschend, wenn bei den in der Schrift erwähnten Produktionsversuchen schon eine so geringe Stegdicke wie 4,7 mm erreicht werden konnte.
Andererseits haben die heute ganz überwiegend verwendeten bekannten Ziegel eine sogenannte Schlitzlochung, worunter ein betont länglicher Lochquerschnitt von rechteckiger, elliptischer oder ähnlicher Form verstanden wird. Die Längsachse des Lochquerschnitts erstreckt sich in Ziegellängsrichtung und die Löcher benachbarter Lochreihen sind häufig in Längsrichtung gegeneinander versetzt. Die hinsichtlich der Wärmedämmung besten, insbesondere in Deutschland bekannten Ziegel haben eine Wärmeleitzahl von λ = 0,16 [W/m·K] oder schlechter.
Das Bestreben, die schlitzförmigen Löcher zur Erschwerung des Wärmedurchgangs immer länger zu machen, findet jedoch seine Grenze in einer erhöhten Brüchigkeit des Ziegels, denn solche langstegigen Ziegel sind weder druck- noch querzugfest. Die Druckfestigkeit und die Querzugfestigkeit sind bislang unüberwindliche Barrieren auf dem Weg zu Ziegeln mit noch besserem Wärmedämmvermögen. Und schließlich ist noch festzuhalten, daß bei bekannten wärmetechnisch optimierten Ziegeln mit Schlitzlochung das akustische Phänomen der sogenannten Schallängsleitung auftritt.
Der Erfindung liegt die Aufgabe zugrunde, einen Leichtziegel vorzuschlagen, der bei ausreichender statischer Festigkeit ein nennenswert besseres Wärmedämmverhalten als bekannte Leichtziegel hat, insbesondere eine Wärmeleitzahl λ ≤ 0,15 [W/m·K] aufweist und zugleich ein gutes Luftschall-Absorptionsvermögen (Schallsteifigkeit) ohne Tendenz zur Schallängsleitung hat.
Diese Aufgabe wird bei einem Hochloch-Leichtziegel der eingangs genannten Gattung erfindungsgemäß durch die Merkmale der Ansprüche 1 bzw. 3 gelöst.
Der Grundgedanke besteht darin, daß man durch eine Lochanordnung mit vielen kleinen Löchern und kurzen Stegen auch bei porosiertem Ziegelwerkstoff eine hohe Steifigkeit und gemessen am Lochanteil hohe Druckfestigkeit erreichen kann. Wesentliche Bestimmungsgröße für die thermischen Eigenschaften ist die Stegdicke. Zweckmäßigerweise ist deshalb so vorzugehen, daß zunächst die Stegdicke auf einen möglichst kleinen Wert festgelegt wird und sodann Muster mit steigenden prozentualen Lochanteilen auf ihre statische und akustische Eignung hin zu untersuchen sind.
Schon mit einer Stegdicke von 4 mm bei mäßiger Porosierung können bei einem Lochanteil von 50 % oder mehr sehr niedrige Wärmeleitzahlen erreicht werden.
Lochquerschnitte in der Form von regelmäßigen Sechsecken sind besonders geeignet. Diese in der Bienenwabe vorgegebene Struktur läßt sich in der für Ziegel neuen Dimensionierung mit dünnen Stegen extrem nutzen. Die Druckfestigkeit eines Ziegels mit Filigran Sechseck-Wabenlochung ist bei gleicher Ziegelrohdichte um mindestens 25 % höher als bei bekannten Ziegeln mit üblichen Lochbildern.
Bemerkenswert an der Wabenlochung ist auch der ideale Mundstückslauf. Das rührt zum einen daher, daß die Stegdicken an jeder Stelle gleich sind. Aber auch im Vergleich zu einem ähnlich filigranen Karomuster läuft die Tonmasse wesentlich besser durch das Mundstück, weil die Stege sich nicht kreuzen, sondern nur drei Stege zusammentreffen. In einer Kreuzung schießt der Ton vor, weil in diesem Bereich die Reibung geringer ist. Guter Mundstückslauf bedeutet aber sorgfältige Ausformung der dünnwandigen Struktur und damit die volle Nutzung von deren Festigkeit.
Das Wabenmuster kann bezüglich der Ziegellängsrichtung an sich beliebig orientiert sein. Vorzugsweise wird man das Muster jedoch so legen, daß der Wärmeweg in Ziegelquerrichtung möglichst lang wird und das ist der Fall, wenn Stege senkrecht zu den Sichtflächen des Ziegels verlaufen bzw. zwei gegenüberliegende Ecken der Sechsecke den Sichtflächen zugewandt sind. Die Wärmewegverlängerung beträgt dann rund 16 % im Vergleich zu der Anordnung mit zu den Sichtflächen parallelen Stegen.
Zentrisch möglichst symmetrische Lochquerschnitte, insbesondere der sechseckige Querschnitt, bieten als wesentlichen Vorteil eine nahezu gleiche Steifigkeit in allen Richtungen, Dadurch wird eine Schallängsleitung, d. h. eine Schallweiterleitung in der Wandebene, verhindert. Dies ist heute eines der wichtigsten Kriterien bei Bausteinen für Außenwände.
Andererseits ergeben sich Vorteile bei der Fertigung der Ziegel. Schon die getrockneten Formlinge haben eine hohe Bruchfestigkeit und sind daher auch ideal zum Planschleifen der Lagerflächen, weil sie an den Sichtflächen sehr fest eingespannt werden können.
Bei Ziegeln mit filigranen Strukturen, insbesondere bei filigraner Wabenlochung, ist die Absenkung der Scherbenrohdichte durch Porosierung möglich (Fig. 10). Einerseits werden schon bei schwachem Porosieren tiefe Wärmeleitzahlen erreicht und andererseits erlauben filigrane Strukturen eine relativ hohe Porosierung, ohne daß dabei die Druckfestigkeit nennenswert reduziert wird. Die Porosierung sollte jedoch nicht so extrem sein, daß dadurch die Druckfestigkeit zu weit reduziert wird. Im Hinblick auf das Hauptziel einer Erhöhung der Wärmedämmfähigkeit ist es besser, eine Scherbenrohdichte ≤ 1,7 kg/dm3 oder sogar deutlich darunter anzustreben. Dabei ist die Verwendung eines faserigen Porosierungsmittels vorgesehen. Die Verwendung von Papierfasern ist besonders vorteilhaft. Dadurch ergeben sich beim Brennen faserige, kreuz- und querliegende Poren, welche im Gegensatz zu Hohlräumen aufgrund von gekörnten oder kugeligen Porosierungsmitteln eine eher homogene Gefügestruktur ergeben und den Kraftfluß nicht stören. Es ist aber auch möglich, andere feine Porosierungsmittel einzusetzen, z. B. einen nicht mit Schadstoffen belasteten feinen Klärschlamm.
Ferner ist eine gute Bildsamkeit des feuchten Tonstrangs wichtig, was dadurch erreicht werden kann, daß der Ziegelton mit einem Anteil von etwa 5 bis 25 % fetten Tons angereichert wird. Fetter Ton ist ein hochwertiger Ton mit hohem Al2O3-Gehalt. Damit wird unterstützend zum statisch günstigen Lochmuster die Festigkeit des Ziegels trotz hohen Lochanteils günstig beeinflußt.
Der Stoßfugenbereich ist bei bekannten Ziegelsteinformen wegen der großen Materialanhäufungen an dieser Stelle wärmetechnisch stets problematisch. Dies gilt besonders für wärmeoptimierte Schlitzloch-Ziegel, da eine dicke Ziegelaußenschicht den statisch schwachen inneren Bereich ausgleichend stützen muß. Im Gegensatz dazu ist die vorgeschlagene filigrane Kleinlochstruktur so stabil, und in Querzugrichtung nicht geschwächt, daß die Stoßseite mit einer verhältnismäßig dünnen Außenschicht versehen werden kann.
Um Kältebrücken im Stoßfugenbereich deutlich zu vermindern, sollte vom verbreiteten Nut-Feder-System abgegangen werden. Statt dessen wird vorgeschlagen, daß die Stoßflächen des Ziegels im wesentlichen spiegelsymmetrisch zueinander ausgebildet sind, wobei entsprechend dem Lochmuster und dem Verlauf der Wände, welche die in Querrichtung aufeinanderfolgenden Löcher nach außen abschließen, Vorsprünge und Vertiefungen gebildet sind, so daß die einander entsprechenden Vorsprünge zweier zusammenstoßender Ziegel aneinander zur Anlage kommen und die einander entsprechenden Vertiefungen jeweils zusammen einen Hohlraum bilden. Dadurch werden Materialanhäufungen in einem bisher nicht gekannten Maß reduziert und Wärmebrücken vermieden. Ein derart ausgebildeter Stoßbereich unterscheidet sich in seinem Gefüge nur noch minimal vom übrigen Lochmuster, weil die sich paarig addierenden Hohlräume der Vertiefungen den übrigen Löchern ähnliche Löcher bilden.
Um den beim Aneinanderstoßen möglicherweise verbleibenden dünnen Spalt zu schließen und die Ziegel als Versetzhilfe wenigstens in einem geringen Maße formschlüssig ineinandergreifen zu lassen, sollten an jeder Stoßfuge wenigstens eine Feder und eine Nut zusammenpassend angeordnet sein. Dazu reicht es aus, daß an einer der beiden Stoßflächen eines Ziegels eine über die Vorsprünge hinausstehende Feder vorgesehen ist, die in eine der ohnehin vorgesehenen Vertiefungen des anstoßenden Nachbarziegels paßt. Natürlich können an dieser Stoßfläche auch mehrere Federn vorgesehen sein. Eine Feder pro Ziegel ist jedoch vorzuziehen, weil der Ziegel dann nach dem Extrudieren gewünschtenfalls auf der anderen Stoßfläche abgelegt werden kann. Um die Feder leicht in die zugehörige Vertiefung einfügen zu können, wird vorgeschlagen, diese Vertiefung etwas breiter als die übrigen Vertiefungen zu machen und die seitlich anschließenden Löcher dementsprechend leicht zu deformieren.
Um den vorgeschlagenen Leichtziegel beim Verarbeiten gut greifen zu können, wird vorgeschlagen, im mittleren Bereich zwei Grifflöcher anzubringen, wobei diese unter dem Gesichtspunkt der Materialersparnis durch Weglassen einer Gruppe von Löchern gebildet sind. Die Besonderheit dieser Grifflöcher besteht also darin, daß sie keine eigenständige geometrische Querschnittsform, z. B. Kreis oder Rechteck, haben, sondern einfach dem Lochmuster folgen, wobei die Dicke der Wand des Grifflochs im Vergleich zur Stegdicke nicht oder nur unwesentlich verstärkt ist.
Der vorgeschlagene Leichtziegel ist in mehrfacher Hinsicht besser als die bekannten Ziegel seiner Art, ohne daß dadurch Nachteile, insbesondere hinsichtlich der Tragfestigkeit, in Kauf genommen werden müssen. Vor allem kann eine bisher nicht erreichte günstige gemessene Wärmeleitzahl von annähernd λ = 0,11 [W/m·K] erwartet werden. Der Ziegel hemmt die Schallängsleitung und eignet sich deshalb besonders für Außenwände. Bezüglich der Ziegelrohdichte liegen Werte von unter 0,4 kg/dm3 im Bereich des Möglichen. Der Ziegel hat somit ein außerordentlich geringes Gewicht und es wird wenig Tonmaterial und dementsprechend wenig Energie, insbesondere beim Brennen, zu seiner Herstellung benötigt. Das geringe Gewicht tritt beim Verarbeiten und beim Transportieren vorteilhaft in Erscheinung. Durch geringere Transporttonnage wird weitere Energie gespart. Das bislang nicht erreichte niedrige Wandgewicht ermöglicht den Einsatz der Ziegel beispielsweise für Trennwände auf nicht unterstützten Decken, wo Ziegel bisher nicht eingesetzt werden konnten. Bei der Anwendung als tragende Innenwand ist neben der Verhinderung einer Schallängsleitung auch eine gegenüber bekannten Ziegeln wegen der geringen Eigenschwingung bei gleicher Masse deutlich bessere Schalldämmung in Durchgangsrichtung hinzuweisen. Im Gegensatz zu Langlochziegeln lassen sich die vorgeschlagenen Ziegel besser in Querrichtung trennen, was im praktischen Baubetrieb zu geringeren Verlusten durch Zertrümmern von Ziegeln führt.
Schließlich ist noch ein Vorteil des beschriebenen Ziegels nachzutragen, der dann zum Tragen kommt, wenn die Ziegel an den Lagerflächen nicht geschliffen sind und konventionell vermauert werden. Die dünnen Stege und die faserigen Porosierungseinschlüsse haben zur Folge, daß die Stege beim Schneiden verzogen werden. An den Schnittkanten bildet sich ein Bart, der die ohnehin kleinen Öffnungen der Löcher teilweise zudeckt, jedenfalls aber ihren lichten Querschnitt verringert. Das führt zu einem bisher unerreicht geringen Mörteleinfall, d. h. daß der Mörtel im wesentlichen in der Lagerfuge verbleibt und nur ein verschwindend kleiner Teil in die Löcher einfällt.
Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung erläutert. Es zeigt
Fig. 1
zwei Teilstücke von aneinandergefügten Leichtziegeln mit Wabenlochung in Draufsicht in natürlicher Größe,
Fig. 2
einen Horizontalschnitt (Lochbild) eines ganzen Ziegels in kleinerem Maßstab,
Fig. 3
zwei Teilstücke von aneinandergefügten Leichtziegeln mit Rundlochung in Draufsicht in schematischer Darstellung,
Fig. 4
eine entsprechende Darstellung mit einer abgeflachten Sechsecklochung,
Fig. 5
eine entsprechende Darstellung mit einer versetzten Quadratlochung,
Fig. 6
eine entsprechende Darstellung mit einer Recktecklochung,
Fig. 7
ein anderes verwendbares Lochmuster mit regelmäßig angeordneten quadratischen Löchern,
Fig. 8
mit versetzten Rechteck-Löchern,
Fig. 9
mit Löchern von gleichzeitig dreieckigem Querschnitt und
Fig. 10
eine Darstellung von berechneten Kennwerten des in Fig. 2 dargestellten Ziegels
Gemäß Fig. 1 liegen zwei Ziegel 1 und 2 mit ihren Stoßseiten aneinander. Es ist eine besondere Nut 3 am Ziegel 1 und eine Feder 4 am Ziegel 2 dargestellt. Der Ziegel 2 ist eine Teil-Vergrößerung des in Fig. 2 vollständig dargestellten Ziegels. Die Feder 4 ist nur an einer Stoßfläche des Ziegels einmal vorhanden. Eine Seitenwand (Sichtseite) des Ziegels ist mit 5 bezeichnet. Diese gibt auch die Längsrichtung der Ziegel an.
Die Ziegel haben im übrigen ein Sechseck-Wabenmuster, wobei die Sechsecke so angeordnet sind, daß je zwei einander gegenüberliegende Ecken zu den Seitenwänden 5 zeigen und ein Teil der Stege 6 senkrecht zu den Seitenwänden steht. Die Dicke der Stege beträgt bei diesem bevorzugten Ausführungsbeispiel etwas mehr als 2 mm. Der Lochanteil bei diesem Wabenmuster beträgt 66,5 %. An den Seitenwänden 5 sind die Sechseck-Löcher leicht abgestumpft.
Die Wände 7 der Ziegel an den Stoßseiten folgen den Außenwandabschnitten derjenigen Sechseck-Löcher, welche die letzte, in Querrichtung verlaufende Lochreihe jedes Ziegels bilden. Dadurch entstehen Vorsprünge 8 und Vertiefungen 9. Die Dicke der Wände 7 wechselt zwischen etwa 3 und 5,5 mm und beträgt somit weniger als das Dreifache der Stegdicke. Die Feder 4 steht über die Vorsprünge 8 vor. Sieht man von dem Bereich dieser einzigen Feder 4 und der zugehörigen Nut 3 einmal ab, so sind die stoßseitigen Wände 7 der beiden Ziegel zueinander spiegelsymmetrisch gestaltet. Die einander entsprechenden Vorsprünge 8 liegen aneinander. Die einander entsprechenden Vertiefungen 9 beider Ziegel bilden jeweils miteinander einen sechseckigen Hohlraum 10. Unregelmäßigkeiten erfahren die Stoßseiten der beiden Ziegel lediglich im Bereich von Nut und Feder, die in der Nähe einer Seitenwand 5 angeordnet sind. Die Nut 3 ist etwas stärker ausgeweitet als die übrigen Vertiefungen 9. Die Feder 4 enthält einen Hohlraum 11 in Form eines teilweise angeschnittenen Sechsecks.
Die Hohlräume 10 und 11 wirken aus einer gewissen Distanz betrachtet etwa wie die übrigen Sechseck-Löcher, so daß der Stoßbereich insgesamt die Wabenstruktur fortsetzt und dadurch einen nahezu unverminderten wärmedämmenden Effekt hat.
Der in Fig. 2 komplett dargestellte Ziegel hat 21 Lochreihen. Der Lochreihenabstand a beträgt etwa 14 mm. Die einzige keilförmige Feder 4 paßt bei einem identischen Nachbarziegel in eine der drei jeweils nahe den Seitenwänden 5 angeordneten Nuten 3, 12, 13.
Der Vorteil dieser unüblichen Anordnung nur einer Feder 4 oder alternativ mehrerer Federn an nur einer Stoßseite liegt darin, daß der frisch extrudierte noch weiche Formling auf seiner federlosen Stoßseite ohne Beschädigung aufgelegt und befördert werden kann. Es hat sich nämlich gezeigt, daß bei so geringen Stegdicken die Stabilität des Gefüges in Seitenlage nicht ausreicht, das eigene Gewicht zu tragen, weil die schrägen Stege in diesem Fall zur Schwerkraftrichtung einen Winkel von 60° bilden und sich deshalb verbiegen können. Es besteht die Gefahr, daß der Formling in dieser Lage teilweise in sich zusammensinkt. Dagegen ist die Steifigkeit völlig ausreichend, wenn der Formling auf die Stoßfläche gestellt wird. In dieser Lage bilden die schrägen Stege einen Winkel von nur 30° mit der Schwerkraftrichtung und haben somit eine höhere Knickfestigkeit. Das Eigengewicht des Formlings wird auf die in einer gemeinsamen Querebene liegenden Vorderflächen der Vorsprünge 8 gleichmäßig verteilt.
Schließlich sind bei diesem Leichtziegel noch zwei Grifflöcher 14 zu erwähnen, die im mittleren Ziegelbereich in Längsrichtung hintereinander angeordnet sind. Jedes Griffloch 14 ist entstanden durch Weglassen von sieben Sechseck-Löchern.
Der dargestellte Ziegel ist 248 mm lang und 300 mm breit (Dicke der gemauerten Wand). Die lichte Weite der Waben (senkrecht zu den Stegen) beträgt 14 mm. Die Dicke der Seitenwände 5 beträgt 7 mm und die Dicke der Wände 7 in Stoßrichtung gemessen 5,5 mm. Die beiden Stoßflächen sind im wesentlichen spiegelsymmetrisch zueinander geformt. Selbstverständlich können mit diesem Lochbildschema auch Ziegel für dickere oder dünnere Wände entsprechend den nationalen Maßnormen konzipiert werden, wozu dann jeweils entsprechend mehr bzw. weniger längsgerichtete Lochreihen vorzusehen sind.
Mit diesem Ziegel wird die Ziegel-Rohdichteklasse 0,5 kg/dm3 erreicht. Bezogen auf entsprechende bekannte Ziegel, die auf dem deutschen Markt angeboten werden und der Rohdichteklasse 0,8 kg/dm3 angehören, wird das Stückgewicht von 13,5 kg auf 9 kg gesenkt. Trotzdem wird die gleiche statische Druckfestigkeit erreicht. Das Luftschall-Absorptionsvermögen in allen räumlichen Richtungen ist dem sämtlicher bisher bekannter Lochungen überlegen.
Von der Bundesanstalt für Materialprüfung (BAM) in Berlin durchgeführte Computerberechnungen nach der Finite-Elemente-Methode haben zu den in Fig. 10 dargestellten Ergebnissen geführt. Basierend auf vier verschiedenen Scherbenqualitäten wurde die Stegdicke und damit einhergehend der Lochanteil eines 300 mm breiten Waben-Hochziegels ähnlich der Fig. 2 variiert und jeweils die Wärmedurchgangszahl k [W/m2·K] errechnet. Die Scherbenmaterialien sind jeweils durch ihre Wärmeleitzahl gekennzeichnet, die zwischen λScherben = 0,40 [W/m·K] und λScherben = 0,25 [W/m·K] liegt. Der niedrigere Wert entspricht einer stärkeren Porosierung. Man sieht, daß bei einem - im Interesse einer hohen Druckfestigkeit - wenig porosierten Ton und bei 2 mm Stegdicke eine Wärmedurchgangszahl k = 0,38 [W/m2·K] erreicht wird. Das entspricht bei dem 30 cm dicken Ziegel nach Fig. 2 einer extrem niedrigen Wärmeleitzahl λ = 0,12 [W/m·K].
Die Ziegel mit Rundlochmuster nach Fig. 3 zeigen insoweit das gleiche Prinzip der Stoßflächenausbildung, als ebenfalls Vorsprünge 8' und Vertiefungen 9' gebildet sind, wie sie sich bei einem in einer Querebene geführten Schnitt aus dem Lochmuster ergeben. Die Vorsprünge haben ebene Abschnitte, die Vertiefungen sind kreisrund ausgelegt. Der Wölbungsradius der Feder 4' entspricht etwa dem Radius der runden Löcher, der Wölbungsradius der entsprechenden Nut ist etwas größer gehalten.
Die Lochform des Beispiels nach Fig. 4 ist ein in Ziegelquerrichtung verkürztes Seckseck. Auch hier sind Vorsprünge 8'', Vertiefungen 9'' und eine Feder 4'' zu unterscheiden, die in ihrer Form den Löchern ähnlich sind.
Bei dem Beispiel nach Fig. 5 gibt es ebenfalls aneinanderliegende Vorsprünge und einander entsprechende, jeweils einen gemeinsamen Hohlraum bildende Vertiefungen. Bei der gezeigten Feder wurde vom übrigen Lochmuster insofern abgewichen, als die Feder und ihre entsprechende Nut keilförmige Flanken aufweist, was eine entsprechende Veränderung der benachbarten Löcher zur Folge hat.
Bei dem Lochmuster nach Fig. 6 sind im Gegensatz zu allen vorhergehenden Beispielen die Lochreihen nicht gegeneinander versetzt, vielmehr bilden die Stege ein Kreuzgitter. Trotzdem sind an den Stoßflächen einander entsprechende Vorsprünge 8''' und Vertiefungen 9''' gebildet. Die Vorsprünge enthalten auf etwa die halbe Länge gekürzte Löcher 15, so daß der von je zwei Vertiefungen gebildete gemeinsame Hohlraum 10''' etwa die Größe eines normalen Reckteckloches hat. Auch hier ist die Feder 4''' mit keilförmigen Flanken ausgebildet.
Die Figuren 7 bis 9 geben weitere Lochmuster-Beispiele, die bei erfindungsgemäßen Ziegeln Anwendung finden können.
1
Ziegel
2
Ziegel
3
Nut
4
Feder
4'
Feder
4''
Feder
4'''
Feder
5
Seitenwand
6
Steg
7
Wand
8
Vorsprung
8'
Vorsprung
8''
Vorsprung
9
Vertiefung
9'
Vertiefung
9''
Vertiefung
10
Hohlraum
10'''
Hohlraum
11
Hohlraum
12
Nut
13
Nut
14
Griffloch
15
Loch
a
Abstand

Claims (7)

  1. Hochloch-Leichtziegel mit zwei Stoßflächen, die nach dem Vermauern den horizontal anschließenden Ziegeln zugewandt sind, mit zwei Sichtflächen (5) und mit einem Lochmuster, das mehrere sich in Längsrichtung erstreckende Lochreihen und die Löcher voneinander trennende Stege (6) aufweist, wobei das Verhältnis der größten zur kleinsten lichten Weite des Querschnitts eines einzelnen Loches zwischen 1 : 1 und 1 : 2,5 liegt und der Abstand (a) der Lochreihen höchstens 22 mm beträgt und wobei das Lochmuster eine Sechseck-Wabenlochung ist und das Wabenmuster derart angeordnet ist, daß Wabenstege (6) zu den Sichtflächen (5) des Ziegels senkrecht stehen, gekennzeichnet durch folgende Merkmale:
    a) Die Dicke der Stege (6) beträgt 1,5 mm bis höchstens 4 mm.
    b) Der Lochanteil beträgt mindestens 50 %.
    c) Die Scherbenrohdichte ist ≤ 1,7 kg/dm3, vorzugsweise 1,5 kg/dm3.
    d) Es ist ein faseriges Porosierungsmittel verwendet.
  2. Hochloch-Leichtziegel nach Anspruch 1, gekennzeichnet durch Papierfasern als Porosierungsmittel.
  3. Hochloch-Leichtziegel mit zwei Stoßflächen, die nach dem Vermauern den horizontal anschließenden Ziegeln zugewandt sind, mit zwei Sichtflächen (5) und mit einem Lochmuster, das mehrere sich in Längsrichtung erstreckende Lochreihen und die Löcher voneinander trennende Stege (6) aufweist, wobei das Verhältnis der größten zur kleinsten lichten Weite des Querschnitts eines einzelnen Loches zwischen 1 : 1 und 1 : 2,5 liegt und der Abstand (a) der Lochreihen höchstens 22 mm beträgt, gekennzeichnet durch folgende Merkmale:
    a) Die Dicke der Stege (6) beträgt 1,5 mm bis höchstens 4 mm.
    b) Der Lochanteil beträgt mindestens 50 %.
    c) Die Scherbenrohdichte ist ≤ 1,7 kg/dm3, vorzugsweise 1,5 kg/dm3.
    d) Die Stoßflächen sind im wesentlichen spiegelsymmetrisch zueinander ausgebildet, wobei entsprechend dem Lochmuster und dem Verlauf der Wände (7), welche die in Querrichtung aufeinanderfolgenden Löcher nach außen abschließen, Vorsprünge (8) und Vertiefungen (9) gebildet sind, so daß die einander entsprechenden Vorsprünge (8) zweier zusammenstoßender Ziegel (1, 2) aneinander zur Anlage kommen und die einander entsprechenden Vertiefungen (9) jeweils zusammen einen Hohlraum (10) bilden.
    e) Wenigstens eine der beiden Stoßflächen weist eine über die Vorsprünge hinausstehende Feder (4) auf, die in eine der eine Nut (3, 12, 13) bildenden Vertiefungen des anstoßenden Nachbarziegels (1) paßt.
    f) Es ist ein faseriges Porosierungsmittel verwendet.
  4. Hochloch-Leichtziegel nach Anspruch 3, dadurch gekennzeichnet, daß pro Stoßfläche mehrere Federn vorgesehen sind.
  5. Hochloch-Leichtziegel nach Anspruch 3, dadurch gekennzeichnet, daß die Nut (3), die mit der Feder (4) des Nachbarziegels zusammenwirkt, etwas breiter als die übrigen Vertiefungen (9) ist unter leichter Deformierung der an die Nut (3) seitlich anschließenden Löcher.
  6. Hochloch-Leichtziegel nach Anspruch 3, dadurch gekennzeichnet, daß seine Wände (7) an den Stoßflächen höchstens die dreifache Dicke der Stege (6) haben.
  7. Hochloch-Leichtziegel nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß im mittleren Bereich zwei jeweils durch Fehlen einer Gruppe von Löchern gebildete Grifflöcher (14) vorgesehen sind.
EP93118896A 1992-11-25 1993-11-24 Hochloch-Leichtziegel Expired - Lifetime EP0599283B1 (de)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
DE19924239616 DE4239616A1 (de) 1992-11-25 1992-11-25 Hochloch-Leichtziegel
DE4239616 1992-11-25
DE19934305747 DE4305747C2 (de) 1993-02-25 1993-02-25 Hochloch-Leichtziegel
DE4305747 1993-02-25

Publications (3)

Publication Number Publication Date
EP0599283A2 EP0599283A2 (de) 1994-06-01
EP0599283A3 EP0599283A3 (en) 1994-07-13
EP0599283B1 true EP0599283B1 (de) 1998-10-14

Family

ID=25920719

Family Applications (1)

Application Number Title Priority Date Filing Date
EP93118896A Expired - Lifetime EP0599283B1 (de) 1992-11-25 1993-11-24 Hochloch-Leichtziegel

Country Status (4)

Country Link
US (1) US5499478A (de)
EP (1) EP0599283B1 (de)
AT (1) ATE172265T1 (de)
DE (1) DE59309059D1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4423716A1 (de) * 1994-07-08 1996-01-18 Freiburger Ziegelei Duedingen Baustein mit wärmeisolierend wirkenden inneren Hohlräumen
DE19502899A1 (de) * 1995-01-31 1996-08-01 Raimund Rimmele Hochloch-Leichtziegel für den Mauerwerksbau
USD423123S (en) * 1997-11-13 2000-04-18 Hans Sassenberg Plastic paver
US6540792B1 (en) * 1999-04-14 2003-04-01 Toray Industries, Inc. Cellulose fiber-containing structure
AT409509B (de) * 2000-10-02 2002-09-25 Johannes Zittmayr Mauerwerk-verbindungen
EP1596018A3 (de) * 2004-05-11 2007-02-14 Ullermann, Klaus Mauerstein sowie Masse und Verfahren zum Herstellen desselben
ES2265234B2 (es) * 2004-07-29 2008-04-01 Universidad Politecnica De Madrid Ladrillo ceramico con hueco hexagonales.
FR2947846B1 (fr) * 2009-07-10 2013-04-12 Cogestone France Sarl Bloc isolant muni d'une multitude d'alveoles de section allongee
US8091307B2 (en) * 2009-08-18 2012-01-10 King Abdulaziz University Convection baffle for hollow blocks
US20110047924A1 (en) * 2009-09-01 2011-03-03 Antar Mohamed A Hollow brick providing thermal insulation
US20110180452A1 (en) * 2010-01-25 2011-07-28 Mattel, Inc. Display Assembly
CN102419971B (zh) * 2011-07-26 2013-10-09 中铁第四勘察设计院集团有限公司 珍珠岩尖劈共振吸声砖
CN102995816A (zh) * 2012-12-14 2013-03-27 李良光 骨架增强加气混凝土砌块及其制造方法
WO2014145645A1 (en) * 2013-03-15 2014-09-18 Abt, Inc. Interlocking form assembly
ES2495540B2 (es) * 2014-06-06 2015-05-11 Universidad Politécnica de Madrid Mejoras relativas a un ladrillo cerámico con huecos hexagonales
WO2023204736A1 (en) * 2022-04-18 2023-10-26 Alqahtani Saad Plastic brick

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1686373A (en) * 1926-06-14 1928-10-02 Harry D Foster Building block or tile construction
FR677668A (fr) * 1929-07-01 1930-03-13 Schmidheiny & Co J Brique creuse perforée
GB434127A (en) * 1934-02-23 1935-08-23 Leslie Eric Hamson Improvements in building and refractory bricks or blocks
DE802951C (de) * 1949-11-12 1951-02-26 Dachziegelwerke E C Spingler G Viellochstein aus gebranntem Ton oder anderen Werkstoffen mit versetzt angeordneter Lochung
CH312925A (de) * 1953-05-13 1956-03-15 Hunziker & Cie Ag Baustein
AT276706B (de) * 1968-04-12 1969-12-10 Wienerberger Baustoffind Ag Stranggepreßter Hohlziegel
FR2296065A1 (fr) * 1974-12-23 1976-07-23 Sturm Jean Philippe Elements de murs de maconnerie
AT339018B (de) * 1975-09-09 1977-09-26 Wienerberger Baustoffind Ag Stranggepresster hohlziegel
DE2833412C2 (de) * 1978-07-29 1982-12-09 Johann 8081 Oberweikertshofen Kellerer Hochlochziegel
US4510725A (en) * 1981-09-17 1985-04-16 Wilson Mark E Building block and construction system
DE3343287A1 (de) * 1983-06-10 1984-12-13 Oltmanns Ziegel Und Kunststoffe Gmbh, 2905 Edewecht Hochlochziegel
DE8334588U1 (de) * 1983-12-02 1984-03-01 Oltmanns Ziegel Und Kunststoffe Gmbh, 2905 Edewecht Hochlochziegel
DE3402541A1 (de) * 1984-01-26 1985-08-01 Ziegelmundstückbau Braun GmbH, 7990 Friedrichshafen Gelochter stein, insbesondere grossblockziegel
DE8406314U1 (de) * 1984-03-01 1984-05-30 Kampen, Dirk, 4902 Bad Salzuflen Lochziegelstein
DE4005719A1 (de) * 1990-02-23 1991-08-29 Schreiber Josef Verfahren zum herstellen von bauelementen zum errichten von bauwerksteilen, insbesondere waenden

Also Published As

Publication number Publication date
EP0599283A3 (en) 1994-07-13
US5499478A (en) 1996-03-19
DE59309059D1 (de) 1998-11-19
ATE172265T1 (de) 1998-10-15
EP0599283A2 (de) 1994-06-01

Similar Documents

Publication Publication Date Title
EP0599283B1 (de) Hochloch-Leichtziegel
DE2019416A1 (de) Schalldaempfer fuer stroemende Gase
DE9413502U1 (de) Bauelement für die Wärmedämmung in Mauerwerk
EP2386696B1 (de) Mauerziegel mit Dämmfüllung
EP0584455B1 (de) Hochloch-Leichtziegel
DE19807040B4 (de) Wärmedämmverfüllziegel
EP0382708B1 (de) Wärmedämm-Tragelement für Bauwerke
DE102004043494B4 (de) Vorsatzschale als wärmedämmende Außenschale für ein mehrschaliges Mauerwerk
DE2719860A1 (de) Mauerstein, insbesondere ziegel
DE2939832C2 (de) Wandbaustein
EP0528753B1 (de) Mauerziegel mit verbesserter Wärmedämmung
DE3030846C2 (de) Hochlochziegel
EP0606625B1 (de) Hintermauerziegel
DE29518717U1 (de) Leicht-Hochlochziegel
DE2226460A1 (de) Grossblockstein
DE2422236A1 (de) Mauerstein, insbesondere hohlblockstein
DE4305747C2 (de) Hochloch-Leichtziegel
DE9321414U1 (de) Hochloch-Leichtziegel
DE4239616A1 (de) Hochloch-Leichtziegel
CH692992A5 (de) Wärmedämmendes, tragendes Bauelement.
EP1428954A1 (de) Leicht-Hochlochziegel
DE19804729A1 (de) Baustein, insbesondere auf der Basis zementgebundenen Blähtons
DE936292C (de) Mittels Strangpresse herzustellender Viellochmauerstein
DE202004021740U1 (de) Leicht-Hochlochziegel
DE202012007558U1 (de) Mauerstein

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH DE ES FR GB IT LI NL

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE ES FR GB IT LI NL

17P Request for examination filed

Effective date: 19941118

17Q First examination report despatched

Effective date: 19960617

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981014

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 19981014

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19981014

REF Corresponds to:

Ref document number: 172265

Country of ref document: AT

Date of ref document: 19981015

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59309059

Country of ref document: DE

Date of ref document: 19981119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981130

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

ET Fr: translation filed
ITF It: translation for a ep patent filed
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 19981014

BERE Be: lapsed

Owner name: RIMMELE RAIMUND

Effective date: 19981130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20041112

Year of fee payment: 12

Ref country code: AT

Payment date: 20041112

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051124

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: ZIEGELEIEN FREIBURG & LAUSANNE AG DUEDINGEN

Free format text: RIMMELE, RAIMUND#ALTSTEUSSLINGER STRASSE 24#D-89584 EHINGEN/DONAU (DE) -TRANSFER TO- ZIEGELEIEN FREIBURG & LAUSANNE AG DUEDINGEN#HAEGLIWEG 2#3186 DUEDINGEN (CH)

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060731

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: DTS ZUERICH

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20060731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20071207

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071121

Year of fee payment: 15

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: DTS ZUERICH;RESIRAIN 1;8125 ZOLLIKERBERG (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101115

Year of fee payment: 18

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111130