EP0416099A1 - Procede pour traiter electrochimiquement des articles constitues de materiaux conducteurs - Google Patents

Procede pour traiter electrochimiquement des articles constitues de materiaux conducteurs Download PDF

Info

Publication number
EP0416099A1
EP0416099A1 EP89900683A EP89900683A EP0416099A1 EP 0416099 A1 EP0416099 A1 EP 0416099A1 EP 89900683 A EP89900683 A EP 89900683A EP 89900683 A EP89900683 A EP 89900683A EP 0416099 A1 EP0416099 A1 EP 0416099A1
Authority
EP
European Patent Office
Prior art keywords
concentration
workpiece
voltage
temperature
machined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP89900683A
Other languages
German (de)
English (en)
Other versions
EP0416099A4 (fr
Inventor
Vladimir Kazimirovich Stanishevsky
Alexandr Ernstovich Parshuto
Alexandr Antonovich Kosobutsky
Leonid Mikhailovich Semenenko
Vladimir Nikolaevich Tikhonovsky
Vsevolod Alexeevich Khlebtsevich
Leonid Stepanovich Velichko
Alexei Andreevich Semchenko
Grigory Efimovich Slepnev
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Belarusian National Technical University BNTU
Original Assignee
Belarusian National Technical University BNTU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Belarusian National Technical University BNTU filed Critical Belarusian National Technical University BNTU
Publication of EP0416099A4 publication Critical patent/EP0416099A4/fr
Publication of EP0416099A1 publication Critical patent/EP0416099A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F1/00Electrolytic cleaning, degreasing, pickling or descaling
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing

Definitions

  • the present invention relates to machining methods on the electrochemical and electrophysical way and relates in particular to methods for the electrochemical machining of workpieces made of electrically conductive materials.
  • a method for the anodic electropolishing of steel workpieces with direct current in a chromium-phosphorus-sulfuric acid electrolyte is known (see AM Jampolsky “Etching of metals", publisher “Metallurgia” (Moscow), 980, 5. 51 /, the by immersing the workpieces in an electrolyte at a voltage of 10 to 25 V and a temperature of 30 to 70 ° C, the electrolyte having the following composition in mass%: The electropolishing is carried out at an anode current density of 50 to 60 A / dm 2 and a holding time of 3 to 15 minutes.
  • a method for the electrochemical machining of workpieces made of electrically conductive materials is known, which involves machining the workpieces at a voltage of 220 to 230 V using a 20%
  • Aqueous ammonium chloride solution as an electrolyte at a temperature of 35 ° C comprises (V. N. Duradzhy "electron beam processing of materials", 1978, H. 5, pp. 13 to 17).
  • the present invention has for its object to develop a method for the electrochemical machining of workpieces made of electrically conductive materials, in which the choice of machining conditions and the electrolyte concentration allows the performance in machining when using weak, cheap and non-toxic electrolytes increase, improve the quality of polishing and do without preparatory work for the surface of the workpieces.
  • the object is achieved in that in a method for the electrochemical processing of Workpieces made of electrically conductive materials, which consists in that the workpiece to be machined is supplied with a voltage of positive polarity and this is immersed in a heated aqueous electrolyte solution, according to the invention the workpiece to be machined is supplied with a voltage of 200 to 400 V, while the temperature of the aqueous Electrolytic solution, with a concentration of 2 to 12 mass% is 40 to 95 ° C.
  • the workpiece to be machined is supplied with a voltage of 240 to 320 V, and an aqueous ammonium sulfate solution with a concentration of 2 to 6% by mass at a temperature of 40 to 80 ° C is used as an aqueous electrolyte solution.
  • the workpiece to be machined is supplied with a voltage of 330 to 380 V and an aqueous potassium sulfate solution with a concentration of 1 to 10% by mass at a temperature of 70 to 90 ° C is used as an aqueous electrolyte solution.
  • a voltage of 200 to 210 V must be supplied to the workpiece to be machined and an aqueous sodium hydroxide solution with a concentration of 8 to 12% by mass at a temperature of 40 to 50 ° C must be used as the aqueous electrolyte solution.
  • a voltage of 220 to 400 V is supplied to the workpiece to be machined and an aqueous solution of potassium aluminum alum with a concentration of 0.5 to 8% by mass at a temperature of 40 to 90 ° C as an aqueous electrolyte solution is used.
  • a voltage to the workpiece to be machined from 220 to 400 V and supply an aqueous solution of disubstituted ammonium citrate with a concentration of 0.5 to 6% by mass with the addition of sodium carbonate with a concentration of 0.5 to 3% by mass at a temperature of 40 to 90 ° C as an aqueous To use electrolytic solution.
  • the workpiece to be machined is supplied with a voltage of 220 to 400 V and an aqueous solution of sodium salt of ethylenediaminetetraacetic acid with a concentration of 0.5 to 6% by mass at a temperature of 40 to 90 ° C is used as the electrolyte solution .
  • ammonium thiocyanate with a concentration of 0.3 to 3% by mass is additionally introduced into the electrolyte as an additive.
  • the present invention makes it possible to use the method to be patented for the electrochemical machining of workpieces made of electrically conductive materials for polishing and for cleaning the workpieces made of rustproof, tool, low-carbon steels, copper and its alloys, made of aluminum and other materials, cleaning and to combine polishing in one process, applying force to the work to be machined Exclude workpiece completely; it also ensures the mechanization and automation of the machining process under any production conditions and the ecological cleanliness, which is due to the harmlessness and low toxicity of the electrolytes to be used.
  • Fig. 1 - a diagram for the dependence of the voltage magnitude supplied to the workpiece to be machined and the temperature of the aqueous electrolyte solution at their different concentration from one another according to the invention
  • Fig. 2 graphs of the dependency of the roughness and the reflectivity of the workpiece surface after machining and the voltage applied to the workpiece to be machined, according to the invention.
  • the present method for the electrochemical machining of workpieces made of electrically conductive materials consists in supplying the workpiece to be machined with a voltage of positive polarity of 200 to 400 V and this in an aqueous electrolyte solution with a concentration of 2 to 12 mass% at a temperature of 40 is immersed up to 95 ° C.
  • Such electrochemical machining of workpieces made of electrically conductive materials is characterized in that a stable vapor-gas envelope is formed on the surface of the workpiece to be machined, which separates the workpiece surface from the electrolyte and promotes the course of intensive chemical and electrochemical reactions between the material of the workpiece serving as the anode and the electrolyte vapors.
  • the etching mainly takes place on the micro unevenness, where a thinner oxide layer forms.
  • a thinner oxide layer forms.
  • the reflectivity and the roughness of the machined surface are therefore dependent on the magnitude of the voltage applied, the concentration and the chemical composition of the electrolyte to be used.
  • the processing conditions for the workpiece samples were selected in the following areas: Operating voltage 240 to 320 V, electrolyte temperature - 40 to 80 ° C, electrolyte composition - 2 to 6% aqueous ammonium sulfate solution.
  • the upper operating limits have been chosen based on the following considerations.
  • ammonium sulfate solutions of a higher concentration leads to a significant reduction in the processing quality.
  • the limit of the concentration of the solution at which a polishing effect can still be seen is 6 to 7%.
  • the etching of metal begins to dominate, which leads to the disappearance of the gloss.
  • Heating the electrolyte with a concentration of 2 to 6% ammonium sulfate to a temperature of over 80 to 85 ° C also leads to a reduction in the processing quality due to the formation of punctiform depressions, which is caused by an increased chemical activity of the electrolyte at these temperatures.
  • Table 1 shows the results of machining workpieces using the method according to the invention.
  • the graphs of the dependence of the roughness and the reflectivity ⁇ on the applied voltage are shown in FIG. 2, where curve 1 shows the change in roughness R a , curve 2 - the change in reflectivity ⁇ when machining the workpieces according to the method according to the invention represent.
  • the method according to the invention achieves an extreme in a range of voltage values from 300 to 320 V.
  • the roughness number R a is 0.16 to 0 ⁇ 12) ⁇ m (curve 1).
  • a similar picture wins one also considers the second most important characteristic value, the reflectivity ⁇ , which can be 93 to 95% according to the method according to the invention, which is demonstrated by the course of curve 2.
  • Compound metal products namely workpieces for the production of dental prostheses, which were made from corrosion-resistant steels, were processed.
  • the pressed prosthesis parts were made of steel, which contains 0.12% C, 0.18% Cr, 9% Ni, ⁇ 1% Ti., Rest - Fe, and the intermediate part - made of cast steel, which contains 0.2% C, Contains 18% Cr, 9% Ni, 2% Si, rest - Fe.
  • the processing time was 2 minutes.
  • the processing conditions for the assembled metal products were selected in the following areas: the voltage supplied to the workpiece to be machined - 330 to 380 V, electrolyte temperature - 70 to 90 ° C; a 1 to 10% potassium sulfate solution was used as the electrolyte.
  • the known technology for polishing composite workpieces provides mechanical or electrolytic processing with different operating states for the voltage, the temperature and the composition of the electrolyte depending on the types of steel used in the construction of the workpiece.
  • the technology according to the invention makes it possible to process a composite (bimetallic) workpiece under uniform technological conditions which increase the reflectivity.
  • an aqueous potassium sulfate solution as the electrolyte makes it possible to achieve a polishing effect when machining workpieces made of chromium-nickel-silicon steel.
  • the choice of the operating voltage which is in a range from 330 to 380 V, is due to the fact that when the voltage is reduced to 300 to 315 V, the stability of the vapor-gas envelope is reduced, and the envelope is torn off. the process goes into a switching state, which is accompanied by violent jumps in current. The quality of processing deteriorates and the absorption power increases significant.
  • An increase in the voltage to 385 to 400 V leads to an impairment of the reflectivity ⁇ and the roughness R a , because traces of the electrical breakdown of the gap between the workpiece-electrode-electrolyte occur on the metal surface.
  • the temperature range in which the present machining process is carried out with optimal parameters is 70 to 90 ° C. At a temperature below 70 ° C, the stability of the steam-gas envelope is reduced, the process proceeds with significant current and voltage fluctuations; at a temperature of over 90 ° C, the processing quality deteriorates due to the increase in the chemical activity of the electrolyte and the disturbance in the thermal balance of the workpiece-vapor-gas-shell-electrolyte system.
  • the implementation of the method according to the invention is based on the use of an electrohydrodynamic operating state of the electrolytic processing.
  • the present operating state is characterized in that there is no heating of the workpiece, which makes soldering the copper wire difficult and requires additional operations to be carried out to remove the oxide, which was surrounded by a stable vapor-gas envelope.
  • the casing has a chemically active medium which reacts with the surface of the workpiece to be machined.
  • the turn covered with enamel coating insulation is immersed in a solution at a depth equal to the length of the turn end to be cleaned.
  • a positive voltage of 200 to 210 V is supplied to the non-immersed wire part.
  • a steam-gas envelope forms on the lower forehead of the immersed wire part, which is stripped after being cut off.
  • the insulation on the wire surface burns off. Because that part of the surface, at the dom the insulation is charred, becomes electrically conductive, a shell also forms on this surface part. The remnants of the burned-off insulation are removed and the wire surface cleaned so that it becomes practically clean.
  • a particularly active destruction of the enamel coating takes place at the border between the already cleaned wire part and the wire part covered with the insulation. This zone of active removal of the coating propagates from the bottom up to the level of the solution.
  • the selection of the operating voltage which is in a range from 200 to 210 V, is due to the fact that the stability of the vapor-gas envelope is reduced when the voltage is reduced to 188 to 195 V. This leads to instability in the operating state and a sharp reduction in cleaning performance.
  • Increasing the voltage to 220 to 230 V and more increases the thickness of the vapor-gas envelope and reduces the output due to a reduction in the pulse current that strikes through the vapor-gas envelope.
  • an aqueous Na0H solution as a chemically active solution is due to the fact that this solution has good electrical conductivity, with no heating of the wire anode at a voltage of 200 to 210 V; it also has a high chemical activity towards the remnants of the coating and a basic character that eliminates the corrosion of the wire after cleaning.
  • a reduction in the concentration of the solution to a value below 8% leads to a reduction in the cleaning performance due to a low chemical activity of the solution.
  • Increasing the concentration to over 12% causes an increase in consumption and causes the solution to spatter heavily during the process, worsening working conditions and not increasing the cleaning speed.
  • a temperature range of 40 to 50 ° C is due to the fact that the temperature of the solution is reduced to a value from below 40 ° C causes the vapor-gas envelope to tear off and to switch to the switching state, while an increase in the temperature to a value of more than 50 ° C leads to an increase in the thickness of the vapor-gas envelope and consequently to a decrease cleaning performance.
  • the minimum cleaning time for cleaning the above-mentioned wires by the method according to the invention was: with a wire diameter of 0.4 ⁇ m - 8 s, a wire diameter of 1.0 ⁇ m - 28 s, a wire diameter of 0.4 ⁇ m - 16 s, a wire diameter of 1.0 ⁇ m - 36 s.
  • the method according to the invention thus makes it possible, when removing enamel coating insulation from the copper winding wires, to increase the processing power by 2 to 4 times, to exclude manual work, to avoid the use of expensive and toxic chemical reagents, and to improve the working conditions.
  • the choice of the lower limit value of the voltage is due to the fact that at voltages of less than 220 V, the steam-gas envelope surrounding the workpiece pattern is torn off, which is an essential prerequisite for the polishing sequence in the electrodynamic operating state.
  • the machining process is characterized by a significant increase in power consumption and one Deterioration of the polishing effect accompanies, it being possible for the machining process to cease, with the formation of thin dark-colored layers (films) on the surface of the workpiece pattern.
  • An increase in the voltage to a value of over 400 V leads to an impairment of the gloss due to the formation of traces of an electrical breakdown in the gap between the workpiece sample electrolyte and the metal surface.
  • the stability of the vapor-gas envelope is reduced, which leads to a prevention of the machining process.
  • An increase in the temperature to a value above 90 ° C is accompanied by a deterioration in the processing quality due to an increase in the chemical activity of the electrolyte and by intensive water evaporation, which lead to a change in the solution concentration.
  • processing according to the method according to the invention makes it possible to achieve a high quality of polishing, the processing time being reduced by 3 times and the concentration of the electrolytes being reduced by 8 to 10 times.
  • the processing conditions were selected for the processing of the workpiece samples in the following areas: operating voltage - 240 to 380 V, electrolyte temperature - 81 to 95 ° C, electrolyte composition - 0.5 to 8% of an aqueous ammonium chloride solution.
  • operating voltage - 240 to 380 V operating voltage - 240 to 380 V
  • electrolyte temperature - 81 to 95 ° C electrolyte composition - 0.5 to 8% of an aqueous ammonium chloride solution.
  • electrolyte composition - 0.5 to 8% of an aqueous ammonium chloride solution.
  • the roughness R a bes to the values of 0.25-0.23-0.32 ⁇ m.
  • the introduction of an additive into the electrolyte increases its operating time by a factor of two, the value of the reflectivity ⁇ and the roughness R a of the machined workpieces not deteriorating.
  • Table 4 shows the results of the tests of a two-component solution, using ammonium thiocyanate NH4CNS as an additive. With a concentration of the additive of less than 0.5%, this practically does not affect the operating time. While increasing the additional concentration to a value of over 3% leads to the formation of a black film on the workpiece sample surface. At other ratios of the components NH4Cl and NH4CNS to each other, the tests gave similar results, uz the reflectivity ⁇ and the roughness R a do not deteriorate during the operating time of the Electrolyte with an additive is extended by 1.5 to 2 times.
  • the processing conditions were selected in the following areas: operating voltage - 260 to 400 V, electrolyte temperature - 70 to 90 ° C, electrolyte composition - 0.5 to 5 mass% iron (III) chloride.
  • the reflectivity ⁇ of the surface to be machined can be increased and its roughness R a can be reduced.
  • the limit value of the solution concentration at which the polishing can still be observed is 3%.
  • the etching of metal begins to dominate, which makes the shine disappear.
  • Heating the electrolyte with a concentration of 0.5 to 3% to a temperature of over 90 ° C also leads to a deterioration in the processing quality as a result the formation of punctiform depressions, which are caused by an increased chemical activity of the electrolyte at these temperatures.
  • the roughness R a of the surface to be machined increases, because during the electrical breakdown, the active piece-electrolyte micro-hollows form in the interspace.
  • an electrolyte concentration of less than 0.5% leads to an increase in the minimum values of the voltages and the electrolyte temperature, at which a stable process can be carried out.
  • a concentration of less than 0.5% and a temperature of less than 60 ° C there is a transition to the switching state of the electrolytic processing.
  • the electrolyte periodically comes into contact with the workpiece surface.
  • a strong electrochemical anodic metal dissolution takes place at the contact points, which leads to a reduction in the reflectivity ⁇ and to an increase in the roughness R a .
  • the invention can be used in mechanical engineering technologies for finishing products and preparing workpieces for applying coatings by electroplating; Vacuum, ion plasma vapor deposition are used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • ing And Chemical Polishing (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

Le procédé consiste à charger avec une tension de polarité positive de 200-400 V l'article à traiter, et à l'immerger dans une solution aqueuse d'électrolyte à une concentration de 2-12 % en poids et à une température de 40-95°C.
EP89900683A 1988-10-21 1988-10-21 Procede pour traiter electrochimiquement des articles constitues de materiaux conducteurs Withdrawn EP0416099A1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/SU1988/000201 WO1990004664A1 (fr) 1988-10-21 1988-10-21 Procede pour traiter electrochimiquement des articles constitues de materiaux conducteurs

Publications (2)

Publication Number Publication Date
EP0416099A4 EP0416099A4 (fr) 1990-12-06
EP0416099A1 true EP0416099A1 (fr) 1991-03-13

Family

ID=21617319

Family Applications (1)

Application Number Title Priority Date Filing Date
EP89900683A Withdrawn EP0416099A1 (fr) 1988-10-21 1988-10-21 Procede pour traiter electrochimiquement des articles constitues de materiaux conducteurs

Country Status (6)

Country Link
US (1) US5028304A (fr)
EP (1) EP0416099A1 (fr)
JP (1) JPH03501753A (fr)
CN (1) CN1044307A (fr)
FI (1) FI903132A0 (fr)
WO (1) WO1990004664A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020470A1 (fr) * 1994-01-26 1995-08-03 Vermont American Corporation Lame pour un tournevis a moteur
DE102007013638A1 (de) 2007-03-19 2008-09-25 Degudent Gmbh Verfahren zum Polieren von metallischen Zahnrekonstruktionen

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5227033A (en) * 1989-06-05 1993-07-13 Stelco Inc. Electrolytic etching of metals to reveal internal quality
CN1058303C (zh) * 1995-11-20 2000-11-08 高平 不锈钢设备动态电解复合抛光方法
US6005149A (en) * 1998-08-18 1999-12-21 Engineering, Separation & Recycling, Ltd. Co. Method and apparatus for processing organic materials to produce chemical gases and carbon char
US6294072B1 (en) * 1999-09-20 2001-09-25 Aeromet Technologies, Inc. Removal of metal oxide scale from metal products
US6837985B2 (en) * 1999-09-20 2005-01-04 Aeromet Technologies, Inc. External counter electrode
DE10207632B4 (de) * 2002-02-22 2006-04-06 Lingath, Klaus, Dipl.-Ing. Verfahren zum Plasmapolieren von Gegenständen aus Metall und Metalllegierungen
CN101591798B (zh) * 2008-06-01 2011-04-20 比亚迪股份有限公司 一种金属件及其表面处理方法
US8418587B2 (en) 2008-11-07 2013-04-16 Milwaukee Electric Tool Corporation Tool bit
WO2010084213A1 (fr) * 2009-01-26 2010-07-29 Metal Finishing Development Sl Milieu, procédé et dispositif pour le traitement superficiel de surfaces de pièces constituées d'or ou de ses alliages
US9039887B2 (en) 2012-05-14 2015-05-26 United Technologies Corporation Component finishing method and assembly
CN102899709B (zh) * 2012-09-21 2015-12-02 无锡顺达智能自动化工程股份有限公司 一种钢材的液相等离子除锈溶液及除锈工艺
RU2533223C1 (ru) * 2013-05-13 2014-11-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ обработки лопатки газотурбинного двигателя
RU2537346C1 (ru) * 2013-06-28 2015-01-10 Федеральное государственное автономное образовательное учреждение высшего профессионального образования "Национальный исследовательский технологический университет "МИСиС" Способ электролитно-плазменной обработки поверхности металлов
RU2566139C2 (ru) * 2013-12-19 2015-10-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ электролитно-плазменного удаления полимерных покрытий с поверхности детали из легированных сталей
TWI576471B (zh) * 2014-01-28 2017-04-01 藝高國際光電有限公司 金屬物件表面拋光處理方法及設備
RU2551344C1 (ru) * 2014-04-04 2015-05-20 Антон Владимирович Новиков Способ повышения эксплуатационных характеристик лопаток турбомашин из легированных сталей
RU2556251C1 (ru) * 2014-05-15 2015-07-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Уфимский государственный авиационный технический университет" Способ электролитно-плазменного удаления полимерных покрытий с поверхности пластинчатого торсина несущего винта вертолета
CN105297126B (zh) * 2015-10-15 2018-02-27 北京科技大学 一种液相等离子大面积金属材料表面连续处理方法
DE102016125244A1 (de) * 2016-12-21 2018-06-21 Airbus Defence and Space GmbH Verfahren für das Elektropolieren von einem metallischen Substrat
RU2649128C1 (ru) * 2017-06-29 2018-03-29 Аскар Джамилевич Мингажев Способ обработки лопаток турбомашин из железохромоникелевых сплавов
RU2693236C1 (ru) * 2018-04-05 2019-07-01 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов
KR102098475B1 (ko) * 2018-07-06 2020-04-07 주식회사 포스코 내식성, 도장성이 우수한 표면처리된 Zn-Ni 합금 전기도금강판의 제조방법
RU2694935C1 (ru) * 2018-10-29 2019-07-18 Аскар Джамилевич Мингажев Способ последовательного электролитно-плазменного полирования лопаток блиска турбомашин и рабочая емкость для его реализации
RU2697757C1 (ru) * 2018-11-06 2019-08-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ сухого локального электрополирования лопаток блиска и рабочий контейнер для его реализации
CN109735895A (zh) * 2018-12-07 2019-05-10 南京工程学院 一种铝合金的电解质等离子抛光液及抛光工艺
RU2706263C1 (ru) * 2019-01-23 2019-11-15 ООО "НПП "Уралавиаспецтехнология" Способ электролитно-плазменного полирования изделий из титановых и железохромоникелевых сплавов
RU2725441C1 (ru) * 2019-08-09 2020-07-02 Публичное Акционерное Общество "Одк-Сатурн" Способ электролитно-плазменного полирования деталей из титановых сплавов
RU2715395C1 (ru) * 2019-09-10 2020-02-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования лопаток блиска и устройство для его реализации
RU2719217C1 (ru) * 2019-09-10 2020-04-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования моноколеса с лопатками и устройство для его реализации
RU2716292C1 (ru) * 2019-09-27 2020-03-11 Аскар Джамилевич Мингажев Способ электрополирования металлической детали
RU2746886C1 (ru) * 2020-09-07 2021-04-21 Общество с ограниченной ответственностью Научно-производственное предприятие "Уралавиаспецтехнология" Способ электролитно-плазменного полирования поверхности и скругления кромок пластины торсиона несущего винта вертолета

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2355865A1 (de) * 1972-11-08 1974-05-09 Coghlan Bright Steel Verfahren und einrichtung zur reinigung einer oberflaeche eines metallgegenstands
US3812022A (en) * 1972-12-11 1974-05-21 Reynolds Metals Co Pigmented siliceous coatings for aluminous metals
US4004992A (en) * 1975-01-08 1977-01-25 Trw Inc. Power supply for electrochemical machining
DD260717A1 (de) * 1987-04-30 1988-10-05 Vnii Pk I Metallurg Mash Im A Aggregat zur elektrochemischen reinigung von beim schweissen verwendeten langmaterialien, vorwiegend draht

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2476965A (en) * 1946-12-23 1949-07-26 Walter B Emerson Electric drilling of diamonds and the like
US3287238A (en) * 1963-06-07 1966-11-22 Westinghouse Electric Corp Method of electropolishing tungsten wire
US3401103A (en) * 1965-10-23 1968-09-10 Gen Motors Corp Electrochemical machining process and electrolyte composition of chloride and sulfates
US3492210A (en) * 1967-10-16 1970-01-27 Hamilton Cosco Inc Electrolytic stripping of nonferrous metals from a ferrous metal base
US3669858A (en) * 1970-05-21 1972-06-13 Gen Motors Corp Electrochemical machining
US3730856A (en) * 1971-02-26 1973-05-01 Ici Ltd Electrolytic preparation of valve group metal equipment for use in chemical plants
JPS51136362A (en) * 1975-05-21 1976-11-25 Mitsubishi Electric Corp Method of treating discharge sludge from electrolytic working into non polluting substance
SU1062320A1 (ru) * 1981-01-19 1983-12-23 Белорусский Ордена Трудового Красного Знамени Политехнический Институт Способ травлени электропроводной ленты
SU1294883A1 (ru) * 1984-01-06 1987-03-07 Уральский научно-исследовательский институт трубной промышленности Способ электрохимического полировани
US4525249A (en) * 1984-07-16 1985-06-25 North American Philips Corporation Two step electro chemical and chemical etch process for high volt aluminum anode foil
US4647352A (en) * 1985-10-30 1987-03-03 Acra, Inc. Stripping composition and process for selective removal of electroless applied nickel

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2355865A1 (de) * 1972-11-08 1974-05-09 Coghlan Bright Steel Verfahren und einrichtung zur reinigung einer oberflaeche eines metallgegenstands
US3812022A (en) * 1972-12-11 1974-05-21 Reynolds Metals Co Pigmented siliceous coatings for aluminous metals
US4004992A (en) * 1975-01-08 1977-01-25 Trw Inc. Power supply for electrochemical machining
DD260717A1 (de) * 1987-04-30 1988-10-05 Vnii Pk I Metallurg Mash Im A Aggregat zur elektrochemischen reinigung von beim schweissen verwendeten langmaterialien, vorwiegend draht

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO9004664A1 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1995020470A1 (fr) * 1994-01-26 1995-08-03 Vermont American Corporation Lame pour un tournevis a moteur
AU686597B2 (en) * 1994-01-26 1998-02-12 Vermont American Corporation Insert bit for use with a powered screwdriver
US5868047A (en) * 1994-01-26 1999-02-09 Vermont American Corporation Insert bit for use with a powered screwdriver
DE102007013638A1 (de) 2007-03-19 2008-09-25 Degudent Gmbh Verfahren zum Polieren von metallischen Zahnrekonstruktionen

Also Published As

Publication number Publication date
JPH03501753A (ja) 1991-04-18
CN1044307A (zh) 1990-08-01
US5028304A (en) 1991-07-02
WO1990004664A1 (fr) 1990-05-03
EP0416099A4 (fr) 1990-12-06
FI903132A0 (fi) 1990-06-20

Similar Documents

Publication Publication Date Title
EP0416099A1 (fr) Procede pour traiter electrochimiquement des articles constitues de materiaux conducteurs
DE3048083C2 (de) Verfahren zur chemischen Entfernung von Oxidschichten von Gegenständen aus Titan oder Titanlegierungen
DE2907875C2 (de) Verfahren zum elektrolytischen Abtragen von Wolframcarbid-Überzügen auf Werkstücken aus Titan oder Titan-Legierungen
DE4002700A1 (de) Elektrochemisch bearbeitbares werkstueck und verfahren zum elektrochemischen bearbeiten eines metallischen werkstueckes
DE3020012C2 (de) Verfahren zum Freilegen der Siliciumkristalle an der Oberfläche eines Körpers aus einer Aluminiumlegierung mit hohem Siliciumgehalt
DE4432591A1 (de) Beschichtungsverfahren für ein Nickel-Titan-Legierungs-Teil
DE102006047713B3 (de) Elektropolierverfahren für Niob und Tantal und Elektrolyt
DE3706711A1 (de) Verfahren zum reinigen von oberflaechen eines aluminiumgegenstandes
DE2017858C3 (fr)
EP0090268B1 (fr) Procédé d'anodisation de produits en aluminium et pièces aluminées
DE2516842A1 (de) Mit einer keramischen beschichtung versehener gegenstand mit einer fuer eine elektrophoretische beschichtung elektrochemisch nicht genuegend aktiven metallischen oberflaeche und verfahren zu seiner herstellung
DE2917019C2 (de) Verfahren zur Metallisierung von Verbundmaterial und dazu geeignete Badzusammensetzung
EP0090266A2 (fr) Bain et procédé d'anodisation des pièces aluminées
DE1922598A1 (de) Gegenstand aus einem Metallsubstrat,auf den eine Nickel-Zinn-Legierung abgeschieden ist,sowie Verfahren zu dessen Herstellung
DE1421994A1 (de) Verfahren,Einrichtung und Mittel zur Reinigung von Metalloberflaechen
DD142360A1 (de) Verfahren zur erzeugung alpha-al tief 2 o tief 3-haltiger schichten auf aluminiummetallen
DE1621060A1 (de) Elektrolyt fuer die elektrolytische Abscheidung von schwarzen Chromueberzuegen
DE1909757B2 (de) Verfahren zur reinigung von anoden fuer elektrolytische prozesse, die aus einer unterlage eines filmbildenden metalls und einem ueberzug aus edelmetallen, edelmetalloiden oder edelmetalloxide enthaltenden mischoxiden bestehen
DE2729423C2 (fr)
DE2804364A1 (de) Elektrochemisches bearbeitungsverfahren fuer mehrphasige legierungen
DE1944388A1 (de) Verfahren zum Entzundern und Beizen eines Gegenstandes aus Titan oder einer Titanlegierung
DE2310638C2 (de) Verfahren zum Umwandeln hydrophober Oberflächen aus Aluminium, Aluminiumlegierungen, Kupfer oder Kupferlegierungen in hydrophile Oberflächen
DE2536516A1 (de) Verfahren zur stromlosen metallabscheidung auf einem peroxid bildenden substratmetall
DE1521080A1 (de) Verfahren zur Aufbringung von metallischen Oberflaechenschichten auf Werkstuecke aus Titan
DE2522926A1 (de) Verfahren zur herstellung metallplattierten langgestreckten aluminiummaterials

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19900704

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19920116