RU2716292C1 - Способ электрополирования металлической детали - Google Patents
Способ электрополирования металлической детали Download PDFInfo
- Publication number
- RU2716292C1 RU2716292C1 RU2019130515A RU2019130515A RU2716292C1 RU 2716292 C1 RU2716292 C1 RU 2716292C1 RU 2019130515 A RU2019130515 A RU 2019130515A RU 2019130515 A RU2019130515 A RU 2019130515A RU 2716292 C1 RU2716292 C1 RU 2716292C1
- Authority
- RU
- Russia
- Prior art keywords
- granules
- blade
- naf
- content
- brushes
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/16—Polishing
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/16—Polishing
- C25F3/22—Polishing of heavy metals
- C25F3/24—Polishing of heavy metals of iron or steel
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Изобретение относится к технологии электрополирования поверхности деталей из металлов и сплавов и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик. Способ включает погружение детали в проводящую среду и подачу противоположного по знаку электрического потенциала на деталь и проводящую среду. При этом электрополирование проводят в среде гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность упомянутых гранул и ионный унос металла с поверхности детали с удалением с нее микровыступов. При полировании устанавливают щетки с щетинами из диэлектрического материала вокруг детали, осуществляют контакт щетин щетки с обрабатываемой поверхностью детали, обеспечивают контакт всей полируемой поверхности детали с упомянутыми гранулами и гранул между собой, приводят щетки и/или деталь во вращательное движение, подают на деталь и гранулы электрический потенциал, обеспечивающий ионный унос металла с поверхности обрабатываемой детали и ее полирование в среде упомянутых гранул до получения заданной шероховатости полируемой поверхности. 5 з.п. ф-лы, 4 ил.
Description
Изобретение относится к технологии электрополирования поверхности деталей из металлов и сплавов и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик.
С повышением шероховатости поверхности ответственных металлических деталей, работающих в условиях воздействия значительных знакопеременных нагрузок, например валов, лопаток газовых турбин и т.п., резко снижаются их эксплуатационные характеристики. Качество обработки поверхности пера лопаток существенно влияет на их прочностные характеристики, так например, повышение класса чистоты поверхности способствует увеличению предела выносливости и статической прочности лопаток (В.Ф. Макаров, Е.Н. Бычина, А.О. Чуян. Математическое моделирование процесса полирования лопаток газотурбинных двигателей // Авиационно-космическая техника и технология. №8 (85), 2011, с.11-14). Развитая шероховатость поверхности лопаток газовых турбин приводит к ухудшению газодинамической устойчивости газотурбинного двигателя (ГТД), к возрастанию аэродинамических потерь, приводящих к снижению КПД, к потере мощности, росту удельных расходов и к снижению экономичности двигателя или газотурбинной установки.
В то же время производство и ремонт лопаток газотурбинных двигателей (ГТД)и установок (ГТУ), в связи с высокими требованиями к качеству поверхности (Ra≤0,32…0,16 мкм), характеризуется значительной трудоемкостью их финишной обработки. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.
Известен способ полирования поверхности детали кругом, при котором детали (лопатке турбины) сообщают возвратно-поступательное перемещение относительно инструмента (А.С. СССР №1732604. МПК B24B 19/14. Способ полирования пера лопаток ГТД лепестковым кругом. Опубл. Бюл. № 1, 2014 г.), в котором полирование производят с деформацией лепесткового круга.
Известен также способ обработки, позволяющий полировать криволинейную кромку пера лопаток газовой турбины заправленным по радиусу полировальным кругом, движущимся вдоль пера лопатки (Патент РФ №2379170. МПК B24B 19/14. Способ обработки лопаток газотурбинных двигателей. Опубл. 2010 г.).
Однако применение в известных способах полирования поверхности детали механического воздействия вызывает ухудшение параметров качества поверхностного слоя материалов, что приводит к снижению ее эксплуатационных характеристик, особенно в случаях обработки таких деталей как лопатки турбины с тонким пером.
Наиболее перспективными методами обработки деталей сложной формы, в частности лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л., Машиностроение, 1987], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, Патент ГДР (DD) №238074 (А1), МПК C25F 3/16, опубл. 06.08.1986].
Известен также способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ №1132, МПК C25F 3/16, опубл. 1996, БИ №3], а также способ электрохимического полирования [Патент США №5028304, МПК B23H 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.1991].
Однако известные способы электрополирования не позволяют производить однородную обработку поверхности детали из металлического сплава, особенно деталей сложной формы.
Наиболее близким техническим решением, выбранным в качестве прототипа является способполирования металлической детали, заключающийся в заполнении электропроводящими гранулами рабочего контейнера, выполненного из электропроводного материала, закрепление детали на держателе, погружении детали в электропроводящие гранулы, заполняющие контейнер, подключении детали к аноду, а контейнера к катоду [ WO2017186992 - |Methodforsmoothingandpolishingmetalsviaiontransportbymeansoffreesolidbodies, andsolidbodiesforcarryingoutsaidmethod. Опубл. 2017.11.02] .
Однако известный способ-прототип [WO2017186992] обладает низкой надежностью и не может быть использован для обработки поверхности ответственных деталей, таких как лопатки турбомашин, поскольку существует значительная вероятность «припайки» гранул к обрабатываемой поверхности и возникновения в результате этого дефектов, приводящих к снижению эксплуатационных характеристик обработанных деталей.
Задачей, на решение которой направлено заявляемое изобретение, является повышение качества и надежности обработки металлических деталей, особенно ответственных деталей сложной формы, таких как лопатки турбомашин.
Техническим результатом изобретения является повышение качества и надежности обработки поверхности металлической детали за счет повышения однородности обработки ее поверхности, снижения вероятности появления дефектов и уменьшения ее шероховатости.
Технический результат достигается за счет того, что в способе электрополирования металлической детали, включающем погружение детали в проводящую среду и подачу противоположного по знаку электрического потенциала на деталь и проводящую среду в отличие от прототипа электрополирование проводят в среде гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность упомянутых гранул и ионный унос металла с поверхности детали с удалением с нее микровыступов, устанавливают щетки с щетинами из диэлектрического материала вокруг детали, осуществляют контакт щетин щетки с обрабатываемой поверхностью детали, обеспечивают контакт всей полируемой поверхности детали с упомянутыми гранулами и гранул между собой, приводят щетки и/или деталь во вращательное движение, подают на деталь и гранулы электрический потенциал, обеспечивающий ионный унос металла с поверхности обрабатываемой детали и ее полирование в среде упомянутых гранул до получения заданной шероховатости полируемой поверхности.
Кроме того возможны следующие, дополнительные приемы выполнения способа:в качестве анионитов упомянутых гранул используют ионообменные смолы полученные на основе сополимеризации либо полистирола, либо полиакрилата и дивинилбензола, причем размеры гранул выбирают из диапазона от 0,1 до 0,4 мм, причемупомянутые гранулы дополнительно проводят в вибрационное движение; электрополирование гранулами проводят подавая на деталь положительный, а на гранулы отрицательный электрический потенциал от 25 до 35 В; электрополирование гранулами проводят в импульном режиме со сменой полярности, при диапазоне частот импульсов от 20 до 100 Гц, период импульсов от 50 мкс до 10 мкс, при амплитуде тока положительной полярности во время импульса +50 А и их длительности 0,4 до 0,8 мкс, при амплитуде тока отрицательной полярности во время импульса - 20 А, и их длительности 0,2 до 0,4 мкс, при прямоугольной форме выходных импульсов тока и длительности пауз между импульсами от 49,6 мкс до 9,2 мкс; в качестве детали используют турбомашины, выполненную из легированной стали, дополнительно приводят ее в возвратно-поступательное движение относительно ее продольной оси, используют цилиндрические щетки, совмещают направление осей цилиндров щеток с продольной осью лопатки, а в качестве электролитов для пропитки упомянутых гранул из анионитов используют один из следующих водных растворов: или NH4F, концентрацией от 6 до 24 г/л, или NаF, концентрацией от 4 до 18 г/л, или KF концентрацией от 35 до 55 г/л, или смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л, или смеси NаF и KF при содержании NаF - от 3 до 14 г/л и KF - от 35 до 60 г/л, или смеси NH4F и NaF при содержании NH4F - от 4 до 12 г/л и KF - от 35 до 55 г/л, или смеси NH4F , NаF и KF при содержании NH4F - от 3 до 9 г/л и KF - от 20 до 30 г/л, и NaF - от 10 до 25 г/л, или смеси NH4F и НF при содержании NH4F - от 5 до 15 г/л и НF - от 3 до 5 г/л, или от 8 до 14% водном растворе NaNO3 , или в электролитах составов, мас.%: (NH4)2SO4 - 5; Трилон Б - 0,8, или содержащий серную и ортофосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас.%:
Серная кислота - 10-30
Ортофосфорная кислота - 40-80
Блок-сополимер окисей этилена и пропилена - 0,05-1,1
Натриевая соль сульфированного бутилолеата - 0,01-0,05
Вода – Остальное;
в качестве детали используют лопатку турбомашины, выполненную из титанового сплава, дополнительно приводят ее в возвратно-поступательное движение относительно ее продольной оси, используют цилиндрические щетки, совмещают направление осей цилиндров щеток с продольной осью лопатки, а в качестве электролитов для пропитки упомянутых гранул из анионитов используют один из следующих водных растворов: или водный раствор смеси NH4F и KF при содержании NH4F - от 8 до 14 г/л и KF - от 36 до 48 г/л, или водного раствора с содержанием 30 - 50 г/л KF·2H2O и 2 - 5 г/л СrO3;в качестве детали используют лопатку турбомашины, выполненную из никелевого сплава, дополнительно приводят ее в возвратно-поступательное движение относительно ее продольной оси, используют цилиндрические щетки, совмещают направление осей цилиндров щеток с продольной осью лопатки, а в качестве электролитов для пропитки упомянутых гранул из анионитов используют один из следующих водных растворов: водный раствор соли фторида аммония концентрацией 6 - 9,0 г/литр, или водный раствор сульфата аммония с концентрацией 0,8…3,4 или водный раствор, содержащий серную и ортофосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас. %:
Серная кислота | 10-30 |
Ортофосфорная кислота | 40-80 |
Блок-сополимер окисей этилена и пропилена | 0,05-1,1 |
Натриевая соль сульфированного бутилолеата | 0,01-0,05 |
Вода | Остальное |
используют щетку, с щетинами, закрепленными на металлическом стержне, причем металлический стержень используют как электрод-инструмент.
Сущность изобретения поясняется чертежами. На фиг.1 показано схематическое расположение полируемой детали и щеток-электродов. На фиг. 2 показано размещение обрабатываемой детали в контейнере. На фиг. 3 – деталь в процессе полирования в среде электропроводящих гранул. На фиг. 4 – деталь в процессе полирования в среде электропроводящих гранул при возвратно-поступательном движении гранул относительно детали. Фигуры 1-4 содержат: 1 – держатель; 2 –обрабатываемая деталь; 3 – металлический стержень-электрод щетки; 4 –щетка; 5 – рабочий контейнер; 6 –гранулы, пропитанные электролитом (дугообразными стрелками обозначены направления вращения детали и щеток; прямыми стрелками- возвратно-поступательное движение гранул; ω – угловая скорость вращения детали и щеток.)
Заявляемый способ электрополирования металлической детали, в частности поверхности пера лопатки в процессе его изготовления или восстановительного ремонта осуществляется следующим образом.
На держателе 1 (фиг.1 и фиг.2) закрепляют деталь 2 и размещают ее в пространстве между щетками 4 таким образом, чтобы щетинки щетки 4 касались обрабатываемой поверхности детали 2 при любом ее положении. Деталь помещают в рабочий контейнер 5 и заполняют контейнер 5 электропроводящими гранулами 6 (фиг.3). На обрабатываемую деталь 2 и металлические стержни 3 подается электрический потенциал и включают привод вращения детали 2 и щеток 4 и проводят полирование поверхности детали 2 до получения заданной шероховатости, после чего готовую деталь 2 вынимают и складывают в тару для хранения. При этом, в зависимости от конфигурации детали 2 можно приводить во вращение либо деталь и щетки, либо только деталь, либо только щетки.
Электрополирование детали 2 (фиг.3) проводят в среде гранул 6, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность гранул 6 и ионный унос металла с поверхности детали 2 с удалением с нее микровыступов. устанавливают щетки 4 с щетинами из диэлектрического материала вокруг детали, осуществляют контакт щетин щетки с обрабатываемой поверхностью детали, обеспечивают контакт всей полируемой поверхности детали2 с гранулами 6 и гранул 6 между собой, приводят щетки 4 и деталь 2 во вращательное движение, подают на деталь 2 и гранулы 6 электрический потенциал, обеспечивающий ионный унос металла с поверхности обрабатываемой детали2 и ее полирование в среде гранул 6 до получения заданной шероховатости полируемой поверхности.
В качестве анионитов для гранул 6 используют ионообменные смолы полученные на основе сополимеризации либо полистирола, либо полиакрилата и дивинилбензола. Размеры гранул 6 выбирают из диапазона от 0,1 до 0,4 мм. При обработке детали 6 гранулы дополнительно проводят в вибрационное движение.
Электрополирование гранулами 6 проводят либо подавая на деталь 2 положительный, а на гранулы 6 отрицательный электрический потенциал, величиной от 25 до 35 В, либо в импульcном режиме со сменой полярности, при диапазоне частот импульсов от 20 до 100 Гц, периода импульсов от 50 мкс до 10 мкс, при амплитуде тока положительной полярности во время импульса +50 А и их длительности 0,4 до 0,8 мкс, при амплитуде тока отрицательной полярности во время импульса - 20 А, и их длительности 0,2 до 0,4 мкс, при прямоугольной форме выходных импульсов тока и длительности пауз между импульсами от 49,6 мкс до 9,2 мкс.
При полировании лопатки турбомашины (детали 2), выполненной из легированной стали, дополнительно приводят лопатку 2 в возвратно-поступательное движение относительно ее продольной оси, используют цилиндрические щетки, совмещают направление осей цилиндров щеток с продольной осью лопатки (фиг.4). В качестве электролитов для пропитки гранул 6 из анионитов используют один из следующих водных растворов: или NH4F, концентрацией от 6 до 24 г/л, или NаF, концентрацией от 4 до 18 г/л, или KF концентрацией от 35 до 55 г/л, или смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л, или смеси NаF и KF при содержании NаF - от 3 до 14 г/л и KF - от 35 до 60 г/л, или смеси NH4F и NaF при содержании NH4F - от 4 до 12 г/л и KF - от 35 до 55 г/л, или смеси NH4F , NаF и KF при содержании NH4F - от 3 до 9 г/л и KF - от 20 до 30 г/л, и NaF - от 10 до 25 г/л, или смеси NH4F и НF при содержании NH4F - от 5 до 15 г/л и НF - от 3 до 5 г/л, или от 8 до 14% водном растворе NaNO3 , или в электролитах составов, мас.%: (NH4)2SO4 - 5; Трилон Б - 0,8, или содержащий серную и ортофосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас.%:
Серная кислота - 10-30
Ортофосфорная кислота - 40-80
Блок-сополимер окисей этилена и пропилена - 0,05-1,1
Натриевая соль сульфированного бутилолеата - 0,01-0,05
Вода - Остальное.
При полировании лопатки турбомашины выполненной из титанового сплава, дополнительно приводят ее в возвратно-поступательное движение относительно ее продольной оси, используют цилиндрические щетки, совмещают направление осей цилиндров щеток с продольной осью лопатки, а в качестве электролитов для пропитки упомянутых гранул из анионитов используют один из следующих водных растворов: или водный раствор смеси NH4F и KF при содержании NH4F - от 8 до 14 г/л и KF - от 36 до 48 г/л, или водного раствора с содержанием 30 - 50 г/л KF·2H2O и 2 - 5 г/л СrO3.
При полировании лопатки турбомашины выполненной из никелевого сплава, дополнительно приводят ее в возвратно-поступательное движение относительно ее продольной оси, используют цилиндрические щетки, совмещают направление осей цилиндров щеток с продольной осью лопатки, а в качестве электролитов для пропитки упомянутых гранул из анионитов используют один из следующих водных растворов: водный раствор соли фторида аммония концентрацией 6 - 9,0 г/литр, или водный раствор сульфата аммония с концентрацией 0,8-3,4 или водный раствор, содержащий серную и ортофосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас. %:
Серная кислота | 10-30 |
Ортофосфорная кислота | 40-80 |
Блок-сополимер окисей этилена и пропилена | 0,05-1,1 |
Натриевая соль сульфированного бутилолеата | 0,01-0,05 |
Вода | Остальное |
Процесс полирования осуществляют до получения заданной величины шероховатости поверхности лопаток.
Возвратно-поступательные движения гранул 6 и их вибрация позволяют обеспечить равномерную обработку всей поверхность детали 2 и тем самым повысить качество и однородность свойств ее поверхности.
При осуществлении способа происходят следующие процессы. При возвратно-поступательном движении гранул происходят их столкновения с обрабатываемой поверхностью детали 2. При этом столкновения между гранулами 6 происходят также и во всем объеме рабочего контейнера 5, создавая таким образом для всего объема гранул 6 равномерные условия протекания электрических процессов. При этом электрические процессы между деталью (анодом) и гранулами (катодом) происходят за счет контакта массы электропроводных гранул друг с другом и с находящимся под отрицательным потенциалом рабочего контейнера и/или введенных в массу гранул электродов (катодов), находящихся под отрицательным потенциалом. При столкновениях гранул с микровыступами на обрабатываемой поверхности детали происходит ионный унос массы с микровыступов, в результате чего происходит выравнивание поверхности, уменьшается ее шероховатость и происходит полирование поверхности.
Однако, в процессе обработки, особенно деталей сложной формы, существует достаточно большая вероятность прилипания («припайки») гранул к обрабатываемой поверхности и формирования на ней точечных дефектов, снижающих качество поверхности обработанной детали. Для предотвращения указанного отрицательного явления в предлагаем способе используются щетки с щетиной, выполненной из диэлектрического материала. В процессе обработки щетки сметают с поверхности детали гранулы и не дают им к ней прилипнуть.
Были проведены также следующие исследования по полированию деталей (лопаток турбомашин) из легированных сталей, никелевых и титановых сплавов. Неудовлетворительным результатом (Н.Р.) считался результат, при котором, в результате прилипания гранул возникали точечные дефекты на полируемой поверхности и не наблюдался эффект полирования. При отсутствии точечных или иных дефектов на поверхности детали результат признавался удовлетворительным (У.Р.)
Во всех случаях, следующие режимы обработки деталей оказались универсальными.
Гранулы, выполненные из анионитов и пропитанными раствором электролита размерами от 0,1 до 0,4 мм (0,05 мм (Н.Р.), 0,1 мм (У.Р.), 0,2 мм (У.Р.), 0,4 мм (У.Р.), 0,6 мм (Н.Р.)).
Применяемые аниониты - ионообменные смолы полученные на основе сополимеризации либо полистирола, либо полиакрилата и дивинилбензола. Марки использованных в предлагаемом изобретении анионитов на основе синтетических смол: Анионит 17-8ЧС , Анионит PuroliteA520E , LewatitS 6328 A (на основе сополимера стирол-дивинилбензола), «Lewatit М500», «Lewatit MonoPlus MК 51», «Lewatit MonoPlus MP 68 », Purolite C150E, Purolite A-860 (макропористая сильно основная анионообменная смола основанная на акрилатах), анионит сульфированный сополимерстирол-дивинилбензола. Перечисленные аниониты пропитанные вышеприведенными составами электролитов, показали положительный результат при полировании лопаток из легированных сталей.
При обработке использовались вибрационное движение гранул с частотой от 50 ... 400 Гц: 40 Гц (Н.Р.), 50 Гц (У.Р.), 100Гц (У.Р.), 150 Гц (У.Р.), 250 Гц (У.Р.), 300 Гц (У.Р.), 350 Гц (У.Р.), 400 Гц (У.Р.), 450 Гц (Н.Р.) и амплитудой 1,0 до 6,0 мм(0,5 мм - Н.Р., 1,0 мм - У.Р., 2,0мм - У.Р., 3,0 мм - У.Р., 4,0 мм - У.Р., 5,0 мм - У.Р., 6,0 мм - У.Р., 7,0 мм - Н.Р.).
При импульсном режиме со сменой полярности:
- диапазон частот импульсов от 20 до 100 Гц: 15Гц (Н.Р.), 20Гц (У.Р.), 40Гц (У.Р.), 60Гц (У.Р.), 80Гц (У.Р.), 100Гц (У.Р.), 120Гц (Н.Р.)
- период импульсов от 50 мкс до 10 мкс,: 60 мкс (Н.Р.), 50 мкс (У.Р.), 40 мкс (У.Р.), 30 мкс (У.Р.), 20 мкс (У.Р.), 10 мкс (У.Р.), 5 мкс (Н.Р.);
- амплитуда тока положительной полярности во время импульса +50 А и их длительности 0,4 мкс до 0,8 мкс : 0,2 мкс (Н.Р.), 0,4 мкс (У.Р.), 0,6 мкс (У.Р.), 0,8 мкс (У.Р.), 10,0 мкс (Н.Р.);
- при амплитуде тока отрицательной полярности во время импульса - 20 А, и их длительности 0,2 мкс до 0,4 мкс, 0,1 мкс (Н.Р.), 0,2 мкс (У.Р.), 0,3 мкс (У.Р.), 0,4 мкс (У.Р.), 0,5 мкс (Н.Р.);
- при прямоугольной форме выходных импульсов тока(У.Р.),
- и длительности пауз между импульсами от 49,6 мкс до 9,2 мкс – (У.Р.) выход за пределы диапазона – (Н.Р.).
При режиме без смены полярности: электрополирование гранулами проводили подавая на деталь положительный, а на гранулы отрицательный электрический потенциал от 25 до 35 В: 22 В (Н.Р.), 25 В (У.Р.), 28 В (У.Р.), 30 В (У.Р.), 35 В (У.Р.), 40 В (Н.Р.),
Первая группа: детали из легированных сталей.
Обработке подвергались детали (образцы и лопатки) из легированных сталей ЭП718-ИД, ВЖ105-ИД, ЭП718-ПД, ВЖ105-ПД.
Условия обработки по предлагаемому способу.
Применяемые электролиты для пропитки гранул, выполненных из анионитов:
1) NH4F, концентрацией от 6 до 24 г/л (выход за пределы концентраций NH4F от 6 до 24 г/л дает отрицательный результат);
2) NаF, концентрацией от 4 до 18 г/л, (выход за пределы концентраций от 4 до 18 г/л, дает отрицательный результат);
3) KF концентрацией от 35 до 55 г/л, (выход за пределы концентраций от 35 до 55 г/л, дает отрицательный результат);
4) смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л (выход за пределы концентраций NH4F - от 5 до 15 г/л, дает отрицательный результат) и KF - от 30 до 50 г/л (выход за пределы концентраций KF - от 30 до 50 г/л, дает отрицательный результат),
5) смеси NаF и KF при содержании NаF - от 3 до 14 г/л (выход за пределы концентраций NаF - от 3 до 14 г/л, дает отрицательный результат), и KF - от 35 до 60 г/л (выход за пределы концентраций KF - от 35 до 60 г/л, дает отрицательный результат),
6) смеси NH4F и NaF при содержании NH4F - от 4 до 12 г/л (выход за пределы концентраций NH4F - от 4 до 12 г/л, дает отрицательный результат) и KF - от 35 до 55 г/л (выход за пределы концентраций KF - от 35 до 55 г/л, дает отрицательный результат),
7) смеси NH4F , NаFи KF при содержании NH4F - от 3 до 9 г/л (выход за пределы концентраций NH4F - от 3 до 9 г/л, дает отрицательный результат), и KF - от 20 до 30 г/л, (выход за пределы концентраций KF - от 20 до 30 г/л, дает отрицательный результат), и NaF - от 10 до 25 г/л (выход за пределы концентраций NaF - от 10 до 25 г/л, дает отрицательный результат),
8) смеси NH4F и НF при содержании NH4F - от 5 до 15 г/л (выход за пределы концентраций NH4F - от 5 до 15 г/л, дает отрицательный результат), и НF - от 3 до 5 г/л (выход за пределы концентраций НF от 3 до 5 г/л, дает отрицательный результат),
9) от 8 до 14% водном растворе NaNO3 (выход за пределы концентраций NaNO3 от 8 до 14% , дает отрицательный результат).
Вторая группа: детали (образцы и лопатки) из титановых сплавов марок ВТ9, ВТ-1, ВТ3-1, ВТ8. Блиск погружали в контейнер с электропроводящими пористыми гранулами, пропитанными электролитом состава водный раствор смеси NH4F и KF при содержании NH4F - от 8 до 14 г/л и KF - от 36 до 48 г/л и проводили полирование при плотности тока 1,2 до 1,8 А/см2 до достижения минимально возможной шероховатости поверхности.
Условия обработки по предлагаемому способу.
Состав электролита: водный раствор смеси NH4F и KF при содержании NH4F (6 г/л – Н.Р., 8 г/л – У.Р., 10 г/л – У.Р., 12 г/л – У.Р., 14 г/л – У.Р., более14 г/л– Н.Р.) и KF (32 г/л – Н.Р., 36 г/л – У.Р., 42 г/л – У.Р., 45 г/л – У.Р., 48 г/л – У.Р., 52 г/л – Н.Р.)
детали (образцы и лопатки)
Третья группа: детали (образцы и лопатки) из никелевых сплавов марок ЖС6У, ЖС32. Блиск погружали в контейнер с электропроводящими пористыми гранулами, пропитанными электролитом и проводили полирование при плотности тока 1,5 до 2,1 А/см2 до достижения минимально возможной шероховатости поверхности.
Условия обработки по предлагаемому способу.
Электропроводящие пористые гранулы, пропитанные электролитом состава водный раствор соли фторида аммония концентрацией 6 - 9,0 г/литр (5,0 г/литр (Н.Р.), 6,0 г/литр (У.Р.), 7,0 г/литр (У.Р.), 8,0 г/литр (У.Р.), 10,0 г/литр (У.Р.), 12,0 г/литр (Н.Р.)) и при плотности тока 1,5 до 2,1 А/см2 (1,3 А/см2(Н.Р.), 1,5 А/см2(У.Р.), 1,6 А/см2(У.Р.), 1,9 А/см2(У.Р.), 2,1 А/см2(У.Р.), 2,3 А/см2(Н.Р.)).
По сравнению с известным способом полирования [WO2017186992] при обработке деталей сложной формы из легированных сталей, никелевых и титановых сплавов по предлагаемому способу образование точечных дефектов не наблюдалось, в то время как при обработке по известному способу полирования [WO2017186992] образование точечных дефектов в результате налипания и припайки гранул, наблюдалось в среднем, в 85% от количества всех обработанных деталей (легированные стали – 81 %, никелевые сплавы – 84%, титановые сплавы – 91%). Предложенный способ позволил практически полностью устранить появление точечных дефектов, возникающих в результате прилипания гранул.
Таким образом, предложенный способ электрополирования металлической деталей позволил достигнуть поставленного в изобретении технического результата - повысить качество и надежность обработки поверхности металлической детали за счет повышения однородности обработки ее поверхности, снижения вероятности появления дефектов и уменьшения ее шероховатости.
Claims (8)
1. Способ электрополирования металлической детали, включающий погружение детали в проводящую среду и подачу противоположного по знаку электрического потенциала на деталь и проводящую среду, отличающийся тем, что электрополирование проводят в среде гранул, выполненных из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность упомянутых гранул и ионный унос металла с поверхности детали с удалением микровыступов, устанавливают щетки с щетинами из диэлектрического материала вокруг детали, осуществляют контакт щетин щетки с обрабатываемой поверхностью детали, обеспечивают контакт всей полируемой поверхности детали с упомянутыми гранулами и гранул между собой, приводят щетки и/или деталь во вращательное движение, подают на деталь и гранулы электрический потенциал, обеспечивающий ионный унос металла с поверхности обрабатываемой детали и ее полирование в среде упомянутых гранул до получения заданной шероховатости полируемой поверхности.
2. Способ по п. 1, отличающийся тем, что в качестве анионитов упомянутых гранул используют ионообменные смолы, полученные на основе сополимеризации или полистирола, или полиакрилата и дивинилбензола, причем размеры гранул выбирают из диапазона от 0,1 до 0,4 мм, причем упомянутые гранулы дополнительно приводят в вибрационное движение.
3. Способ по п. 1, отличающийся тем, что электрополирование гранулами проводят или подавая на деталь положительный, а на гранулы отрицательный электрический потенциал от 25 до 35 В, или в импульсном режиме со сменой полярности при диапазоне частот импульсов от 20 до 100 Гц, периоде импульсов от 50 мкс до 10 мкс, при амплитуде тока положительной полярности во время импульса + 50 А и их длительности от 0,4 до 0,8 мкс, при амплитуде тока отрицательной полярности во время импульса - 20 А и их длительности от 0,2 до 0,4 мкс, при прямоугольной форме выходных импульсов тока и длительности пауз между импульсами от 49,6 мкс до 9,2 мкс.
4. Способ по любому из пп. 1-3, отличающийся тем, что в качестве детали используют лопатку турбомашины, выполненную из легированной стали, дополнительно приводят лопатку в возвратно-поступательное движение относительно ее продольной оси, при этом используют цилиндрические щетки, совмещают направление осей цилиндров щеток с продольной осью лопатки, а в качестве электролита для пропитки упомянутых гранул из анионитов используют один из следующих водных растворов, включающих NH4F с концентрацией от 6 до 24 г/л, или NаF с концентрацией от 4 до 18 г/л, или KF с концентрацией от 35 до 55 г/л, или смесь H4F и KF при содержании NH4F от 5 до 15 г/л и KF от 30 до 50 г/л, или смесь NаF и KF при содержании NаF от 3 до 14 г/л и KF от 35 до 60 г/л, или смесь NH4F и NaF при содержании NH4F от 4 до 12 г/л и KF от 35 до 55 г/л, или смесь NH4F, NаF и KF при содержании NH4F от 3 до 9 г/л, KF от 20 до 30 г/л и NaF от 10 до 25 г/л, или смесь NH4F и НF при содержании NH4F от 5 до 15 г/л и НF от 3 до 5 г/л, или от 8 до 14 % водный раствор NaNO3, или электролит состава, мас.%: (NH4)2SO4 5, Трилон Б 0,8, или содержащий серную и ортофосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас.%:
5. Способ по любому из пп. 1-3, отличающийся тем, что в качестве детали используют лопатку турбомашины, выполненную из титанового сплава, дополнительно приводят ее в возвратно-поступательное движение относительно ее продольной оси, используют цилиндрические щетки, совмещают направление осей цилиндров щеток с продольной осью лопатки, а в качестве электролитов для пропитки упомянутых гранул из анионитов используют один из следующих водных растворов, включающий раствор смеси NH4F и KF при содержании NH4F от 8 до 14 г/л и KF от 36 до 48 г/л или водный раствор с содержанием 30-50 г/л KF·2H2O и 2-5 г/л СrO3.
6. Способ по любому из пп. 1-3, отличающийся тем, что в качестве детали используют лопатку турбомашины, выполненную из никелевого сплава, дополнительно приводят лопатку в возвратно-поступательное движение относительно ее продольной оси, используют цилиндрические щетки, совмещают направление осей цилиндров щеток с продольной осью лопатки, а в качестве электролита для пропитки упомянутых гранул из анионитов используют один из следующих водных растворов, включающих водный раствор соли фторида аммония с концентрацией 6,0-9,0 г/л, или водный раствор сульфата аммония с концентрацией 0,8-3,4, или водный раствор, содержащий серную и ортофосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас.%:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019130515A RU2716292C1 (ru) | 2019-09-27 | 2019-09-27 | Способ электрополирования металлической детали |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2019130515A RU2716292C1 (ru) | 2019-09-27 | 2019-09-27 | Способ электрополирования металлической детали |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2716292C1 true RU2716292C1 (ru) | 2020-03-11 |
Family
ID=69898196
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2019130515A RU2716292C1 (ru) | 2019-09-27 | 2019-09-27 | Способ электрополирования металлической детали |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2716292C1 (ru) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5028304A (en) * | 1988-10-21 | 1991-07-02 | Stanishevsky Vladimir K | Method of electrochemical machining of articles made of conducting materials |
RU2005045C1 (ru) * | 1991-06-27 | 1993-12-30 | Московский машиностроительный завод "Красный Окт брь" | Способ шлифовани пера кромок пера лопатки |
RU2379170C1 (ru) * | 2008-04-30 | 2010-01-20 | Открытое акционерное общество "Московское машиностроительное предприятие им. В.В. Чернышева" | Способ обработки лопаток газотурбинных двигателей |
WO2017186992A1 (es) * | 2016-04-28 | 2017-11-02 | Drylyte, S.L. | Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso |
-
2019
- 2019-09-27 RU RU2019130515A patent/RU2716292C1/ru active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5028304A (en) * | 1988-10-21 | 1991-07-02 | Stanishevsky Vladimir K | Method of electrochemical machining of articles made of conducting materials |
RU2005045C1 (ru) * | 1991-06-27 | 1993-12-30 | Московский машиностроительный завод "Красный Окт брь" | Способ шлифовани пера кромок пера лопатки |
RU2379170C1 (ru) * | 2008-04-30 | 2010-01-20 | Открытое акционерное общество "Московское машиностроительное предприятие им. В.В. Чернышева" | Способ обработки лопаток газотурбинных двигателей |
WO2017186992A1 (es) * | 2016-04-28 | 2017-11-02 | Drylyte, S.L. | Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2734206C1 (ru) | Способ ионного полирования детали | |
US11697154B2 (en) | Polishing method for inner wall of hollow metal part | |
RU2716330C1 (ru) | Способ обработки перфорационных отверстий и внутренней полости лопатки турбомашины | |
Du et al. | Research on the electrolytic-magnetic abrasive finishing of nickel-based superalloy GH4169 | |
RU2694941C1 (ru) | Способ электрополирования лопаток блиска и рабочий контейнер для его реализации | |
RU2700229C1 (ru) | Способ электрополирования лопаток блиска | |
RU2734179C1 (ru) | Способ ионного полирования внутренней поверхности детали | |
RU2724734C1 (ru) | Способ электрополирования детали | |
RU2715396C1 (ru) | Способ электрополирования лопатки гтд из легированной стали и устройство для его реализации | |
CN111570952A (zh) | 一种气冷空心叶片气膜孔内壁尖角倒圆装置及方法 | |
Liu et al. | Combined machining of Ti-6Al-4V alloy using electrochemical milling and electrochemical grinding | |
RU2769105C1 (ru) | Способ сухого электрополирования лопатки турбомашины | |
RU2731705C1 (ru) | Способ электрополирования металлической детали | |
RU2716292C1 (ru) | Способ электрополирования металлической детали | |
RU2710087C1 (ru) | Способ обработки перфорационных отверстий в полых лопатках турбомашины и установка для его реализации | |
RU2697757C1 (ru) | Способ сухого локального электрополирования лопаток блиска и рабочий контейнер для его реализации | |
RU2700226C1 (ru) | Способ электрополирования металлической детали | |
RU2710086C1 (ru) | Способ электрополирования внутреннего канала металлической детали и устройство для его реализации | |
RU2715395C1 (ru) | Способ электрополирования лопаток блиска и устройство для его реализации | |
RU2730306C1 (ru) | Способ сухого электрополирования детали | |
RU2786767C1 (ru) | Способ электрополирования металлической детали и установка для его реализации | |
RU2822229C1 (ru) | Способ электрополирования детали из алюминиевого сплава | |
RU2715397C1 (ru) | Способ обработки кромок пластинчатого торсиона несущего винта вертолета и устройство для его реализации | |
RU2697751C1 (ru) | Способ изготовления перфорационных отверстий в полой лопатке турбины из жаропрочного сплава | |
RU2755908C1 (ru) | Установка для электрополирования лопатки турбомашины |