RU2700229C1 - Способ электрополирования лопаток блиска - Google Patents

Способ электрополирования лопаток блиска Download PDF

Info

Publication number
RU2700229C1
RU2700229C1 RU2018135780A RU2018135780A RU2700229C1 RU 2700229 C1 RU2700229 C1 RU 2700229C1 RU 2018135780 A RU2018135780 A RU 2018135780A RU 2018135780 A RU2018135780 A RU 2018135780A RU 2700229 C1 RU2700229 C1 RU 2700229C1
Authority
RU
Russia
Prior art keywords
blisk
granules
blades
electrically conductive
polishing
Prior art date
Application number
RU2018135780A
Other languages
English (en)
Inventor
Аскар Джамилевич Мингажев
Николай Константинович Криони
Алиса Аскаровна Мингажева
Раис Калимуллович Давлеткулов
Original Assignee
федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" filed Critical федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет"
Priority to RU2018135780A priority Critical patent/RU2700229C1/ru
Application granted granted Critical
Publication of RU2700229C1 publication Critical patent/RU2700229C1/ru

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий. Способ включает заполнение электропроводящими гранулами рабочего контейнера, закрепление блиска на держателе, погружение блиска в электропроводящие гранулы, заполняющие рабочий контейнер и выполненные в виде пористых гранул из сульфированного сополимера стирол-дивинилбензола, поры которых заполнены электролитом без образования пленки электролита на внешней поверхности гранулы, подключение блиска к аноду, а гранул к катоду и полирование до получения заданной шероховатости поверхности лопаток блиска, при этом блиск погружают в электропроводящие гранулы частично на глубину, обеспечивающую полное погружение сегмента блиска с находящейся в его центре лопаткой, а электропроводящие гранулы приводят в непрерывное возвратно-поступательное движение амплитудой 22 кГц в направлении вдоль спинки и корыта лопатки, обеспечивающем равномерное омывание электропроводящими гранулами спинки и корыта лопатки, и вращают блиск относительно его оси со скоростью, обеспечивающей полирование поверхности лопаток блиска до получения заданной шероховатости по крайней мере за один цикл поворота блиска относительно его оси. Технический результат: повышение качества и однородности обработки поверхности деталей. 5 з.п. ф-лы, 2 ил.

Description

Изобретение относится к электрополированию лопаток блисков и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий.
Рабочие лопатки компрессора газотурбинного двигателя (ГТД) в процессе эксплуатации подвергаются воздействиям значительных динамических и статических нагрузок, а также эрозионному разрушению. Исходя из предъявляемых к эксплуатационным свойствам требований, для изготовления лопаток компрессора газовых турбин применяются титановые сплавы, которые по сравнению с техническим титаном имеют более высокую прочность, в том числе и при высоких температурах, сохраняя при этом достаточно высокую пластичность и коррозионную стойкость.
Однако лопатки турбин обладают повышенной чувствительностью к концентраторам напряжения. Поэтому дефекты, образующиеся в процессе изготовления этих деталей, недопустимы, поскольку вызывают возникновение интенсивных процессов разрушения. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.
Наиболее перспективными методами обработки лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л., Машиностроение, 1987.], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, Патент ГДР (DD) №238074 (А1), МПК C25F 3/16, опубл. 06.08.86., а также Патент РБ №1132, МПК C25F 3/16, 1996, БИ №3].
Известен способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ №1132, МПК C25F 3/16, 1996, БИ №3], а также способ электрохимического полирования [Патент США №5028304, МПК В23Н 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.91.]
Известные способы электрохимического полирования не позволяют производить качественное полирование поверхности лопаток блисков.
Известен также способ электролитно-плазменного полирования деталей из титановых сплавов [Патент РФ №2373306, МПК C25F 3/16. Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов. Бюл. №32, 2009], включающий погружение детали в электролит, содержащий окислитель, фторсодержащее соединение и воду, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала.
Однако известный способ [Патент РФ №2373306, МПК C25F 3/16] является многостадийным, что приводит с одной стороны к возрастанию сложности процесса обработки деталей, снижению качества и надежности процесса обработки из-за необходимости обеспечения большего количества параметров процесса и их соотношений, а также к повышению его трудоемкости.
Наиболее близким техническим решением к заявляемому способу является способ ионного полирования металлической детали, заключающийся в заполнении электропроводящими гранулами рабочий контейнер установки, выполненный их электропроводного материала, закрепление детали на держателе, погружении детали в электропроводящие гранулы, заполняющие контейнер, подключении детали к аноду, а контейнера к катоду. [WO 2017186992 - |Method for smoothing and polishing metals via ion transport by means of free solid bodies, and solid bodies for carrying out said method. Опубл. 2017.11.02].
Однако известный способ [WO 2017186992] не позволяет обеспечить высокое качество поверхности детали за счет неравномерности взаимодействия гранул с обрабатываемой поверхностью лопаток блиска.
Кроме того, способ-прототип [WO 2017186992] не может быть применен к обработке лопаток блисков, имеющих большие размеры, поскольку при обработке изделий, имеющих значительную площадь поверхности выделяется чрезмерное количество тепла, что делает процесс нестабильным и приводит к возникновению дефектов на поверхности лопаток. При этом обработка крупных изделий, к которым относятся блиски компрессора ГТД, требуется значительное количество электроэнергии и при реализации процесса полирования в этих условиях резко снижается к.п.д. обработки.
Задачей, на решение которой направлено заявляемое изобретение, является повышение качества обработки и надежности процесса полирования лопаток блисков за счет обеспечения равномерного взаимодействия гранул с поверхностью обрабатываемой детали и уменьшения площади обработки.
Техническим результатом предлагаемого изобретения является повышение качества и однородности обработки поверхности деталей.
Технический результат достигается за счет того, что в способе электрополирования лопаток блиска, включающем заполнение электропроводящими гранулами рабочего контейнера, закрепление блиска на держателе, погружение блиска в электропроводящие гранулы, заполняющие рабочий контейнер и выполненные в виде пористых гранул из сульфированного сополимера стирол-дивинилбензола, поры которых заполнены электролитом без образования пленки электролита на внешней поверхности гранулы, подключении блиска к аноду, а гранул к катоду, и полирование до получения заданной шероховатости поверхности лопаток блиска, в отличие от прототипа блиск погружают в электропроводящие гранулы частично на глубину, обеспечивающую полное погружение сегмента блиска с находящейся в его центре лопаткой, а электропроводящие гранулы приводят в непрерывное возвратно-поступательное движение амплитудой 22 кГц в направлении вдоль спинки и корыта лопатки, обеспечивающем равномерное омывание электропроводящими гранулами спинки и корыта лопатки и вращают блиск относительно его оси со скоростью, обеспечивающей полирование поверхности лопаток блиска до получения заданной шероховатости по крайней мере за один цикл поворота блиска относительно его оси.
Кроме того возможны следующие приемы способа: электропроводящие гранулы приводят в возвратно-поступательное движение возвратно-поступательным движением рабочего контейнера; используют рабочий контейнер выполненный из электропроводного материала, а подключение гранул к катоду производят за счет их контакта с поверхностью контейнера; в качестве гранул используют сферические частицы диаметром от 0,4 до 1,2 мм или овальные частицы размерами от 0,3 до 1,4 мм; полирование осуществляют в среде аргона, при этом в качестве блиска используют блиск турбины из титанового сплава, а в качестве электролита используют водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л.
Сущность заявляемого способа, возможность его осуществления и использования иллюстрируются представленными ниже примерами.
Изобретение поясняется следующей схемой. На фиг. 1 и 2 показан процесс электрополирования лопатки блиска. На фиг. 1 представлен блиск в процессе полирования лопаток, на фиг. 2 - блиск в процессе полирования лопаток (вид сверху. Фигуры 1 и 2 содержат: 1 - блиск; 2 - лопатка блиска; 3 - текущая (обрабатываемая) лопатка блиска; 4 - рабочий контейнер; 5 - электропроводные гранулы; 6 - держатель блиска. (Стрелками показано возвратно-поступательное движение рабочего контейнера; скругленной стрелкой - направления вращения блиска).
Заявляемый способ электрополирования лопаток блиска осуществляется следующим образом (фиг. 1 и 2). Обрабатываемый блиск 1 закрепляют на держателе блиска 6 и погружают нижнюю его часть (сегмент) в рабочий контейнер 4 с электропроводящими гранулами 5, прикладывают к обрабатываемому блиску 1 положительный электрический потенциал (анод), а к электропроводящим гранулам - отрицательный электрический потенциал (катод), придают электропроводящим гранулам 5 возвратно-поступательное движение по одному из выбранных режимов. Блиск 1 погружают в электропроводящие гранулы частично, охватывая только его сегмент (фиг. 1), причем погружение осуществляют на глубину, обеспечивающую полное погружение текущей обрабатываемой лопатки 3, находящейся в центре сегмента блиска 1. Электропроводящие гранулы 5 приводят в возвратно-поступательное движение в направлении вдоль спинки и корыта лопатки 3 (показано стрелками), обеспечивающем равномерное омывание электропроводящими гранулами 5 спинки и корыта лопатки 3 и вращают блиск 1 относительно его оси со скоростью обеспечивающей полирование поверхности лопаток блиска 1. При этом возвратно-поступательное движение электропроводящих гранул 5 могут быть созданы за счет возвратно-поступательных движений рабочего контейнера 4 или блиска 1. Блиск 1 закрепляют на держателе с возможностью поворота блиска 1 вокруг своей оси, устанавливают текущую лопатку блиска 3 перед рабочим контейнером 4 (фиг. 1), а погружение текущей лопатки блиска 3 в электропроводящие гранулы 5 осуществляют опусканием блиска 1 перемещая вниз держатель 6 (фиг. 1). Причем в процессе полирования текущей лопатки блиска 3 обеспечивают возвратно-поступательное движения гранул во всем объеме рабочего контейнера 4, а в процессе обработки текущей лопатки 3 блиска 1, держатель 6 поворачивает блиск 1 вокруг его оси постепенно погружая в электропроводящие гранулы 5 очередную обрабатываемую лопатку 2, которая становится текущей (обрабатываемой в данный момент)лопаткой 3. Указанный цикл последовательного полирования лопаток блиска 2 повторяют до окончания полирования всех лопаток блиска 2.
Для полирования каждой лопатки блиска 2 используют рабочий контейнер 4 в виде коробки, выполненной с возможностью обеспечения возвратно-поступательного движения при помощи одного из известных способов. Рабочий контейнер 4 выполняют электроизолированным с внешней его стороны. Причем для лучшей герметизации рабочего контейнера 4.
Процесс полирования может осуществляться при плотности тока 0,2-10 А/см2. В качестве электропроводящих гранул 5 могут использоваться, либо сферические частицы диаметром от 0,4 до 1,2 мм, либо овальные частицы размерами от 0,3 до 1,4 мм, а также пористые гранулы 5 из материала, обеспечивающего заполнение пор электролитом без образования пленки электролита на внешней поверхности гранулы 5, например, гранулы 5 выполненные из сульфированный сополимер стирол-дивинилбензола. Полирование может осуществляться в среде аргона, особенно при полировании деталей из титана и титановых сплавов, в частности лопаток блиска 2 турбины. При полировании блиска 1 из титанового сплава в качестве электролита может использоваться водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л. Кроме того, в процессе полирования может дополнительно производится относительное движение обрабатываемого блиска 1 и рабочего контейнера 4 в режимах возвратно-поступательного движения. Процесс полирования осуществляют до получения заданной величины шероховатости поверхности лопаток блиска 1.
Возвратно-поступательные движения электропроводящих гранул 5 позволяют обеспечить равномерное воздействие на всю обрабатываемую поверхность текущей лопатки 3 и тем самым повысить качество и однородность ее поверхности. Кроме того, за счет создание однородных условий для всего объема гранул обеспечивается равномерное протекание электрических процессов, в частности ионного переноса при обработки лопатки.
При осуществлении способа происходят следующие процессы. При возвратно-поступательном движении гранул происходят их столкновения с обрабатываемой поверхностью детали. При этом столкновения между гранулами происходят также и во всем объеме рабочего контейнера, создавая таким образом для всего объема гранул равномерные условия протекания электрических процессов. При этом электрические процессы между деталью (анодом) и гранулами (катодом) происходят за счет контакта массы электропроводных гранул друг с другом и с находящимся под отрицательным потенциалом рабочего контейнера и/или введенных в массу гранул электродов (катодов), находящихся под отрицательным потенциалом. При столкновениях гранул с микровыступами на обрабатываемой поверхности детали происходит ионный унос массы с микровыступов, в результате чего происходит выравнивание поверхности, уменьшается ее шероховатость и происходит полирование поверхности.
Пример. Обработке подвергали лопатки блиска из титанового сплава марки ВТ9. Обрабатываемые лопатки блиска последовательно погружали в рабочий контейнер с пористыми сферическими гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола. Полирование производили в среде аргона. В качестве электролита-заполнителя гранул использовали водный раствор смеси NH4F и KF при содержании NH4F - 6 г/л и KF - 33 г/л. Прикладывали к детали положительное, а к гранулам (через корпус контейнера) - отрицательное напряжение. Процесс полирования проводили при непрерывном колебательном движении гранул амплитудой 22 кГц. Процесс полирования проводили при плотности тока 1,8 А/см2.
Условия обработки по способу-прототипу [WO 2017186992] были следующие. Взаимодействие лопаток блиска и гранул за счет вращения блиска в объеме гранул. Обрабатываемые лопатки погружали рабочий контейнер с пористыми сферическими гранулами размерами от 0,6 до 0,8 мм, выполненными из сульфированного сополимера стирол-дивинилбензола. Рабочий контейнер обеспечивал погружение сразу всех лопаток блиска в гранулы. Полирование производили в среде аргона. В качестве электролита-заполнителя гранул использовали водный раствор смеси NH4F и KF при содержании NH4F - 6 г/л и KF - 33 г/л. Прикладывали к детали положительное, а к гранулам (через корпус контейнера) - отрицательное напряжение. Процесс полирования проводилипри плотности тока 1,8 А/см2.
Сравнивались величины шероховатости на различных участках детали после сравниваемых способах обработки. Исходная шероховатость поверхности деталей составляла Ra 0,72 мкм. После обработки разброс шероховатости на различных участках поверхности обработанных деталей составляла: для прототипа от Ra 0,16 мкм до Ra 0,32 мкм, для обработанных по предлагаемому способу от Ra 0,14 мкм до Ra 0,18 мкм. Кроме того, при обработке по способу-прототипу наблюдался перегрев среды гранул и блиска из-за необходимости использования большей энергии, поскольку площадь обработки в этом случае была значительно большей, чем по предлагаемому способу.
Кроме того, были проведены исследования следующих режимов обработки деталей из титановых сплава, (ВТ-1, ВТ3-1, ВТ8). За отрицательный результат принимался режим обработки дающий разброс значений шероховатости по поверхности детали более ΔRa 0, 05 мкм. Возвратно-поступательные движения гранул - удовлетворительный результат (У.Р.), обеспечение только трения гранул о поверхность обрабатываемой детали при ее полном погружении неудовлетворительный результат (Н.Р.).
Размеры и форма гранул: сферические частицы диаметром: 0,2 мм (Н.Р.), 0,4 мм (У.Р.), 0,6 мм (У.Р.), 0,8 мм (У.Р.), 1,2 мм (У.Р.), 0,14 мм (Н.Р.). Овальные частицы размерами от 0,3 до 1,4 мм. 0,2 мм (Н.Р.), 0,3 мм (У.Р.), 0,5 мм (У.Р.), 0,8 мм (У.Р.), 1,2 мм (У.Р.), 1,4 мм (У.Р.), 0,16 мм (Н.Р.).
Улучшение качества электрополирования лопаток блиска по предлагаемому способу, во всех проведенных случаях обработки указывает на то, что использование способа электрополирования лопаток блиска, включающего следующие признаки: заполнение электропроводящими гранулами рабочего контейнера; закрепление блиска на держателе; погружении блиска в электропроводящие гранулы, заполняющие рабочий контейнер; подключении блиска к аноду, а гранул к катоду и полирование до получения заданной шероховатости поверхности лопаток блиска; погружение блиска в электропроводящие гранулы частично, охватывая только сегмент блиска; погружение на глубину, обеспечивающую полное погружение лопатки, находящейся в центре сегмента; приведение электропроводящих гранул в возвратно-поступательное движение в направлении вдоль спинки и корыта лопатки, обеспечивающем равномерное омывание электропроводящими гранулами спинки и корыта лопатки; вращение блиска относительно его оси со скоростью обеспечивающей полирование поверхности лопаток блиска до получения заданной шероховатости, по крайней мере за один цикл поворота блиска относительно его оси, а также использование следующих признаков способа: приведение электропроводящих гранул в возвратно-поступательное движение возвратно-поступательным движением рабочего контейнера; использование рабочего контейнера, выполненного из электропроводного материала, а подключение гранул к катоду производят за счет их контакта с поверхностью контейнера; в качестве гранул используют, либо сферические частицы диаметром от 0,4 до 1,2 мм, либо овальные частицы размерами от 0,3 до 1,4 мм; используют пористые гранулы из материала, обеспечивающего заполнение пор электролитом без образования пленки электролита на внешней поверхности гранулы; в качестве материала гранул используют сульфированный сополимер стирол-дивинилбензола; полирование осуществляют в среде аргона,, а в качестве блиска используют блиск турбины из титанового сплава, а в качестве электролита используют водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л, позволяют достичь технического результата заявляемого способа - повышение качества и однородности обработки поверхности деталей.

Claims (6)

1. Способ электрополирования лопаток блиска, включающий заполнение электропроводящими гранулами рабочего контейнера, закрепление блиска на держателе, погружение блиска в электропроводящие гранулы, заполняющие рабочий контейнер и выполненные в виде пористых гранул из сульфированного сополимера стирол-дивинилбензола, поры которых заполнены электролитом без образования пленки электролита на внешней поверхности гранулы, подключение блиска к аноду, а гранул к катоду и полирование до получения заданной шероховатости поверхности лопаток блиска, отличающийся тем, что блиск погружают в электропроводящие гранулы частично на глубину, обеспечивающую полное погружение сегмента блиска с находящейся в его центре лопаткой, а электропроводящие гранулы приводят в непрерывное возвратно-поступательное движение амплитудой 22 кГц в направлении вдоль спинки и корыта лопатки, обеспечивающем равномерное омывание электропроводящими гранулами спинки и корыта лопатки, и вращают блиск относительно его оси со скоростью, обеспечивающей полирование поверхности лопаток блиска до получения заданной шероховатости по крайней мере за один цикл поворота блиска относительно его оси.
2. Способ по п. 1, отличающийся тем, что электропроводящие гранулы приводят в возвратно-поступательное движение возвратно-поступательным движением рабочего контейнера.
3. Способ по п. 1, отличающийся тем, что используют рабочий контейнер, выполненный из электропроводного материала, а подключение гранул к катоду производят за счет их контакта с поверхностью контейнера.
4. Способ по любому из пп. 1-3, отличающийся тем, что в качестве гранул используют сферические частицы диаметром от 0,4 до 1,2 мм или овальные частицы размерами от 0,3 до 1,4 мм.
5. Способ по любому из пп. 1-3, отличающийся тем, что полирование осуществляют в среде аргона, при этом в качестве блиска используют блиск турбины из титанового сплава, а в качестве электролита используют водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л.
6. Способ по п. 4, отличающийся тем, что полирование осуществляют в среде аргона, при этом в качестве блиска используют блиск турбины из титанового сплава, а в качестве электролита используют водный раствор смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л.
RU2018135780A 2018-10-09 2018-10-09 Способ электрополирования лопаток блиска RU2700229C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2018135780A RU2700229C1 (ru) 2018-10-09 2018-10-09 Способ электрополирования лопаток блиска

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2018135780A RU2700229C1 (ru) 2018-10-09 2018-10-09 Способ электрополирования лопаток блиска

Publications (1)

Publication Number Publication Date
RU2700229C1 true RU2700229C1 (ru) 2019-09-13

Family

ID=67989548

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2018135780A RU2700229C1 (ru) 2018-10-09 2018-10-09 Способ электрополирования лопаток блиска

Country Status (1)

Country Link
RU (1) RU2700229C1 (ru)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716330C1 (ru) * 2019-11-20 2020-03-11 Аскар Джамилевич Мингажев Способ обработки перфорационных отверстий и внутренней полости лопатки турбомашины
RU2730306C1 (ru) * 2020-02-28 2020-08-21 Аскар Джамилевич Мингажев Способ сухого электрополирования детали
RU2765473C1 (ru) * 2021-08-22 2022-01-31 Аскар Джамилевич Мингажев Способ сухого ионного полирования внутренней поверхности детали
RU2768077C1 (ru) * 2021-08-23 2022-03-23 Аскар Джамилевич Мингажев Способ электрополирования внутренней поверхности детали
RU2788444C2 (ru) * 2021-05-25 2023-01-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Способ упрочнения внутренних поверхностей каналов деталей

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2461667C1 (ru) * 2011-04-25 2012-09-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ электролитно-плазменного полирования деталей из титана и титановых сплавов
RU2495966C1 (ru) * 2012-07-03 2013-10-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ полирования деталей из титановых сплавов
WO2017186992A1 (es) * 2016-04-28 2017-11-02 Drylyte, S.L. Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso
RU2655563C1 (ru) * 2017-08-18 2018-05-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2461667C1 (ru) * 2011-04-25 2012-09-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ электролитно-плазменного полирования деталей из титана и титановых сплавов
RU2495966C1 (ru) * 2012-07-03 2013-10-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ полирования деталей из титановых сплавов
WO2017186992A1 (es) * 2016-04-28 2017-11-02 Drylyte, S.L. Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso
RU2655563C1 (ru) * 2017-08-18 2018-05-28 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2716330C1 (ru) * 2019-11-20 2020-03-11 Аскар Джамилевич Мингажев Способ обработки перфорационных отверстий и внутренней полости лопатки турбомашины
RU2730306C1 (ru) * 2020-02-28 2020-08-21 Аскар Джамилевич Мингажев Способ сухого электрополирования детали
RU2788444C2 (ru) * 2021-05-25 2023-01-19 Федеральное государственное бюджетное образовательное учреждение высшего образования "Воронежский государственный технический университет" Способ упрочнения внутренних поверхностей каналов деталей
RU2765473C1 (ru) * 2021-08-22 2022-01-31 Аскар Джамилевич Мингажев Способ сухого ионного полирования внутренней поверхности детали
RU2768077C1 (ru) * 2021-08-23 2022-03-23 Аскар Джамилевич Мингажев Способ электрополирования внутренней поверхности детали
RU2799641C1 (ru) * 2022-12-19 2023-07-07 Раис Калимуллович Давлеткулов Способ электрополирования металлической детали сложной формы и установка для его реализации

Similar Documents

Publication Publication Date Title
RU2700229C1 (ru) Способ электрополирования лопаток блиска
RU2694941C1 (ru) Способ электрополирования лопаток блиска и рабочий контейнер для его реализации
US11697154B2 (en) Polishing method for inner wall of hollow metal part
RU2697757C1 (ru) Способ сухого локального электрополирования лопаток блиска и рабочий контейнер для его реализации
RU2699495C1 (ru) Способ последовательного электрополирования лопаток блиска и рабочий контейнер для его реализации
US5074970A (en) Method for applying an abrasive layer to titanium alloy compressor airfoils
Du et al. Research on the electrolytic-magnetic abrasive finishing of nickel-based superalloy GH4169
RU2700226C1 (ru) Способ электрополирования металлической детали
EP0542927A1 (en) Orbital electrochemical machining
CN111032929A (zh) H2so4在用于通过游离固体进行离子迁移对金属进行平滑和抛光的方法中作为电解质的用途
US5853561A (en) Method for surface texturing titanium products
RU2734206C1 (ru) Способ ионного полирования детали
RU2697751C1 (ru) Способ изготовления перфорационных отверстий в полой лопатке турбины из жаропрочного сплава
RU2694684C1 (ru) Способ электролитно-плазменного полирования лопаток блиска турбомашин и эластичный чехол для его реализации
CN107999908B (zh) 一种微坑阵列的制作方法
RU2715396C1 (ru) Способ электрополирования лопатки гтд из легированной стали и устройство для его реализации
RU2715395C1 (ru) Способ электрополирования лопаток блиска и устройство для его реализации
RU2710087C1 (ru) Способ обработки перфорационных отверстий в полых лопатках турбомашины и установка для его реализации
RU2724734C1 (ru) Способ электрополирования детали
RU2697759C1 (ru) Способ электрохимической обработки внутреннего канала металлической детали и электрод-инструмент для его реализации
RU2706263C1 (ru) Способ электролитно-плазменного полирования изделий из титановых и железохромоникелевых сплавов
RU2693235C1 (ru) Устройство для электролитно-плазменного полирования лопаток блиска
RU2693236C1 (ru) Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов
RU2719217C1 (ru) Способ электрополирования моноколеса с лопатками и устройство для его реализации
RU2715398C1 (ru) Способ электрополирования детали