RU2461667C1 - Способ электролитно-плазменного полирования деталей из титана и титановых сплавов - Google Patents

Способ электролитно-плазменного полирования деталей из титана и титановых сплавов

Info

Publication number
RU2461667C1
RU2461667C1 RU2011116388/02A RU2011116388A RU2461667C1 RU 2461667 C1 RU2461667 C1 RU 2461667C1 RU 2011116388/02 A RU2011116388/02 A RU 2011116388/02A RU 2011116388 A RU2011116388 A RU 2011116388A RU 2461667 C1 RU2461667 C1 RU 2461667C1
Authority
RU
Russia
Prior art keywords
electrolyte
polishing
titanium
parts
processing
Prior art date
Application number
RU2011116388/02A
Other languages
English (en)
Inventor
Дамир Рамилевич Таминдаров (RU)
Дамир Рамилевич Таминдаров
Анатолий Михайлович Смыслов (RU)
Анатолий Михайлович Смыслов
Аскар Джамилевич Мингажев (RU)
Аскар Джамилевич Мингажев
Original Assignee
Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш"
Дамир Рамилевич Таминдаров
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш", Дамир Рамилевич Таминдаров filed Critical Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш"
Priority to RU2011116388/02A priority Critical patent/RU2461667C1/ru
Application granted granted Critical
Publication of RU2461667C1 publication Critical patent/RU2461667C1/ru

Links

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

Изобретение относится к электролитно-плазменному полированию металлических изделий и может быть использовано в турбомашиностроении при обработке лопаток паровых турбин, лопаток газоперекачивающих установок и компрессоров газотурбинных двигателей. Способ включает погружение детали в электролит, формирование вокруг детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на деталь электрического потенциала от 320 В до 340 В, при этом в качестве электролита используют 2-7% водный раствор смеси NH4F и KF при содержании NH4F от 16 до 26 вес.%, KF - остальное. Технический результат - снижение шероховатости поверхности деталей и трудоемкости полирования. 9 з.п. ф-лы, 1 табл., 1 пр.

Description

Изобретение относится к электролитно-плазменному полированию металлических изделий, преимущественно из титана и титановых сплавов и может быть использовано в турбомашиностроении при обработке рабочих и направляющих лопаток паровых турбин, лопаток газоперекачивающих установок и компрессоров газотурбинных двигателей для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий.
Рабочие лопатки компрессора газотурбинного двигателя (ГТД) и газотурбинной установки (ГТУ), а также паровых турбин в процессе эксплуатации, подвергаются воздействиям значительных динамических и статических нагрузок, а также коррозионному и эрозионному разрушению. Исходя из предъявляемых к эксплуатационным свойствам требований, для изготовления лопаток компрессора газовых турбин применяются титановые сплавы, которые по сравнению с техническим титаном имеют более высокую прочность, в том числе и при высоких температурах, сохраняя при этом достаточно высокую пластичность и коррозионную стойкость (например, титановые сплавы марок ВТ6, ВТ8, ВТ18У, ВТ3-1, ВТ22 и др.)
Однако лопатки турбин из указанных сплавов обладают повышенной чувствительностью к концентраторам напряжения. Поэтому дефекты, образующиеся в процессе изготовления этих деталей, недопустимы, поскольку вызывают возникновение интенсивных процессов разрушения. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.
Наиболее перспективными методами обработки лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л.: Машиностроение, 1987], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, патент ГДР (DD) № 238074 (А1), кл. C25F 3/16, опубл. 06.08.86, а также патент РБ № 1132, кл. C25F 3/16, 1996, БИ № 3].
Известен способ полирования металлических поверхностей, включающий анодную обработку в электролите [патент РБ № 1132, кл. C25F 3/16, 1996, БИ № 3], а также способ электрохимического полирования [патент США № 5028304, кл. B23H 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.91].
Известные способы электрохимического полирования не позволяют производить качественное полирование поверхности детелей из титана и титановых сплавов.
Наиболее близким к заявляемому техническому решению, является способ электролитно-плазменного полирования детали из титана или титановых сплавов, включающий погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала [патент РФ №2373306, МПК C25F 3/16. СПОСОБ МНОГОЭТАПНОГО ЭЛЕКТРОЛИТНО-ПЛАЗМЕННОГО ПОЛИРОВАНИЯ ИЗДЕЛИЙ ИЗ ТИТАНА И ТИТАНОВЫХ СПЛАВОВ. Бюл №32, 2009].
Однако известный способ [патент РФ №2373306, МПК C25F 3/16] является многостадийным, что приводит с одной стороны к возрастанию сложности процесса обработки деталей, снижению качества и надежности процесса обработки из-за необходимости обеспечения большего количества параметров процесса и их соотношений, а также к повышению его трудоемкости.
Задачей, на решение которой направлено заявляемое изобретение, является повышение качества обработки и надежность процесса полирования деталей из титана и титановых сплавов, а также снижения его трудоемкости за счет использования одноэтапной обработки деталей.
Поставленная задача решается тем, что в способе электролитно-плазменного полирования деталей из титана и титановых сплавов, включающем погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала, в отличие от прототипа к обрабатываемой детали прикладывают электрический потенциал от 320 B до 340 B, а в качестве электролита используют 2-7% водный раствор смеси KF и NH4F, при их содержании, вес.%: NH4F от 16% до 26%, KF - остальное, при этом возможно использование следующих вариантов: полирование ведут при величине тока от 0,2 А/дм2 до 0,5 А/дм2, при температуре от 70°C до 90°C, в течение от 1 до 10 минут, при площади полирования от 1 см2 до 4000 см2; в качестве детали используют лопатку турбомашины; в состав электролита дополнительно вводят поверхностно-активные вещества в концентрации 0,4-0,8%; в состав электролита дополнительно вводят 0,3-0,8% TiF4; перед полированием детали в электролите, по режимам обработки детали из титана или титановых сплавов, обрабатывают вспомогательные элементы из титана или титанового сплава со смывом образовавшегося осадка в электролит, причем обработку вспомогательных элементов ведут до стабилизации процесса полирования.
Сущность заявляемого способа, возможность его осуществления и использования иллюстрируются представлеными в таблице примерами.
Заявляемый способ электролитно-плазменного полирования деталей из титана и титановых сплавов осуществляется следующим образом. Обрабатываемую деталь из титана или титанового сплава погружают в ванну с водным раствором электролита, прикладывают к изделию положительный электрический потенциал, а к электролиту - отрицательный, в результате чего достигают возникновения разряда между обрабатываемым изделием и электролитом. Процесс электролитно-плазменного полирования осуществляют при электрическом потенциале от 320 B до 340 B, а в качестве электролита используют 2-7% водный раствор смеси KF и NH4F, при их содержании, вес.%: 80% KF и 20% NH4F. Полирование, в зависимости от параметров детали (при площади полирования от 1 см2 до 4000 см2) и заданной микрогеометрии поверхности, ведут при величине тока от 0,2 А/дм2 до 0,5 А/дм2, при температуре от 70°C до 90°C, в течение от 1 до 10 минут. Полируемой деталью может быть лопатка турбомашины. Для повышения качества обработки в состав электролита могут быть дополнительно введены поверхностно-активные вещества в концентрации 0,4-0,8% или 0,3-0,8% TiF4. Перед полированием детали в электролите, по режимам обработки детали из титана или титановых сплавов, обрабатывают вспомогательные элементы из титана или титанового сплава со смывом образовавшегося осадка в электролит, причем обработку вспомогательных элементов ведут до стабилизации процесса полирования.
Обработку ведут в среде электролита при поддержании вокруг детали парогазовой оболочки. В качестве ванны используют емкость, выполненную из материала, стойкого к воздействию электролита. Величина pH электролита находится в пределах 4-9. Температура электролита - в диапазоне 70-90°C.
При осуществлении способа происходят следующие процессы. Под действием протекающих токов происходит нагрев поверхности детали и образование вокруг нее парогазовой оболочки. Излишняя теплота, возникающая при нагреве детали и электролита, отводится через систему охлаждения. При этом поддерживают заданную температуру процесса. Под действием электрического напряжения (электрического потенциала между деталью и электролитом) в парогазовой оболочке возникает разряд, представляющий из себя ионизированную электролитическую плазму, обеспечивающую протекание интенсивных химических и электрохимических реакций между обрабатываемой деталью и средой парогазовой оболочки.
При подаче положительного потенциала на деталь, в процессе протекания указанных реакций, происходит анодирование поверхности детали с одновременным химическим травлением образующегося окисла. Причем при анодной поляризации парогазовый слой состоит из паров электролита, анионов и газообразного кислорода. Поскольку травление происходит, в основном, на микронеровностях, где образуется тонкий слой окисла, а процессы анодирования продолжаются, то в результате совместного действия этих факторов происходит уменьшение шероховатости обрабатываемой поверхности и, как следствие, полирование последней.
При обработке в электролите 2-7% водного раствора смеси KF и NH4F при их содержании, вес.%: NH4F от 16% до 26%, KF - остальное, поверхность детали покрывается слоем легко растворимого налета из фтористых соединений, образованных вытеснением кислорода (TiO2+F-→TiF4). При напряжении от 320 B до 340 B температура разряда достаточно высока для ведения стабильного процесса полирования. Поскольку деталь из-за наличия паро-газовой оболочки непосредственно не контактирует с электролитом, то соединение TiF4 испаряется, т.е. полирование ведется через испарение фторированного слоя (Тпл.TiF4=238°C).
При обработке сложнопрофильных деталей из титана и титановых сплавов (например, лопаток турбомашин) целесообразно введение в состав электролита поверхностно-активных веществ (ПАВ). Введение ПАВ уменьшает коэффициент поверхностного натяжения раствора, что улучшает состояние парогазового слоя на границе «газ-жидкость». Однако не следует создавать значительных концентраций ПАВ, поскольку это может привести к образованию нежелательных несмываемых пленок на поверхности изделия. Кроме того, увеличение концентрации ПАВ может привести к обратному эффекту, т.е. увеличению величины коэффициента поверхностного натяжения раствора. Концентрация основных компонентов электролита является величиной достаточно варьируемой. При этом нижний предел их концентрации определяется необходимостью обеспечения количественного доминирования ионов фтора над ионами кислорода как в образующейся на поверхности изделия пленке, так и в парогазовой оболочке. Верхний предел концентрации раствора электролита лимитируется увеличением количества образующихся, в процессе обработки, токсичных газообразных продуктов (F-, NH3). Для минимизации джоуль-ленцовых потерь электролит должен обладать достаточной электропроводимостью. При подборе концентрации электролита из диапазона от 2 до 7% водного раствора смеси KF и NH4F (при вес.%: NH4F от 16% до 26%, KF - остальное), а также дополнительных добавок (поверхностно-активные вещества в концентрации 0,4-0,8% или 0,3-0,8% TiF4), необходимо также учитывать возможность его продолжительного использования без дополнительной корректировки состава.
Пример. Обработке подвергали детали из титановых сплавов марок ВТ-1, ВТ3-1, ВТ6, ВТ8. Обрабатываемые образцы погружали в ванну с водным раствором электролита и прикладывали к детали положительное, а к электролиту - отрицательное напряжение. Детали обрабатывались в среде электролитов на основе водного раствора, в состав которых входили: от 2 до 7% водного раствора смеси KF и NH4F (при вес.%: 80% KF и 20% NH4F), а также дополнительные добавки (поверхностно-активные вещества в концентрации 0,4-0,8% или 0,3-0,8% TiF4). При обработке производили циркуляционное охлаждение электролита (поддерживалась средняя температура процесса в интервале 70°…90°C). В таблице приведены результаты обработки поверхности изделий из титановых сплавов. Условия обработки по по способу-прототипу, при многоэтапной обработке: первый этап: электрическое напряжение 120…170 В, время - 18…50 сек (0,3…0,8 мин); второй этап: напряжение - 210…350 В, время - 1,5…5 минут (90…300 сек); третий этап: напряжение - 210…350 В, время - 0,8…2,5 минут (90…300 сек) (дополнительное условие обработки на третьем этапе: не вынимая изделие из электролита, отключали электрическое напряжение, затем удаляли изделие из электролита, охлаждали его до температуры окружающей среды (20°C), вновь прикладывали к нему положительное по отношению к электролиту электрическое напряжение порядка 210-350 В, затем снова погружали изделие в электролит и вели полирование в течение от 0,8 до 2,5 минут); четвертый этап: напряжение - 210…350 В, время - 0,8…2,5 минут (90…300 сек) (дополнительное условие обработки на четвертом этапе: не вынимая изделие из электролита, отключали электрическое напряжение, затем удаляли изделие из электролита, охлаждали его до температуры окружающей среды (20°C), вновь прикладывали к нему положительное по отношению к электролиту электрическое напряжение порядка 210-350 В, затем снова погружали изделие в электролит и вели полирование в течение от 0,8 до 2,5 минут). Обработку изделия проводили при величине тока от 0,2 А/дм2 до 0,5 А/дм2, при температуре от 70°C до 90°C. Условия обработки по предлагаемому способу: электрический потенциал (напряжение) от 320 В до 340 В; электролит - 2-7% водный раствор смеси KF и NH4F, при их содержании, вес.%: NH4F от 16% до 26%, KF - остальное; добавки в электролит - поверхностно-активные вещества в концентрации 0,4-0,8% или 0,3-0,8% TiF4; величина тока от 0,2 А/дм2 до 0,5 А/дм2, при температуре от 70°C до 90°C, в течение от 1 до 10 минут, при площади полирования от 1 см2 до 4000 см2. Перед полированием детали в электролите, по режимам обработки детали из титана или титановых сплавов (электрический потенциал от 320 В до 340 В) обрабатывали вспомогательные элементы из титана или титанового сплава со смывом образовавшегося осадка в электролит (обработку вспомогательных элементов вели до стабилизации процесса полирования). Кроме того, исследовались электролиты: от 2% до 7% (1% - неудовлетворительный результат (Н.Р.); 2%; 3%; 5%; 7%; 8% - (Н.Р.) водный раствор смеси KF и NH4F, при их содержании, вес.%: NH4F от 16% до 26% (14% - (Н.Р.); 16%; 20%; 24%; 26%; 28% - (Н.Р.)), KF - остальное. Исследования электролитов показали аналогичный результат результатов обработки деталей из титановых сплавов. В таблице приведены средние значения шероховатости поверхности Ra, полученные по способу-прототипу и предлагаемому способу.
Вариант способа Материал Исходная шероховатость поверхности, Ra мкм Шероховатость поверхности (Ra мкм), после обработки
Средняя величина Ra, мкм Разброс значений ΔRa мкм
Прототип 1 ВТ-1 0,45…0,50 0,15…0,05 0,10
2 ВТ3-1 0,45…0,50 0,20…0,07 0,13
3 ВТ6 0,45…0,50 0,25…0,06 0,19
4 ВТ8 0,45…0,50 0,22…0,07 0,19
Предлагаемый 5 ВТ-1 0,45…0,50 0,10…0,06 0,04
6 ВТ3-1 0,45…0,50 0,08…0,05 0,03
7 ВТ6 0,45…0,50 0,09…0,06 0,02
8 ВТ8 0,45…0,50 0,09…0,07 0,04
Предлагаемый с добавл. ПАВ 9 ВТ-1 0,45…0,50 0,08…0,05 0,03
10 ВТ3-1 0,45…0,50 0,07…0,05 0,02
11 ВТ6 0,45…0,50 0,08…0,07 0,03
12 ВТ8 0,45…0,50 0,08…0,06 0,02
Таким образом, проведенные исследования показали, что применение предлагаемого способа электролитно-плазменного полирования деталей из титана и титановых сплавов позволяет повысить, по сравнению с прототипом, качество обработки изделий из титановых сплавов ВТ-1, ВТ3-1, ВТ6 и ВТ8. Как видно из приведенных в таблице примеров, средние значения шероховатости поверхности для прототипа от Ra 0,25…0,05 мкм (при величине разброса значений ΔRa=0,10 до 0,19 мкм), для предлагаемого способа улучшается до Ra 0,09…0,05 мкм (при величине разброса значений ΔRa=0,04 до 0,02 мкм).
Улучшение качества полирования деталей из титана и титановых сплавов по предлагаемому способу во всех проведенных случаях обработки указывает на то, что использование электролитно-плазменного полирования детали из титана и титановых сплавов, включающего погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала, приложение к обрабатываемой детали электрического потенциала от 320 B до 340 B, использование в качестве электролита 2-7% водного раствора смеси KF и NH4F, при их содержании, вес.%: NH4F от 16% до 26%, KF - остальное, а также использование следующих вариантов: ведение полирования при величине тока от 0,2 А/дм2 до 0,5 А/дм2, при температуре от 70°C до 90°, в течение от 1 до 10 минут, при площади полирования от 1 см2 до 4000 см2; использование в качестве детали лопатки турбомашины; дополнительное введение в состав электролита поверхностно-активных веществ в концентрации 0,4-0,8% или 0,3 -0,8% TiF4; обработка перед полированием детали в электролите, по режимам обработки детали из титана или титановых сплавов, вспомогательных элементов из титана или титанового сплава со смывом образовавшегося осадка в электролит, проведение обработки вспомогательных элементов до стабилизации процесса полирования, позволяют достичь технического результата заявляемого способа - повысить качество обработки и надежность процесса полирования деталей из титана и титановых сплавов, а также снизить его трудоемкость.

Claims (10)

1. Способ электролитно-плазменного полирования деталей из титана и титановых сплавов, включающий погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала, отличающийся тем, что к обрабатываемой детали прикладывают электрический потенциал от 320 В до 340 В, а в качестве электролита используют 2-7% водный раствор смеси NH4F и KF при содержании NH4F от 16 до 26 вес %, KF - остальное.
2. Способ по п.1, отличающийся тем, что полирование ведут при величине тока от 0,2 А/дм2 до 0,5 А/дм2 и температуре от 70°С до 90°С.
3. Способ по п.1, отличающийся тем, что полирование ведут в течение от 1 до 10 мин при площади полирования от 1 см2 до 4000 см2.
4. Способ по п.2, отличающийся тем, что полирование ведут в течение от 1 до 10 мин при площади полирования от 1 см2 до 4000 см2.
5. Способ по п.1, отличающийся тем, что в качестве деталей используют лопатки турбомашины.
6. Способ по п.3, отличающийся тем, что в качестве деталей используют лопатки турбомашины.
7. Способ по п.4, отличающийся тем, что в качестве деталей используют лопатки турбомашины.
8. Способ по любому из пп.1-7, отличающийся тем, что в состав электролита дополнительно вводят поверхностно-активные вещества в концентрации 0,4-0,8%.
9. Способ по любому из пп.1-7, отличающийся тем, что в состав электролита дополнительно вводят 0,3-0,8 вес.% TiF4.
10. Способ по любому из пп.1-7, отличающийся тем, что перед полированием деталей в электролите по режимам обработки деталей из титана или титанового сплава для образования осадка ведут обработку вспомогательных элементов из титана или титанового сплава со смывом образовавшегося осадка в электролит, причем обработку вспомогательных элементов ведут до стабилизации процесса полирования.
RU2011116388/02A 2011-04-25 2011-04-25 Способ электролитно-плазменного полирования деталей из титана и титановых сплавов RU2461667C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2011116388/02A RU2461667C1 (ru) 2011-04-25 2011-04-25 Способ электролитно-плазменного полирования деталей из титана и титановых сплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2011116388/02A RU2461667C1 (ru) 2011-04-25 2011-04-25 Способ электролитно-плазменного полирования деталей из титана и титановых сплавов

Publications (1)

Publication Number Publication Date
RU2461667C1 true RU2461667C1 (ru) 2012-09-20

Family

ID=47077477

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2011116388/02A RU2461667C1 (ru) 2011-04-25 2011-04-25 Способ электролитно-плазменного полирования деталей из титана и титановых сплавов

Country Status (1)

Country Link
RU (1) RU2461667C1 (ru)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2552203C2 (ru) * 2013-08-20 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ полирования деталей из титановых сплавов
RU2700226C1 (ru) * 2018-10-02 2019-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования металлической детали
RU2700229C1 (ru) * 2018-10-09 2019-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования лопаток блиска
CN113089072A (zh) * 2021-04-06 2021-07-09 哈工大机器人(合肥)国际创新研究院 一种单一α相钛的液相等离子纳米抛光液及其制备方法、应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080230397A1 (en) * 2007-03-19 2008-09-25 Degudent Gmbh Process for the polishing of metallic dental prostheses
RU2355829C2 (ru) * 2007-04-25 2009-05-20 ООО "НПП Уралавиаспецтехнология" Способ электролитно-плазменного полирования металлических изделий
RU2007141873A (ru) * 2007-11-12 2009-05-20 ООО "НПП Уралавиаспецтехнология" (RU) Способ получения эрозионно-стойкого нанослойного покрытия для лопаток турбомашин из титановых сплавов
RU2373306C2 (ru) * 2007-06-25 2009-11-20 ООО "НПП Уралавиаспецтехнология" Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080230397A1 (en) * 2007-03-19 2008-09-25 Degudent Gmbh Process for the polishing of metallic dental prostheses
RU2355829C2 (ru) * 2007-04-25 2009-05-20 ООО "НПП Уралавиаспецтехнология" Способ электролитно-плазменного полирования металлических изделий
RU2373306C2 (ru) * 2007-06-25 2009-11-20 ООО "НПП Уралавиаспецтехнология" Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов
RU2007141873A (ru) * 2007-11-12 2009-05-20 ООО "НПП Уралавиаспецтехнология" (RU) Способ получения эрозионно-стойкого нанослойного покрытия для лопаток турбомашин из титановых сплавов

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2552203C2 (ru) * 2013-08-20 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ полирования деталей из титановых сплавов
RU2700226C1 (ru) * 2018-10-02 2019-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования металлической детали
RU2700229C1 (ru) * 2018-10-09 2019-09-13 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования лопаток блиска
CN113089072A (zh) * 2021-04-06 2021-07-09 哈工大机器人(合肥)国际创新研究院 一种单一α相钛的液相等离子纳米抛光液及其制备方法、应用
CN113089072B (zh) * 2021-04-06 2024-03-26 哈工大机器人(合肥)国际创新研究院 一种单一α相钛的液相等离子纳米抛光液及其制备方法、应用

Similar Documents

Publication Publication Date Title
RU2373306C2 (ru) Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов
RU2552202C2 (ru) Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
JP4168066B2 (ja) プラズマ処理装置に用いられる陽極酸化処理用アルミニウム合金およびその製造方法、陽極酸化皮膜を有するアルミニウム合金部材、ならびにプラズマ処理装置
Fattah-alhosseini et al. Effects of Disodium Phosphate Concentration (Na 2 HPO 4· 2H 2 O) on Microstructure and Corrosion Resistance of Plasma Electrolytic Oxidation (PEO) Coatings on 2024 Al Alloy
RU2552203C2 (ru) Способ полирования деталей из титановых сплавов
RU2461667C1 (ru) Способ электролитно-плазменного полирования деталей из титана и титановых сплавов
RU2355829C2 (ru) Способ электролитно-плазменного полирования металлических изделий
RU2552201C2 (ru) Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов
Kusmanov et al. Influence of oxide layer on carbon diffusion during anode plasma electrolytic carburizing
RU2655563C1 (ru) Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
RU2495966C1 (ru) Способ полирования деталей из титановых сплавов
JP2008095192A (ja) ニオブ及びタンタルの電解研磨方法
RU2706263C1 (ru) Способ электролитно-плазменного полирования изделий из титановых и железохромоникелевых сплавов
RU2467098C1 (ru) Способ электролитно-плазменного удаления покрытий из нитридов титана или нитридов соединений титана с металлами
CN113174553A (zh) 一种电子束重熔与微弧氧化相结合提高镁合金耐蚀性的方法
RU2664994C1 (ru) Электролит для электролитно-плазменного полирования деталей из тугоплавких сплавов
RU2533223C1 (ru) Способ обработки лопатки газотурбинного двигателя
RU2694684C1 (ru) Способ электролитно-плазменного полирования лопаток блиска турбомашин и эластичный чехол для его реализации
Zou et al. Optimization and mechanism of precise finishing of TC4 alloy by plasma electrolytic polishing
US10233558B2 (en) Method for manufacturing a part coated with a protective coating
RU2551344C1 (ru) Способ повышения эксплуатационных характеристик лопаток турбомашин из легированных сталей
RU2693236C1 (ru) Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов
RU2357019C2 (ru) Способ электролитно-плазменной обработки деталей
RU132083U1 (ru) Установка для электролитно-плазменной обработки металлических изделий
US20060137995A1 (en) Method for removal of metal from a workpiece

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20150426