RU2373306C2 - Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов - Google Patents

Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов Download PDF

Info

Publication number
RU2373306C2
RU2373306C2 RU2007123850/02A RU2007123850A RU2373306C2 RU 2373306 C2 RU2373306 C2 RU 2373306C2 RU 2007123850/02 A RU2007123850/02 A RU 2007123850/02A RU 2007123850 A RU2007123850 A RU 2007123850A RU 2373306 C2 RU2373306 C2 RU 2373306C2
Authority
RU
Russia
Prior art keywords
electrolyte
product
voltage
stage
polishing
Prior art date
Application number
RU2007123850/02A
Other languages
English (en)
Other versions
RU2007123850A (ru
Inventor
Анатолий Михайлович Смыслов (RU)
Анатолий Михайлович Смыслов
Марина Константиновна Смыслова (RU)
Марина Константиновна Смыслова
Сергей Николаевич Копцев (RU)
Сергей Николаевич Копцев
Аскар Джамилевич Мингажев (RU)
Аскар Джамилевич Мингажев
Константин Сергеевич Селиванов (RU)
Константин Сергеевич Селиванов
Вячеслав Юрьевич Гордеев (RU)
Вячеслав Юрьевич Гордеев
Геннадий Викторович Мосалев (BY)
Геннадий Викторович Мосалев
Сергей Петрович Павлинич (RU)
Сергей Петрович Павлинич
Дамир Рамильевич Таминдаров (RU)
Дамир Рамильевич Таминдаров
Анна Александровна Останина (RU)
Анна Александровна Останина
Original Assignee
ООО "НПП Уралавиаспецтехнология"
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ООО "НПП Уралавиаспецтехнология" filed Critical ООО "НПП Уралавиаспецтехнология"
Priority to RU2007123850/02A priority Critical patent/RU2373306C2/ru
Publication of RU2007123850A publication Critical patent/RU2007123850A/ru
Application granted granted Critical
Publication of RU2373306C2 publication Critical patent/RU2373306C2/ru

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/26Polishing of heavy metals of refractory metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • ing And Chemical Polishing (AREA)

Abstract

Изобретение относится к области электрохимического полирования металлических изделий и может быть использовано в турбомашиностроении при обработке лопаток. Способ включает погружение обрабатываемого металлического изделия в водный раствор электролита и приложение к нему положительного по отношению к электролиту электрического напряжения, под действием которого между поверхностью обрабатываемого изделия и электролитом образуется парогазовый слой, при этом на каждом этапе изменяют величину напряжения и время выдержки изделия, обеспечивают в течение первого и второго этапов беспрерывную подачу напряжения, включая момент перехода от первого этапа ко второму, при этом на первом этапе полирования к обрабатываемому изделию прикладывают напряжение 120-170 В и выдерживают изделие при этом напряжении в течение 0,3-0,8 мин, а на втором этапе напряжение увеличивают до 210-350 В и выдерживают изделие при этом напряжении в течение 1,5-5 минут. Технический результат: способ позволяет обеспечить шероховатость поверхности детали не ниже 0,08…0,12 мкм. 15 з.п. ф-лы, 1 табл.

Description

Изобретение относится к электрохимическому (электролитно-плазменному) полированию металлических изделий, преимущественно из титана и титановых сплавов, и может быть использовано в турбомашиностроении при обработке рабочих и направляющих лопаток паровых турбин, лопаток газоперекачивающих установок и компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий.
Рабочие лопатки компрессора газотурбинного двигателя (ГТД) и газотурбинной установки (ГТУ), а также паровых турбин в процессе эксплуатации, подвергаются воздействиям значительных динамических и статических нагрузок, а также коррозионному и эрозионному разрушению. Исходя из предъявляемых к эксплуатационным свойствам требований для изготовления лопаток компрессора газовых турбин применяются титановые сплавы, которые по сравнению с техническим титаном имеют более высокую прочность, в том числе и при высоких температурах, сохраняя при этом достаточно высокую пластичность и коррозионную стойкость (например, титановые сплавы марок ВТ6, ВТ14, ВТ3-1, ВТ22 и др.).
Однако лопатки турбин из указанных сплавов обладают повышенной чувствительностью к концентраторам напряжения. Поэтому дефекты, образующиеся в процессе изготовления этих деталей недопустимы, поскольку вызывают возникновение интенсивных процессов разрушения. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.
Наиболее перспективными методами обработки лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л.: Машиностроение, 1987], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, Патент ГДР (DD) N 238074 (А1), кл. С25F 3/16, опубл. 06.08.86, а также Патент РБ N 1132, кл. С25F 3/16, 1996, БИ N 3].
Известен способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ N 1132, кл. С25F 3/16, 1996, БИ N 3], а также способ электрохимического полирования [Патент США N 5028304, кл. В23Н 3/08, С25F 3/16, С25F 5/00, опубл. 02.07.91].
Известные способы электрохимического полирования требуют использования при обработке деталей повышенного электрического напряжения (более 100 В), в то время как традиционные методы электрополирования проходят при достаточно низких напряжениях, что позволяет в ряде случаев достичь более высокого качества обработки деталей [например, патент США №6165345, МПК C25F 5/00, опубл. 26.12.2000 г.]. Использование высокого напряжения приводит к значительной неравномерности обработки детали и не позволяет обеспечить необходимое качество поверхности.
Наиболее близким к заявляемому техническому решению является способ электрохимического полирования металлических изделий, заключающийся в том, что обрабатываемое металлическое изделие погружают в водный раствор электролита и прикладывают к нему положительное по отношению к электролиту электрическое напряжение, под действием которого между поверхностью обрабатываемого изделия и электролитом образуется парогазовый слой, причем процесс электрохимического полирования осуществляют в два этапа, на первом из которых к обрабатываемому изделию прикладывают электрическое напряжение 90-190 В и выдерживают изделие при этом напряжении в течение 0,1-5 с, а на втором этапе это напряжение увеличивают до 200-400 В и поддерживают постоянным до окончания процесса полирования, при этом обеспечивают беспрерывную подачу электрического напряжения на каждом из этапов электрохимического полирования, включая момент перехода от первого этапа ко второму [Патент РФ №2168565, МПК C25F 3/16. Способ электрохимического полирования металлических изделий; опублик. 2001.06.10].
Хотя этот способ [Патент РФ №2168565, МПК C25F 3/16. Способ электрохимического полирования металлических изделий опублик. 2001.06.10] и позволяет вести обработку деталей на начальном этапе при более низких наряжениях, тем не менее он не направлен на достижение более высокого качества полирования, а имеет цель «обеспечение возможности обработки металлических изделий из более широкого круга материалов, в том числе из титана и его сплавов, циркония и его сплавов, при одновременном уменьшении пиковой мощности используемого источника питания» [Патент РФ №2168565, МПК C25F 3/16. Способ электрохимического полирования металлических изделий; опублик. 2001.06.10]. Поэтому использование двухстадийной обработки деталей, с приведенными в способе-прототипе режимами, не позволяет повысить качество полирования деталей, например, таких как лопатки турбомашин.
Задачей, на решение которой направлено заявляемое изобретение, является повышение качества полирования изделий из титана и титановых сплавов за счет использования многоэтапной обработки с изменением режимов воздействия на обрабатываемую поверхность.
Технический результат достигается тем, что в способе многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов, заключающемся в том, что обрабатываемое металлическое изделие погружают в водный раствор электролита и прикладывают к нему положительное по отношению к электролиту электрическое напряжение, под действием которого между поверхностью обрабатываемого изделия и электролитом образуется парогазовый слой, изменяют на каждом этапе величину электрического напряжения и время выдержки изделия, обеспечивают в течение первого и второго этапов беспрерывную подачу электрического напряжения, включая момент перехода от первого этапа ко второму, в отличие от прототипа процесс электрохимического полирования осуществляют по крайней мере в два этапа, на первом из которых к обрабатываемому изделию прикладывают электрическое напряжение 120-170 В и выдерживают изделие при этом напряжении в течение 0,3-0,8 мин, а на втором этапе это напряжение увеличивают до 210-350 В и выдерживают изделие при этом напряжении в течение 1,5-5 минут.
Технический результат достигается также тем, что в способе многоэтапного электролитно-плазменного полирования осуществляют третий этап полирования изделия, для этого, не вынимая изделие из электролита, отключают электрическое напряжение, удаляют изделие из электролита, охлаждают изделие, вновь прикладывают к нему положительное по отношению к электролиту электрическое напряжение 210-350 В, погружают изделие в электролит и ведут полирование в течение 0,8-2,5 минут. Технический результат достигается также тем, что в способе многоэтапного электролитно-плазменного полирования осуществляют четвертый этап полирования изделия, для этого, не вынимая изделие из электролита, отключают электрическое напряжение, удаляют изделие из электролита, охлаждают изделие, вновь прикладывают к нему положительное по отношению к электролиту электрическое напряжение 210-350 В, погружают изделие в электролит и ведут полирование в течение 0,8-2,5 минут. Технический результат достигается также тем, что в способе многоэтапного электролитно-плазменного полирования в качестве электролита используют: водный раствор солей, значение рН которого 4-9; водные растворы электролитов, в состав которых входят соли борфтористоводородной, кремнефтористой, гексафтортитановой или плавиковой кислот; используют 2-3% водные растворы NН4F; в состав электролита дополнительно вводят поверхностно-активные вещества в концентрации 0,4-0,8%; в состав электролита дополнительно вводят 0,3-0,8% TiF4; перед первым этапом полирования в электролите обрабатывают вспомогательные элементы из титана или титанового сплава со смывом образовавшегося осадка в электролит, причем обработку вспомогательных элементов ведут до стабилизации процесса полирования.
Технический результат достигается также тем, что в способе многоэтапного электролитно-плазменного полирования в качестве изделия используют лопатку турбомашины; обработку лопатки ведут при величине тока не менее 0,5 А/дм2.
Сущность заявляемого многоэтапного способа, возможность его осуществления и использования иллюстрируются представленными в таблице примерами.
Заявляемый способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов осуществляется следующим образом. Обрабатываемое изделие из титана или титанового сплава погружают в ванну с водным раствором электролита, прикладывают к изделию положительное напряжение, а к электролиту - отрицательное, в результате чего - достигают возникновения разряда между обрабатываемым изделием и электролитом. Процесс электрохимического полирования осуществляют по крайней мере в два этапа, на первом из которых к обрабатываемому изделию прикладывают электрическое напряжение 120-170 В и выдерживают изделие при этом напряжении в течение 0,3-0,8 мин, а на втором этапе напряжение увеличивают до 210-350 В и выдерживают изделие при этом напряжении в течение 1,5-5 минут. Обработку ведут в среде электролита при поддержании вокруг детали парогазовой оболочки. Для повышения качества обработки изделия осуществляют третий этап полирования, для этого, не вынимая изделие из электролита, отключают электрическое напряжение, удаляют изделие из электролита, охлаждают изделие, вновь прикладывают к нему положительное по отношению к электролиту электрическое напряжение 210-350 В, погружают изделие в электролит и ведут полирование в течение 0,8-2,5 минут. В качестве ванны используют емкость, выполненную из материала, стойкого к воздействию электролита. В качестве электролита используется преимущественно водный раствор солей, например, соли борфтористоводородной, кремнефтористой, гексафтортитановой или плавиковой кислот. Величина рН электролита находится в пределах 4-9. Температура электролита - в диапазоне 60-90°С.
При осуществлении способа происходят следующие процессы. Под действием протекающих токов происходит нагрев поверхности детали и образование вокруг нее парогазовой оболочки. Излишняя теплота, возникающая при нагреве детали и электролита, отводится через систему охлаждения. При этом поддерживают заданную температуру процесса. Под действием электрического напряжения (электрического потенциала между деталью и электролитом) в парогазовой оболочке возникает разряд, представляющий из себя ионизированную электролитическую плазму, обеспечивающую протекание интенсивных химических и электрохимических реакций между обрабатываемой деталью и средой парогазовой оболочки.
При подаче положительного потенциала на деталь, в процессе протекания указанных реакций, происходит анодирование поверхности детали с одновременным химическим травлением образующегося окисла. Причем при анодной поляризации парогазовый слой состоит из паров электролита, анионов и газообразного кислорода. Поскольку травление происходит, в основном, на микронеровностях, где образуется тонкий слой окисла, а процессы анодирования продолжаются, то в результате совместного действия этих факторов происходит уменьшение шероховатости обрабатываемой поверхности и, как следствие, полирование последней.
Использование многоэтапного (многофазного) полирования изделия из титана или титановых сплавов позволяет значительно повысить качество обработки. В зависимости от конкретных целей и условий обработки, а также материала изделия количество этапов обработки может колебаться от двух до пяти и более.
На первой фазе обработки поверхность изделия покрывается слоем налета из фтористых соединений, например, при использовании электролита в виде водного раствора NH4F, слоем TiF4, образованного вытеснением кислорода (ТiO2+F-→TiF4). На первой фазе обработки полирования практически не происходит. Длительность первой фазы 0,3-0,8 мин, электрическое напряжение 120-170 В (например, для титанового сплава ВТ-6 напряжение может быть около 160 В, а время - примерно равно 0,5 мин). Если на этом этапе остановить процесс обработки, то деталь будет покрыта налитом коричневого цвета (TiF4) легко смываемого даже холодной (20°С) водой.
На второй фазе обработки напряжение увеличивают до 210-350 В и выдерживают изделие при этом напряжении в течение от 1,5 до 5 минут. (Необходимо отметить, что при переходе от первой ко второй фазе недопустимы провалы напряжения, т.к. это приводит к дестабилизации парогазовой оболочки и непосредственному контакту электролита с поверхностью изделия, что ухудшает качество обработки). За счет увеличения напряжения повышается температура разряда и происходит основной процесс полирования (например, для титанового сплава ВТ-6 напряжение может быть около 200 В, а время - примерно равно 2-3 мин). Поскольку изделие из-за наличия парогазовой оболочки непосредственно не контактирует с электролитом, то соединение TiF4 испаряется, т.е. полирование на второй фазе ведется через испарение фторированного слоя (Тпл.TiF4=238°С). Вторая фаза обработки позволяет получить достаточно качественную полированную поверхность изделия. Однако, для получения еще более качественных результатов обработки может быть введена вторая и последующий фазы полирования.
Третья (или последующие) фазы обработки. Третий этап полирования изделия осуществляют следующим образом. Не вынимая изделие из электролита, отключают электрическое напряжение, удаляют изделие из электролита, охлаждают изделие, вновь прикладывают к нему положительное по отношению к электролиту электрическое напряжение порядка 210-350 В, погружают изделие в электролит и ведут полирование в течение от 0,8 до 2,5 минут (например, для титанового сплава ВТ-6 напряжение может быть около 200 В, а время - примерно равно 2 мин).
При обработке сложнопрофильных изделий из титана и титановых сплавов (например, лопаток турбомашин) целесообразно введение в состав электролита поверхностно-активных веществ (ПАВ). Введение ПАВ уменьшает коэффициент поверхностного натяжения раствора, что улучшает состояние парогазового слоя на границе «газ-жидкость». Однако не следует создавать значительных концентраций ПАВ, поскольку это может привести к образованию нежелательных несмываемых пленок на поверхности изделия. Кроме того, увеличение концентрации ПАВ может привести к обратному эффекту, т.е. увеличению величины коэффициента поверхностного натяжения раствора. Концентрация основных компонентов электролита является величиной достаточно варьируемой. При этом нижний предел их концентрации определяется необходимостью обеспечения количественного доминирования ионов фтора над ионами кислорода как в образующейся на поверхности изделия пленке, так и в парогазовой оболочке. Верхний предел концентрации раствора электролита лимитируется увеличением количества образующихся, в процессе обработки, токсичных газообразных продуктов (F-, NН3). Для минимизации джоуль-ленцовых потерь, электролит должен обладать достаточной электропроводимостью. При подборе электролита необходимо также учитывать возможность его продолжительного использования без дополнительной корректировки состава.
Пример. Обработке подвергали образцы из титановых сплавов марок ВТ-1, ВТ3-1, ВТ6. Обрабатываемые образцы погружали в ванну с водным раствором электролита и прикладывали к детали положительное, а к электролиту - отрицательное напряжение. Детали обрабатывались в среде электролита на основе водного раствора, в состав которых входили соли борфтористоводородной, кремнефтористой, гексафтортитановой или плавиковой кислот (NH4BF4; Na2SiF6). При обработке производили циркуляционное охлаждение электролита (поддерживалась средняя температура процесса в интервале 80°…85°С). В таблице приведены результаты обработки поверхности изделий из титановых сплавов. Условия обработки по способу-прототипу при двухэтапной обработке: первый этап электрическое напряжение - 150…180 В, время - 0,1…0,5 с (0,0016…0,008 мин); второй этап электрическое напряжение - 310…360 В, время - до окончания процесса полирования.
Условия обработки по предлагаемому способу, при многоэтапной обработке: первый этап: электрическое напряжение 120…170 В, время - 18…50 с (0,3…0,8 мин); второй этап: напряжение - 210…350 В, время - 1,5…5 минут (90…300 с); третий этап: напряжение - 210…350 В, время - 0,8…2,5 минут (90…300 с), (дополнительное условие обработки на третьем этапе: не вынимая изделие из электролита, отключали электрическое напряжение, затем удаляли изделие из электролита, охлаждали его до температуры окружающей среды (20°С), вновь прикладывали к нему положительное по отношению к электролиту электрическое напряжение порядка 210 - 350 В, затем снова погружали изделие в электролит и вели полирование в течение от 0,8 до 2,5 минут); четвертый этап: напряжение - 210…350 В, время - 0,8…2,5 минут (90…300 с), (дополнительное условие обработки на четвертом этапе: не вынимая изделие из электролита, отключали электрическое напряжение, затем удаляли изделие из электролита, охлаждали его до температуры окружающей среды (20°С), вновь прикладывали к нему положительное по отношению к электролиту электрическое напряжение порядка 210-350 В, затем снова погружали изделие в электролит и вели полирование в течение от 0,8 до 2,5 минут). Обработку изделия проводили при величине тока не менее 0,5 А/дм2.
В таблице приведены средние значения шероховатости поверхности Ra, полученные по способу-прототипу и предлагаемому способу.
Figure 00000001
Таким образом, проведенные исследования показали, что применение предлагаемого способа многоэтапного электролитно-плазменного полирования позволяет повысить, по сравнению с прототипом, качество обработки изделий из титановых сплавов ВТ-1, ВТ3-1 и ВТ6. Как видно из приведенных в таблице примеров, средние значения шероховатости поверхности от Ra 0,30…0,35 мкм (для прототипа) улучшается до Ra 0,05…0,06 мкм (для предлагаемого способа). Кроме того, при применении ПАВ улучшается равномерность обработки, особенно для сложнопрофильных деталей, что подтверждает заявленный технический результат.
Улучшение качества полирования изделий из титана и титановых сплавов по предлагаемому способу, во всех проведенных случаях обработки указывает на то, что использование многоэтапного электролитно-плазменного полирования изделий, заключающегося в том, что обрабатываемое металлическое изделие погружают в водный раствор электролита и прикладывают к нему положительное по отношению к электролиту электрическое напряжение, под действием которого между поверхностью обрабатываемого изделия и электролитом образуется парогазовый слой, изменяют на каждом этапе величину электрического напряжения и время выдержки изделия, обеспечивают в течение первого и второго этапов беспрерывную подачу электрического напряжения, включая момент перехода от первого этапа ко второму, причем на первом из этапов к обрабатываемому изделию прикладывают электрическое напряжение 120-170 В и выдерживают изделие при этом напряжении в течение 0,3-0,8 мин, а на втором этапе это напряжение увеличивают до 210-350 В и выдерживают изделие при этом напряжении в течение 1,5-5 минут, затем осуществляют третий (и при необходимости повышения качества полирования, четвертый и последующие) этапы полирования изделия, для этого, не вынимая изделие из электролита, отключают электрическое напряжение, удаляют изделие из электролита, охлаждают изделие, вновь прикладывают к нему положительное по отношению к электролиту электрическое напряжение 210-350 В, погружают изделие в электролит и ведут полирование в течение 0,8-2,5 минут, при этом в качестве электролита используют водные растворы солей, значение рН которого 4-9, в состав электролитов которых входят соли борфтористоводородной, кремнефтористой, гексафтортитановой или плавиковой кислот, используют 2-3% водные растворы NH4F, в состав электролита дополнительно вводят поверхностно-активные вещества в концентрации 0,4-0,8% и дополнительно вводят 0,3-0,8% TiF4, а перед первым этапом полирования в электролите обрабатывают вспомогательные элементы из титана или титанового сплава со смывом образовавшегося осадка в электролит, причем обработку вспомогательных элементов ведут до стабилизации процесса полирования, в качестве изделия используют лопатку турбомашины, а обработку лопатки ведут при величине тока не менее 0,5 А/дм2, позволяют достичь технического результата заявляемого способа - повысить качество полирования изделий из титана и титановых сплавов за счет использования многоэтапной обработки с изменением режимов воздействия на обрабатываемую поверхность.

Claims (16)

1. Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов, включающий погружение обрабатываемого металлического изделия в водный раствор электролита и приложение к нему положительного по отношению к электролиту электрического напряжения, под действием которого между поверхностью обрабатываемого изделия и электролитом образуется парогазовый слой, при этом на каждом этапе изменяют величину электрического напряжения и время выдержки изделия, обеспечивают в течение первого и второго этапов беспрерывную подачу электрического напряжения, включая момент перехода от первого этапа ко второму, отличающийся тем, что на первом этапе электрохимического полирования к обрабатываемому изделию прикладывают электрическое напряжение 120-170 В и выдерживают изделие при этом напряжении в течение 0,3-0,8 мин, а на втором этапе напряжение увеличивают до 210-350 В и выдерживают изделие при этом напряжении в течение 1,5-5 мин.
2. Способ по п.1, отличающийся тем, что осуществляют третий этап полирования изделия, причем, не вынимая изделие из электролита, отключают электрическое напряжение, удаляют изделие из электролита, охлаждают изделие, вновь прикладывают к нему положительное по отношению к электролиту электрическое напряжение 210-350 В, погружают изделие в электролит и ведут полирование в течение 0,8-2,5 мин.
3. Способ по п.2, отличающийся тем, что осуществляют четвертый этап полирования изделия, причем, не вынимая изделие из электролита, отключают электрическое напряжение, удаляют изделие из электролита, охлаждают изделие, вновь прикладывают к нему положительное по отношению к электролиту электрическое напряжение 210-350 В, погружают изделие в электролит и ведут полирование в течение 0,8-2,5 мин.
4. Способ по п.1, отличающийся тем, что в качестве электролита используют водный раствор солей, значение pH которого составляет 4-9.
5. Способ по п.2, отличающийся тем, что в качестве электролита используют водный раствор солей, значение pH которого составляет 4-9.
6. Способ по п.1, отличающийся тем, что используют водные растворы электролитов, в состав которых входят соли борфтористоводородной, кремнефтористой, гексафтортитановой или плавиковой кислот.
7. Способ по п.2, отличающийся тем, что используют водные растворы электролитов, в состав которых входят соли борфтористоводородной, кремнефтористой, гексафтортитановой или плавиковой кислот.
8. Способ по п.6, отличающийся тем, что используют 2-3% водные растворы NH4F.
9. Способ по п.7, отличающийся тем, что используют 2-3% водные растворы NH4F.
10. Способ по любому из пп.1-9, отличающийся тем, что в состав электролита дополнительно вводят поверхностно-активные вещества в концентрации 0,4-0,8%.
11. Способ по любому из пп.1-9, отличающийся тем, что в состав электролита дополнительно вводят 0,3-0,8% TiF4.
12. Способ по любому из пп.1-9, отличающийся тем, что перед первым этапом полирования в электролите обрабатывают вспомогательные элементы из титана или титанового сплава со смывом образовавшегося осадка в электролит, причем обработку вспомогательных элементов ведут до стабилизации процесса полирования.
13. Способ по любому из пп.1-9, отличающийся тем, что в качестве изделия используют лопатку турбомашины.
14. Способ по п.10, отличающийся тем, что в качестве изделия используют лопатку турбомашины.
15. Способ по п.11, отличающийся тем, что в качестве изделия используют лопатку турбомашины.
16. Способ по п.14, отличающийся тем, что обработку лопатки ведут при величине тока не менее 0,5 А/дм2.
RU2007123850/02A 2007-06-25 2007-06-25 Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов RU2373306C2 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2007123850/02A RU2373306C2 (ru) 2007-06-25 2007-06-25 Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2007123850/02A RU2373306C2 (ru) 2007-06-25 2007-06-25 Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов

Publications (2)

Publication Number Publication Date
RU2007123850A RU2007123850A (ru) 2008-12-27
RU2373306C2 true RU2373306C2 (ru) 2009-11-20

Family

ID=41478058

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2007123850/02A RU2373306C2 (ru) 2007-06-25 2007-06-25 Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов

Country Status (1)

Country Link
RU (1) RU2373306C2 (ru)

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2461667C1 (ru) * 2011-04-25 2012-09-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ электролитно-плазменного полирования деталей из титана и титановых сплавов
RU2467098C1 (ru) * 2011-04-25 2012-11-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ электролитно-плазменного удаления покрытий из нитридов титана или нитридов соединений титана с металлами
RU2495967C1 (ru) * 2012-07-03 2013-10-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ электролитно-плазменного полирования деталей из титановых сплавов
RU2495966C1 (ru) * 2012-07-03 2013-10-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ полирования деталей из титановых сплавов
RU2551344C1 (ru) * 2014-04-04 2015-05-20 Антон Владимирович Новиков Способ повышения эксплуатационных характеристик лопаток турбомашин из легированных сталей
RU2552203C2 (ru) * 2013-08-20 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ полирования деталей из титановых сплавов
US9163322B2 (en) 2013-07-01 2015-10-20 General Electric Company Method and apparatus for refurbishing turbine components
US9499919B2 (en) 2010-11-22 2016-11-22 MetCon LLC Electrolyte solution and electrochemical surface modification methods
US9567554B2 (en) 2014-01-10 2017-02-14 General Electric Company Apparatus, method, and solvent for cleaning turbine components
WO2017060701A1 (en) 2015-10-06 2017-04-13 Wallwork Cambridge Limited Smoothing the surface finish of rough metal articles
RU2649128C1 (ru) * 2017-06-29 2018-03-29 Аскар Джамилевич Мингажев Способ обработки лопаток турбомашин из железохромоникелевых сплавов
RU2664994C1 (ru) * 2017-11-15 2018-08-24 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Электролит для электролитно-плазменного полирования деталей из тугоплавких сплавов
RU2693236C1 (ru) * 2018-04-05 2019-07-01 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов
RU2694684C1 (ru) * 2018-10-24 2019-07-16 Аскар Джамилевич Мингажев Способ электролитно-плазменного полирования лопаток блиска турбомашин и эластичный чехол для его реализации
RU2694935C1 (ru) * 2018-10-29 2019-07-18 Аскар Джамилевич Мингажев Способ последовательного электролитно-плазменного полирования лопаток блиска турбомашин и рабочая емкость для его реализации
RU2697757C1 (ru) * 2018-11-06 2019-08-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ сухого локального электрополирования лопаток блиска и рабочий контейнер для его реализации
RU2699495C1 (ru) * 2018-11-08 2019-09-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ последовательного электрополирования лопаток блиска и рабочий контейнер для его реализации
RU2706263C1 (ru) * 2019-01-23 2019-11-15 ООО "НПП "Уралавиаспецтехнология" Способ электролитно-плазменного полирования изделий из титановых и железохромоникелевых сплавов
RU2715398C1 (ru) * 2019-09-10 2020-02-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования детали
RU2719217C1 (ru) * 2019-09-10 2020-04-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования моноколеса с лопатками и устройство для его реализации
RU2724734C1 (ru) * 2020-03-05 2020-06-25 Аскар Джамилевич Мингажев Способ электрополирования детали
EA036890B1 (ru) * 2010-11-22 2021-01-12 МЕТКОН, ЭлЭлСи Раствор электролита и электрохимические способы модификации поверхности
RU2784942C1 (ru) * 2022-05-20 2022-12-01 Общество с ограниченной ответственностью Научно-производственное предприятие "Уралавиаспецтехнология" Способ электролитно-плазменного полирования лопаток турбомашин
WO2023218390A1 (en) * 2022-05-13 2023-11-16 Istituto Nazionale Di Fisica Nucleare Chemical solution suitable for polishing niobium and alloys thereof by plasma electropolishing

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EA036890B1 (ru) * 2010-11-22 2021-01-12 МЕТКОН, ЭлЭлСи Раствор электролита и электрохимические способы модификации поверхности
US9499919B2 (en) 2010-11-22 2016-11-22 MetCon LLC Electrolyte solution and electrochemical surface modification methods
RU2467098C1 (ru) * 2011-04-25 2012-11-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ электролитно-плазменного удаления покрытий из нитридов титана или нитридов соединений титана с металлами
RU2461667C1 (ru) * 2011-04-25 2012-09-20 Общество с ограниченной ответственностью "Научно-производственное предприятие Вакууммаш" Способ электролитно-плазменного полирования деталей из титана и титановых сплавов
RU2495967C1 (ru) * 2012-07-03 2013-10-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ электролитно-плазменного полирования деталей из титановых сплавов
RU2495966C1 (ru) * 2012-07-03 2013-10-20 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ полирования деталей из титановых сплавов
US9163322B2 (en) 2013-07-01 2015-10-20 General Electric Company Method and apparatus for refurbishing turbine components
RU2552203C2 (ru) * 2013-08-20 2015-06-10 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ полирования деталей из титановых сплавов
US9567554B2 (en) 2014-01-10 2017-02-14 General Electric Company Apparatus, method, and solvent for cleaning turbine components
US10179893B2 (en) 2014-01-10 2019-01-15 General Electric Company Solvent for cleaning turbine components
RU2551344C1 (ru) * 2014-04-04 2015-05-20 Антон Владимирович Новиков Способ повышения эксплуатационных характеристик лопаток турбомашин из легированных сталей
WO2017060701A1 (en) 2015-10-06 2017-04-13 Wallwork Cambridge Limited Smoothing the surface finish of rough metal articles
RU2649128C1 (ru) * 2017-06-29 2018-03-29 Аскар Джамилевич Мингажев Способ обработки лопаток турбомашин из железохромоникелевых сплавов
RU2664994C1 (ru) * 2017-11-15 2018-08-24 Российская Федерация, от имени которой выступает Министерство промышленности и торговли Российской Федерации (Минпромторг России) Электролит для электролитно-плазменного полирования деталей из тугоплавких сплавов
RU2693236C1 (ru) * 2018-04-05 2019-07-01 Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов
RU2694684C1 (ru) * 2018-10-24 2019-07-16 Аскар Джамилевич Мингажев Способ электролитно-плазменного полирования лопаток блиска турбомашин и эластичный чехол для его реализации
RU2694935C1 (ru) * 2018-10-29 2019-07-18 Аскар Джамилевич Мингажев Способ последовательного электролитно-плазменного полирования лопаток блиска турбомашин и рабочая емкость для его реализации
RU2697757C1 (ru) * 2018-11-06 2019-08-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ сухого локального электрополирования лопаток блиска и рабочий контейнер для его реализации
RU2699495C1 (ru) * 2018-11-08 2019-09-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ последовательного электрополирования лопаток блиска и рабочий контейнер для его реализации
RU2706263C1 (ru) * 2019-01-23 2019-11-15 ООО "НПП "Уралавиаспецтехнология" Способ электролитно-плазменного полирования изделий из титановых и железохромоникелевых сплавов
RU2715398C1 (ru) * 2019-09-10 2020-02-27 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования детали
RU2719217C1 (ru) * 2019-09-10 2020-04-17 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" Способ электрополирования моноколеса с лопатками и устройство для его реализации
RU2724734C1 (ru) * 2020-03-05 2020-06-25 Аскар Джамилевич Мингажев Способ электрополирования детали
WO2023218390A1 (en) * 2022-05-13 2023-11-16 Istituto Nazionale Di Fisica Nucleare Chemical solution suitable for polishing niobium and alloys thereof by plasma electropolishing
RU2784942C1 (ru) * 2022-05-20 2022-12-01 Общество с ограниченной ответственностью Научно-производственное предприятие "Уралавиаспецтехнология" Способ электролитно-плазменного полирования лопаток турбомашин
RU2799180C1 (ru) * 2023-02-19 2023-07-04 Аскар Джамилевич Мингажев Способ сухого электрополирования лопатки турбомашины и установка для его реализации
RU2811030C1 (ru) * 2023-08-08 2024-01-10 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский университет науки и технологий" Способ ионного азотирования детали из легированной стали и установка для его реализации
RU2812925C1 (ru) * 2023-09-12 2024-02-05 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский университет науки и технологий" Способ электролитно-плазменного полирования лопатки турбомашины из титанового сплава
RU2817245C1 (ru) * 2023-12-18 2024-04-12 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский университет науки и технологий" Способ электролитно-плазменного полирования детали в разреженной атмосфере
RU2820693C1 (ru) * 2023-12-19 2024-06-07 федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский университет науки и технологий" Способ электролитно-плазменного полирования детали в переменном магнитном поле при пониженном давлении

Also Published As

Publication number Publication date
RU2007123850A (ru) 2008-12-27

Similar Documents

Publication Publication Date Title
RU2373306C2 (ru) Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов
RU2552202C2 (ru) Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
RU2355829C2 (ru) Способ электролитно-плазменного полирования металлических изделий
RU2552203C2 (ru) Способ полирования деталей из титановых сплавов
RU2552201C2 (ru) Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов
JP2008095192A (ja) ニオブ及びタンタルの電解研磨方法
RU2461667C1 (ru) Способ электролитно-плазменного полирования деталей из титана и титановых сплавов
RU2655563C1 (ru) Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии
RU2706263C1 (ru) Способ электролитно-плазменного полирования изделий из титановых и железохромоникелевых сплавов
RU2467098C1 (ru) Способ электролитно-плазменного удаления покрытий из нитридов титана или нитридов соединений титана с металлами
RU2495966C1 (ru) Способ полирования деталей из титановых сплавов
CN113174553A (zh) 一种电子束重熔与微弧氧化相结合提高镁合金耐蚀性的方法
KR101819918B1 (ko) 고속 플라즈마 전해산화 공정
Zou et al. Optimization and mechanism of precise finishing of TC4 alloy by plasma electrolytic polishing
RU2533223C1 (ru) Способ обработки лопатки газотурбинного двигателя
RU2357019C2 (ru) Способ электролитно-плазменной обработки деталей
RU2664994C1 (ru) Электролит для электролитно-плазменного полирования деталей из тугоплавких сплавов
RU2551344C1 (ru) Способ повышения эксплуатационных характеристик лопаток турбомашин из легированных сталей
RU2693236C1 (ru) Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов
RU132083U1 (ru) Установка для электролитно-плазменной обработки металлических изделий
CN110685000B (zh) 一种高耐蚀涂层和制备方法、电解液及其应用
RU2693235C1 (ru) Устройство для электролитно-плазменного полирования лопаток блиска
RU2355828C2 (ru) Способ электролитно-плазменной обработки деталей
RU2378420C2 (ru) Установка электролитно-плазменной обработки
RU2784942C1 (ru) Способ электролитно-плазменного полирования лопаток турбомашин

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20140626