RU2693236C1 - Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов - Google Patents
Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов Download PDFInfo
- Publication number
- RU2693236C1 RU2693236C1 RU2018112358A RU2018112358A RU2693236C1 RU 2693236 C1 RU2693236 C1 RU 2693236C1 RU 2018112358 A RU2018112358 A RU 2018112358A RU 2018112358 A RU2018112358 A RU 2018112358A RU 2693236 C1 RU2693236 C1 RU 2693236C1
- Authority
- RU
- Russia
- Prior art keywords
- blades
- blisk
- polishing
- electrolyte
- polished
- Prior art date
Links
- 229910001069 Ti alloy Inorganic materials 0.000 title claims abstract description 25
- 238000007517 polishing process Methods 0.000 title claims description 8
- 238000000034 method Methods 0.000 claims abstract description 41
- 239000003792 electrolyte Substances 0.000 claims abstract description 38
- 238000005498 polishing Methods 0.000 claims abstract description 36
- 230000003746 surface roughness Effects 0.000 claims abstract description 4
- 239000010936 titanium Substances 0.000 claims description 12
- WTDHULULXKLSOZ-UHFFFAOYSA-N Hydroxylamine hydrochloride Chemical compound Cl.ON WTDHULULXKLSOZ-UHFFFAOYSA-N 0.000 claims description 6
- 239000007864 aqueous solution Substances 0.000 claims description 6
- 150000003839 salts Chemical class 0.000 claims description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 claims description 5
- 150000001875 compounds Chemical class 0.000 claims description 5
- 229910052731 fluorine Inorganic materials 0.000 claims description 5
- 239000011737 fluorine Substances 0.000 claims description 5
- 238000004458 analytical method Methods 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 2
- 238000012545 processing Methods 0.000 abstract description 13
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000126 substance Substances 0.000 abstract description 3
- 238000000576 coating method Methods 0.000 abstract description 2
- 238000007598 dipping method Methods 0.000 abstract description 2
- 238000012986 modification Methods 0.000 abstract description 2
- 230000004048 modification Effects 0.000 abstract description 2
- 230000001681 protective effect Effects 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000005468 ion implantation Methods 0.000 abstract 1
- 238000005272 metallurgy Methods 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 14
- 102220411551 c.74G>T Human genes 0.000 description 8
- 238000003754 machining Methods 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 3
- 238000007743 anodising Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000012777 electrically insulating material Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000007943 implant Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000007800 oxidant agent Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000010287 polarization Effects 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25F—PROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
- C25F3/00—Electrolytic etching or polishing
- C25F3/16—Polishing
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- ing And Chemical Polishing (AREA)
- Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
Abstract
Изобретение относится к электролитно-плазменному полированию изделий из титановых сплавов, и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий. Способ включает погружение лопаток блиска в электролит, формирование вокруг обрабатываемой поверхности блиска парогазовой оболочки и зажигание разряда между обрабатываемой поверхностью блиска и электролитом путем подачи на обрабатываемый блиск электрического потенциала, при этом полирование лопаток блиска производят последовательно, электроизолируя соседние лопатки блиска электроизоляционными чехлами, оставляя не изолированной текущую обрабатываемую лопатку, при этом лопатку полируют до заданной величины шероховатости поверхности, затем удаляют блиск из электролита, переналаживают электроизолирующий чехол, оставляя открытой следующую обрабатываемую лопатку, снова погружают в электролит и производят ее полирование, повторяя указанный цикл до окончания полирования всех лопаток блиска. Предложенное изобретение позволяет повысить качество и надежность процесса полирования блисков компрессора ГТД из титановых сплавов. 8 з.п. ф-лы, 1 ил, 1 пр.
Description
Изобретение относится к электролитно-плазменному полированию изделий из титановых сплавов, и может быть использовано в турбомашиностроении при обработке лопаток блиска компрессоров газотурбинных двигателей, для обеспечения необходимых физико-механических и эксплуатационных свойств деталей турбомашин, а также в качестве подготовительной операции перед ионно-имплантационным модифицированием поверхности детали и нанесением защитных ионно-плазменных покрытий.
Рабочие лопатки компрессора газотурбинного двигателя (ГТД) в процессе эксплуатации подвергаются воздействиям значительных динамических и статических нагрузок, а также эрозионному разрушению. Исходя из предъявляемых к эксплуатационным свойствам требований, для изготовления лопаток компрессора газовых турбин применяются титановые сплавы, которые по сравнению с техническим титаном имеют более высокую прочность, в том числе и при высоких температурах, сохраняя при этом достаточно высокую пластичность и коррозионную стойкость.
Однако лопатки турбин из титановых сплавов обладают повышенной чувствительностью к концентраторам напряжения. Поэтому дефекты, образующиеся в процессе изготовления этих деталей, недопустимы, поскольку вызывают возникновение интенсивных процессов разрушения. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.
Наиболее перспективными методами обработки лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л., Машиностроение, 1987], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, Патент ГДР (DD) №238074 (А1), МПК C25F 3/16, опубл. 06.08.86., а также Патент РБ №1132, МПК C25F 3/16, 1996, БИ №3].
Известен способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ №1132, МПК C25F 3/16, 1996, БИ №3], а также способ электрохимического полирования [Патент США №5028304, МПК В23Н 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.91.]
Известные способы электрохимического полирования не позволяют производить качественное полирование поверхности деталей из титановых сплавов.
Известен также способ электролитно-плазменного полирования деталей из титановых сплавов [Патент РФ №2373306, МПК C25F 3/16. Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов. Бюл. №32, 2009], включающий погружение детали в электролит, содержащий окислитель, фторсодержащее соединение и воду, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала.
Однако известный способ [Патент РФ №2373306, МПК C25F 3/16] является многостадийным, что приводит с одной стороны к возрастанию сложности процесса обработки деталей, снижению качества и надежности процесса обработки из-за необходимости обеспечения большего количества параметров процесса и их соотношений, а также к повышению его трудоемкости.
Наиболее близким к заявляемому техническому решению является способ электролитно-плазменного полирования деталей из титановых сплавов, [Патент РФ №2552203, МПК C25F 3/16. Способ полирования деталей из титановых сплавов. Бюл. №16, 2015], включающий погружение детали в электролит, формирование вокруг обрабатываемой поверхности детали парогазовой оболочки и зажигание разряда между обрабатываемой деталью и электролитом путем подачи на обрабатываемую деталь электрического потенциала.
Однако способ-прототип, не может быть использован для полирования блисков компрессоров ГТД из титановых сплавов, поскольку при электролитно-плазменной обработке изделий, имеющих значительную площадь поверхности выделяется чрезмерное количество тепла, что делает процесс нестабильным и приводит к возникновению дефектов на поверхности лопаток. Кроме того, обработка крупных изделий, к которым относятся блиски компрессора ГТД, требуется значительное количество электроэнергии и при реализации процесса полирования в этих условиях резко снижается к.п.д. обработки.
Задачей, на решение которой направлено заявляемое изобретение, является повышение качества и надежности процесса полирования блисков компрессора ГТД из титановых сплавов.
Поставленная задача решается за счет того, что в способе полирования блиска газотурбинного двигателя из титановых сплавов, включающем погружение лопаток блиска в электролит, формирование вокруг обрабатываемой поверхности блиска парогазовой оболочки и зажигание разряда между обрабатываемой поверхностью блиска и электролитом путем подачи на обрабатываемый блиск электрического потенциала, в отличие от прототипа полирование лопаток блиска производят последовательно, электроизолируя соседние лопатки блиска электроизоляционным чехлом, оставляя открытой текущую обрабатываемую лопатку блиска, производят ее полирование до заданной величины шероховатости поверхности, затем удаляют блиск из электролита, переналаживают электроизолирующий чехол, оставляя открытой следующую обрабатываемую лопатку, снова погружают в электролит и производят ее полирование и повторяют указанный цикл до полирования всех лопаток блиска. При этом возможно использование следующих вариантов: блиск погружают под углом от 30 до 60 градусов между продольной осью блиска и поверхностью электролита; к блиску прикладывают электрический потенциал от 250 В до 320 В, причем в качестве электролита используют водный раствор с содержанием от 3 до 7 вес. % гидроксиламина солянокислого чистого, чистого для анализа (ч.д.а.) или технически чистого и содержанием от 0,7 до 0,8 вес. % NaF или KF в качестве фторсодержащего соединения, а также с содержанием неорганической легкорастворимой соли с рН≈7, причем полирование ведут при температуре от 70°С до 96°С, и величине тока от 0,2 А/см2 до 0,7 А/см2 в течение не менее 1,5 минут; полируют блиски, выполненные из титанового сплава, содержащего, вес. %: V - от 3,5% до 5,3%; Al - от 5,3% до 6,8%; Fe - до 0,3%; С - до 0,1%; N - до 0,05%; Zr - до 0,3%; О - до 0,2%; Н - до 0,015%; Ti - остальное, или содержащего, вес. %: Al - от 5,0% до 7,0%; Мо - от 2,0% до 4,0%; Zr - до 0,5%; Si - от 0,15% до 0,40; Fe - до 0,3%; О - до 0,15%; Н - до 0,015%; N - до 0,05%; С - до 0,1%; Ti -остальное; полируют лопатки блиска с шероховатостью исходной полируемой поверхности не более Ra 0,78…0,82 мкм.
Сущность заявляемого способа, возможность его осуществления и использования иллюстрируются представленными ниже примерами.
Изобретение поясняется следующей схемой. На фиг. показан процесс электролитно-плазменного полирования блиска (приведен фрагмент блиска). На фиг. а представлен блиск с чехлом, на фиг. б - процесс полирования незачехленной лопатки блиска. Фигура содержат: 1 - блиск; 2 - расчехленная лопатка блиска; 3 - зачехленная (экранированная) часть блиска; 4 - чехол; 5 - электролит; 6 - ванна для электролита.
Заявляемый способ полирования лопаток блиска газотурбинного двигателя из титанового сплава осуществляется следующим образом. Необрабатываемые участки блиска 1 (фиг. а) электроизолируют одевая на него чехол 4 из электроизоляционного материала, обеспечивающий герметизацию не подвергаемых обработке участков поверхности 3 блиска 1, оставляя не изолированной текущую обрабатываемую лопатку 2 блиска 1. Затем блиск 1 погружают в электролит (фиг б), например под углом от 30 до 60 градусов между продольной осью блиска 1 и поверхностью электролита 5, прикладывают к блиску 1 положительный электрический потенциал, а к электролиту 5 - отрицательный, производят полное погружение текущей обрабатываемой лопатки 2 блиска 1 в электролит, в результате чего возникает разряд между обрабатываемым изделием и электролитом. Процесс электролитно-плазменного полирования осуществляют при электрическом потенциале от 250 В до 320 В, а в качестве электролита используют водный раствор с содержанием от 3 до 7 вес. % гидроксиламина солянокислого чистого, ЧДА или технически чистого, а также с содержанием неорганической легкорастворимой соли с рН≈7, причем полирование ведут при температуре от 70°С до 96°С. Полирование в зависимости от параметров детали можно вести при величине тока от 0,2 А/см2 до 0,7 А/см2 в течение не менее 1,5 минут. Полируемая лопатка турбомашины, должна иметь шероховатость исходной поверхностью не более Ra 0,78…0,82 мкм.
Обработку ведут в среде электролита при поддержании вокруг детали парогазовой оболочки. В качестве ванны используют емкость, выполненную из материала, стойкого к воздействию электролита.
При осуществлении способа происходят следующие процессы. Под действием протекающих токов происходит нагрев поверхности детали и образование вокруг нее парогазовой оболочки. Излишняя теплота, возникающая при нагреве детали и электролита, отводится через систему охлаждения. При этом поддерживают заданную температуру процесса. Под действием электрического напряжения (электрического потенциала между деталью и электролитом) в парогазовой оболочке возникает разряд, представляющий из себя ионизированную электролитическую плазму, обеспечивающую протекание интенсивных химических и электрохимических реакций между обрабатываемой деталью и средой парогазовой оболочки.
При подаче положительного потенциала на лопатку, в процессе протекания указанных реакций, происходит анодирование поверхности детали с одновременным химическим травлением образующегося окисла. Причем при анодной поляризации парогазовый слой состоит из паров электролита, анионов и газообразного кислорода. Поскольку травление происходит, в основном, на микронеровностях, где образуется тонкий слой окисла, а процессы анодирования продолжаются, то в результате совместного действия этих факторов происходит уменьшение шероховатости обрабатываемой поверхности и, как следствие, полирование последней. После окончания полирования лопатки блиска, блиск полностью вынимают из электролита, промывают, просушивают, снимают электроизоляционный чехол и переналаживают электроизолирующий чехол, оставляя открытой следующую обрабатываемую лопатку, снова погружают в электролит и производят ее полирование и повторяют указанный цикл до окончания полирования всех лопаток блиска
Пример 1. Обработке подвергали лопатки блиска компрессора ГТД из титановых сплавов марок ВТ6, ВТ8, ВТ8М, ВТ1-0. Обрабатываемые лопатки блиска последовательно полировали с использованием электроизоляционного чехла, выполненного из полимера. Обрабатываемую лопатку блиска погружали в ванну с водным раствором электролита и прикладывали к блиску положительное, а к электролиту - отрицательное напряжение. К обрабатываемой детали прикладывали электрический потенциал 250 В, 300 В, 320 В. Детали обрабатывались в среде электролита на основе водного раствора с содержанием от 3 до 7 вес. % гидроксиламина солянокислого чистого, ЧДА или технически чистого, а также с содержанием неорганической легкорастворимой соли с рН≈7. При обработке производили циркуляционное охлаждение электролита (поддерживалась средняя температура процесса в интервале 70°…96°С). Время обработки каждой лопатки составляло 2 минуты. Исходная шероховатость обрабатываемой поверхности составляла Ra 0,25 мкм, после полирования Ra 0,06 мкм.
Для оценки эксплуатационных свойств деталей, обработанных по предлагаемому способу, были проведены следующие испытания. Образцы из титановых сплавов марок ВТ6, ВТ6с, ВТ6ч, ВТ8, ВТ8М, ВТ1-0 ВТ16, ВТ22, ВТ23, ВТ3, ВТ18У, ВТ14, ВТ9 были подвергнуты обработке как по способам-прототипам (Патент РФ №2552203), согласно приведенным в способе-прототипе условиям и режимам обработки, так и по вариантам предлагаемого способа. (За неудовлетворительный результат (Н.Р.) брался результат, при котором не происходило полирование титановой детали, за удовлетворительный результат (У.Р.), когда наблюдался эффект полирования)
Способ-прототип показал неудовлетворительные результаты.
Схема обработки лопаток блиска по способу-прототипу: погружение блиска в элетролит - (Н.Р.).
Режимы обработки образцов по предлагаемому способу.
Схема обработки лопаток блиска: последовательное полирование лопаток, путем расчехления обрабатываемой лопатки блиска при экранировании чехлом необрабатываемых лопаток и других участков блиска - (У.Р.); без экранирования - Н.Р.
Электрический потенциал: 240 В - Н.Р., 250 В - У.Р., 270 В - У.Р., 290 В -У.Р., 300 В - У.Р., 320 В - У.Р., 340 В - Н.Р.
Электролит: водный раствор с содержанием от 3 до 7 вес. % гидроксиламина солянокислого чистого, чистого для анализа (ч.д.а.) или технически чистого и содержанием от 0,7 до 0,8 вес. % NaF или KF в качестве фторсодержащего соединения, а также с содержанием неорганической легкорастворимой соли с рН≈7.
Температура электролита: от 70°С до 96°С.
Величина электрического тока: от 0,2 А/см2 до 0,7 А/см2.
Время: 1,5-10 минут.
Шероховатость исходной полируемой поверхности не более Ra 0,78…0,82 мкм.
Таким образом, проведенные исследования показали, что применение предлагаемого способа полирования деталей из титановых сплавов позволяет повысить, по сравнению с прототипом, качество их обработки. Средние значения шероховатости полированной поверхности при обработке по предлагаемому способу - Ra 0,1…0,06 мкм.
Claims (9)
1. Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов, включающий погружение лопаток блиска в электролит, формирование вокруг обрабатываемой поверхности блиска парогазовой оболочки и зажигание разряда между обрабатываемой поверхностью блиска и электролитом путем подачи на обрабатываемый блиск электрического потенциала, отличающийся тем, что полирование лопаток блиска производят последовательно, электроизолируя соседние лопатки блиска электроизоляционными чехлами, оставляя не изолированной текущую обрабатываемую лопатку, при этом лопатку полируют до заданной величины шероховатости поверхности, затем удаляют блиск из электролита, переналаживают электроизолирующий чехол, оставляя открытой следующую обрабатываемую лопатку, снова погружают в электролит и производят ее полирование, повторяя указанный цикл до окончания полирования всех лопаток блиска.
2. Способ по п. 1, отличающийся тем, что блиск погружают под углом от 30 до 60 градусов между продольной осью блиска и поверхностью электролита.
3. Способ по п. 1, отличающийся тем, что к блиску прикладывают электрический потенциал от 250 В до 320 В, причем в качестве электролита используют водный раствор с содержанием от 3 до 7 мас. % гидроксиламина солянокислого чистого для анализа (ч.д.а.) или технически чистого, с содержанием от 0,7 до 0,8 мас. % NaF или KF в качестве фторсодержащего соединения и с содержанием неорганической легкорастворимой соли с рН 7, причем полирование ведут при температуре от 70°С до 96°С, величине тока от 0,2 А/см2 до 0,7 А/см2 в течение не менее 1,5 минут.
4. Способ по п. 2, отличающийся тем, что к блиску прикладывают электрический потенциал от 250 В до 320 В, причем в качестве электролита используют водный раствор с содержанием от 3 до 7 мас. % гидроксиламина солянокислого чистого для анализа (ч.д.а.) или технически чистого, с содержанием от 0,7 до 0,8 мас. % NaF или KF в качестве фторсодержащего соединения и с содержанием неорганической легкорастворимой соли с рН 7, причем полирование ведут при температуре от 70°С до 96°С, величине тока от 0,2 А/см2 до 0,7 А/см2 в течение не менее 1,5 минут.
5. Способ по п. 1, отличающийся тем, что полируют лопатки блиска, выполненные из титанового сплава, содержащего, мас. %: V от 3,5 до 5,3; Al от 5,3 до 6,8; Fe до 0,3; С до 0,1; N до 0,05; Zr до 0,3; О до 0,2; Н до 0,015; Ti остальное, или содержащего, мас. %: Al от 5,0 до 7,0; Мо от 2,0 до 4,0; Zr до 0,5; Si от 0,15 до 0,40; Fe до 0,3; О до 0,15; Н до 0,015; N до 0,05; С до 0,1; Ti остальное.
6. Способ по п. 2, отличающийся тем, что полируют лопатки блиска, выполненные из титанового сплава, содержащего, мас. %: V от 3,5 до 5,3; Al от 5,3 до 6,8; Fe до 0,3; С до 0,1; N до 0,05; Zr до 0,3; О до 0,2; Н до 0,015; Ti остальное, или содержащего, мас. %: Al от 5,0 до 7,0; Мо от 2,0 до 4,0; Zr до 0,5; Si от 0,15 до 0,40; Fe до 0,3; О до 0,15; Н до 0,015; N до 0,05; С до 0,1; Ti остальное.
7. Способ по п. 3, отличающийся тем, что полируют лопатки блиска, выполненные из титанового сплава, содержащего, мас. %: выполненные из титанового сплава, содержащего, мас. %: V от 3,5 до 5,3; Al от 5,3 до 6,8; Fe до 0,3; С до 0,1; N до 0,05; Zr до 0,3; О до 0,2; Н до 0,015; Ti остальное, или содержащего, мас. %: Al от 5,0 до 7,0; Мо от 2,0 до 4,0; Zr до 0,5; Si от 0,15 до 0,40; Fe до 0,3; О до 0,15; Н до 0,015; N до 0,05; С до 0,1; Ti остальное.
8. Способ по п. 4, отличающийся тем, что полируют лопатки блиска, выполненные из титанового сплава, содержащего, мас. %: V от 3,5 до 5,3; Al от 5,3 до 6,8; Fe до 0,3; С до 0,1; N до 0,05; Zr до 0,3; О до 0,2; Н до 0,015; Ti остальное, или содержащего, мас. %: Al от 5,0 до 7,0; Мо от 2,0 до 4,0; Zr до 0,5; Si от 0,15 до 0,40; Fe до 0,3; О до 0,15; Н до 0,015; N до 0,05; С до 0,1; Ti остальное.
9. Способ по любому из пп. 1-8, отличающийся тем, что полируют лопатки блиска с шероховатостью исходной полируемой поверхности не более Ra 0,78-0,82 мкм.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018112358A RU2693236C1 (ru) | 2018-04-05 | 2018-04-05 | Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2018112358A RU2693236C1 (ru) | 2018-04-05 | 2018-04-05 | Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов |
Publications (1)
Publication Number | Publication Date |
---|---|
RU2693236C1 true RU2693236C1 (ru) | 2019-07-01 |
Family
ID=67252158
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
RU2018112358A RU2693236C1 (ru) | 2018-04-05 | 2018-04-05 | Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов |
Country Status (1)
Country | Link |
---|---|
RU (1) | RU2693236C1 (ru) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2715395C1 (ru) * | 2019-09-10 | 2020-02-27 | федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" | Способ электрополирования лопаток блиска и устройство для его реализации |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5028304A (en) * | 1988-10-21 | 1991-07-02 | Stanishevsky Vladimir K | Method of electrochemical machining of articles made of conducting materials |
RU2373306C2 (ru) * | 2007-06-25 | 2009-11-20 | ООО "НПП Уралавиаспецтехнология" | Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов |
RU2552203C2 (ru) * | 2013-08-20 | 2015-06-10 | Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" | Способ полирования деталей из титановых сплавов |
-
2018
- 2018-04-05 RU RU2018112358A patent/RU2693236C1/ru active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5028304A (en) * | 1988-10-21 | 1991-07-02 | Stanishevsky Vladimir K | Method of electrochemical machining of articles made of conducting materials |
RU2373306C2 (ru) * | 2007-06-25 | 2009-11-20 | ООО "НПП Уралавиаспецтехнология" | Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов |
RU2552203C2 (ru) * | 2013-08-20 | 2015-06-10 | Общество с ограниченной ответственностью "Научно-производственное предприятие "Уралавиаспецтехнология" | Способ полирования деталей из титановых сплавов |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2715395C1 (ru) * | 2019-09-10 | 2020-02-27 | федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" | Способ электрополирования лопаток блиска и устройство для его реализации |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2373306C2 (ru) | Способ многоэтапного электролитно-плазменного полирования изделий из титана и титановых сплавов | |
Yang et al. | Corrosion and passivation of annealed Ti–20Zr–6.5 Al–4V alloy | |
RU2552203C2 (ru) | Способ полирования деталей из титановых сплавов | |
RU2552202C2 (ru) | Способ защиты лопаток компрессора газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии | |
US20080217186A1 (en) | Electropolishing process for titanium | |
CN103484913A (zh) | 铝合金硬质阳极氧化处理工艺 | |
RU2700229C1 (ru) | Способ электрополирования лопаток блиска | |
RU2552201C2 (ru) | Способ повышения эрозионной стойкости лопаток компрессора газотурбинного двигателя из титановых сплавов | |
RU2693236C1 (ru) | Способ полирования лопаток блиска газотурбинного двигателя из титановых сплавов | |
RU2694684C1 (ru) | Способ электролитно-плазменного полирования лопаток блиска турбомашин и эластичный чехол для его реализации | |
JP2008095192A (ja) | ニオブ及びタンタルの電解研磨方法 | |
RU2697757C1 (ru) | Способ сухого локального электрополирования лопаток блиска и рабочий контейнер для его реализации | |
RU2655563C1 (ru) | Способ защиты блиска газотурбинного двигателя из титановых сплавов от пылеабразивной эрозии | |
RU2706263C1 (ru) | Способ электролитно-плазменного полирования изделий из титановых и железохромоникелевых сплавов | |
RU2281194C1 (ru) | Способ восстановления эксплуатационных свойств деталей машин | |
RU2461667C1 (ru) | Способ электролитно-плазменного полирования деталей из титана и титановых сплавов | |
JP3152960B2 (ja) | 真空機器用アルミニウム又はアルミニウム合金材の製造法 | |
RU2495966C1 (ru) | Способ полирования деталей из титановых сплавов | |
US3345276A (en) | Surface treatment for magnesiumlithium alloys | |
RU2693235C1 (ru) | Устройство для электролитно-плазменного полирования лопаток блиска | |
RU2664994C1 (ru) | Электролит для электролитно-плазменного полирования деталей из тугоплавких сплавов | |
RU2467098C1 (ru) | Способ электролитно-плазменного удаления покрытий из нитридов титана или нитридов соединений титана с металлами | |
RU2533223C1 (ru) | Способ обработки лопатки газотурбинного двигателя | |
US10233558B2 (en) | Method for manufacturing a part coated with a protective coating | |
RU2694935C1 (ru) | Способ последовательного электролитно-плазменного полирования лопаток блиска турбомашин и рабочая емкость для его реализации |