RU2786767C1 - Способ электрополирования металлической детали и установка для его реализации - Google Patents
Способ электрополирования металлической детали и установка для его реализации Download PDFInfo
- Publication number
- RU2786767C1 RU2786767C1 RU2022128061A RU2022128061A RU2786767C1 RU 2786767 C1 RU2786767 C1 RU 2786767C1 RU 2022128061 A RU2022128061 A RU 2022128061A RU 2022128061 A RU2022128061 A RU 2022128061A RU 2786767 C1 RU2786767 C1 RU 2786767C1
- Authority
- RU
- Russia
- Prior art keywords
- granules
- anion
- electropolishing
- workpiece
- external electrode
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 25
- 239000002184 metal Substances 0.000 title claims abstract description 25
- 238000009434 installation Methods 0.000 title claims description 13
- 239000008187 granular material Substances 0.000 claims abstract description 60
- 239000008151 electrolyte solution Substances 0.000 claims abstract description 5
- 239000007864 aqueous solution Substances 0.000 claims description 33
- 239000000203 mixture Substances 0.000 claims description 32
- 229910017855 NH 4 F Inorganic materials 0.000 claims description 29
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Inorganic materials [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 claims description 28
- 235000013024 sodium fluoride Nutrition 0.000 claims description 28
- 238000005498 polishing Methods 0.000 claims description 23
- 102000037197 Anion exchangers Human genes 0.000 claims description 22
- 108091006437 Anion exchangers Proteins 0.000 claims description 22
- 239000003792 electrolyte Substances 0.000 claims description 19
- 238000005349 anion exchange Methods 0.000 claims description 16
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 claims description 12
- WIBFFTLQMKKBLZ-SEYXRHQNSA-N n-butyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCCCC WIBFFTLQMKKBLZ-SEYXRHQNSA-N 0.000 claims description 12
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 claims description 12
- 235000011007 phosphoric acid Nutrition 0.000 claims description 12
- 159000000000 sodium salts Chemical class 0.000 claims description 12
- LDDQLRUQCUTJBB-UHFFFAOYSA-N Ammonium fluoride Chemical compound [NH4+].[F-] LDDQLRUQCUTJBB-UHFFFAOYSA-N 0.000 claims description 11
- 239000003957 anion exchange resin Substances 0.000 claims description 11
- 229920005676 ethylene-propylene block copolymer Polymers 0.000 claims description 11
- GOOHAUXETOMSMM-UHFFFAOYSA-N propylene oxide Chemical class CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 claims description 11
- 238000005470 impregnation Methods 0.000 claims description 10
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 claims description 8
- 229910000990 Ni alloy Inorganic materials 0.000 claims description 6
- 229910001069 Ti alloy Inorganic materials 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 5
- 230000002441 reversible Effects 0.000 claims description 5
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 4
- BFNBIHQBYMNNAN-UHFFFAOYSA-N Ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims description 4
- 238000007334 copolymerization reaction Methods 0.000 claims description 4
- 239000003456 ion exchange resin Substances 0.000 claims description 4
- 229920003303 ion-exchange polymer Polymers 0.000 claims description 4
- 229920000058 polyacrylate Polymers 0.000 claims description 4
- 229920005553 polystyrene-acrylate Polymers 0.000 claims description 4
- 235000011130 ammonium sulphate Nutrition 0.000 claims description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N edta Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 claims description 3
- 150000002500 ions Chemical class 0.000 claims description 3
- 230000003334 potential Effects 0.000 claims description 3
- 229910000424 chromium(II) oxide Inorganic materials 0.000 claims description 2
- 150000003016 phosphoric acids Chemical class 0.000 claims description 2
- 238000004381 surface treatment Methods 0.000 abstract description 14
- 150000002739 metals Chemical class 0.000 abstract description 5
- 238000005516 engineering process Methods 0.000 abstract description 4
- 229910045601 alloy Inorganic materials 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract description 2
- 230000000694 effects Effects 0.000 abstract description 2
- 239000000126 substance Substances 0.000 abstract description 2
- 210000003746 Feathers Anatomy 0.000 description 7
- 230000003746 surface roughness Effects 0.000 description 5
- 210000004544 DC2 Anatomy 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 4
- 150000001450 anions Chemical class 0.000 description 4
- 102220409803 c.74G>T Human genes 0.000 description 4
- 230000002530 ischemic preconditioning Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000007517 polishing process Methods 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- VWDWKYIASSYTQR-UHFFFAOYSA-N Sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 238000002679 ablation Methods 0.000 description 2
- 230000000739 chaotic Effects 0.000 description 2
- 238000009499 grossing Methods 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- WGLPBDUCMAPZCE-UHFFFAOYSA-N trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 2
- CHRJZRDFSQHIFI-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;styrene Chemical class C=CC1=CC=CC=C1.C=CC1=CC=CC=C1C=C CHRJZRDFSQHIFI-UHFFFAOYSA-N 0.000 description 1
- 230000037250 Clearance Effects 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 101700003764 PA11 Proteins 0.000 description 1
- 229910001252 Pd alloy Inorganic materials 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- REDXJYDRNCIFBQ-UHFFFAOYSA-N aluminium(3+) Chemical group [Al+3] REDXJYDRNCIFBQ-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000035512 clearance Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000002848 electrochemical method Methods 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 230000002349 favourable Effects 0.000 description 1
- 238000005755 formation reaction Methods 0.000 description 1
- XLYOFNOQVPJJNP-ZSJDYOACSA-N heavy water Substances [2H]O[2H] XLYOFNOQVPJJNP-ZSJDYOACSA-N 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000003068 static Effects 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
Images
Abstract
Изобретение относится к технологии электрополирования поверхности деталей из металлов и сплавов и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик. Способ включает погружение детали в проводящую среду из гранул-анионитов, пропитанных раствором электролита, обеспечивающего ионный унос металла с поверхности детали с удалением микровыступов при подаче противоположного по знаку электрического потенциала на деталь и проводящую среду через введенный в среду внешний электрод. При этом внешний электрод выполнен в виде радиального лопастного колеса, который вращаясь, обеспечивает захват и перемещение гранул-анионитов относительно обрабатываемой поверхности детали. Установка содержит источники электрического питания, блок управления, рабочую емкость с гранулами-анионитами и внешним электродом, обеспечивающим электрический контакт с гранулами-анионитами, и по крайней мере один держатель обрабатываемой детали, выполненный с возможностью размещения детали в среде гранул-анионитов и перемещения гранул-анионитов относительно обрабатываемой поверхности. Технический результат: повышение качества и надежности обработки поверхности металлической детали за счет повышения однородности обработки ее поверхности, снижения вероятности появления дефектов. 2 н. и 8 з.п. ф-лы, 3 ил.
Description
Изобретение относится к технологии электрополирования поверхности деталей из металлов и сплавов и может быть использовано для обработки поверхностей лопаток турбомашин для повышения их эксплуатационных характеристик.
С повышением шероховатости поверхности ответственных металлических деталей, работающих в условиях воздействия значительных знакопеременных нагрузок, например валов, лопаток газовых турбин и т.п., резко снижаются их эксплуатационные характеристики. Качество обработки поверхности пера лопаток существенно влияет на их прочностные характеристики, так например, повышение класса чистоты поверхности способствует увеличению предела выносливости и статической прочности лопаток (В.Ф. Макаров, Е.Н. Бычина, А.О. Чуян. Математическое моделирование процесса полирования лопаток газотурбинных двигателей // Авиационно-космическая техника и технология. №8 (85), 2011, с.11-14). Повышенная шероховатость поверхности лопаток газовых турбин приводит к ухудшению газодинамической устойчивости газотурбинного двигателя (ГТД), к возрастанию аэродинамических потерь, приводящих к снижению КПД, к потере мощности, росту удельных расходов и к снижению экономичности двигателя или газотурбинной установки.
В то же время производство и ремонт деталей газотурбинных двигателей (ГТД) и установок (ГТУ), в связи с высокими требованиями к качеству поверхности (Ra≤0,32…0,16 мкм), характеризуется значительной трудоемкостью их финишной обработки. Это вызывает проблемы при механической обработке поверхностей деталей турбомашин. В этой связи развитие способов получения высококачественных поверхностей деталей турбомашин является весьма актуальной задачей.
Известен способ полирования поверхности детали кругом, при котором детали сообщают возвратно-поступательное перемещение относительно инструмента (А.С. СССР №1732604. МПК B24B 19/14. Способ полирования пера лопаток ГТД лепестковым кругом. Опубл. Бюл. № 1, 2014 г.), в котором полирование производят с деформацией лепесткового круга.
Однако применение в известных способах полирования поверхности детали механического воздействия вызывает ухудшение параметров качества поверхностного слоя материалов, что приводит к снижению ее эксплуатационных характеристик, особенно в случаях обработки таких деталей как лопатки турбины с тонким пером.
Наиболее перспективными методами обработки деталей сложной формы, в частности лопаток турбомашин являются электрохимические методы полирования поверхностей [Грилихес С.Я. Электрохимическое и химическое полирование: Теория и практика. Влияние на свойства металлов. Л., Машиностроение, 1987], при этом наибольший интерес для рассматриваемой области представляют методы электролитно-плазменного полирования (ЭПП) деталей [например, Патент ГДР (DD) №238074 (А1), МПК C25F 3/16, опубл. 06.08.1986].
Известен также способ полирования металлических поверхностей, включающий анодную обработку в электролите [Патент РБ №1132, МПК C25F 3/16, опубл. 1996, БИ №3], а также способ электрохимического полирования [Патент США №5028304, МПК B23H 3/08, C25F 3/16, C25F 5/00, опубл. 02.07.1991].
Однако известные способы электрополирования не позволяют производить однородную обработку поверхности детали из металлического сплава, особенно деталей сложной формы.
Наиболее близким техническим решением, выбранным в качестве прототипа является способ электрополирования металлической детали, включающий погружение детали в проводящую среду из анионитов, пропитанных раствором электролита, обеспечивающего электропроводность упомянутых гранул и ионный унос металла с поверхности детали с удалением микровыступов при подаче противоположного по знаку электрического потенциала на деталь и упомянутую проводящую среду через введенный в упомянутую среду внешний электрод [ WO2017186992 - |Method for smoothing and polishing metals via ion transport by means of free solid bodies, and solid bodies for carrying out said method. Опубл. 2017.11.02].
Однако известный способ-прототип [WO2017186992] обладает низкой надежностью и не может быть использован для обработки поверхности ответственных деталей, таких как лопатки турбомашин, поскольку происходит хаотичное взаимодействие поверхности с гранулами, что приводит к неоднородной обработки поверхности, приводящих к снижению эксплуатационных характеристик обработанных деталей.
Задачей, на решение которой направлено заявляемое изобретение, является повышение качества и надежности обработки металлических деталей, особенно ответственных деталей сложной формы, таких как лопатки турбомашин, а также возможность заданного радиуса скругления входных и выходных кромок пера лопатки.
Техническим результатом изобретения является повышение качества и надежности обработки поверхности металлической детали за счет повышения однородности обработки ее поверхности, снижения вероятности появления дефектов.
Технический результат достигается за счет того, что в способе электрополирования металлической детали, включающем погружение детали в проводящую среду из гранул-анионитов, пропитанных раствором электролита, обеспечивающего электропроводность упомянутых гранул-анионитов и ионный унос металла с поверхности детали с удалением микровыступов при подаче противоположного по знаку электрического потенциала на деталь и упомянутую проводящую среду через введенный в упомянутую среду внешний электрод, в отличие от прототипа используют внешний электрод, охватывающий с зазором обрабатываемую деталь и выполненный в виде радиального лопастного колеса, с лопастями наклоненными вперед, в сторону вращения электрода, вращают упомянутый электрод, обеспечивая захват и перемещение гранул-анионитов относительно обрабатываемой поверхности детали с обеспечением контакта всей полируемой поверхности детали с упомянутыми гранулами-анионитами и гранул-анионитов между собой и с упомянутым вращающимся внешним электродом.
Кроме того возможны следующие, дополнительные приемы выполнения способа: соотношение размера гранул-анионитов a и величины минимального зазора b между электродом и поверхностью детали выбирают не менее b = 10 a , и подают на деталь и гранулы-аниониты электрический потенциал, обеспечивающий ионный унос металла с поверхности обрабатываемой детали и ее полирование в среде упомянутых гранул-анионитов до получения заданной шероховатости полируемой поверхности; в качестве материала упомянутых гранул-анионитов используют ионообменные смолы, полученные на основе сополимеризации либо полистирола, либо полиакрилата и дивинилбензола, причем размеры гранул-анионитов а выбирают из диапазона 0,1-0,4 мм, причем упомянутые гранулы-аниониты дополнительно приводят в вибрационное движение; электрополирование гранулами-анионитами проводят либо подавая на деталь положительный, а на гранулы-аниониты отрицательный электрический потенциал от 12 до 35 В, либо в импульсном режиме со сменой полярности, при диапазоне частот импульсов от 20 до 100 Гц, периоде импульсов от 50 мкс до 10 мкс, при амплитуде тока положительной полярности во время импульса +50 А и их длительности от 0,4 до 0,8 мкс, при амплитуде тока отрицательной полярности во время импульса -20 А и их длительности от 0,2 до 0,4 мкс, при прямоугольной форме выходных импульсов тока и длительности пауз между импульсами от 49,6 мкс до 9,2 мкс; в качестве детали используют лопатку турбомашины, выполненную из легированной стали, а в качестве электролита для пропитки упомянутых гранул- анионитов используют один из следующих водных растворов: NH4F концентрацией от 6 до 24 г/л, или NаF концентрацией от 4 до 18 г/л, или KF концентрацией от 35 до 55 г/л, или смеси NH4F и KF при содержании NH4F от 5 до 15 г/л и KF от 30 до 50 г/л, или смеси NаF и KF при содержании NаF от 3 до 14 г/л и KF от 35 до 60 г/л, или смеси NH4F и NaF при содержании NH4F от 4 до 12 г/л и NaF от 35 до 55 г/л, или смеси NH4F, NаF и KF при содержании NH4F от 3 до 9 г/л, KF от 20 до 30 г/л и NaF от 10 до 25 г/л, или смеси NH4F и НF при содержании NH4F от 5 до 15 г/л и НF от 3 до 5 г/л, или от 8 до 14% водного раствора NaNO3, или в электролитах составов, мас.%: (NH4)2SO4 5,Трилон Б 0,8, или в водном растворе, содержащем серную и ортофосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас.%:
серная кислота | 10-30 |
ортофосфорная кислота | 40-80 |
блок-сополимер окисей этилена и пропилена | 0,05-1,1 |
натриевая соль сульфированного бутилолеата | 0,01-0,05 |
вода | остальное |
в качестве детали используют лопатку турбомашины, выполненную из титанового сплава, а в качестве электролита для пропитки упомянутых гранул-анионитов используют один из следующих водных растворов: водный раствор смеси NH4F и KF при содержании NH4F от 8 до 14 г/л и KF от 36 до 48 г/л или водный раствор с содержанием 30-50 г/л KF⋅2H2O и 2-5 г/л СrO3; в качестве детали используют лопатку турбомашины, выполненную из никелевого сплава, а в качестве электролита для пропитки упомянутых гранул- анионитов используют один из следующих водных растворов: водный раствор соли фторида аммония концентрацией 6-9,0 г/л, или водный раствор сульфата аммония с концентрацией 0,8-3,4 г/л, или водный раствор, содержащий серную и ортофосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас. %:
серная кислота | 10-30 |
ортофосфорная кислота | 40-80 |
блок-сополимер окисей этилена и пропилена | 0,05-1,1 |
натриевая соль сульфированного бутилолеата | 0,01-0,05 |
вода | остальное |
Наиболее близким техническим решением, выбранным в качестве прототипа является установка, содержащая источники электрического питания для электрополирования и осуществления рабочих движений механизмов установки, блок управления, рабочую емкость с гранулами-анионитами и внешним электродом, обеспечивающим электрический контакт с упомянутыми гранулами-анионитами, по крайней мере один держатель обрабатываемой детали, выполненный с возможностью размещения детали в среде упомянутых гранул-анионитов и перемещения гранул-анионитов относительно обрабатываемой поверхности упомянутой детали с обеспечением подачи противоположных по знаку электрических потенциалов для электрополирования на внешний электрод и обрабатываемую деталь, устройство для обеспечения вибрации упомянутых гранул-анионитов [WO2017186992 - |Method for smoothing and polishing metals via ion transport by means of free solid bodies, and solid bodies for carrying out said method. Опубл. 2017.11.02].
Однако известная установка для полирования [WO2017186992] обладает низкой надежностью и не может быть использован для обработки поверхности ответственных деталей, таких как лопатки турбомашин, поскольку происходит хаотичное взаимодействие поверхности с гранулами, что приводит к неоднородной обработки поверхности, приводящих к снижению эксплуатационных характеристик обработанных деталей.
Техническим результатом изобретения является повышение качества и надежности обработки поверхности металлической детали за счет повышения однородности обработки ее поверхности, снижения вероятности появления дефектов.
Технический результат достигается за счет того, что установка электрополирования деталей, содержащая источники электрического питания для электрополирования и осуществления рабочих движений механизмов установки, блок управления, рабочую емкость с гранулами-анионитами и внешним электродом, обеспечивающим электрический контакт с упомянутыми гранулами-анионитами, по крайней мере один держатель обрабатываемой детали, выполненный с возможностью размещения детали в среде упомянутых гранул-анионитов и перемещения гранул-анионитов относительно обрабатываемой поверхности упомянутой детали с обеспечением подачи противоположных по знаку электрических потенциалов для электрополирования на внешний электрод и обрабатываемую деталь, в отличие от прототипа внешний электрод выполнен в виде радиального лопастного колеса, с возможностью вращения вокруг собственной оси, с лопастями наклоненными вперед, в сторону вращения электрода, обеспечивающий захват и перемещение гранул-анионитов относительно обрабатываемой поверхности детали, а также устройство для обеспечения вибрации упомянутых гранул-анионитов.
Кроме того возможны следующие признаки установки: установка содержит дополнительные держатели деталей с индивидуальными для каждой детали упомянутыми внешними электродами с обеспечением одновременной обработки всех упомянутых деталей.
Сущность изобретения поясняется чертежами. На фиг.1 показана схема перемещения гранул-анионитов при вращении радиального лопастного колеса. На фиг. 2 изображен внешний вид радиального лопастного колеса с помещенной в ее полость обрабатываемой деталью. На фиг 3 - внешний вид рабочей емкости установки с расположенными в ней радиальными лопастными колесами (внешними электродами). Фигуры с 1 по 3 содержат: 1 обрабатываемая деталь, 2 - внешний электрод, 3 гранулы-аниониты, 4 лопасть , 5 рабочая емкость, 6 вал колеса, 7 вал привода, ω1 угловая скорость вращения радиального лопастного колеса , ω2 угловая скорость вращения обрабатываемой детали. (Красными стрелками обозначены направления движения гранул-анионитов, круговыми стрелками - направление вращения радиального лопастного колеса (синяя стрелка) и обрабатываемой детали (черная стрелка)).
Заявляемый способ электрополирования детали, в частности поверхности пера лопатки в процессе его полирования и работа установки осуществляется следующим образом.
На держателе закрепляют обрабатываемую деталь 1 и размещают ее в рабочую емкость 5 внутри внешнего электрода 2 (фиг.1 и фиг 2), таким образом, чтобы вся обрабатываемая поверхность детали была полностью погружена в рабочую среду из гранул-анионитов 3. Приводят во вращательное движение внешний электрод 2 (ω1), выполненный в виде радиального лопастного колеса, причем направление его вращения осуществляют лопастями наклоненными вперед (в сторону вращения внешний электрод 2). При вращении внешний электрод 2 обеспечивает захват и перемещение гранул относительно обрабатываемой поверхности детали 1. При этом, должен обеспечиваться электрический контакт всей полируемой поверхности детали 1 с гранулами-анионитами 3, а гранул-анионитов 3 между собой и с вращающимся электродом 2. При этом возникает интенсивное перемещение гранул-анионитов 3 относительно друг друга, а также относительно обрабатываемой детали 1 и вращающегося электрода 2. Тем самым создаются благоприятные условия для протекания процессов электрохимического массобмена, что обеспечивает однородный ионный унос материала с обрабатываемой детали 1. Последнее обстоятельство приводит к повышению качества и производительности электрополирования. Этому также способствует близкое расположение внешнего электрода 2 к поверхности обрабатываемой детали 1, приводящее к снижению электрического сопротивления системы «электрод-гранулы-деталь».
Для повышения однородности обработки, в случае обработки деталей сложной формы можно также дополнительно воздействовать на систему «электрод-гранулы-деталь» вибрацией и/или приводить деталь во вращение (фиг.1, ω2). Вибрационное движение детали 1 относительно охватывающего электрода 2 можно осуществлять при возвратно-поступательном движении детали 1 , вдоль ее продольной оси, например с частотой от 30 до 200 Гц, амплитудой от 0,1 до 2 мм.
При необходимости повышения производительности обработки, можно использовать установку для электрополирования с несколькими внешними электродами 2 (фиг.3).
Электрополирование детали 1 (фиг.1) проводят посредством протекания электрохимических процессов (ионного уноса материала детали 1) между деталью 1 и внешним электродом 2 через гранулы-аниониты, пропитанные раствором электролита, обеспечивающего их электропроводность и ионный унос металла с поверхности детали 1 с удалением с нее микровыступов.
Соотношение размера гранул a и величины минимального зазора b между электродом и поверхностью детали выбирают не менее b = 10 a , и подают на деталь и гранулы электрический потенциал, обеспечивающий ионный унос металла с поверхности обрабатываемой детали и ее полирование в среде гранул-анионитов до получения заданной шероховатости полируемой поверхности.
В качестве гранул используют ионообменные смолы полученные на основе сополимеризации либо полистирола, либо полиакрилата и дивинилбензола. Средние размеры гранул-анионитов выбирают из диапазона от 0,05 до 0,6 мм.
Электрополирование проводят либо подавая на деталь 1 положительный, а на внешний электрод 2 отрицательный электрический потенциал, величиной от 12 до 35 В, либо в импульном режиме со сменой полярности, при диапазоне частот импульсов от 20 до 100 Гц, периода импульсов от 50 мкс до 10 мкс, при амплитуде тока положительной полярности во время импульса +50 А и их длительности 0,4 до 0,8 мкс, при амплитуде тока отрицательной полярности во время импульса - 20 А, и их длительности 0,2 до 0,4 мкс, при прямоугольной форме выходных импульсов тока и длительности пауз между импульсами от 49,6 мкс до 9,2 мкс.
При полировании лопатки турбомашины, выполненной из легированной стали, в качестве электролитов для пропитки гранул-анионитов 3 используют один из следующих водных растворов: или NH4F, концентрацией от 6 до 24 г/л, или NаF, концентрацией от 4 до 18 г/л, или KF концентрацией от 35 до 55 г/л, или смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л и KF - от 30 до 50 г/л, или смеси NаF и KF при содержании NаF - от 3 до 14 г/л и KF - от 35 до 60 г/л, или смеси NH4F и NaF при содержании NH4F - от 4 до 12 г/л и KF - от 35 до 55 г/л, или смеси NH4F , NаF и KF при содержании NH4F - от 3 до 9 г/л и KF - от 20 до 30 г/л, и NaF - от 10 до 25 г/л, или смеси NH4F и НF при содержании NH4F - от 5 до 15 г/л и НF - от 3 до 5 г/л, или от 8 до 14% водном растворе NaNO3, или в электролитах составов, мас.%: (NH4)2SO4 - 5; Трилон Б - 0,8, или содержащий серную и орто-фосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас.%:
Серная кислота | 10-30 |
Орто-фосфорная кислота | 40-80 |
Блок-сополимер окисей этилена и пропилена | 0,05-1,1 |
Натриевая соль сульфированного бутилолеата | 0,01-0,05 |
Вода | Остальное. |
При полировании лопатки турбомашины выполненной из титанового сплава, в качестве электролитов для пропитки гранул-анионитов 3 используют один из следующих водных растворов: или водный раствор смеси NH4F и KF при содержании NH4F - от 8 до 14 г/л и KF - от 36 до 48 г/л, или водного раствора с содержанием 30 - 50 г/л KF·2H2O и 2 - 5 г/л СrO3.
При полировании лопатки турбомашины выполненной из никелевого сплава, в качестве электролитов для пропитки гранул-анионитов 3 используют один из следующих водных растворов: водный раствор соли фторида аммония концентрацией 6-9,0 г/литр, или водный раствор сульфата аммония с концентрацией 0,8…3,4 или водный раствор, содержащий серную и орто-фосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас. %:
Серная кислота | 10-30 |
Орто-фосфорная кислота | 40-80 |
Блок-сополимер окисей этилена и пропилена | 0,05-1,1 |
Натриевая соль сульфированного бутилолеата | 0,01-0,05 |
Вода | Остальное |
Процесс полирования осуществляют до получения заданной величины шероховатости поверхности пера лопатки.
Были проведены также следующие исследования по полированию деталей (лопаток турбомашин) из легированых сталей, никелевых и титановых сплавов. Неудовлетворительным результатом (Н.Р.) считался результат, при котором на полируемой поверхности не наблюдался эффект полирования или происходило недопустимое изменение геометрии пера лопатки. При отсутствии дефектов на поверхности детали результат признавался удовлетворительным (У.Р.)
Во всех случаях, следующие режимы обработки деталей оказались универсальными.
Применяемые гранулы-аниониты - ионообменные смолы полученные на основе сополимеризации либо полистирола, либо полиакрилата и дивинилбензола. Марки использованных в предлагаемом изобретении анионитов на основе синтетических смол: Анионит 17-8ЧС , Анионит Purolite A520E, Lewatit S 6328 A (на основе сополимера стирол-дивинилбензола), «Lewatit М500», «Lewatit MonoPlus MК 51», «Lewatit MonoPlus MP 68 », Purolite C150E, Purolite A-860 (макропористая сильноосновная анионообменная смола основанная на акрилатах), анионит сульфированный сополимер стирол-дивинилбензола. Перечисленные гранулы-аниониты, пропитанные вышеприведенными составами электролитов, показали положительный результат при полировании лопаток из легированных сталей.
При импульном режиме со сменой полярности:
- диапазон частот импульсов от 20 до 100 Гц: 15Гц (Н.Р.), 20Гц (У.Р.), 40Гц (У.Р.), 60Гц (У.Р.), 80Гц (У.Р.), 100Гц (У.Р.), 120Гц (Н.Р.)
- период импульсов от 50 мкс до 10 мкс,: 60 мкс (Н.Р.), 50 мкс (У.Р.), 40 мкс (У.Р.), 30 мкс (У.Р.), 20 мкс (У.Р.), 10 мкс (У.Р.), 5 мкс (Н.Р.);
- амплитуда тока положительной полярности во время импульса +50 А и их длительности 0,4 мкс до 0,8 мкс : 0,2 мкс (Н.Р.), 0,4 мкс (У.Р.), 0,6 мкс (У.Р.), 0,8 мкс (У.Р.), 10,0 мкс (Н.Р.);
- при амплитуде тока отрицательной полярности во время импульса - 20 А, и их длительности 0,2 мкс до 0,4 мкс, 0,1 мкс (Н.Р.), 0,2 мкс (У.Р.), 0,3 мкс (У.Р.), 0,4 мкс (У.Р.), 0,5 мкс (Н.Р.);
- при прямоугольной форме выходных импульсов тока(У.Р.),
- и длительности пауз между импульсами от 49,6 мкс до 9,2 мкс - (У.Р.) выход за пределы диапазона - (Н.Р.).
При режиме без смены полярности: электрополирование проводили подавая на деталь положительный, а на внешний электрод отрицательный электрический потенциал от 12 до 35 В: 8 В (Н.Р.), 12 В (У.Р.), 20 В (У.Р.), 30 В (У.Р.), 35 В (У.Р.), 45 В (Н.Р.),
Первая группа: детали из легированных сталей.
Обработке подвергались детали (образцы и лопатки) из легированных сталей ЭП718-ИД, ВЖ105-ИД, ЭП718-ПД, ВЖ105-ПД.
Условия обработки по предлагаемому способу.
Применяемые электролиты для пропитки гранул-анионитов:
1) NH4F, концентрацией от 6 до 24 г/л (выход за пределы концентраций NH4F от 6 до 24 г/л дает отрицательный результат);
2) NаF, концентрацией от 4 до 18 г/л, (выход за пределы концентраций от 4 до 18 г/л, дает отрицательный результат);
3) KF концентрацией от 35 до 55 г/л, (выход за пределы концентраций от 35 до 55 г/л, дает отрицательный результат);
4) смеси NH4F и KF при содержании NH4F - от 5 до 15 г/л (выход за пределы концентраций NH4F - от 5 до 15 г/л, дает отрицательный результат) и KF - от 30 до 50 г/л (выход за пределы концентраций KF - от 30 до 50 г/л, дает отрицательный результат),
5) смеси NаF и KF при содержании NаF - от 3 до 14 г/л (выход за пределы концентраций NаF - от 3 до 14 г/л, дает отрицательный результат), и KF - от 35 до 60 г/л (выход за пределы концентраций KF - от 35 до 60 г/л, дает отрицательный результат),
6) смеси NH4F и NaF при содержании NH4F - от 4 до 12 г/л (выход за пределы концентраций NH4F - от 4 до 12 г/л, дает отрицательный результат) и KF - от 35 до 55 г/л (выход за пределы концентраций KF - от 35 до 55 г/л, дает отрицательный результат),
7) смеси NH4F , NаF и KF при содержании NH4F - от 3 до 9 г/л (выход за пределы концентраций NH4F - от 3 до 9 г/л, дает отрицательный результат), и KF - от 20 до 30 г/л, (выход за пределы концентраций KF - от 20 до 30 г/л, дает отрицательный результат), и NaF - от 10 до 25 г/л (выход за пределы концентраций NaF - от 10 до 25 г/л, дает отрицательный результат),
8) смеси NH4F и НF при содержании NH4F - от 5 до 15 г/л (выход за пределы концентраций NH4F - от 5 до 15 г/л, дает отрицательный результат), и НF - от 3 до 5 г/л (выход за пределы концентраций НF от 3 до 5 г/л, дает отрицательный результат),
9) от 8 до 14% водном растворе NaNO3 (выход за пределы концентраций NaNO3 от 8 до 14% , дает отрицательный результат).
Вторая группа: детали (образцы и лопатки) из титановых сплавов марок ВТ9, ВТ-1, ВТ3-1, ВТ8. Лопатки обрабатывали гранулами-анионитами, пропитанными электролитом состава водный раствор смеси NH4F и KF при содержании NH4F - от 8 до 14 г/л и KF - от 36 до 48 г/л и проводили полирование при плотности тока 1,2 до 1,8 А/см2 до достижения минимально возможной шероховатости поверхности.
Условия обработки по предлагаемому способу.
Состав электролита: водный раствор смеси NH4F и KF при содержании NH4F (6 г/л - Н.Р., 8 г/л - У.Р., 10 г/л - У.Р., 12 г/л - У.Р., 14 г/л - У.Р., более14 г/л- Н.Р.) и KF ( 32 г/л - Н.Р., 36 г/л - У.Р., 42 г/л - У.Р., 45 г/л - У.Р., 48 г/л - У.Р., 52 г/л - Н.Р.)
Третья группа: детали (образцы и лопатки) из никелевых сплавов марок ЖС6У, ЖС32. Лопатки обрабатывали гранулами-анионитами, пропитанными электролитом и проводили полирование при плотности тока 1,5 до 2,1 А/см2 до достижения минимально возможной шероховатости поверхности.
Условия обработки по предлагаемому способу.
Гранулы-аниониты, пропитанные электролитом состава: водный раствор соли фторида аммония концентрацией 6 - 9,0 г/литр (5,0 г/литр (Н.Р.), 6,0 г/литр (У.Р.), 7,0 г/литр (У.Р.), 8,0 г/литр (У.Р.), 10,0 г/литр (У.Р.), 12,0 г/литр (Н.Р.) ) и при плотности тока 1,5 до 2,1 А/см2 (1,3 А/см2 (Н.Р.), 1,5 А/см2 (У.Р.), 1,6 А/см2 (У.Р.), 1,9 А/см2 (У.Р.), 2,1 А/см2 (У.Р.), 2,3 А/см2 (Н.Р.)).
По сравнению с известным способом полирования [WO2017186992] при обработке пера лопатки из легированных сталей, никелевых и титановых сплавов по предлагаемому способу образование дефектов в виде неполированных участков поверхности, недопустимых изменений геометрии пера лопатки практически не наблюдалось, в то время как при обработке по известному способу полирования [WO2017186992] происходило образование перечисленных дефектов. В среднем, при обработке по способу-прототипу [WO2017186992] наблюдалось около 77% случает возникновения дефекта в виде изменения геометрии пера лопатки.
Таким образом, предложенный способ электрополирования детали позволил достигнуть поставленного в изобретении технического результата - повышение качества и надежности обработки поверхности металлической детали за счет повышения однородности обработки ее поверхности, снижения вероятности появления дефектов.
Claims (12)
1. Способ электрополирования металлической детали, включающий погружение детали в проводящую среду из гранул-анионитов, пропитанных раствором электролита, обеспечивающего электропроводность упомянутых гранул-анионитов и ионный унос металла с поверхности детали с удалением микровыступов при подаче противоположного по знаку электрического потенциала на деталь и упомянутую проводящую среду через введенный в упомянутую среду внешний электрод, отличающийся тем, что используют внешний электрод, охватывающий с зазором обрабатываемую деталь и выполненный в виде радиального лопастного колеса с лопастями, наклоненными вперед, в сторону вращения электрода, вращают упомянутый электрод, обеспечивая захват и перемещение гранул-анионитов относительно обрабатываемой поверхности детали с обеспечением контакта всей полируемой поверхности детали с упомянутыми гранулами-анионитами и гранул-анионитов между собой и с упомянутым вращающимся внешним электродом.
2. Способ по п. 1, отличающийся тем, что соотношение размера гранул-анионитов a и величины минимального зазора b между электродом и поверхностью детали выбирают не менее b = 10 a , и подают на деталь и гранулы-аниониты электрический потенциал, обеспечивающий ионный унос металла с поверхности обрабатываемой детали и ее полирование в среде упомянутых гранул-анионитов до получения заданной шероховатости полируемой поверхности.
3. Способ по п. 1, отличающийся тем, что в качестве материала упомянутых гранул-анионитов используют ионообменные смолы, полученные на основе сополимеризации либо полистирола, либо полиакрилата и дивинилбензола, причем размеры гранул-анионитов а выбирают из диапазона 0,1-0,4 мм, причем упомянутые гранулы-аниониты дополнительно приводят в вибрационное движение.
4. Способ по п. 1, отличающийся тем, что электрополирование гранулами-анионитами проводят либо подавая на деталь положительный, а на гранулы-аниониты отрицательный электрический потенциал от 12 до 35 В, либо в импульсном режиме со сменой полярности при диапазоне частот импульсов от 20 до 100 Гц, периоде импульсов от 50 до 10 мкс, при амплитуде тока положительной полярности во время импульса +50 А и их длительности от 0,4 до 0,8 мкс, при амплитуде тока отрицательной полярности во время импульса -20 А и их длительности от 0,2 до 0,4 мкс, при прямоугольной форме выходных импульсов тока и длительности пауз между импульсами от 49,6 до 9,2 мкс.
5. Способ по п. 2, отличающийся тем, что электрополирование гранулами-анионитами проводят либо подавая на деталь положительный, а на гранулы-аниониты отрицательный электрический потенциал от 12 до 35 В, либо в импульсном режиме со сменой полярности при диапазоне частот импульсов от 20 до 100 Гц, периоде импульсов от 50 мкс до 10 мкс, при амплитуде тока положительной полярности во время импульса +50 А и их длительности от 0,4 до 0,8 мкс, при амплитуде тока отрицательной полярности во время импульса -20 А и их длительности от 0,2 до 0,4 мкс, при прямоугольной форме выходных импульсов тока и длительности пауз между импульсами от 49,6 до 9,2 мкс.
6. Способ по любому из пп. 1-5, отличающийся тем, что в качестве детали используют лопатку турбомашины, выполненную из легированной стали, а в качестве электролита для пропитки упомянутых гранул- анионитов используют один из следующих водных растворов: NH4F концентрацией от 6 до 24 г/л, или NаF концентрацией от 4 до 18 г/л, или KF концентрацией от 35 до 55 г/л, или смеси NH4F и KF при содержании NH4F от 5 до 15 г/л и KF от 30 до 50 г/л, или смеси NаF и KF при содержании NаF от 3 до 14 г/л и KF от 35 до 60 г/л, или смеси NH4F и NaF при содержании NH4F от 4 до 12 г/л и NaF от 35 до 55 г/л, или смеси NH4F, NаF и KF при содержании NH4F от 3 до 9 г/л, KF от 20 до 30 г/л и NaF от 10 до 25 г/л, или смеси NH4F и НF при содержании NH4F от 5 до 15 г/л и НF от 3 до 5 г/л, или от 8 до 14% водного раствора NaNO3, или в электролитах составов, мас.%: (NH4)2SO4 5,Трилон Б 0,8, или в водном растворе, содержащем серную и ортофосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас.%:
7. Способ по любому из пп. 1-4, отличающийся тем, что в качестве детали используют лопатку турбомашины, выполненную из титанового сплава, а в качестве электролита для пропитки упомянутых гранул- анионитов используют один из следующих водных растворов: водный раствор смеси NH4F и KF при содержании NH4F от 8 до 14 г/л и KF от 36 до 48 г/л или водный раствор с содержанием 30-50 г/л KF·2H2O и 2-5 г/л СrO3.
8. Способ по любому из пп. 1-4, отличающийся тем, что в качестве детали используют лопатку турбомашины, выполненную из никелевого сплава, а в качестве электролита для пропитки упомянутых гранул- анионитов используют один из следующих водных растворов: водный раствор соли фторида аммония концентрацией 6-9,0 г/л, или водный раствор сульфата аммония с концентрацией 0,8-3,4 г/л, или водный раствор, содержащий серную и ортофосфорную кислоты, блок-сополимер окисей этилена и пропилена и натриевую соль сульфированного бутилолеата при следующем соотношении компонентов, мас. %:
9. Установка для электрополирования металлической детали, содержащая источники электрического питания для электрополирования и осуществления рабочих движений механизмов установки, блок управления, рабочую емкость с гранулами-анионитами и внешним электродом, обеспечивающим электрический контакт с упомянутыми гранулами-анионитами, и по крайней мере один держатель обрабатываемой детали, выполненный с возможностью размещения детали в среде упомянутых гранул-анионитов и перемещения гранул-анионитов относительно обрабатываемой поверхности упомянутой детали с обеспечением подачи противоположных по знаку электрических потенциалов для электрополирования на внешний электрод и обрабатываемую деталь, отличающаяся тем, что упомянутый внешний электрод выполнен в виде радиального лопастного колеса, с возможностью вращения вокруг собственной оси, с лопастями, наклоненными вперед, в сторону вращения электрода, обеспечивающий захват и перемещение гранул-анионитов относительно обрабатываемой поверхности детали.
10. Установка по п. 9, отличающаяся тем, что содержит дополнительные держатели деталей с индивидуальными для каждой детали упомянутыми внешними электродами с обеспечением одновременной обработки всех упомянутых деталей, а также устройство для обеспечения вибрации упомянутых гранул-анионитов.
Publications (1)
Publication Number | Publication Date |
---|---|
RU2786767C1 true RU2786767C1 (ru) | 2022-12-26 |
Family
ID=
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2822229C1 (ru) * | 2023-09-21 | 2024-07-03 | федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский университет науки и технологий" | Способ электрополирования детали из алюминиевого сплава |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017186992A1 (es) * | 2016-04-28 | 2017-11-02 | Drylyte, S.L. | Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso |
RU2719217C1 (ru) * | 2019-09-10 | 2020-04-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" | Способ электрополирования моноколеса с лопатками и устройство для его реализации |
RU2730306C1 (ru) * | 2020-02-28 | 2020-08-21 | Аскар Джамилевич Мингажев | Способ сухого электрополирования детали |
RU2769105C1 (ru) * | 2021-09-16 | 2022-03-28 | Аскар Джамилевич Мингажев | Способ сухого электрополирования лопатки турбомашины |
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017186992A1 (es) * | 2016-04-28 | 2017-11-02 | Drylyte, S.L. | Proceso para alisado y pulido de metales por transporte iónico mediante cuerpos sólidos libres, y cuerpos sólidos para llevar a cabo dicho proceso |
RU2719217C1 (ru) * | 2019-09-10 | 2020-04-17 | федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский государственный авиационный технический университет" | Способ электрополирования моноколеса с лопатками и устройство для его реализации |
RU2730306C1 (ru) * | 2020-02-28 | 2020-08-21 | Аскар Джамилевич Мингажев | Способ сухого электрополирования детали |
RU2769105C1 (ru) * | 2021-09-16 | 2022-03-28 | Аскар Джамилевич Мингажев | Способ сухого электрополирования лопатки турбомашины |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2822229C1 (ru) * | 2023-09-21 | 2024-07-03 | федеральное государственное бюджетное образовательное учреждение высшего образования "Уфимский университет науки и технологий" | Способ электрополирования детали из алюминиевого сплава |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2734206C1 (ru) | Способ ионного полирования детали | |
CN104308670B (zh) | 基于非牛顿流体剪切增稠与电解复合效应的超精密加工方法 | |
Du et al. | Research on the electrolytic-magnetic abrasive finishing of nickel-based superalloy GH4169 | |
RU2465995C2 (ru) | Устройство и способ для комбинированной обработки фасонной тонкостенной обрабатываемой детали | |
RU2700229C1 (ru) | Способ электрополирования лопаток блиска | |
RU2724734C1 (ru) | Способ электрополирования детали | |
RU2715396C1 (ru) | Способ электрополирования лопатки гтд из легированной стали и устройство для его реализации | |
RU2769105C1 (ru) | Способ сухого электрополирования лопатки турбомашины | |
CN113427389A (zh) | 一种圆柱滚子力流变抛光方法 | |
RU2731705C1 (ru) | Способ электрополирования металлической детали | |
RU2786767C1 (ru) | Способ электрополирования металлической детали и установка для его реализации | |
CN109909567A (zh) | 高效精密电解机械组合式铣削加工方法及装置 | |
CN204123241U (zh) | 基于非牛顿流体剪切增稠与电解复合效应的超精密加工装置 | |
RU2700226C1 (ru) | Способ электрополирования металлической детали | |
RU2697757C1 (ru) | Способ сухого локального электрополирования лопаток блиска и рабочий контейнер для его реализации | |
RU2730306C1 (ru) | Способ сухого электрополирования детали | |
CN107900787A (zh) | 一种等离子体氧化辅助磨削装置与方法 | |
RU2799180C1 (ru) | Способ сухого электрополирования лопатки турбомашины и установка для его реализации | |
RU2715395C1 (ru) | Способ электрополирования лопаток блиска и устройство для его реализации | |
RU2710087C1 (ru) | Способ обработки перфорационных отверстий в полых лопатках турбомашины и установка для его реализации | |
CN207888328U (zh) | 一种等离子体氧化辅助磨削装置 | |
RU2799641C1 (ru) | Способ электрополирования металлической детали сложной формы и установка для его реализации | |
RU2716292C1 (ru) | Способ электрополирования металлической детали | |
RU2755908C1 (ru) | Установка для электрополирования лопатки турбомашины | |
RU2822229C1 (ru) | Способ электрополирования детали из алюминиевого сплава |