US3492210A - Electrolytic stripping of nonferrous metals from a ferrous metal base - Google Patents

Electrolytic stripping of nonferrous metals from a ferrous metal base Download PDF

Info

Publication number
US3492210A
US3492210A US675338A US3492210DA US3492210A US 3492210 A US3492210 A US 3492210A US 675338 A US675338 A US 675338A US 3492210D A US3492210D A US 3492210DA US 3492210 A US3492210 A US 3492210A
Authority
US
United States
Prior art keywords
bath
solution
piece
work
stripping
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US675338A
Inventor
Russell L Bowers
Larry E Napier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
WGG & COMPANY Inc 2525 STATE ST COLUMBUS IN 47201 A IN CORP
Hamilton Cosco Inc
Cosco Inc
Original Assignee
Hamilton Cosco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamilton Cosco Inc filed Critical Hamilton Cosco Inc
Application granted granted Critical
Publication of US3492210A publication Critical patent/US3492210A/en
Assigned to W.G.G. & COMPANY, INC., 2525 STATE ST., COLUMBUS, IN. 47201, A IN. CORP. reassignment W.G.G. & COMPANY, INC., 2525 STATE ST., COLUMBUS, IN. 47201, A IN. CORP. ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: COSCO, INC.,
Assigned to COSCO, INC. reassignment COSCO, INC. CHANGE OF NAME (SEE DOCUMENT FOR DETAILS). MARCH 11, 1983 Assignors: W.G.G. & COMPANY, INC.
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F5/00Electrolytic stripping of metallic layers or coatings

Definitions

  • ABSTRACT OF THE DISCLOSURE A method and composition for electrochemically removing metallic layers from a work-piece in which the work-piece is disposed in an electrolytic bath of an aqueous solution of ammonium nitrate, tartaric acid and sodium hydroxide.
  • the articles are normally carried through plating baths on carriers formed from a ferrous base metal and mounted on a conveyor. Consequently, the metal being plated onto the articles is also plated onto the carriers with the result that after the carriers have been in use for a period of time they are coated with layers of the metal or metals being deposited by the plating baths through which they have passed.
  • Our invention is directed to a process and stripping composition which will quickly remove such coating layers without etching the ferrous base material of the carrier and which avoids the use of any of the toxic cyanides.
  • a stripping bath for removing brass, chrome, nickel, cadmium, zinc, or the like from a ferrous based work-piece is prepared, said bath consisting of an aqueous solution ofammonium nitrate, tartaric acid, and sodium hydroxide.
  • the bath is maintained at an elevated temperature while the workpiece which is to have the metal removed therefrom is passed therethrough.
  • the work-piece immersed in the bath and said work-piece and an electrically conductive member in contact with the bath are made the anode and cathode, respectively, of an electrolytic circuit through which a high amperage current is passed with the result that the metal on the work-piece is electrolytically stripped therefrom and forms a sludge in the bath and/or a coating on the electrically conductive member.
  • Our invention is concerned with a stripping process and agent for removing layers of brass, chrome, nickel, cadmium, zinc, or the like from ferrous based metals. It therefore finds particular utility in removing such metals from carriers on conveyors, which carriers may have been previously used to carry various parts or items through metal plating baths.
  • Our stripper is comprised of an aqueous solution of ammonium nitrate, tartaric acid, and sodium hydroxide.
  • the ammonium nitrate is present in an amount ranging from 1.0 oz. to 80.0 oz. per gallon of solution, the tartaric acid in an amount ranging from .01 oz. to .80 oz. per gallon of solution, and the sodium hydroxide in an amount ranging from .037 oz. to .36 oz. per gallon of solution.
  • the ammonium nitrate serves as the stripping agent for the coating layers to be removed, and consequently, as the amount of ammonium nitrate in the solution is decreased, the rate of the stripping action of the solution is reduced.
  • the tartaric acid acts as a buffer for the work-piece, and thus, if it is present in the solution in amounts less than .01 oz. per gallon, etching of the work-piece will occur. Amounts of ammonium nitrate and tartaric acid in the solution greater than 80.0 oz. per gallon and .80 oz. per gallon, respectively, show no improved results, and thus it is not economically sound to use greater amounts of these two materials. Desirably, the tartaric acid is present in the solution in an amount equal to one-hundredth of the amount of ammonium nitrate in the solution.
  • the sodium hydroxide neutralizes the solution into a pH range of from 6.8 to 8.0.
  • a typical example of a stripping solution which we have successfully employed consisted of an aqueous solution containing 24.0 oz. of ammonium nitrate, .24 oz. of tartaric acid, and .11 oz. of sodium hydroxide for each gallon of solution.
  • the pH of the stripping solution should be maintained between 6.8 and 8.0. Under normal operation the pH of the solution should remain stable. However, if the pH falls below this range, it can be raised by the addition of sodium hydroxide, or if it rises above this range, it can be lowered by the addition of nitric acid.
  • a bath of the stripper is prepared and placed in a tank where it is maintained at an elevated temperature, desirably in the range from F. to F. We have found that at temperatures below this range the rate of the stripping action is substantially reduced, and that at temperatures above this range ammonia is evolved from the bath.
  • the workpiece is placed in said bath, and it and an electrically conductive member in contact with the bath are connected to an electrical circuit to form an electrolytic cell with the work-piece constituting the anode and the electrically conductive member constituting the cathode.
  • a current of from 100 to 200 amperes per square foot of work-piece surface at a voltage of from 5 to 8 volts is applied to circuit. If the amperage and voltage are below this range, we have found that the stripping rate will be substantially reduced, and if the amperage and voltage are above this range, etching of the work-piece will occur.
  • the metal of the coating being stripped is electrolytically stripped from the work-piece at the rate of about .10 mil-s per minute and becomes a sludge in the bath and a deposit on the cathode forming member.
  • the bath life can be increased by periodic filtration or decanting to remove the sludge and by cleaning the cathode form ing member.
  • a typical example of our invention is seen wherein a nickel and chrome plating was removed from a series of steel plates having a total surface area of about 1.5 square feet.
  • a stripper bath was prepared using water as the diluent and containing 24.0 oz. of ammonium nitrate, .24 oz. of tartaric acid, and .11 oz. of sodium hydroxide for each gallon of the bath.
  • the bath had a pH of about 7.1.
  • the bath was placed in a steel tank and heated to a temperature of about 160 F.
  • the plates were placed in the tank and said plates and tank were connected to an electrical circuit with the plates forming the anode and the tank the cathode. A current of amperes at 6 volts was impressed on the circuit.
  • the nickel and chrome coating was reduced in thickness by .5 mil, the stripped nickel and chrome forming a sludge in the tank and a film on the tank walls.
  • a process for removing coatings of brass, chrome, nickel, cadmium, zinc, or the like from a ferrous based work-piece comprising the steps of placing said workpiece in a bath of an aqueous solution consisting essentially of at least 1.0 oz. of ammonium nitrate and at least .01 oz. of tartaric acid per gallon of solution, adiusting the pH of the solution into the range of from 5.8 to 8.0, connecting said work-piece and an electrically :onductive member in contact with said bath to an electrical circuit with said Work-piece and member forming an anode and cathode, respectively, and impressing a current on said circuit while maintaining said bath at an elevated temperature.

Description

United States Patent 3,492,210 ELECTROLYTIC STRIPPING OF NONFERROUS METALS FROM A FERROUS METAL BASE Russell L. Bowers, Columbus, Ind., and Larry E. Napier, Little Rock, Ark., assignors to Hamilton Cosco, Inc., Columbus, Ind., a corporation of Indiana No Drawing. Filed Oct. 16, 1967, Ser. No. 675,338 Int. Cl. C23b 1/00; C22b 1/20; B01k 1/00 U.S. Cl. 204-146 3 Claims ABSTRACT OF THE DISCLOSURE A method and composition for electrochemically removing metallic layers from a work-piece in which the work-piece is disposed in an electrolytic bath of an aqueous solution of ammonium nitrate, tartaric acid and sodium hydroxide.
BACKGROUND OF THE INVENTION In the metal plating of different articles, the articles are normally carried through plating baths on carriers formed from a ferrous base metal and mounted on a conveyor. Consequently, the metal being plated onto the articles is also plated onto the carriers with the result that after the carriers have been in use for a period of time they are coated with layers of the metal or metals being deposited by the plating baths through which they have passed. Our invention is directed to a process and stripping composition which will quickly remove such coating layers without etching the ferrous base material of the carrier and which avoids the use of any of the toxic cyanides.
SUMMARY OF THE INVENTION In accordance with the invention, a stripping bath for removing brass, chrome, nickel, cadmium, zinc, or the like from a ferrous based work-piece is prepared, said bath consisting of an aqueous solution ofammonium nitrate, tartaric acid, and sodium hydroxide. The bath is maintained at an elevated temperature while the workpiece which is to have the metal removed therefrom is passed therethrough. The work-piece immersed in the bath and said work-piece and an electrically conductive member in contact with the bath are made the anode and cathode, respectively, of an electrolytic circuit through which a high amperage current is passed with the result that the metal on the work-piece is electrolytically stripped therefrom and forms a sludge in the bath and/or a coating on the electrically conductive member.
DETAILED DESCRIPTION Our invention is concerned with a stripping process and agent for removing layers of brass, chrome, nickel, cadmium, zinc, or the like from ferrous based metals. It therefore finds particular utility in removing such metals from carriers on conveyors, which carriers may have been previously used to carry various parts or items through metal plating baths.
Our stripper is comprised of an aqueous solution of ammonium nitrate, tartaric acid, and sodium hydroxide. The ammonium nitrate is present in an amount ranging from 1.0 oz. to 80.0 oz. per gallon of solution, the tartaric acid in an amount ranging from .01 oz. to .80 oz. per gallon of solution, and the sodium hydroxide in an amount ranging from .037 oz. to .36 oz. per gallon of solution. The ammonium nitrate serves as the stripping agent for the coating layers to be removed, and consequently, as the amount of ammonium nitrate in the solution is decreased, the rate of the stripping action of the solution is reduced. The tartaric acid acts as a buffer for the work-piece, and thus, if it is present in the solution in amounts less than .01 oz. per gallon, etching of the work-piece will occur. Amounts of ammonium nitrate and tartaric acid in the solution greater than 80.0 oz. per gallon and .80 oz. per gallon, respectively, show no improved results, and thus it is not economically sound to use greater amounts of these two materials. Desirably, the tartaric acid is present in the solution in an amount equal to one-hundredth of the amount of ammonium nitrate in the solution. The sodium hydroxide neutralizes the solution into a pH range of from 6.8 to 8.0. If the pH of the solution drops below this range, etching of the work-piece will occur, and if the pH of the solution goes above this range, the rate of stripping action of the solution is substantially reduced. Thus, a typical example of a stripping solution which we have successfully employed consisted of an aqueous solution containing 24.0 oz. of ammonium nitrate, .24 oz. of tartaric acid, and .11 oz. of sodium hydroxide for each gallon of solution.
As previously indicated, the pH of the stripping solution should be maintained between 6.8 and 8.0. Under normal operation the pH of the solution should remain stable. However, if the pH falls below this range, it can be raised by the addition of sodium hydroxide, or if it rises above this range, it can be lowered by the addition of nitric acid.
In order to remove coatings of brass, chrome, nickel, cadmium, zinc, or the like from a ferrous based workpiece, such as a conveyor carrier, a bath of the stripper is prepared and placed in a tank where it is maintained at an elevated temperature, desirably in the range from F. to F. We have found that at temperatures below this range the rate of the stripping action is substantially reduced, and that at temperatures above this range ammonia is evolved from the bath. The workpiece is placed in said bath, and it and an electrically conductive member in contact with the bath are connected to an electrical circuit to form an electrolytic cell with the work-piece constituting the anode and the electrically conductive member constituting the cathode. A current of from 100 to 200 amperes per square foot of work-piece surface at a voltage of from 5 to 8 volts is applied to circuit. If the amperage and voltage are below this range, we have found that the stripping rate will be substantially reduced, and if the amperage and voltage are above this range, etching of the work-piece will occur.
The metal of the coating being stripped is electrolytically stripped from the work-piece at the rate of about .10 mil-s per minute and becomes a sludge in the bath and a deposit on the cathode forming member. The bath life can be increased by periodic filtration or decanting to remove the sludge and by cleaning the cathode form ing member.
A typical example of our invention is seen wherein a nickel and chrome plating was removed from a series of steel plates having a total surface area of about 1.5 square feet. A stripper bath was prepared using water as the diluent and containing 24.0 oz. of ammonium nitrate, .24 oz. of tartaric acid, and .11 oz. of sodium hydroxide for each gallon of the bath. The bath had a pH of about 7.1. The bath was placed in a steel tank and heated to a temperature of about 160 F. The plates were placed in the tank and said plates and tank were connected to an electrical circuit with the plates forming the anode and the tank the cathode. A current of amperes at 6 volts was impressed on the circuit. In 5 minutes the nickel and chrome coating was reduced in thickness by .5 mil, the stripped nickel and chrome forming a sludge in the tank and a film on the tank walls.
Although our invention has been referred to herein as being used to strip metal coatings from ferrous based,
:onveyor carriers, it isto be understood, of course, that it can be used to strip coatings from any ferrous based Work-piece.
We claim:
1. A process for removing coatings of brass, chrome, nickel, cadmium, zinc, or the like from a ferrous based work-piece comprising the steps of placing said workpiece in a bath of an aqueous solution consisting essentially of at least 1.0 oz. of ammonium nitrate and at least .01 oz. of tartaric acid per gallon of solution, adiusting the pH of the solution into the range of from 5.8 to 8.0, connecting said work-piece and an electrically :onductive member in contact with said bath to an electrical circuit with said Work-piece and member forming an anode and cathode, respectively, and impressing a current on said circuit while maintaining said bath at an elevated temperature.
2. The invention as set forth in claim 1 in which said oath is maintained at a temperature in the range of 155 F. to 165 F.
3. The invention as set forth in claim 1 in which a current of from to 200 amperes at from 5 to 8 volts is impressed on said circuit.
References Cited UNITED STATES PATENTS 2,549,411 4/1951 Bell et al. 204146- 2,588,566 3/1952 Peaslee 204-146 2,596,307 5/1952 Stuffer 204-146 2,796,394 6/1957 Schaefer 204-146 2,840,521 6/1958 Wasserman 204-146 3,151,049 9/1964 Hendry 204-146 3,257,299 6/ 1966 Mekuean 204--146 3,407,129 10/1968 Petrocelli et a1. 204-- 3,425,920 2/1969 Franzis 204145 ROBERT K. MI'HALEK, Examiner US. Cl. X.R. 204145
US675338A 1967-10-16 1967-10-16 Electrolytic stripping of nonferrous metals from a ferrous metal base Expired - Lifetime US3492210A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67533867A 1967-10-16 1967-10-16
US85536269A 1969-09-04 1969-09-04

Publications (1)

Publication Number Publication Date
US3492210A true US3492210A (en) 1970-01-27

Family

ID=27101323

Family Applications (2)

Application Number Title Priority Date Filing Date
US675338A Expired - Lifetime US3492210A (en) 1967-10-16 1967-10-16 Electrolytic stripping of nonferrous metals from a ferrous metal base
US855362A Expired - Lifetime US3649491A (en) 1967-10-16 1969-09-04 Electrolytic stripping composition

Family Applications After (1)

Application Number Title Priority Date Filing Date
US855362A Expired - Lifetime US3649491A (en) 1967-10-16 1969-09-04 Electrolytic stripping composition

Country Status (1)

Country Link
US (2) US3492210A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233124A (en) * 1979-10-29 1980-11-11 Oxy Metal Industries Corporation Electrolytic stripping bath and process
US4264420A (en) * 1979-10-29 1981-04-28 Oxy Metal Industries Corporation Electrolytic stripping bath and process
US4287033A (en) * 1980-04-14 1981-09-01 Calspan Corporation Electrochemical method for removing metallic sheaths
DE3318598A1 (en) * 1982-05-27 1983-12-01 Occidental Chemical Corp., 48089 Warren, Mich. BATH AND METHOD FOR THE ELECTROLYTIC REMOVAL OF COATS FROM COPPER, COPPER ALLOY OR CHROME FROM A FERROUS BASE METAL
US4950359A (en) * 1986-07-25 1990-08-21 Solvay & Cie (Societe Anonyme) Process for removing a coating containing niobium from a substrate
US5302260A (en) * 1990-10-15 1994-04-12 Noranda Inc. Galvanic dezincing of galvanized steel
US5779878A (en) * 1996-07-17 1998-07-14 Metal Recovery Industries (Us) Inc. Process for dezincing galvanized steel
US5855765A (en) * 1996-07-17 1999-01-05 Metal Recovery Industries, Inc. Process for dezincing galvanized steel using an electrically isolated conveyor
US6258248B1 (en) 1996-07-17 2001-07-10 Metals Investment Trust Limited Process for dezincing galvanized steel using an electrically isolated conveyor
CN104195626A (en) * 2014-08-08 2014-12-10 南开大学 Method for removing chromium films from waste rollers without damage by utilizing chromium film removing liquid

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479131A (en) * 1977-12-07 1979-06-23 Okuno Chem Ind Co Electrolytic bath for removing electrodeposited metal on stainless steel substrate
DE3727246C1 (en) * 1987-08-15 1989-01-26 Rasselstein Ag Process for the galvanic coating of a steel strip with a coating metal, in particular zinc or a zinc-containing alloy
WO1990004664A1 (en) * 1988-10-21 1990-05-03 Belorussky Politekhnichesky Institut Method for electrochemically treating articles made of conductive materials
CA2038537C (en) * 1991-03-18 1998-08-18 Rodney L. Leroy Power assisted dezincing of galvanized steel
US6294072B1 (en) * 1999-09-20 2001-09-25 Aeromet Technologies, Inc. Removal of metal oxide scale from metal products
US6837985B2 (en) * 1999-09-20 2005-01-04 Aeromet Technologies, Inc. External counter electrode

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549411A (en) * 1946-12-06 1951-04-17 Henderson M Bell Electrolytic stripping of nickel coatings from ferrous metals
US2588566A (en) * 1948-02-04 1952-03-11 Curtiss Wright Corp Electrolytic process for stripping copper
US2596307A (en) * 1947-11-05 1952-05-13 Charles Litzenberg Process of electrostripping electrodeposited metals
US2796394A (en) * 1954-11-22 1957-06-18 Clevitc Corp Separating and recovering nonferrous alloys from ferrous materials coated therewith
US2840521A (en) * 1956-09-21 1958-06-24 Tiarco Corp Electrolytic stripping
US3151049A (en) * 1958-09-29 1964-09-29 Union Carbide Corp Electrolytic method of and bath for stripping coatings from bases
US3257299A (en) * 1961-09-26 1966-06-21 Hooker Chemical Corp Composition and method for electrolytic stripping of coatings from metals
US3407129A (en) * 1965-05-24 1968-10-22 Gen Dynamics Corp Process for reclaiming spent electrolytes used for electrolytically descaling steel
US3425920A (en) * 1964-07-01 1969-02-04 Nicholas Frantzis Electrolytic method of regenerating organic acid cleaning solution for ferrous metals

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2549411A (en) * 1946-12-06 1951-04-17 Henderson M Bell Electrolytic stripping of nickel coatings from ferrous metals
US2596307A (en) * 1947-11-05 1952-05-13 Charles Litzenberg Process of electrostripping electrodeposited metals
US2588566A (en) * 1948-02-04 1952-03-11 Curtiss Wright Corp Electrolytic process for stripping copper
US2796394A (en) * 1954-11-22 1957-06-18 Clevitc Corp Separating and recovering nonferrous alloys from ferrous materials coated therewith
US2840521A (en) * 1956-09-21 1958-06-24 Tiarco Corp Electrolytic stripping
US3151049A (en) * 1958-09-29 1964-09-29 Union Carbide Corp Electrolytic method of and bath for stripping coatings from bases
US3257299A (en) * 1961-09-26 1966-06-21 Hooker Chemical Corp Composition and method for electrolytic stripping of coatings from metals
US3425920A (en) * 1964-07-01 1969-02-04 Nicholas Frantzis Electrolytic method of regenerating organic acid cleaning solution for ferrous metals
US3407129A (en) * 1965-05-24 1968-10-22 Gen Dynamics Corp Process for reclaiming spent electrolytes used for electrolytically descaling steel

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4233124A (en) * 1979-10-29 1980-11-11 Oxy Metal Industries Corporation Electrolytic stripping bath and process
US4264420A (en) * 1979-10-29 1981-04-28 Oxy Metal Industries Corporation Electrolytic stripping bath and process
US4287033A (en) * 1980-04-14 1981-09-01 Calspan Corporation Electrochemical method for removing metallic sheaths
DE3318598A1 (en) * 1982-05-27 1983-12-01 Occidental Chemical Corp., 48089 Warren, Mich. BATH AND METHOD FOR THE ELECTROLYTIC REMOVAL OF COATS FROM COPPER, COPPER ALLOY OR CHROME FROM A FERROUS BASE METAL
US4950359A (en) * 1986-07-25 1990-08-21 Solvay & Cie (Societe Anonyme) Process for removing a coating containing niobium from a substrate
US5302260A (en) * 1990-10-15 1994-04-12 Noranda Inc. Galvanic dezincing of galvanized steel
US5779878A (en) * 1996-07-17 1998-07-14 Metal Recovery Industries (Us) Inc. Process for dezincing galvanized steel
US5855765A (en) * 1996-07-17 1999-01-05 Metal Recovery Industries, Inc. Process for dezincing galvanized steel using an electrically isolated conveyor
US6258248B1 (en) 1996-07-17 2001-07-10 Metals Investment Trust Limited Process for dezincing galvanized steel using an electrically isolated conveyor
CN104195626A (en) * 2014-08-08 2014-12-10 南开大学 Method for removing chromium films from waste rollers without damage by utilizing chromium film removing liquid

Also Published As

Publication number Publication date
US3649491A (en) 1972-03-14

Similar Documents

Publication Publication Date Title
US3492210A (en) Electrolytic stripping of nonferrous metals from a ferrous metal base
US4686017A (en) Electrolytic bath and methods of use
US2451341A (en) Electroplating
US4801511A (en) Battery cell electrolyte
US2708181A (en) Electroplating process
US4789437A (en) Pulse electroplating process
US2987453A (en) Method of electrodepositing chromium
US3989604A (en) Method of producing metal strip having a galvanized coating on one side
US2746915A (en) Electrolytic metal treatment and article
US3649489A (en) Process for electrolytically stripping coatings and bath therefor
US3454376A (en) Metal composite and method of making same
GB1272536A (en) Electroplating solutions and process for electroplating using such solutions
US3151049A (en) Electrolytic method of and bath for stripping coatings from bases
NL8102696A (en) ELECTROLYTIC BATH AND METHOD FOR ELECTROLYTIC REMOVAL OF SUBSTRATES USING THIS BATH.
US2457061A (en) Method for bonding a nickel electrodeposit to a nickel surface
CA2000069C (en) Electrolytic method of and bath for stripping coatings from aluminum bases
US3959099A (en) Electrolytic method of producing one-side-only coated steel
US3249520A (en) Process of providing an electrolytic deposit on a face of a workpiece
US4264419A (en) Electrochemical detinning of copper base alloys
US2969295A (en) Chemical gold plating
US3412000A (en) Cathodic protection of titanium surfaces
US3775267A (en) Electrodeposition of rhodium
US2436244A (en) Metalworking and strippingplating process
US2581490A (en) Electrolytic process of stripping metallic coatings from a ferrous metal base
US3458407A (en) Method of producing nickel powder

Legal Events

Date Code Title Description
AS Assignment

Owner name: W.G.G. & COMPANY, INC., 2525 STATE ST., COLUMBUS,

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:COSCO, INC.,;REEL/FRAME:004134/0949

Effective date: 19830310

AS Assignment

Owner name: COSCO, INC.

Free format text: CHANGE OF NAME;ASSIGNOR:W.G.G. & COMPANY, INC.;REEL/FRAME:004149/0091

Effective date: 19830311